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Abstract
Economists have been aware of the mapping between an Input-Output (I-O, here-
inafter) table and the adjacency matrix of a weighted digraph for several decades
(Solow, Econometrica 20(1):29–46, 1952). An I-O table may be interpreted as a
network in which edges measure money flows to purchase inputs that go into pro-
duction, whilst vertices represent economic industries. However, only recently the
language and concepts of complex networks (Newman 2010) have been more inten-
sively applied to the study of interindustry relations (McNerney et al. Physica A Stat
Mech Appl, 392(24):6427–6441, 2013). The aim of this paper is to study sectoral
vulnerabilities in I-O networks, by connecting the formal structure of a closed I-O
model (Leontief, Rev Econ Stat, 19(3):109–132, 1937) to the constituent elements of
an ergodic, regular Markov chain (Kemeny and Snell 1976) and its chance process
specification as a random walk on a graph. We provide an economic interpretation to
a local, sector-specific vulnerability index based on mean first passage times, com-
puted by means of the Moore-Penrose inverse of the asymmetric graph Laplacian
(Boley et al. Linear Algebra Appl, 435(2):224–242, 2011). Traversing from the most
central to the most peripheral sector of the economy in 60 countries between 2005 and
2015, we uncover cross-country salient roles for certain industries, pervasive features
of structural change and (dis)similarities between national economies, in terms of
their sectoral vulnerabilities.

Keywords Input-output analysis · Markov chains · Betweenness centrality

1 Introduction

Wassily W. Leontief (1905–1999) and Andrey A. Markov (1856–1922) probably
never met. Probably, because Leontief’s first year as a student at Saint Petersburg
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State University (SPbU) in 1921 coincided with Markov’s last year of teaching activ-
ities affiliated to that same institution, just before his death. And while their paths
may not have crossed, intertwining their contributions reveals foundational insights
to study the connectivity in networked structures of socio-economic relations.1

Leontief’s Input-Output (I-O, hereinafter) method (Leontief 1937) became the
cornerstone for analysing the general interdependence and circularity between sec-
tors of an economy (Leontief 1986; Miller and Blair 2009). An I-O table is the
matrix representation of the bilateral flows of commodities in terms of monetary units
between industries. It may be interpreted as the adjacency matrix of a network whose
edges measure input flows whilst vertices represent economic sectors (Olsen 1992).
Self-loops (i.e. payments of an industry to itself) are allowed, and in addition to inter-
mediate input flows (i.e. a transaction between two industries) each sector sells its
output to final demand (i.e. final consumption, investment and exports) and faces pri-
mary cost elements (i.e. wages, taxes, imports), obtaining a gross operating surplus
as a residual (UN 2009).

While analyses of the network structure of I-O tables may be found in recent
literature (e.g. Xu et al. 2011; McNerney et al. 2013; Tsekeris Tsekeris), the graph-
theoretic representation of an I-O system dates back to the work of Solow (1952) and
contributions to Morgenstern (1954). More recently, explicit connections between
centrality indicators in the emerging field of complex networks (such as Google’s
PageRank algorithm) and Leontief’s I-O model(s) have been drawn (Franceschet
2011).

The extent to which primary incomes and final expenditures are connected dis-
tinguishes a closed from an open I-O model. In the former, circularity is complete,
to the point that every element of primary costs is mapped into a component of
final expenditure, and vice-versa. In the latter model, final expenditure decisions are
autonomous, so that primary costs represent a leakage from money flow circularity.

The analytical device of a Markov chain provides a chance process interpretation
of the emerging connectivity between nodes in a network (Grinstead and Snell 1997).
Superposing such an interpretation to an input-output structure has been thoroughly
worked out by Kemeny and Snell (1976, p. 200), mapping an open I-O system into
an absorbing Markov chain, i.e. a chain in which intermediate industries are transient
states and a primary income component represents the absorbing state. This mapping
has been explored in different directions (e.g. Duchin and Levine 2010; Moosavi
and Isacchini 2017; Xing et al. 2017; Xing et al. 2018; Kostoska et al. 2020). In
particular, Blöchl et al. (2011) devise two centrality measures based on random walks
to interpret the propagation of supply shocks through the economy, i.e. shocks that
depart from exogenous changes to primary cost components.

Differently from Blöchl et al. (2011), to study betweenness centrality and node
vulnerabilities in I-O networks, this paper maps a closed I-O system into an ergodic,
regular Markov chain (Kemeny and Snell 1976, p. 37). Such a mapping has been
recently used to study the community structure of a global network of inter-industry

1By connectivity, we mean the number or strength of (independent) paths between any two nodes of a
network (Newman 2010, p. 147).
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flows with an aggregated, unique final sector (Piccardi et al. 2018). Instead, a key
contribution of this paper is to extend the specification of the Markov chain to three
different final sectors: (i) the foreign sector, i.e. imports and exports; (ii) the house-
holds and government sector and (iii) the profits and investment sector. This has
important theoretical implications for the logic of economic circularity, which we
explore below.

Departing from the OECD Input-Output Tables (OECD-IOTs) database, we derive
a time-series of non-negative, irreducible and row stochastic empirical transition
probability matrices, each associated to a regular Markov chain representing the
income side of a closed I-O system.

Interpreting the traversal across sectors of the economy as a random walk on an
I-O graph, we use the Moore-Penrose inverse of the associated asymmetric graph
Laplacian to quantify the betweenness centrality of each sector in the economy
(Boley et al. 2011; Ranjan and Zhang 2013). Such a notion of topological centrality
captures local, node-level vulnerabilities.

In particular, we consider vulnerability to be defined as “the system’s suscep-
tibility to negative [random and/or targeted] shocks” (Cardinale 2019, p. 6), and
operationalised — at a local level — by a ‘vulnerability gap’ (Adger 2006, Table A1,
p. 279) between constrained and unconstrained network flows.

Conceptually, betweenness centrality conveys the extent to which a node has the
potential for exerting control over the communication between any two other vertices
(Freeman 1979). By the same token, a high value of such potential leaves a node in
a “state of susceptibility to harm from exposure to stresses” (Adger 2006, p. 268). In
fact, in line with previous studies, “for sequential attack the networks are most effec-
tively degraded by removing vertices in decreasing order of betweenness centrality”
(Iyer et al. 2013, p. 16, italics added).

We apply this framework to devise a ranking from the most central to the most
peripheral sector of the economy for 60 countries between 2005 and 2015, uncov-
ering pervasive features of structural change and (dis)similarities between national
economies, in terms of their sectoral vulnerabilities.

After this brief introduction, the rest of the paper is organised as follows. Section 2
recalls preliminary concepts and specifies the mapping of a closed Input-Output sys-
tem into a regular Markov chain, obtaining a betweenness centrality indicator that
quantifies local vulnerabilities. Section 3 describes the path that goes from inter-
industry data to empirical probability transition matrices, develops an empirical
strategy to study cross-country sectoral vulnerabilities, reporting the results obtained.
Finally, Section 4 presents a summary of findings and some concluding remarks.

2 Leontief Meets Markov: Methods

2.1 Graphs, Markov Chains and RandomWalks

We quickly recall some standard definitions and results about graph theory and ran-
dom walks on graphs; for more details the reader is referred to Wilson (1972),
Grinstead and Snell (1997), and Kemeny and Snell (1976).
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A graph G = (V , E) is a pair of sets (V , E), where V is the set of n nodes (or
vertices) and E is the set of edges (or arcs), consisting of m pairs of nodes of V . A
directed graph (or digraph) is a graph in which each edge (arc) is an ordered pair (i, j)

of vertices. Moreover, a weight wij may be associated to each edge (i, j), having a
weighted (or valued) graph.

A non-negative n-square matrix W = [wij ], representing the adjacency relation-
ships between vertices of G, can be associated to the graph (the adjacency matrix);
the off-diagonal elements wij state the strength of the relationship from node i to
node j , whereas diagonal elements wii represent the strength of the self-loop of node
i. The adjacency matrix of a weighted digraph is, in general, asymmetric.

In a directed, weighted graph, the in-degree d
(in)
i of node i is the total strength

of arcs directed from other nodes to i and the out-degree d
(out)
i of node i is the

total strength of the arcs directed from i to other vertices. If eT = [1, . . . , 1] is a
sum vector, then d(out) = We and dT

(in) = eT W . In general, d
(out)
i �= d

(in)
i , but

eT d(out) = dT
(in)e.

Throughout the paper we deal with the general case of directed, weighted graphs
admitting self-loops and we focus on out-degrees, noting that all the results can be
carried out also for in-degrees, by taking the transpose of the adjacency matrix.

Let us also assume that every node has at least one out-going edge which can
include self-loops, i.e d

(out)
i �= 0 for every i. In this case, the matrix D = ̂d(out)

(containing out-degrees in its main diagonal, and zero elsewhere) is non singular
and we can define the matrix P = D−1W . Each element of P , pij = wij /d

(out)
i

represents the relative strength exerted from i to j (in proportion to the total strength
exerted by node i to others).

While matrix P provides us with a structural representation of connectivity for
graph G, it is possible to superpose a chance process interpretation of emerging con-
nectivity patterns through the device of a finite Markov chain (Grinstead and Snell
1997,p. 405). Each non-negative element pij may be interpreted as the probability of
transitioning from node i (row i in P ) to node j (column j in P ) in the upcoming
iteration of the chance process. This process of traversing can be interpreted as a ran-
dom walk: a sequence of vertices generated from a source node i selecting an edge,
traversing the edge to a target vertex j (according to the transition rules codified in
P ), and iteratively repeating the transition to another (or the same) node, starting
from its immediately previous point of arrival. Thus, matrix P is the transition prob-
ability matrix of the Markov chain associated to a random walk on graph G, and it is
row-stochastic, i.e. Pe = e.

As we iterate step-wise over this chance process, the probabilities of being on each
node as the process unfolds (say, from t = 0 to t = 1) are given by pT

(1) = pT
(0)P ,

where p is a probability vector. This iteration process continues (pT
(2) = pT

(1)P =
pT

(0)P
2) until we (may) reach a fixed point: πT = πT P , where π specifies the vector

of stationary probabilities.
If the graph G is strongly connected, i.e. for any pair of vertices there is a directed

path leading from one vertex to the other, matrix P is irreducible (P n has only posi-
tive entries for some n). In this case, the associated Markov chain is said to be regular
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(Kemeny and Snell 1976), being possible to be in any state after n steps, no matter
what the starting state is. Moreover, by the Perron-Frobenius theorem (Meyer 2000,
p. 693), there exists a unique positive vector of stationary probabilities π = [πi],
describing the long-run proportion of (iteration) periods that a random walker will
spend in each node.

But while πi provides us with an idea of the relative systemic importance of node
i, many interesting structural features of connectivity concern relational magnitudes.
In particular, (i) what is the average number of steps required to reach node j for
the first time, starting from node i and, (ii) what constraint imposes on (i) having to
necessarily pass by node k in traversing from i to j .

To obtain (i), it is possible to compute the mean first passage time, i.e. the expected
number of transitions needed by a random walker starting in source node i to reach
target node j for the first time, denoted by H(i, j). By convention H(i, i) = 0, ∀i

while for i �= j , H(i, j) is usually obtained using an ‘absorbing-chain technique’
(for example, see Blöchl et al. 2011).2 In particular, if P (−j) is the (n − 1) × (n − 1)
matrix obtained from deleting the j -th row and column of P , we have:

H(i, j) =
[

(I − P (−j))
−1e(−j)

]

i

where e(−j) is an (n − 1) sum vector. Note that, computationally, this approach
requires to invert n − 1 matrices, each of dimension (n − 1) × (n − 1).

Instead, a key departure of this paper consists in an alternative computation of
H(i, j) based on obtaining the Moore-Penrose inverse of (only) one matrix of dimen-
sion n × n.3 To see this, besides the transition probability matrix P , it is possible to
define the (ordinary) asymmetric Laplacian matrix L = Π(I − P ), where Π = π̂ ,
and which satisfies Le = LT e = 0. Then, if we denote by M = [mij ] the Moore-
Penrose inverse of L, the mean first passage time from source i to target j is given
by (Boley et al. 2011, Theorem 15):

H(i, j) = mjj − mij +
n

∑

l=1

(mil − mjl)πl (1)

In order to quantify (in number of steps) “how much the restriction of passing
through a given vertex [k] represents a detour in going from an arbitrary vertex i

to another arbitrary vertex j” (Boley et al. 2011, p. 236), we combine H(i, k) and
H(k, j):

Hk(i, j) = H(i, k) + H(k, j)

2The technique consists in applying the same principles used for absorbing (rather than ergodic) Markov
chains to an irreducible chain that does not contain absorbing states (see Grinstead and Snell (1997) and
Palacios (1990) and the references therein).
3Details on how to compute the Moore-Penrose inverse of a matrix are provided in Meyer (2000, p. 423).
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i.e. we need to go from i to k and, then, from k to j . By applying Eq. 1, summing
over all pairs of source and target nodes and rearranging, we obtain:

n
∑

i=1

n
∑

j=1

Hk(i, j)

(a)

−
n

∑

i=1

n
∑

j=1

H(i, j)

(b)

= n2mkk (2)

where term (a) in Eq. 2 is the average length of all walks between any pair of nodes
restricted to passing by vertex k, while term (b) in Eq. 2 is the average length of all
walks between any pair of nodes. The difference (a) - (b) represents the “extra dis-
tance travelled between two vertices when forced to pass through vertex [k], summed
over all n2 pairs of source/destination vertices” (Boley et al. 2011, p. 237).

Note that (a) - (b) in Eq. 2 represents the difference between constrained — of
passing by k —and unconstrained network flows across node pairs, respectively. This
difference may be interpreted as a ‘vulnerability gap’ (in the sense of Adger 2006,
Table A1, p. 279), where the constrained magnitude captures a node-specific aver-
age traversal distance, whilst the unconstrained term captures a ‘threshold’ average
distance between any two nodes.4

Given that, throughout this work, we consider graphs with the same number of
nodes, (the reciprocal of) mkk in Eq. 2 captures the betweenness centrality of node k.
In fact, the higher mkk the higher the extra distance imposed by forcing the passage
through that node. Thus, a very high value ofmkk indicates that k must be a peripheral
node of the graph, otherwise the detour would not imply such a large number of
steps. In contrast, the lower mkk the lower the required extra distance, so k must be a
central node, implying that i frequently passes by k in order to reach j .

Hence, the lower mkk , the lower the extra distance imposed and the higher
betweenness centrality of vertex k. Moreover, note that mkk for k = 1, . . . , n can
be straightforwardly obtained by extracting the main diagonal of the Moore-Penrose
inverse matrix M .

More importantly, this notion of betweenness centrality captures local, node-level
vulnerabilities for graph G. Vertices with (relatively) low values of mkk reveal those
nodes which are crucial for the connectedness of the system. If they experience a
negative shock, it may be difficult for the system to find alternative, back-up paths
to reach other parts of the network. This leads to a key conceptual distinction: the
relative systemic importance of node k (measured by its stationary probability πk)
may not be particularly high, but ifmkk is instead relatively low, a shock to this vertex
may severely disrupt the system.

An illustration of this distinction for a directed graph G of n = 7 nodes is reported
below.5

The network structure in Fig. 1 implies that nodes 1, 2, 3 must necessarily pass
by node 4 to reach nodes 5, 6, 7 and vice-versa. Removing node 4 from the graph
would imply an unsolvable disruption to the network flow. However, all nodes have

4With respect to the well-being vulnerability gap in Adger (2006), our formulation has the signs reversed,
given that a higher distance would correspond to a lower well-being and vice-versa.
5Please note that this is a directed but unweighted graph, to render the example more immediate to grasp.
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Fig. 1 Graph G and associated adjacency matrix W , transition probability matrix P , vector of stationary
probabilities π and vector [mkk], with the main diagonal of Moore-Penrose inverse M of the asymmetric
Laplacian L = Π(I − P ). Nodes in matrices and vectors go from 1 to 7, nodes in graph are numbered
counter-clockwise, starting from node 1 (labelled)

the same stationary probability, π = 0.143, suggesting that they all share the same
systemic importance. Instead, the values of vector [mkk] suggest a clear hierarchy of
vulnerabilities. For node k = 4, mkk = 7.143, implying it is the most central node (as
expected), whereas vertices 1,2,6 and 7 are the peripheral ones (with mkk = 16.143).

As the example illustrates, whilst conveying different structural properties of net-
work nodes, eigenvector (πk) and betweenness centrality (mkk) may be shown to
be formally related, as well as connected to yet a third notion of node importance,
i.e. closeness centrality. Appendix A relates the three centrality concepts by explor-
ing their formulation in terms of mean first passage times using the elements of the
Moore-Penrose inverse.

By being formulated within the context of a randomwalk on graphG, the notion of
betweenness centrality captured by mkk considers all — rather than only the shortest
— network paths, when measuring the influence of a node (Newman 2005). More-
over, as Appendix A shows, mkk incorporates the systemic importance (πk) of all
nodes, weighted by the corresponding row k of the Moore-Penrose inverse.

Conceptually, eigenvector centrality reflects the comprehensive effect of a node
on other vertices. Closeness centrality indicates how immediately a node is reached,
whereas betweenness centrality captures the degree to which a node mediates the
comprehensive effects of other vertices (Friedkin 1991). Hence, each indicator cap-
tures a different structural property of a node. Our choice of betweenness centrality
does not entail an idea of superiority over the other two centrality concepts. We
consider that identifying which vertices are more strongly capable of affecting flow
transmission between any other two nodes is particularly relevant for analysing local
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vulnerabilities, which occur due to random as well as targeted shocks. In essence, “a
point that falls on the communication paths between other points exhibits a potential
for control of their communication” (Freeman 1979, p. 221, italics added).

In what follows, this criterion of betweenness centrality highlighting local vul-
nerabilities will be applied to the analysis of the productive structure of national
economies.

2.2 Closed Input-Output Systems as Regular Markov Chains

A distinguishing feature of a national economy consists in the comprehensive net-
work of flows of goods and services that are required to produce the final outputs and
generate the net incomes ensuring its reproduction. Analytically, this network may
be articulated in a dual system of accounting identities, known as the Input-Output
(I-O, hereinafter) system (Olsen 1992):

[

X f

yT 0

] [

e

1

]

=
[

x

Y

]

(Expenditure) (3)

[

eT 1
]

[

X f

yT 0

]

= [

xT F
]

(Income) (4)

which, developing the matrix products for a system with n sectors (n−1 intermediate
industries and one final sector), may be written as:

Each element xij of the square matrix X represents the flow of commodities from
industry i to industry j (i.e. inter-industry flows), element fi of column vector f is
the flow of commodity i addressed to final uses (final consumption by households
and government, investment and foreign demand), while element yj of row vector
yT stands for the net incomes, imports of inputs and net taxes paid by industry j in
the course of producing its gross output xj . Moreover, note that the total final uses
F equals total net incomes Y , though this is not true at the industry level, i.e. fi �=
yi , precisely because inter-industry sales and purchases at the sectoral level will,
generally, differ.

The specification above indicates that, when read by row, we describe the demand
sources for the products of an industry i, i.e. any (other) industries or final uses.
Instead, when read by column, we describe the cost structure of an industry j .

The duality in expenditure/income accounting relations corresponds to a dual set
of flows occurring in the system: every sell of commodities from i to j implies an
equivalent purchase from j to i, so that to every commodity flow corresponds an
equivalent money flow in exchange. Hence, if X represents the matrix of product
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flows, XT will stand for the matrix of money flows paid for the acquisition of inputs
by every industry.

A characterising feature of the I-O system (3)–(4) is that it is closed, in the sense
that there are no leakages for a monetary unit which is circulating through the econ-
omy: every monetary unit spent by final uses is earned by net incomes, and every
monetary unit that has been earned by net incomes is spent as final uses. This was
the original formulation of the I-O system advanced by Leontief (1949, pp. 214-5):
“In a closed system, for example, the level of labor supply would have been directly
connected with the level of real income; that is, the quantities of consumers’ goods
absorbed by the households”.

Income and expenditure are mutually determining each other. To see this, we can
specify system (3)–(4) in ‘intensive’ terms, i.e. per unit of gross output of each buying
industry:

[

A af

aT
y 0

] [

x

Y

]

=
[

x

Y

]

(Activity levels) (5)

[

eT 1
]

[

A af

aT
y 0

]

= [

eT 1
]

(Price Indices) (6)

where A = [aij ] = Xx̂−1 is a matrix of technical coefficients (element aij = xij /xj

specifies the monetary units of the product of industry i needed to produce a mon-
etary unit of gross output of industry j ), ay = [yj /xj ] is the vector of net incomes
induced per unit of gross output, and af = [fi/Y ] is the distribution of final
expenditure categories per unit of net income (a vector of ‘propensities’ to spend).

When expressed in ‘intensive’ terms, the accounting identity for expenditure flows
(3) becomes the equation system to determine activity levels (5), and the accounting
identity for income flows (4) becomes the equation system to determine price indices
(6).6

Key to this transition is the interpretation of coefficient matrix

[

A af

aT
y 0

]

as a

given, structural description of the economy. Systems (5) and (6) may be read as the
right and left eigensystems associated to the eigenvalue λ = 1. Then, by assuming
that the coefficient matrix is non-negative (i.e. no negative money flows, including
net incomes) and irreducible (i.e. it is possible to reach, even indirectly, any indus-
try from every other industry, including the final expenditure/net income sector),
the Perron-Frobenius theorem (Meyer 2000, p. 673) applies: the only positive right
and left eigenvectors will be those associated to the maximal (in absolute value)
eigenvalue. Given that, as can be seen from Eq. 6, the coefficient matrix is column
stochastic (i.e. the sum across rows for each column equals one), the maximal eigen-

6Each entry xij in X might be considered to be measured in terms of the amount of physical output of
the product of industry i that can be purchased for one monetary unit (Leontief 1986, p. 22). Thus, in
the current accounting period, the price of gross output for each industry will be equal to one, as seen in
equation system (6).

667



A.L. Wirkierman et al.

value will be 1. Therefore, activity levels
[

xT Y
]

and price indices
[

eT 1
]

are
simultaneously determined as the right and left eigenvectors associated to the unit
eigenvalue of the coefficient matrix of structural coefficients.

The essential aspect of connectivity being emphasised here is that of circularity: to
determine income we need to know expenditure, and vice-versa. Activity levels and
price indices are defined in terms of themselves, as “self-contained (closed) systems
require circular definitions” (Brody 1970, p. 84). Circularity implies that there is
no beginning nor end to the production process of a national economy (Leontief
1991[1928]).

The circular description of interdependent production provided by the closed
Input-Output system (5)–(6) may be interpreted as a regular Markov chain (Brody
1970). Given that (6) implies that the structural coefficient matrix is column
stochastic, it is possible to transpose (6):

[

AT ay

aT
f 0

] [

e

1

]

=
[

e

1

]

(7)

so that the transposed coefficient matrix in Eq. 7 is a non-negative, irreducible, row
stochastic matrix. Therefore, within this context, we can define for an economy with
n − 1 industries and a final sector:

P
(n×n)

=
[

AT ay

aT
f 0

]

(8)

as a probability transition matrix derived from the income side of the closed I-O
system (3)–(4). Elements of P show the dual side of every transaction in the system:

pij = aji = xji/xi (Payment from i to j for inputs per unit of monetary output)

pin = ayi = yi/xi (Payment from i to final sector as a cost component)

pnj = afj = fj/Y (Payment from final sector to industry j for its output)

i.e. commodity flows from j to i (as captured by aji) correspond to money flows
from i to j (as captured by pij ). Rather than required inputs per unit of gross output,
the transition probabilities pij “indicate the liabilities incurred per unit of production”
(Leontief and Brody 1993, p. 227).

Therefore, each row of P represents the cost structure required by each sector to
produce its output.7 But what is the chance process interpretation of the probability
of transition pij in this context? It may be framed as follows (Brody 1970, p. 108):

“Sector [i] goes to market and will buy one day from one sector and another day
from others. Its purchases may have an apparently irregular pattern. Some days

7Note that the inputs of net income components are commodities for final uses.

668



Leontief meets Markov...

it may not buy anything because inventories are full, to be depleted at random.
Nevertheless the probabilities of spending will be allotted to the other sectors as
the coefficients [pij ] — and the real frequency of purchases, followed through,
say, a year, will approach this probability”.

Thus, the random walker on this Input-Output graph will be one monetary unit
(e.g. US$ 1) that circulates through the system, being iteratively spent into differ-
ent sectors and earned as income in each production round. The vector of stationary
probabilities

[

πT πn

]

would represent the distribution of US$ 1 across sectors as a
fixed point of this iterative circular process. For the case of observed, unit prices of
system (6), we have that:

[

πT πn

] = [

xT Y
]

/(xT e + Y ), i.e. stationary probabil-
ities would coincide with (normalised) observed activity levels. In fact, the potential
interest of this analysis resorts in mapping structural changes in the probability tran-
sition matrix P (due to, e.g. technological progress or new consumption patterns)
into changes in the sectoral distribution of activity levels and relative prices (i.e. price
indices) in the economy.

This represents a relevant methodological difference between a regular and an
absorbing Markov chain (Kemeny and Snell 1976, p. 37), characterising closed and
open I-O models, respectively. In the latter, a shock to the system is introduced by
altering the absorbing state of the chain (i.e. net incomes or final demand). Instead,
in the former, a shock can be introduced by perturbations to the transition probability
matrix P in Eq. 8 (see, e.g. Moosavi and Isacchini 2017). Given that betweenness
centrality aims to quantify local vulnerabilities in the event of a random or targeted
attack, the first case may be modelled by introducing small random disturbances
adding up to zero (to keep matrix P row stochastic), whereas an attack targeted at
a specific node k may be implemented as a reduction of transition probabilities pik

of column k by a given factor (αk), normalising all affected rows (i.e. redistributing
αk ·pik to other columns for each affected row i). If the targeted node k is an industry,
this normalisation could be done by allocating αk ·pik to the corresponding entry pin

of the vector of net incomes ay in Eq. 8, which includes imported inputs. Hence, a
targeted attack on domestic industry k would imply that other industries would need
to source a higher share of input k from abroad. In this targeted case, the procedure
would, to a certain extent, resemble an exercise of ‘hypothetical extraction’ within
I-O literature (Miller and Blair 2009, p. 563).

For the empirical exploration below, we will analyse node vulnerabilities by
means of the betweenness centrality indicator mkk , obtained in Eq. 2. Within a ran-
dom walk on the I-O graph, each node represents a sector, so the extra distance
in traversing from i to j — imposed by forcing the passage through sector k —
quantifies the intermediary role of an industry (or final sector) in the economy.
The lower the value of mkk , the more vulnerable the economic system will be to
a reduction in the productive capacity of sector k. Thus, it is possible to set up a
ranking from the most central (lowest mkk) to the most peripheral (highest mkk)
sectors.
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3 An Empirical Exploration: Results and Discussion

3.1 Dataset Characteristics and Preparation: From Inter-Industry Data
to Probability TransitionMatrices

Our data source is the OECD Input-Output Tables (OECD-IOTs) database.8 We con-
sider data for years covering the period 2005-2015. The original database has I-O
tables for 64 countries, each with a 36 industry-level disaggregation based on the
standard classification ISIC Rev. 4.

A key data requirement of the exercise is that the structural matrices considered
should be non-negative and irreducible. In order to comply with these requirements,
4 countries had to be discarded.9 Moreover, the 36 original industries had to be aggre-
gated into 32 activities.10 Appendix C provides a dictionary with the ISO3 country
codes and the sectoral classification used throughout the paper.

Besides the 32 intermediate industries, a closed Input-Output system needs to
carefully specify its final sector(s). This is a crucial aspect of the data prepara-
tion process, if consistency is to be obtained between theoretical magnitudes and
empirical figures. In particular, our probability transition matrices are required to be
non-negative. However, taking into account an Input-Output table (IOT, hereinafter)
in full detail (i.e. including taxes net of subsidies, separate income components and
inventories) involves dealing with cells that, a priori, may contain negative values.
We describe below the procedure to map extracted IOTs into a series of empirical
transition probability matrices.

For each national economy, we specified an empirical closed system which con-
tains three final sectors: (i) the foreign sector, i.e. imports and exports (labelled
991XM); (ii) the households and government sector (labelled 992YC) and (iii) the
profits and investment sector (labelled 993PI). This has important theoretical impli-
cations for the logic of economic circularity. Exports become the ‘inputs’ to finance
the acquisition of imports (i.e. exports will represent the ‘cost structure’ of imports).
Earned wages and taxes (net of subsidies) become (private and public) final con-
sumption spent. Finally, profits (i.e. gross operating surplus) obtained by industries
become investment (i.e. gross fixed capital formation). The distinction between
different income-expenditure connections allows for a richer analysis of general
interdependence in a closed model.

In order to make these distinctions, it was crucial to map detailed national account-
ing items contained in each IOT to the analytical categories just defined. Table 1

8Accessed at: http://www.oecd.org/sti/ind/input-outputtables.htm.
9The countries excluded from the analysis were: BRN (Brunei Darussalam), LVA (Latvia), MLT (Malta)
and SGP (Singapore). Exclusions were due to the fact that some industries in these countries had negative
gross value added.
10Three aggregations were performed: (i) the three original mining industries (mining of energy products,
non-energy products and mining support services) were combined into a single mining sector, (ii) Coke
and refined petroleum, chemicals and pharmaceutical products were combined into a single sector and (iii)
the service activities of private households were added to other personal services.
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Table 1 Mapping between OECD-IOT final sector items and model analytical categories
(Each analytical category (991XM, 992YC, 993PI) may include several OECD-IOT items)

Source: Authors’ elaboration based on OECD-IOTs Database, 2018 edition

below reports the connection for both income (i.e. IOT rows) and expenditure
(i.e. IOT columns) sides of the I-O system.

Besides the aggregation of accounting items into the three analytical final sectors,
two further adjustments were done to obtain a non-negative matrix. First, for those
industries with substantial agricultural subsidies (e.g. selected EU countries), other
taxes less subsidies on production (item OTXS in Table 1) were negative to the extent
of rendering the entire income of the Households and Government sector (992YC)
negative. For those cases, OTXS were added to the gross operating surplus (GOPS) of
the industry (so moved to analytical category 993PI), as subsidies artificially inflate
the operating surplus of the firm. Secondly, for those industries with a negative gross
operating surplus (GOPS), this accounting item was netted from the Households and
Government sector (992YC) as, when losses by firms are distributed, it would be
households owning them and government collecting corporate taxes that would face
the ultimate consequences. In those sectors where such a correction was made, GOPS
was allocated a value equal to zero.

The last aspect of the data preparation procedure concerns the treatment of inven-
tories (accounting item INVNT in the OECD-IOT database). These were removed
from the analysis, so all levels of income items were recalculated— using the current
technical coefficients — for a final demand which excludes inventories.

To illustrate the outcome of this data preparation process, Panel (a) of Table 2
reports an articulated selection of cells of the empirical I-O table for the USA (year
2015), arranged into analytical categories, whereas Panel (b) establishes the corre-
spondence with the matrix, vector and scalar symbols to be used in the theoretical
operations that follow.
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Table 2 Mapping between an empirical IOT and analytical matrix categories

Source: Authors’ elaboration based on OECD-IOTs Database, 2018 edition

To derive a non-negative, irreducible and row stochastic empirical transition prob-
ability matrix, we consider the income side of the I-O system (in an analogous way
to system (4) above):

[

eT 1 1 1
]

⎡

⎢

⎢

⎣

X f z f c f k

mT
x 0 mc mk

wT τz τc τk

sT 0 0 0

⎤

⎥

⎥

⎦

= [

xT Z C I
]

(9)

Developing the matrix products we obtain expressions for gross output and final
expenditure categories:

xT = eT X + mT
x + wT + sT (Gross output by industry)

Z = eT f z + τz (Exports)

C = eT f c + mc + τc (Consumption)

I = eT f k + mk + τk (Investment)
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This system of accounting identities can be expressed in intensive terms, to derive
a system of price indices:

[

eT 1 1 1
]

⎡

⎢

⎢

⎣

X f z f c f k

mT
x 0 mc mk

wT τz τc τk

sT 0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣
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0T Z−1 0 0
0T 0 C−1 0
0T 0 0 I−1

⎤

⎥

⎥

⎦

= [
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]

⎡

⎢

⎢

⎣

x̂−1 0 0 0
0T Z−1 0 0
0T 0 C−1 0
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⎤

⎥

⎥

⎦

therefore obtaining (analogously to system (6) above):

[

eT 1 1 1
]

⎡

⎢

⎢

⎣

A az ac ak

aT
m 0 ac

m ak
m

aT
w az

τ ac
τ ak

τ
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⎤

⎥

⎥

⎦

= [

eT 1 1 1
]

(Price Indices) (10)

The empirical matrix of structural coefficients in Eq. 10 is non-negative, column
stochastic and — as has been verified when carrying out the empirical computations
— irreducible for all 60 countries and years (covering the 2005-2015 period) con-
sidered. Thus, its transpose defines the empirical transition probability matrix P of a
Markov chain for a closed Input-Output system:

P =

⎡

⎢

⎢

⎣

AT am aw as

aT
z 0 az

τ 0
aT

c ac
m ac

τ 0
aT

k ak
m ak

τ 0

⎤

⎥

⎥

⎦

(Empirical transition probability matrix) (11)

Every state of transition matrix P corresponds to an economic sector of the econ-
omy (intermediate or final), whereas each cell represents the probability that sector
i pays to sector j , in exchange for inputs to carry out its production. Complement-
ing the interpretation of transition probabilities given in Section 2, there is a nuanced
richness of extending the specification of the Markov chain to three final sectors.
Crucially, each of them will have a greater weight in the economy than (almost) any
intermediate industry on its own. Therefore, cross-country differences in the income-
expenditure connection of imports with exports, wages-cum-taxes with consumption
or profits with investment, may hint at specific structural features of the process of
economic development.

If we consider the foreign sector (991XM), high transition probabilities across the
‘imports’ column would indicate that industries, final consumers and firms heavily
rely on imports to carry out production. But once a random monetary unit circulat-
ing in the economy reaches an import requirement, it will become a unit of exports
in the following iteration of the chance process. And the more diversified the export
structure of a country is, the easier it will be to reach other industries. Hence, in a
small open economy with very high import transition probabilities but a very con-
centrated export basket, sectors may keep getting into the foreign sector, but there are
very few options to traverse from the foreign sector to other nodes of the network. On
the contrary, in a large country with relatively lower import propensities and a very
diversified export basket, the random walker is less likely to reach the foreign sector
but, once it has, there are more options to traverse to other industries through exports.
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This connection between imports and exports is particularly relevant in a context
of international fragmentation of production (Hummels et al. 2001). An increase in
the import content of exports which originates in higher intermediate import require-
ments — aT

m in Eq. 10 — implies, ceteris paribus, a higher probability that the
random walker traverses to imports, potentially reducing the betweenness centrality
of domestic industries. In many cases, imported inputs are re-exported without any
added domestic value. A possible way to account for this leakage from the domestic
economy would be to add an ‘import per unit of exports’ coefficient in the intersec-
tion between the ‘imports’ row and the ‘exports’ column. But while “re-exports and
re-imports” are present in the OECD-IOTs database methodology, almost no coun-
try reports this disaggregation.11 A direction for further research to fully take into
account inter-country input linkages would be to extend our framework to a global
Markov chain (Piccardi et al. 2018).

A similar reasoning to that of the foreign sector may be applied to the connec-
tion between profits and investment (993PI). High profit margins concentrated in a
restricted set of industries (i.e. high transition probabilities in the ‘profits’ column),
imply that the economy might be highly dependant on few activities to trigger invest-
ment demand in the next iteration. Instead, a diversified set of lower profit margins
may redistribute purchasing power across industries to activate investment. However,
if the sectoral composition of investment is highly concentrated towards few products
(such as construction during a speculative housing bubble), whenever the random
walker reaches the profit component of costs, traversing to construction will be highly
likely in the next iteration (when profits become investment). And if the economy
keeps traversing through very similar paths, other industries in the economy might
be very difficult to reach, increasing the length of walks on the I-O graph.

Finally, an analogous interpretation may be given to the connection between
wages-cum-taxes and consumption. A Markov chain approach to analysing a closed
Input-Output system evinces the crucial relevance of the compositional structure
of final consumption. This is because the wages-cum-taxes income component will
generally be the highest transition probability in most industries across countries.
But once the random walker has reached the Household and Government node, it
will need to traverse to other vertices through final consumption. Thus, the con-
sumption coefficients crucially redistribute the bulk of monetary circulation between
industries.

Having obtained yearly series (for the period 2005-2015) of transition probability
matrices P = [pij ] (each of dimension 35 × 35) for 60 countries, for each of them
we first computed its vector of stationary probabilities π = [πi]. Then, we derived
the associated asymmetric Laplacian matrix L = π̂(I −P ) and computed its Moore-
Penrose inverse M = [mij ].12

11As documented in Timmer (2012, pp. 20-1), countries widely differ in their treatment of processing
trade (i.e. re-imports/re-exports) within their national accounts.
12The Moore-Penrose generalised inverse is obtained by applying the Singular Value Decomposi-
tion (SVD) to matrix L with the R programming language function ginv of package MASS. For
implementation details, please see Venables and Ripley (1999, p. 100).
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We extracted the main diagonal of M , containing coefficients mkk in Eq. 2,
each representing the extra distance traversed between two sectors when forced to
pass through sector k. Each of these coefficients captures the (reciprocal) between-
ness centrality of industry k, allowing us to compare sectoral vulnerabilities across
countries and through time. Our empirical strategy consisted in: (i) assess the
(cross-country) time trend of the ranking of sectoral vulnerabilities, (ii) illustrate
(time-averaged) country differences in their sectoral vulnerabilities, and (iii) perform
a clustering exercise to agglomerate countries based on the similarity of their sectoral
rankings, devising a country typology of structural vulnerabilities across the globe.

3.2 Generalised Structural Change Takes Time

The first dimension we consider emphasises the time evolution of the ranking of sec-
toral vulnerabilities. We compute the median (rather than the average) of mjj across
countries for each sector j , to avoid outliers biasing the results. Table 3 reports lev-
els of mjj for selected years, the time-average, absolute difference and proportional
rate of change between 2005 and 2015. On the left panel of the table, sectors are
ordered by their position in the industry classification, i.e. primary, manufacturing
and service industries (from 01TO03AGR to 90TO98OTS), followed by the three
final sectors: foreign trade, households/government and profits/investment (991XM,
992YC and 993PI, respectively). On the right panel of the table, a plot depicts the
transitions in the sectoral ranking through time, sectors being displayed in increasing
order of mjj , i.e. in decreasing order of betweenness centrality.

From the right panel of the table it emerges that structural change takes time: for
the first, most central 17 (out of 35) sectors, there are only two temporary and one
permanent (adjacent) switchovers in ranking positions. That is, for the median eco-
nomic system, the relative position of key sectoral vulnerabilities persists through
time. As expected, the three final sectors have the smallest extra distance associ-
ated to the paths traversed between any two other industries. This is due to the high
share of imports, wages-cum-taxes and profits in the unit cost structure of production
activities.

Besides final sectors, industries with persistently high betweenness central-
ity across countries and through time belong to either: (i) the final consump-
tion core of the economy, comprising food (10T12FOD, 01T03AGR), housing
(41T43CON, 68REA), government services (84GOV), health (86T88HTH) and edu-
cation (85EDU), or (ii) the infrastructure core of the economy, comprising trade
(45T47WRT), KIBS (69T82OBZ),13 logistics (49T53TRN), energy (35T39EGW,
19T21PECH) and financial intermediation (64T66FIN).

On the contrary, activities in the lower half of the ranking evince changes in
their relative position between 2005 and 2015. Some variations are temporary,
e.g. the motor vehicle industry (29MTR) and some of its key inputs (22RBP), prob-
ably triggered by the global financial crisis unfolding during 2009. However, some

13The ‘KIBS’ acronym stands for: Knowledge Intensive Business Services.
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Table 3 Extra distance traversed between two sectors when forced to pass through sector j

(in number of sectoral transitions)
Indicator mjj from Eq. 2; median across 60 countries; sectoral descriptors in Appendix C, Table 7

trajectories identify persistent structural changes across countries, e.g. the increas-
ingly relevant intermediary role of Information Technology (IT, hereinafter) services
(62T63ITS) in contrast to the decreasing role of textiles and apparel (13T15TEX).

Higher volatility of positions in the lower half of the ranking may be explained
by, at least, two factors. Firstly, productive techniques are expected to change at a
faster pace than essential consumption needs and core productive infrastructure. For
example, while the content of mild steel in cars is projected to decrease (reducing
the relative position of 24MET), transportation and mobility services (19T53TRN)
still remain crucial. Secondly, position changes may be reflecting processes of inter-
national fragmentation of production across countries. This is because the ranking
depicts the betweenness centrality of domestic output by industries. To see this,
consider the example of textiles and apparel (13T15TEX), in which several Euro-
pean countries have outsourced industry segments to selected Asian economies. By
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Fig. 2 Central tendency (Median) and spread (MAD) across countries of mjj for each sector j (MAD:
median absolute deviation). Due to their extreme values, industries 62T63ITS and 30TRQ are not dis-
played, but considered in the analysis of results. Full description of industry codes is available in Table 7
of Appendix C. Source: Authors’ elaboration based on OECD-IOTs Database, 2018 edition

increasingly relying on imports to satisfy textile input requirements or final prod-
ucts, the likelihood with which other sectors traverse to the domestic textile industry
is reduced. Hence, when forcing the path between any two sectors through indus-
try 13T15TEX, the extra distance travelled is likely to have increased, reducing the
betweenness centrality of the industry.

Levels of mjj indicate the extra number of sectoral transitions in the path between
any two sectors forced to traverse through node j . Therefore, a reduction in the level
of mjj corresponds to an increase in the betweenness centrality of node j . Inspection
of the left panel of Table 3 suggests that, between 2005 and 2015, highest increases
in mjj concentrated around selected primary and manufacturing industries, whereas
decreases mostly involved service activities. To better understand this pattern of
changes, Fig. 2 depicts initial levels (x-axis) and dynamics (y-axis) of the central
tendency and spread of mjj , for each sector j .

Panel (A) in Fig. 2 evinces that less central sectors in 2005 becamemore peripheral
by 2015. That is, for sectors with initially high betweenness centrality (i.e. closer to
the origin of the x-axis), the absolute change in centrality between 2005 and 2015
has been contained. From Panel (B) it emerges that sectors with a more dispersed
cross-country level of mjj in 2005 (i.e. further away from the origin of the x-axis),
experienced a sharper increase in dispersion between 2005 and 2015.14 Thus, the
general pattern suggested is that central sectors become more central across most
countries, whereas peripheral sectors became even more remote but to an uneven

14In correspondence with adopting the median as the measure of central tendency, we computed
the median absolute deviation (MAD) across countries (index r) for each sector j , i.e. MADj =
∑

r median(|mr
jj − m̃jj |), where m̃jj = median(mr

jj ).
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extent depending on the country considered. In a nutshell, between 2005 and 2015,
the cross-country evolution of sectoral vulnerabilities has experienced a phenomenon
of ‘convergence at the top, divergence at the bottom’ of the betweenness centrality
scale.

It would be interesting to compare the sectoral ranking emerging from Table 3
with more traditional I-O indicators, such as simple output multipliers (Miller and
Blair 2009, p. 246) and even a sector’s gross output — xj in Eq. 9. The results of such
comparison are reported in Appendix B, and allow to contextualise and highlight the
additional circularity captured by a fully closed I-O scheme.

3.3 Countries are Structurally Different

While the upper-half of the ranking of sectoral vulnerabilities for the cross-country
median (reported in the right panel of Table 3) may show persistence and contained
changes in dispersion, differences between individual economies are still pervasive.
Interpreting such differences may lead to a qualitative understanding of the rela-
tionship between country-specific aspects of the productive structure and changing
sectoral vulnerabilities along a development path.

To illustrate this, Table 4 reports (time-averaged) country differences in sectoral
vulnerabilities — as measured by mjj — for China, the median world economy
and the United States. The right-panel of the table depicts the transitions in the sec-
toral ranking of vulnerabilities between these three economies. We have highlighted
industries whose ranking position experiences a sharp change in direction, both when
transitioning from China to the median world economy, as well as from the latter to
the USA.

Given that China is, by several metrics, the key emerging economy in the period
considered, whereas the United States is still the advanced industrial economy with
highest share in global income, ranking transitions exemplify the changing role of
sectoral vulnerabilities along (possible) paths of economic growth.

While the households/government (992YC) and profits/investment (993PI) final
sectors remain crucial across countries, the foreign sector (991XM) becomes less
central for the US than it is for China and the median world economy. Intuitively,
industry cost structures in larger advanced industrial economies tend to be relatively
less dependent on foreign inputs. However, given the extent of its involvement across
inter-country value chains and its developmental stage, the foreign sector is still the
third source of vulnerability for China.

Sectors with a sharp decrease in their relevance as intermediary nodes when
transitioning from China to the US (and through the median world economy) com-
prise, first and foremost, agricultural and food processed products (01T03AGR,
10T12FOD). This evinces the ongoing process of population and labour force expan-
sion in the Chinese economy. A similar point could be made about textiles and
wearing apparel (13T15TEX), though this may also be linked to China’s role in
global value chains (GVCs) for these products. Finally, the case of basic metals
and mechanical machinery equipment (24MET and 28MEQ, respectively) evinces the
ongoing process of expanding industrialisation in China, with respect to the US and
the median world economy.
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Table 4 Extra distance traversed between two sectors when forced to pass through sector j

(in number of sectoral transitions)
Indicator mjj from Eq. 2; countries: China (CHN), World median (WLD) and the United States (USA); time
average for years 2005, 2009 and 2015; sectoral descriptors in Appendix C, Table 7

Instead, the increasing betweenness centrality of (knowledge-intensive) business
services in the USA (69T82OBZ) — being the third most relevant sector — illus-
trates the prominence of its ‘service economy’. Moreover, the US technological
leadership may be perceived by the high relative ranking position of IT services
(62T63ITS). This process of ever-increasing centrality of service sectors includes
technologically advanced personal services (86T88HTH) but also activities leverag-
ing the financialisation process of the US economy (68REA, 64T66FIN). Such a
high concentration of node vulnerabilities in employment-intensive service sectors,
alerts on the high potential impact of a shock to the US labour force.

3.4 Structural Vulnerabilities: A Typology

The comparison between China and the USA evinced contrasting sectoral vulner-
abilities between them, as well as with respect to the median world economy.
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Therefore, to make sense of cross-country differences in node vulnerabilities, we
report the results of a clustering exercise in which we agglomerate countries based
on the similarity of their sectoral rankings, devising a country typology of structural
vulnerabilities across the globe.

In particular, we departed from a sector × country matrix of the (time-averaged)
values for mjj and converted each column into a ranking of node vulnerabilities.
Then, we computed the Spearman rank correlation between each pair of columns and
articulated all (bilateral) correlation coefficients into a resulting symmetric (country
× country) similarity matrix S = [sij ]. The similarity matrix was then converted into
a dissimilarity matrix, by computing: dij = √

2 × (1 − sij ), and a hierarchical clus-
tering analysis (using the complete agglomeration method) was performed, obtaining
the dendrogram displayed in Fig. 3.

As a heuristic device, we articulated results of the cluster analysis into 6 groups
(G01 to G06 in Fig. 3). We provide a qualitative characterisation of each group
based on the ranking of node vulnerabilities across countries within each country set,
reported in Table 5.

In counter-clockwise order, group G01 comprises mainly China and South East
Asian countries (with the exception of MEX and TUN). Economies of ‘factory Asia’

Fig. 3 Hierarchical clustering of countries according to the relative distance in their sectoral rankings
for mjj . (Indicator mjj from Eq. 2; Clustering agglomeration method: complete; 60 countries; averaged
through time for years 2005, 2009 and 2015; country descriptors in Appendix C, Table 6). Source: Authors’
elaboration based on OECD-IOTs Database, 2018 edition
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Table 5 Extra distance traversed between two sectors when forced to pass through sector j

(in number of sectoral transitions)
Indicator mjj from Eq. 2; median across countries within each group: G01-G06, detailed in Fig. 3;
averaged through time for years 2005, 2009 and 2015; sectoral descriptors in Appendix C, Table 7

Source: Authors’ elaboration based on OECD-IOTs Database, 2018 edition

evince high inter-country trade integration, as can be seen from the high vulnera-
bility associated to the foreign trade sector (991XM), as well as industries which
articulate key global value chains, such as wearing apparel (13T15TEX) and com-
puting equipment (26CEQ). Being a group of fast growing, emerging countries,
their developmental stage is characterised by an expanding population (01T03AGR,
10T12FOD) and natural resource exploitation (05T09MIN, 19T21PECH).

Countries of group G02 are (mostly) middle-income economies of South Amer-
ica, the Black Sea area, India and Morocco. The important intermediary role of the
construction sector (41T43CON) should be highlighted, as well as the extremely low
ranking positions of high-tech industries (26CEQ, 62T63ITS), suggesting these
economies are far from the technological frontier.

The characterising feature of the third group (G03) is that it consists of natural-
resource based economies. This is evinced by the relatively high vulnerability of
mining and refined petroleum (05T09MIN, 19T21PECH), agricultural activities
(01T03AGR) and food processing (10T12FOD). Countries at different development
stages are further distinguished within the group: emerging (SAU, RUS, BRA, ZAF)
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and advanced (NOR, AUS, CAN) economies with a high reliance on mining resources
agglomerate into different sub-clusters.

Instead, for countries of group G04, mining is the least central activity of their
domestic productive structure. This group represents a core set of manufacturing-
intensive economies comprising advanced East Asian countries, Sweden, Germany
and its associated (through strong value chain linkages) Central and Eastern Euro-
pean countries. Heavy industry and high-tech manufacturing sectors feature promi-
nently among node vulnerabilities: motor vehicles (29MTR), mechanical machinery
(28MEQ), computing equipment (26CEQ) and fabricated metal products (25FBM).

Countries in group G05 may be described as advanced service economies:
it comprises the USA, the UK and high-income small open economies featur-
ing the prominence of knowledge-intensive (69T82OBZ) and financial (68REA,
64T66FIN) services, but also a higher relative betweenness centrality of high-tech
industries (62T63ITS, 26CEQ).

Finally, group G06 includes a set of European countries (with the exception of
CRI) featuring (relatively) high node vulnerabilities in the service infrastructure of
the economy (e.g. 69T82OBZ, 49T53TRN, 68REA, 64T66FIN), but also in tradi-
tional manufacturing sectors (10T12FOD), and further away from the technological
frontier (62T63ITS, 26CEQ) than countries of group G05.

Overall, results from the cluster analysis suggest a country typology with differ-
entiated structural profiles. At the risk of oversimplifying, clusters depict emerg-
ing economies undergoing fast-paced structural transformation (G01), an array of
natural-resource based economies (G03), a high-tech manufacturing core (G04), a
high-tech services core (G05), and high-income European (G06) / middle-income
peripheral (G02) countries with varying degrees of distance from the technological
frontier. A direction for further research would be to study the inter-country trade
complementarities between these clusters.

4 Summary of Findings and Concluding Remarks

Input-Output (I-O, hereinafter) analyses of structural vulnerabilities are generally
performed using the open I-O model (Galbusera and Giannopoulos 2018). Instead,
a key contribution of this paper has been to specify and empirically implement the
precise mapping between a regular Markov chain and a closed Input-Output system,
with multiple categories for the final sector.

Amongst different methods to assess I-O network resilience, identification of
key sectors is frequently used (e.g. Kelly et al. 2016). But rather than focusing on
traditional indicators (such as backward/forward linkages), we applied a notion of
betweenness centrality in complex networks (Ranjan and Zhang 2013) to characterise
sectoral vulnerabilities in national economies, evincing structural (dis)similarities.

Empirical findings suggest that, for the median economic system across the 60
countries considered, the relative position of key sectoral vulnerabilities persists
through time. However, between 2005 and 2015, the cross-country evolution of rela-
tive vulnerabilities experienced a phenomenon of ‘convergence at the top, divergence
at the bottom’ of the betweenness centrality scale. Moreover, a generalised feature of
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structural change has been the increasingly relevant intermediary role of Information
Technology services.

Whilst persistence through time of the intermediary role for key network nodes
has been observed, there are pervasive differences between individual economies.
A comparison between China and the US reveals changing sectoral vulnerabilities
along development paths, traversing from high vulnerability in agricultural and food
processed products (in China) to a crucial role for business services (in the US).

Clustering economies — based on the similarity of their sectoral rankings —
suggests a country typology with differentiated structural profiles, highlighting the
distinctions between emerging, industrialisation-intensive economies and natural
resource-based countries, as well as between an advanced manufacturing core with
respect to a high-tech services core of economies. Further research could study
the inter-country trade complementarities between these clusters from a network
perspective (Caschili et al. 2015).

In fact, a limitation emerging from these results is that our analysis is not framed
in terms of a set of interdependent economies, articulated in an inter-country, global
Markov chain (as in Piccardi et al. 2018). This notwithstanding, we acknowledge the
relations each country has with the rest of the world through the ‘foreign trade’ sector.

Finally, an interesting direction for further research would be to simulate tar-
geted attacks to each national (or a global) I-O network through the hypothetical
extraction method (Dietzenbacher et al. 2019), iteratively measuring how the sectoral
distribution of vulnerabilities changes as more central nodes are removed from the
network. Such an approach may hint at economy-wide resilience, complementing the
identification of local vulnerabilities.

Appendix A: Relationship Between Network Centrality Indices

Within the context of random walks on graphs, the notions of eigenvector (Friedkin
1991), closeness (Noh and Rieger 2004) and betweenness (Newman 2005) centrality
are amongst the most widely used. Not only for abstract descriptions of network
structure, but also when it comes to the analysis of economic, inter-industry flows
(Blöchl et al. 2011).

In this appendix we formally relate the three centrality notions, in order to clarify
how the betweenness centrality indicator for node j , mjj , defined in Eq. 2, considers
paths connecting all network nodes. To begin with, recall Eq. 1:

H(i, j) = mjj − mij +
n

∑

l=1

(mil − mjl)πl

Aggregating over i, we obtain:

n
∑

i=1

H(i, j) = n · mjj −
n

∑

i=1

mij +
n

∑

l=1

πl

n
∑

i=1

mil − n

n
∑

l=1

mjlπl
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But due to the properties of the Moore-Penrose inverse (Boley et al. 2011, p. 232),
we have

∑n
i=1 mij = ∑n

i=1 mil = 0, so we may write:

mjj = 1

n
·

n
∑

i=1

H(i, j) −
n

∑

l=1

mjlπl (12)

Note that the first term of the right-hand side of Eq. 12:

MFT P(j) = 1

n
·

n
∑

i=1

H(i, j) (13)

represents the mean first passage time of target node j , i.e. the average number of
state transitions needed to reach node j for the first time, averaged across all possible
source nodes, known as an indicator of closeness centrality for node j (Blöchl et al.
2011, eq. (5)).

Hence, our betweenness centrality indicator mjj may be written as:

mjj = MFPT (j) −
n

∑

l=1

mjlπl (14)

i.e. it is a measure of closeness centrality, MFPT (j), corrected by a weighted aver-
age of industries’ eigenvector centralities (πl), the weights being the corresponding
elements of row j of the Moore-Penrose inverse (mjl).

In this way, expression (14) renders explicit how our betweenness centrality indi-
catormjj is connected with the notions of closeness and eigenvector centrality, within
the context of random walks on graphs.

Appendix B: Comparison with Traditional Input-Output Indicators

The interpretation of mjj in Eq. 2 as an indicator of betweenness centrality for a
node in a closed Input-Output (I-O, hereinafter) system is, to our knowledge, novel.
Hence, it would be useful to compare the (cross-country) sectoral ranking implied by
this measure with traditional I-O measures of industry centrality. In particular, two
such measures are considered, namely the simple output multiplier and gross output
for industry j , respectively:

output mult j = eT (I − A)−1ej (15)

go j = xj (16)

where A is the technical coefficients matrix defined in Eqs. 5–6, e = [1 . . . 1 . . . 1]T
is a sum vector, and ej = [0 . . . 1 . . . 0]T is a column selector vector (with 1 in the
j th. position and zeros elsewhere).

The simple output multiplier measures the intensity of economy-wide backward
linkages activated by final demand addressed to industry j . In this sense, “compar-
ison of output multipliers would show where [an additional unit of final] spending
would have the greatest impact in terms of total dollar value of output generated
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throughout the economy” (Miller and Blair 2009, p. 246). As such, it may be inter-
preted as an industry centrality indicator. However, being formulated within the logic
of an open I-O model, it only considers network paths amongst industries, whilst mjj

accounts also for network paths connecting final sectors. This conceptual difference
is expected to generate a mismatch in centrality rankings, given the crucial influence
of final sectors in structuring circularity.

A second comparison of interest is that with industry gross output xj which, within
the network implied by system (9), represents a node’s degree. Note that xj includes
both inter-industry as well as final sector transactions.

Figure 4 reports the industry ranking comparison between alternative centrality
indicators. To allow for comparability with Eq. 15, the analysis is restricted to the set
of industries, i.e. excluding final sectors. The left panel depicts industry rankings for
cross-country, time-averaged median values of each centrality indicator (m jj, go j
and output mult j), whereas the right panels of the figure depict the correlation
between indicators for pooled country-level (time-averaged) data points.

Two main features emerge. First, there is a neat negative correlation between mjj

and gross output of industry j , i.e. lower extra distance traversed indicating a higher
betweenness centrality generally corresponds to a higher node degree. In fact, for
the top 15 industries, there are only adjacent switchovers in ranking positions when
moving from betweenness centrality (m jj) to gross output (go j). Recall that these
top industries correspond to the final consumption/infrastructure core of the econ-
omy identified from Table 3, and feature prominently in the industry composition of
final sectors of the economy. Notably, though, the (log-scaled) scatter plot evinces
that the negative relationship between these two indicators is subject to considerable
variability. Hence, while an industry ranking based on gross output may be a good
predictor of the relative ordering of top industries according to betweenness central-
ity, there are relevant non-linearities which our centrality indicator mjj is capturing,
with respect to a node’s degree. These non-linearities are particularly relevant when
assessing local vulnerabilities across countries.

Second, the correlation between mjj and the simple output multiplier of industry
j is close to zero. As expected, the notorious leaps in ranking positions when mov-
ing from betweenness centrality (m jj) to output multipliers (output mult j)
evinces the contrast between a closed and an open I-O model, respectively. By not
accounting for the circularity intertwining final sectors with intermediate industries,
activities ranking high in terms of mjj may have relatively lower output multipliers
(e.g. 45T47WRT, 69T82OBZ, 68REA, 84GOV, 85EDU). On the contrary, industries
mostly producing (and intensively using) intermediate inputs may rank high in terms
of output multipliers, but have relatively lower betweenness centrality (e.g. 23NMM,
22RBP, 58T60PAB, 17T18PAP, 16WOD).
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Fig. 4 Industry ranking comparison between mjj , gross output and I-O output multiplier. (Indicator mjj

— m jj— from Eq. 2; Gross output — go j— from Eq. 16; I-O output multiplier — output mult j
— from Eq. 15; cross-country median averaged through time for years 2005, 2009 and 2015; sectoral
descriptors in Appendix C, Table 7). Source: Authors’ elaboration based on OECD-IOTs Database, 2018
edition. Notes: To facilitate interpretation, gross output and I-O output multipliers in the left panel have
been multiplied by −1, so that the logic of their industry ranking in decreasing order coincides with that
of mjj
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Appendix C: OECD Input-Output Tables Database: Country List
and Industry Classification

Table 6 OECD Input-Output Tables (IOTs) database country dictionary
(List of 60 countries considered for the computations in the paper)

Source: OECD Input-Output Tables (IOTs) Database, 2018 edition
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Table 7 OECD Input-Output Tables (IOTs) sector classification dictionary
(35 sectors: 32 industries and 3 final sectors considered for the computations in the paper)

Source: Authors’ elaboration based on OECD Input-Output Tables (IOTs) Database, 2018 edition
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Cattolica del Sacro Cuore, Milano, Italy

690

http://www.wiod.org
http://orcid.org/0000-0002-3642-0862
mailto: monica.bianchi@unicatt.it
mailto: anna.torriero@unicatt.it

	Leontief meets Markov...
	Abstract
	Introduction
	Leontief Meets Markov: Methods
	Graphs, Markov Chains and Random Walks
	Closed Input-Output Systems as Regular Markov Chains

	An Empirical Exploration: Results and Discussion
	Dataset Characteristics and Preparation: From Inter-Industry Data to Probability Transition Matrices
	Generalised Structural Change Takes Time
	Countries are Structurally Different
	Structural Vulnerabilities: A Typology

	Summary of Findings and Concluding Remarks
	Appendix A A: Relationship Between Network Centrality Indices
	 B: Comparison with Traditional Input-Output Indicators
	Appendix B B: Comparison with Traditional Input-Output Indicators
	 C: OECD Input-Output Tables Database: Country List and Industry Classification
	Appendix C C: OECD Input-Output Tables Database: Country List and Industry Classification
	References
	Affiliations




