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A B S T R A C T

The 𝜅-exponential function, representing a generalization of the exponential function, has been
firstly introduced in physics, and, then, it has been considered in a noteworthy number of
fields because of its ability to take rare events into account. Among the possible applications
of this function, one of particular interest is in economics in which rare events may consist
in natural disasters, such as earthquakes that reduce the supply of capital, or epidemics or
other external shocks influencing the supply of intermediate inputs, human or physical capital.
Starting from the 𝜅-exponential function, the 𝜅-logistic function, which is a generalization of
the sigmoidal function, can be obtained and used to describe production functions in a unique
setting to take into account (1) several shapes usually considered in economics (i.e. concave and
non-concave production functions), (2) economies at different development levels, and, (3) the
possible occurrence of rare events. In this paper, we investigate the economic growth model as
proposed by Böhm and Kaas (2000), wherein the production function utilizes the 𝜅-logistic
function. We provide theoretical results confirmed by extensive computational experiments
and in line with economic literature showing that a poverty trap may emerge together with
fluctuations, multistability and complex dynamics.

1. Introduction

Economic growth is a fundamental branch of Macroeconomics. Its importance is confirmed by the plethora of available models.
A significant number of these models trace their origins to two pioneering works: the optimal-growth model by Ramsey [20] and the
Solow–Swan model (see e.g. [25,26]). Later works have explored more complex settings. Among all, the paper published by Böhm
and Kaas [4] is a fundamental milestone. The authors examine the evolution of capital per-capita in a discrete-time setup by assuming
differential savings between workers and shareholders and considering a production function satisfying the so-called weak Inada
conditions. These conditions ensure the existence of a unique (positive) steady state.

After Böhm and Kaas [4] introduced their work, numerous models have been proposed to consider different assumptions, as for
instance the weak Inada conditions are not always satisfied or the elasticity of substitution between production factors (measuring
the ease by which one factor can be substituted for another, for a given level of output) is not constant.

Grassetti et al. [11] were the first to propose the use of a shifted Cobb–Douglas to describe the production function, i.e. a
technology that states the existence of a minimum level of capital needed before making returns. Such a function is continuous, non-
strictly concave, and non-differentiable; the weak Inada conditions do not hold and the elasticity of substitution between production
factors depends on the capital per-capita level. Their model is able to exhibit a poverty trap, as it often occurs in less developed
economies.

Another production function is the Constant Elasticity of Substitution (CES) production function as firstly introduced by Solow
[25]. Brianzoni et al. [5] revised the Böhm and Kaas [4] growth model by considering a CES production function that does not
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satisfy the weak Inada conditions even though the elasticity of substitution between production factors remains constant. In such
model fluctuations may emerge and, in addition, the authors show that a crucial role is played by the substitutability between
production factors, i.e. if the elasticity of substitution between production factors is greater than one, the economy may converge
to the steady state.

Brianzoni et al. [7] also considered a variant of the model moving to a Variable Elasticity of Substitution (VES) production
unction as firstly proposed by Revankar [22]. In such a case the substitutability between production factors is not constant and
ultistability may emerge, i.e. coexistence of attractors, and the economy may fluctuate over time when the elasticity of substitution

etween production factors is not too high.
In order to take into account the case in which a minimum level of capital per-capita may be reached before decreasing returns

re observed (as occurs in less-developed economies), Brianzoni et al. [6] proposed a sigmoidal production function. This function
s positive, strictly increasing, and always convex–concave, it does not satisfy the weak Inada conditions and the elasticity of
ubstitution between production factors is variable. The maximum production level the economy can achieve, i.e. the upper-bound
f the production function, varies depending on some parameters also influencing the elasticity of substitution between production
actors. Such a sigmoidal production function has been previously proposed by Capasso et al. [8] in a similar formulation but with
ontinuous time. Similar to what occurs with the shifted Cobb–Douglas a poverty trap may emerge, i.e. policies to push economies
t a minimum development level are necessary to enter in a region characterized by economic growth.

Finally, the well-known Leontief technology has been considered by Böhm and Kaas [4] and Tramontana and Avrutin [27]. The
btained growth model results non-continuous, fluctuations may emerge and the structure of related bifurcations is described.

The novelty of the present work is the use of the 𝜅-logistic function, denoted by 𝜎𝜅 (see [17]), to describe the production
function in the Böhm and Kaas [4] growth model. Such a function is a generalization of the well-known sigmoidal logistic function,
frequently used in machine learning (see e.g. [3]) and it is obtained from the 𝜅-exponential function (or, more concisely, exp𝜅)
introduced by Kaniadakis [15,16].

The exp𝜅 function presents the property that when the parameter 𝜅 approaches zero, it tends to the exp function; otherwise, with
𝜅 large enough, it tends to plus or minus infinity like a power function. Its popularity is due to the capability to take rare events
into account. In fact, while ordinary events follow an exponential law, rare events are characterized by a Pareto (or power-tail) law.
Although the exp𝜅 originated in physics, its applications embrace a noteworthy number of fields, such as economy (see e.g. [9]),
finance (see e.g. [19]), epidemiology (see e.g. [18]) and computer science (see e.g. [23]). More in detail, rare events affecting
economic growth may consist in natural disasters, such as earthquakes that reduce the supply of capital, or epidemics or other
external shocks influencing the supply of intermediate inputs, human or physical capital. As Benson and Clay [2] argue, rare events
have the potential to affect economic growth through their effect on output, investment, fiscal balances and the balance of payments.
More recent contributions concerning rare events in economics are in [1,13].

Starting from the exp𝜅 function, the 𝜅-logistic function has been proposed by Kaniadakis [17] in the field of statistical physics
and, as previously mentioned, it generalizes the logistic sigmoidal function, i.e. it maps the set of the real numbers onto the set
(0, 1) and shows as an S-shape like the sigmoidal function proposed by Capasso et al. [8]. However, unlike the sigmoidal production
function considered by Brianzoni et al. [6] the 𝜅-logistic function offers a number of advantages. First, as previously discussed, it is
able to take rare events into account because of the presence of the exp𝜅 function in its definition. Secondly, it is able to describe
production functions that are both concave or convex–concave (like the sigmoidal one). Finally, the formulation proposed in this
paper is able to consider different levels of upper bounds for production by varying an opportune parameter thus taking into account
economies at different development levels. Differently from the previously used sigmoidal production function, we consider an upper
bound that can be fixed independently of the elasticity of substitution level between production factors.

By combining analytical tools and numerical experiments we show that the discrete time growth model can behave in different
ways, depending on parameter values. According to these values, the map describing the difference equation can be either concave,
non-concave and increasing, or bimodal (so that fluctuations may emerge).

We then provide some theoretical conditions and numerical experiments to determine the number of equilibrium points and
their stability. We show that multistability may emerge, thus making the choice of the initial condition crucial. In particular, with
S-shape production functions, economies at low development level or experiencing sufficiently high probability of incurring in rare
events may converge to the poverty trap. However, if the economy is sufficiently developed, then concave production functions
produce economic growth patterns converging to the unique positive steady state even in the presence of relevant rare events.
Finally, long-run dynamics can also produce economic cycles or complex behavior: fluctuations are more likely to emerge when the
elasticity of substitution between production factors is not too high, in line with the results coming from economic literature.

The paper is organized as follows. In Section 2 we briefly recall the different production functions proposed in the above-
mentioned contributions and summarize their properties. In Section 3, we revisit the exp𝜅 introduced by Kaniadakis [15,16], obtain
the 𝜎𝜅 sigmoidal function and describe its properties. In Section 4, we introduce the 𝜅-logistic growth model and present conditions
for the existence and local stability of equilibria, while Section 5 is dedicated to computational experiments, which also corroborate
the theoretical insights. Section 6 concludes our paper.

2. Previous production function formulations

In this section, we aim at providing a more detailed account of the production function formulations recalled in the introduction.
351
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Following Böhm and Kaas [4], the map describing the evolution of capital per-capita with differential savings between workers
nd shareholders is described by the following difference equation:

𝑥𝑡+1 =
1

1 + 𝑛
[

(1 − 𝛿)𝑥𝑡 + 𝑠𝑤𝑤(𝑥𝑡) + 𝑠𝑟𝜋(𝑥𝑡)
]

, (1)

where 𝑛 ≥ 0 is the labor force growth rate, 𝛿 ∈ [0, 1] is the capital depreciation rate, 𝑠𝑤 ∈ [0, 1] is the saving rate for workers and
𝑠𝑟 ∈ [0, 1] is the saving rate for shareholders.

We denote by R+ the set of non-negative real numbers and by R++ the set of positive real numbers and consider a production
function 𝑓 ∶ R+ → R+. Then the wage rate 𝑤(𝑥𝑡) equals the marginal product of labor, i.e. 𝑤(𝑥𝑡) = 𝑓 (𝑥𝑡) − 𝑥𝑡𝑓 ′(𝑥𝑡), while the profit
hare is given by 𝜋(𝑥𝑡) = 𝑥𝑡𝑓 ′(𝑥𝑡) and represents the marginal product of capital received by stakeholders.

Another assumption made by Böhm and Kaas [4] is that the production function satisfies the weak Inada conditions, i.e. 𝑓 ∈
𝐶2 (R+), 𝑓 is strictly monotonically increasing, strictly concave and such that lim𝑥→+∞

𝑓 (𝑥)
𝑥 = 0, and lim𝑥→0

𝑓 (𝑥)
𝑥 = +∞.

As it has been underlined, after the Böhm and Kaas [4] model, several technologies have been proposed to describe the
elationship between capital per-capita and production, not necessarily verifying the weak Inada conditions, and with constant
r variable elasticity of substitution between production factors. We recall some examples.

The CES production function used by Brianzoni et al. [5] and defined as

𝑓 (𝑥𝑡) =
(

1 + 𝑥𝜌𝑡
)
1
𝜌 ,

ith 𝜌 < 1 and 𝜌 ≠ 0, is characterized by constant elasticity of substitution.
Differently, the shifted Cobb–Douglas function defined as

𝑓 (𝑥𝑡) =
{

0 0 ≤ 𝑥𝑡 ≤ 𝑥𝑐
𝐴
(

𝑥𝑡 − 𝑥𝑐
)𝛼 𝑥𝑡 > 𝑥𝑐 ,

with 𝐴 > 0, 𝛼 ∈ (0, 1), and 𝑥𝑐 ≥ 0; or the VES production function introduced by Revankar [22] and given by

𝑓 (𝑥𝑡) = 𝐴𝑥𝑎𝛾𝑡
(

1 + 𝑏𝑎𝑥𝑡
)(1−𝑎)𝛾 ,

with 𝐴 > 0, 𝑎 ∈ (0, 1), 𝑏 ≥ −1∧ 𝑏 ≠ 0, 1∕𝑥𝑡 ≥ −𝑏, and 𝛾 = 1; or, finally, the sigmoidal production function utilized by Brianzoni et al.
[6] and defined as

𝑓 (𝑥𝑡) =
𝛼𝑥𝑝𝑡

1 + 𝛽𝑥𝑝𝑡
,

with 𝛼 > 0, 𝛽 > 0, and 𝑝 ≥ 2; are examples of production functions with non-constant elasticity of substitution.
Finally, the Leontief technology function considered by Tramontana and Avrutin [27] is

𝑓 (𝑥𝑡) = min{𝑎𝑥𝑡, 𝑏} + 𝑐,

where 𝑎, 𝑏, and 𝑐 are positive constants is an example of a discontinuous production function. The main results concerning the use
of the above mentioned formulations have been recalled in the Introduction.

3. The modified 𝜿-logistic production function

The exp𝜅 function is a function mapping R onto R++ given by

exp𝜅 (𝑥) =
(√

1 + 𝜅2𝑥2 + 𝜅𝑥
)

1
𝜅 , (2)

where 𝜅 ∈ R − {0} is a fixed parameter.
This function was firstly introduced by Kaniadakis [15,16] to propose a new entropy in physics. Its primary feature is to generalize

he well-known exponential function 𝑦 = 𝑒𝑥. Indeed, it can be shown that lim𝜅→0 exp𝜅 (𝑥) = 𝑒𝑥.
Apart from this property, the exp𝜅 function shares several properties with the exponential function, as detailed next. (1) From (2),

t follows that exp𝜅 (𝑥) > 0 ∀𝑥 ∈ R. (2) By substituting 𝑥 with 0 in (2), it results exp𝜅 (0) = 1. (3) Rationalizing the term
√

1 + 𝜅2𝑥2+𝜅𝑥
in (2), then exp𝜅 (𝑥) exp𝜅 (−𝑥) = 1. (4) Similarly, it can be shown that exp−𝜅 (𝑥) = exp𝜅 (𝑥). Thus, we can focus solely on positive values
of 𝜅.

The first derivative of the exp𝜅 function is:

𝑑
𝑑𝑥

exp𝜅 (𝑥) =
exp𝜅 (𝑥)

√

1 + 𝜅2𝑥2
, (3)

which is always positive. Therefore, like the ordinary exponential function, the exp𝜅 function is strictly monotonic increasing.
Additionally, it is straightforward to prove that lim𝑥→−∞ exp𝜅 (𝑥) = 0 and lim𝑥→+∞ exp𝜅 (𝑥) = +∞. Fig. 1 shows the exp𝜅 function,
both in linear and logarithmic scale, for different values of 𝜅.

From the aforementioned properties and from Fig. 1, it is clear that the exp𝜅 shares many similarities with the exponential
function. However, unlike the ordinary exponential function, the exp𝜅 function can be concave for large values of the independent
ariable when 𝜅 > 1. Another fundamental feature of the exp function is the capability to handle rare events. Indeed, while ordinary
352
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Fig. 1. The exp𝜅 function for different values of 𝜅, both in linear (panel a) and logarithmic scale (panel b).

events follow an exponential law, rare events obey a power-tail (or Pareto) distribution as 𝑥 → ±∞. In support of this affirmation,
another property of the exp𝜅 function is that

exp𝜅 (𝑥) ∼ |2𝜅𝑥|±
1
𝜅 when 𝑥 → ±∞. (4)

This property, combined with the fact that lim𝜅→0 exp𝜅 (𝑥) = 𝑒𝑥 shows how the exp𝜅 function is able to manage rare events. This is
expressed by (4) when |𝜅| > 𝜖, with 𝜖 large enough. Conversely, if 𝜅 is small enough, the exp𝜅 function behaves like the standard
exponential function, modeling the case without rare events. This adaptability explains the widespread use of the exp𝜅 . From the
exponential function, the well-known logistic function (see e.g. [3,14,21]), also termed sigmoidal due to its S-shape, can be obtained.
It is defined as follows: 𝜎 ∶ R → (0, 1), and

𝜎(𝑥) = 1
1 + 𝑒−𝑥

. (5)

The popularity of this function lies in the following fundamental properties. The first one is its ability to map the set R to the interval
(0, 1), thus transforming a number into a probability. For this reason, this function is widely used in the field of machine learning.
Furthermore, as we show next, since its first derivative is always positive, this mapping is increasing, meaning that larger numbers
correspond to probabilities closer to one and vice versa. Finally, its characteristic S-shaped curve makes it suitable not only for
probabilistic contexts but also for applications that, as we underline in this article, go beyond the realm of machine learning. This
function has properties such as lim𝑥→−∞ 𝜎(𝑥) = 0 and lim𝑥→+∞ 𝜎(𝑥) = 1. Moreover, it can be proven [21] that:

𝑑
𝑑𝑥

𝜎(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)). (6)

Since the image set of 𝜎 is (0, 1), from (6) we deduce that 𝜎′(𝑥) > 0. Therefore, the logistic function maps all real numbers to values
between 0 and 1 in an increasing monotonic manner.

When the 𝜅-exponential function is taken into account, we move to the 𝜅-logistic function given by:

𝜎𝜅 (𝑥) =
1

1 + exp𝜅 (−𝑥)
. (7)

It is worth noting that, being the 𝜎𝜅 function derived from the exp𝜅 function, the domain of the parameter 𝜅 is R − {0} as well.
Although 𝜎𝜅 is not defined for 𝜅 = 0, with a slight abuse of notation (but for the sake of simplicity) we can extend its definition for
𝜅 = 0 exploiting the aforementioned fact that

lim
𝜅→0

exp𝜅 (𝑥) = 𝑒𝑥.

In this way, it is straightforward to verify that

lim
𝜅→0

𝜎𝜅 (𝑥) = 𝜎(𝑥).

Thus, we can extend with continuity the definition of the 𝜎𝜅 function in order to also include the case when 𝜅 = 0 and with the
convention that 𝜎0(𝑥) = 𝜎(𝑥). Even more so, a similar extension can also be made for the exp𝜅 function with the obvious convention
that exp0(𝑥) = 𝑒𝑥. In Proposition 1, we outline several properties of the 𝜅-logistic function.

Proposition 1. The 𝜎𝜅 function satisfies the following properties:

(a) lim 𝜎 (𝑥) = 0.
353
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(b) lim𝑥→+∞ 𝜎𝜅 (𝑥) = 1.
(c) 𝜎𝜅 (𝑥) ∈ (0, 1) ∀ 𝑥 ∈ R.
(d) 𝜎−𝜅 (𝑥) = 𝜎𝜅 (𝑥) ∀ 𝜅 ∈ R.
(e) 𝑑

𝑑𝑥𝜎𝜅 (𝑥) =
1

√

1+𝜅2𝑥2
𝜎𝜅 (𝑥)

(

1 − 𝜎𝜅 (𝑥)
)

.

(f) 𝜎𝜅 is a strictly monotonic increasing function.
(g) 𝑥𝑓 = 0 is an inflection point for 𝜎𝜅 . Specifically, 𝜎𝜅 is convex for 𝑥 < 𝑥𝑓 and concave for 𝑥 > 𝑥𝑓 .
(h) A line intersects the 𝜎𝜅 function in at most three points.
(i) 𝜎′

𝜅 is an even function and its maximum is at the origin with a value of 1
4 .

roof. Points (a) and (b) are easily demonstrated by leveraging the property that lim𝑥→−∞ exp𝜅 (−𝑥) = +∞ and lim𝑥→+∞ exp𝜅 (−𝑥) = 0.
We prove point (c) in two steps: first we show that 𝜎𝜅 (𝑥) > 0 ∀ 𝑥 ∈ R and then we demonstrate that 𝜎𝜅 (𝑥) is always less than one.

ince exp𝜅 (−𝑥) > 0, the denominator of (7) is always positive, as its reciprocal. Moreover, it follows that 1 + exp𝜅 (−𝑥) > 1, implying
1

1+exp𝜅 (−𝑥)
< 1.

Point (d) can be easily proven by leveraging the aforementioned property that the exp𝜅 function is even with respect to 𝜅. We
have:

𝜎−𝜅 (𝑥) =
1

1 + exp−𝜅 (−𝑥)
= 1

1 + exp𝜅 (−𝑥)
= 𝜎𝜅 (𝑥).

Point (e) can be proven as follows:

𝑑
𝑑𝑥

𝜎𝜅 (𝑥) = − 1
[

1 +
(
√

1 + 𝜅2𝑥2 − 𝜅𝑥
)

1
𝜅

]2
𝑑
𝑑𝑥

(√

1 + 𝜅2𝑥2 − 𝜅𝑥
)

1
𝜅

= 𝜎𝜅 (𝑥) 𝜎𝜅 (𝑥)
exp𝜅 (−𝑥)
√

1 + 𝜅2𝑥2
= 1

√

1 + 𝜅2𝑥2
𝜎𝜅 (𝑥)

1 + exp𝜅 (−𝑥) − 1
1 + exp𝜅 (−𝑥)

= 1
√

1 + 𝜅2𝑥2

(

1 − 𝜎𝜅 (𝑥)
)

𝜎𝜅 (𝑥).

oint (f) directly follows from points (c) and (e). We prove point (g) by computing 𝜎′′
𝜅 . We have:

𝜎′′
𝜅 (𝑥) =

√

1 + 𝜅2𝑥2 𝑑
𝑑𝑥

(

𝜎𝑘(𝑥)
(

1 − 𝜎𝜅 (𝑥)
))

− 𝜎𝑘(𝑥)
(

1 − 𝜎𝜅 (𝑥)
) 𝜅2𝑥

√

1+𝜅2𝑥2

1 + 𝜅2𝑥2
(8)

sing the product rule, it can be convenient to express 𝑑
𝑑𝑥

(

𝜎𝑘(𝑥)
(

1 − 𝜎𝜅 (𝑥)
))

as 𝜎′
𝜅 (𝑥)

(

1 − 2𝜎𝑘(𝑥)
)

. Similarly, using the result from
point (e), we can write 𝜎𝑘(𝑥)

(

1 − 𝜎𝜅 (𝑥)
) 𝜅2𝑥

√

1+𝜅2𝑥2
as 𝜅2𝑥𝜎′

𝜅 (𝑥). With these premises, we can reformulate (8) as:

𝜎′′
𝜅 (𝑥) =

[

1 − 2𝜎𝜅 (𝑥)
√

1 + 𝜅2𝑥2
− 𝜅2𝑥

1 + 𝜅2𝑥2

]

𝜎′
𝜅 (𝑥). (9)

Evaluating (9) at 𝑥 = 0 and considering that 𝜎𝜅 (0) =
1
2 , it follows that 𝜎′′

𝜅 (0) = 0. By point (f), 𝜎′𝜅 (𝑥) > 0 ∀𝑥 ∈ R. Thus, to study the
convexity or the concavity of 𝜎𝜅 , it suffices to examine the sign of:

1 − 2𝜎𝜅 (𝑥)
√

1 + 𝜅2𝑥2
− 𝜅2𝑥

1 + 𝜅2𝑥2
. (10)

Putting together the facts that (1) 𝜎𝜅 is bounded between 0 and 1, (2) 𝜎𝜅 (0) = 1
2 , and (3) 𝜎𝜅 is a monotonic strictly increasing

unction, we deduce that 0 < 𝜎𝜅 (𝑥) <
1
2 ∀ 𝑥 < 0. Specifically, since 𝜎𝜅 (𝑥) <

1
2 ∀ 𝑥 < 0, then 1 − 2𝜎𝜅 (𝑥) > 0 ∀ 𝑥 < 0. Consequently, the

expression in (10) is positive for all 𝑥 < 0 implying 𝜎𝜅 is convex in R−. The proof that 𝜎𝜅 is concave in R+ proceeds similarly, noting
that 𝜎𝜅 (𝑥) >

1
2 ∀ 𝑥 > 0.

To prove point (h), we leverage the obvious property that a line meets a convex or concave function that is neither a line nor a
linear piece-wise function in at most two points. By point (g), 𝜎𝜅 is convex on R− and concave on R+. Thus, if a line intersects in
the second quadrant the 𝜎𝜅 function at zero or one point, then it will intersect the same function in the first quadrant at most twice.
ikewise, if a line intersects in the first quadrant the 𝜎𝜅 function in zero or one point, then it will intersect the same function in the
econd quadrant in at most two points. The last thing to show consists in proving that if a line meets in the second quadrant the
𝜅 function at two points, then it will intersect the same function in the first quadrant at one more point and vice versa. To prove
his, let

(

𝑥1, 𝜎𝜅 (𝑥1)
)

and
(

𝑥2, 𝜎𝜅 (𝑥2)
)

with 𝑥1 < 𝑥2 ≤ 0 be these points. In this region, 𝜎𝜅 lies below the line in the interval (𝑥1, 𝑥2)
nd above the line in the intervals (−∞, 𝑥1) and (𝑥2, 0]. Since 𝜎𝜅 intersects the 𝑦 axis above the line (or on the line if its equation
s 𝑦 = 𝑚𝑥 + 1

2 ) and 𝜎𝜅 is concave on R+ and lim𝑥→+∞ 𝜎′
𝜅 (𝑥) = 0, the function will intersect the line at one more point in the first

uadrant. In a similar way, it can be proved that if the line intersects 𝜎𝜅 at two points in the first quadrant, it will intersect 𝜎𝜅 at
one more point in the convex region.
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Fig. 2. The 𝜎𝜅 function for different values of 𝜅, both in linear (panel a) and logarithmic scale (panel b).

Finally, to prove (i), let 𝑥 ∈ R. Then:

𝜎𝜅 (−𝑥) = 1
1 + exp𝜅 (𝑥)

= 1
1 + 1

exp𝜅 (−𝑥)

=
exp𝜅 (−𝑥)

1 + exp𝜅 (−𝑥)

=
1 + exp𝜅 (−𝑥) − 1
1 + exp𝜅 (−𝑥)

= 1 − 𝜎𝜅 (𝑥). (11)

This property is useful to show that:

𝜎′
𝜅 (𝑥) =

1
√

1 + 𝜅2𝑥2
𝜎𝜅 (𝑥)

(

1 − 𝜎𝜅 (𝑥)
)

= 1
√

1 + 𝜅2𝑥2
𝜎𝜅 (𝑥)𝜎𝜅 (−𝑥) = 𝜎′

𝜅 (−𝑥).

From the considerations in point (g), we know that 𝜎′′
𝜅 is zero only at 𝑥 = 0. Since 𝜎′′

𝜅 (𝑥) > 0 ∀ 𝑥 < 0 and 𝜎′′
𝜅 (𝑥) < 0 ∀ 𝑥 > 0, it follows

that 𝑥 = 0 is a global maximum for 𝜎′
𝜅 with value 𝜎′

𝜅 (0) =
1
4 . □

It is worth noting that, as already expressed in the proof of point (e) of Proposition 1, the first derivative of the 𝜅-logistic
function is always positive. Thus, similar to the logistic function, the 𝜅-logistic function maps all real numbers onto (0, 1) in a
strictly monotonic increasing manner. In Fig. 2, we depict the graph of the 𝜅-logistic function for various values of 𝜅, both in linear
and logarithmic scale.

The goal of this paper is to propose a modified version of the 𝜅-logistic function as a potential expression for the production
function, mirroring the shape of the sigmoidal function introduced by Capasso et al. [8] in the continuous time model and used
by Brianzoni et al. [6] in the discrete-time setup, but with additional desired properties. More in detail we aim at considering the
following new points.

• Suggest a generalized production function able to describe both strictly concave technologies (as for instance the Cobb–Douglas
standard production function) or a convex–concave production function (as for instance the sigmoidal production function
previously introduced in the literature that cannot be always concave).

• Take into account rare events, as for instance, in economics, natural disasters, such as earthquakes that reduce the supply of
capital, or epidemics or other external shocks influencing the supply of intermediate inputs, human or physical capital.

• Consider economies at different development levels according to an upper bound to the maximum production level that can
be reached by the economy and that is not linked to the elasticity of substitution between production factors.

For this purpose, we construct the following modified 𝜅-logistic production function, namely 𝑓 (𝑥𝑡), such that 𝑓 (𝑥𝑡) passes through
the origin, it is strictly increasing but bounded from above by a positive constant 𝑀 and it can be both convex and convex–concave
depending on the sign of a constant 𝑥𝑐 .

Then high values of 𝑀 correspond to more developed economies, positive values of 𝑥𝑐 are associated to non-strictly concave
production functions and, finally, higher 𝜅 values are associated to situations in which rare events are more likely to emerge. The
proposed production function, called modified 𝜅-logistic, takes into account all these points, and it is given by:

𝑓 (𝑥𝑡) = 𝑀
𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 ) − 𝜎𝜅 (−𝑥𝑐 )

1 − 𝜎𝜅 (−𝑥𝑐 )
. (12)

Given that the production function is derived from the 𝜎𝜅 function, the domain of the parameter 𝜅 remains R − {0}. However, as
done with the exp𝜅 and 𝜎𝜅 , we can continuously extend the domain of 𝜅 to include the case 𝜅 = 0 because

lim 𝑓 (𝑥𝑡) = 𝑀
𝜎(𝑥𝑡 − 𝑥𝑐 ) − 𝜎(−𝑥𝑐 ) .
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In Proposition 2, we outline two properties of the proposed modified 𝜅-logistic function.

Proposition 2. The modified 𝜅-logistic function has the following characteristics:

(a) 𝑓 is convex on (−∞, 𝑥𝑐 ) and concave on (𝑥𝑐 , +∞).
(b) ∀𝑚, 𝑞 ∈ R, the equation 𝑓 (𝑥𝑡) = 𝑚𝑥𝑡 + 𝑞 has at most three roots.

Proof. Point (a) directly stems from the fact that

𝑓 ′′(𝑥𝑡) =
𝑀

1 − 𝜎𝑘(−𝑥𝑐 )
𝜎′′
𝑘 (𝑥𝑡 − 𝑥𝑐 ).

Point (b) can be addressed by manipulating the equation 𝑓 (𝑥𝑡) = 𝑚𝑥𝑡 + 𝑞. After some rearrangements, one derives

𝜎𝑘(𝑥𝑡 − 𝑥𝑐 ) = 𝑚
1 − 𝜎𝑘(−𝑥𝑐 )

𝑀
𝑥𝑡 + 𝑞

1 − 𝜎𝑘(−𝑥𝑐 )
𝑀

+ 𝜎𝑘(−𝑥𝑐 ). (13)

Substituting 𝑥 ∶= 𝑥𝑡 −𝑥𝑐 and rearranging in (13), we encounter the scenario of intersecting the 𝜎𝑘 function with a line. By point (h)
in Proposition 1, this equation has at most three solutions. □

In light of the result proved in point (a) of Proposition 2, it is important to make a clarification. The natural domain of 𝑓 is R
and within this domain, the statement in point (a) always holds. However, in our application, 𝑥𝑡 represents the capital per capita,
which cannot be negative in economic applications. Thus, henceforth in our model, we consider 𝑓 restricted to the domain R+ and
the following corollary trivially holds.

Corollary 1. Let 𝑓 be defined as in (12) over the domain R+. If 𝑥𝑐 > 0 then 𝑓 is convex in [0, 𝑥𝑐 ) and concave in (𝑥𝑐 , +∞). Vice versa,
if 𝑥𝑐 ≤ 0, then 𝑓 is concave in R+.

Proof. It is a straightforward consequence of Proposition 2, point (a). □

Regarding the elasticity of substitution of the modified 𝜅-logistic production function denoted by 𝐸𝑓 , we recall that it measures
the ease by which one factor can be substituted for another, for a given level of output. As long as the substitutability between
production function increases, then 𝐸𝑓 increases: for instance in the case of a linear technology where capital and labor are
perfectly substitutable, the elasticity of substitution tends to +∞, while, when the two production factors are perfect complements,
the technology has fixed-proportions and 𝐸𝑓 = 0. However, while some technologies are characterized by constant elasticity of
substitution (as for instance the Cobb–Douglas having 𝐸𝑓 = 1 or the CES function with fixed degree of substitutability between
capital and labor), in other cases economies are better described by technologies with variable elasticity of substitution between
production factors, i.e. substitutability between capital and labor moves depending on changes in the economy’s per capita capital
level. In this last case, the elasticity of substitution varies depending on the ratio between capital and labor (as for instance for the
VES production function).

The elasticity of substitution for a continuous and twice differentiable function as defined by Sato and Hoffman [24] is given by

𝐸𝑓 (𝑥𝑡) = −
𝑓 ′(𝑥𝑡)

[

𝑓 (𝑥𝑡) − 𝑥𝑡𝑓 ′(𝑥𝑡)
]

𝑥𝑡𝑓 (𝑥𝑡)𝑓 ′′(𝑥𝑡)
,

then, the modified 𝜅-logistic function belongs to the set of variable elasticity of substitution production function, as we obtain

𝐸𝑓 (𝑥𝑡) = −

1
𝑥𝑡

+ 𝜎𝜅 (𝑥𝑡−𝑥𝑐 )
√

1+𝜅2(𝑥𝑡−𝑥𝑐 )2
𝜎𝜅 (𝑥𝑡−𝑥𝑐 )−1

𝜎𝜅 (𝑥𝑡−𝑥𝑐 )−𝜎𝜅 (−𝑥𝑐 )

1−2𝜎𝜅 (𝑥𝑡−𝑥𝑐 )
√

1+𝜅2(𝑥𝑡−𝑥𝑐 )2
− 𝜅2(𝑥𝑡−𝑥𝑐 )

1+𝜅2(𝑥𝑡−𝑥𝑐 )2

.

otice that both parameters 𝜅 and 𝑥𝑐 influence the elasticity of substitution between production factors. Anyway, the relationship
etween them and 𝐸𝑓 as 𝑥𝑡 varies is quite complex to be analytically investigated. Some interesting findings can be observed using
umerical simulations. For instance, various computational tests have shown that, by fixing 𝑥𝑐 ≥ 0, the elasticity function exhibits
monotonically increasing trend w.r.t. 𝜅 as long as 𝑥 > 𝑥𝑐 and a monotonically decreasing trend when 𝑥 < 𝑥𝑐 .

. The 𝜿-logistic growth model

Starting from (1), we assume that the wage rate 𝑤(𝑥𝑡) is equal to the marginal product of labor, i.e., 𝑤(𝑥𝑡) = 𝑓 (𝑥𝑡)−𝑥𝑡𝑓 ′(𝑥𝑡), while
he profit share is equal to the marginal product of capital i.e., 𝜋(𝑥𝑡) ∶= 𝑥𝑡𝑓 ′(𝑥𝑡). Under this assumption, (1) becomes 𝑥𝑡+1 = 𝐹 (𝑥𝑡),
here 𝐹 ∶ R+ → R is defined as follows:

𝐹 (𝑥𝑡) =
1

1 + 𝑛
[

(1 − 𝛿)𝑥𝑡 + 𝑠𝑤𝑓 (𝑥𝑡) + 𝑥𝑡𝑓
′(𝑥𝑡)(𝑠𝑟 − 𝑠𝑤)

]

. (14)

Taking into account point (e) of Proposition 1, (14) becomes:

𝐹 (𝑥𝑡) = 1
{

(1 − 𝛿)𝑥𝑡 + 𝑠𝑤𝑀
𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 ) − 𝜎𝜅 (−𝑥𝑐 )
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+
(𝑠𝑟 − 𝑠𝑤)𝑀
1 − 𝜎𝜅 (−𝑥𝑐 )

𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 )
(

1 − 𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 )
)

𝑥𝑡
√

1 + 𝜅2(𝑥𝑡 − 𝑥𝑐 )2

}

. (15)

Our analysis begins with the equilibrium points of the map 𝑥𝑡+1 = 𝐹 (𝑥𝑡), i.e., those points 𝑥∗ satisfying the equation 𝑥∗ = 𝐹 (𝑥∗).
ue to the analytical complexity of (15), it is not possible to determine its equilibrium points exactly, for at least two reasons: (i)

he number of parameters involved is extensive, and (ii) we are dealing with a transcendental equation. However, in Proposition 3,
e provide conditions that ensure the existence or non-existence of equilibrium points.

roposition 3. Consider the map 𝑥𝑡+1 = 𝐹 (𝑥𝑡), with 𝐹 defined as in (15). Then,

(a) 𝑥∗ = 0 is always an equilibrium point to the map.
(b) If 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) > (𝑛 + 𝛿)

√

1 + 𝜅2𝑥2𝑐 , there exists at least a 𝑥∗ > 0 such that 𝐹 (𝑥∗) = 𝑥∗.
(c) If 𝑠𝑟 = 𝑠𝑤, there are at most two positive equilibrium points. Moreover, under this condition:

(c.1) If 𝑥𝑐 < 0 and 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) > (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , then there exists only one positive equilibrium point.

(c.2) If 𝑥𝑐 < 0 and 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) ≤ (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , there are no positive equilibrium points.

(d) There exists 𝜖 > 0 such that if |𝑠𝑟 − 𝑠𝑤| < 𝜖, then there are at most two positive equilibrium points. Moreover, under this condition:

(d.1) If 𝑥𝑐 < 0 and 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) > (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , then there exists only one positive equilibrium point.

(d.2) If 𝑥𝑐 < 0 and 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) ≤ (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , then there are no positive equilibrium points.

(e) If 𝑠𝑤 = 0 and (𝑛+𝛿)(1−𝜎𝜅 (−𝑥𝑐 ))
𝑀𝑠𝑟

≤ 1
4 , then there exists at most two positive equilibrium points. In particular, if 𝑠𝑤 = 0, 𝑥𝑐 > 0

and (𝑛+𝛿)(1−𝜎𝜅 (−𝑥𝑐 ))
𝑀𝑠𝑟

= 1
4 , there exists exactly one positive equilibrium point equal to 𝑥∗ = 𝑥𝑐 . Vice versa, if 𝑠𝑤 = 0, 𝑥𝑐 ≤ 0 and

(𝑛+𝛿)(1−𝜎𝜅 (−𝑥𝑐 ))
𝑀𝑠𝑟

= 1
4 , there are no positive equilibrium points. Moreover, if 𝑠𝑤 = 0 and (𝑛+𝛿)(1−𝜎𝜅 (−𝑥𝑐 ))

𝑀𝑠𝑟
> 1

4 , then there are no positive
equilibrium points.

(f) There exists 𝑠𝑤 > 0 such that for all 𝑠𝑤 ∈ (0, 𝑠𝑤), the map has at most two positive equilibrium points.

Proof. The proof of (a) is straightforward: since 𝑓 (0) = 0, it follows that 𝐹 (0) = 0.
(b) We look for an oblique asymptote of 𝐹 in the form 𝑥𝑡+1 = 𝑚𝑥𝑡 + 𝑞. From Calculus, we have:

𝑚 = lim
𝑥𝑡→+∞

𝐹 (𝑥𝑡)
𝑥𝑡

= 1 − 𝛿
1 + 𝑛

, (16)

and

𝑞 = lim
𝑥𝑡→+∞

(

𝐹 (𝑥𝑡) − 𝑚𝑥𝑡
)

=
𝑠𝑤𝑀
1 + 𝑛

. (17)

From (14), we have:

𝐹 ′(𝑥𝑡) =
1

1 + 𝑛
[

1 − 𝛿 + 𝑠𝑟𝑓
′(𝑥𝑡) + (𝑠𝑟 − 𝑠𝑤)𝑥𝑡𝑓 ′′(𝑥𝑡)

]

. (18)

In particular,

𝐹 ′(0) = 1
1 + 𝑛

[

1 − 𝛿 + 𝑠𝑟𝑓
′(0)

]

= 1
1 + 𝑛

⎡

⎢

⎢

⎢

⎣

1 − 𝛿 + 𝑠𝑟𝑀
𝜎𝜅 (−𝑥𝑐 )

√

1 + 𝜅2𝑥2𝑐

⎤

⎥

⎥

⎥

⎦

.

Since the slope 𝑚 in (16) is always less than one, then there exists a neighborhood 𝑁 of +∞ such that 𝐹 lies below the bisector of the
first quadrant for each 𝑥𝑡 ∈ 𝑁 . In particular, there exists a 𝑥 ∈ 𝑁 such that 𝐹

(

𝑥
)

< 𝑥. If parameters are chosen such that 𝐹 ′(0) > 1,
.e., such that 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) > (𝑛+ 𝛿)

√

1 + 𝜅2𝑥2𝑐 , then there exists a right neighborhood of the origin 𝑁 such that 𝐹 (𝑥𝑡) > 𝑥𝑡 ∀ 𝑥𝑡 ∈ 𝑁 .
In particular, there exists a 𝑥 ∈ 𝑁 such that 𝐹 (𝑥) > 𝑥. Consider the function 𝐺(𝑥𝑡) = 𝐹 (𝑥𝑡) − 𝑥𝑡 on the interval

[

𝑥, 𝑥
]

. Since 𝐺 is
continuous, 𝐺(𝑥) > 0 and 𝐺(𝑥) < 0, then, by Bolzano’s theorem, there exists at least a 𝑥∗ ∈

[

𝑥, 𝑥
]

such that 𝐺 (𝑥∗) = 0. In other
ords, there exists at least a positive equilibrium point for the map.

(c) If 𝑠𝑟 = 𝑠𝑤, the map becomes

𝑥𝑡+1 =
1

1 + 𝑛
[

(1 − 𝛿)𝑥𝑡 + 𝑠𝑤𝑓 (𝑥𝑡)
]

. (19)

Thus, the equilibrium points are the roots of the equation

𝑓 (𝑥∗) = 𝑛 + 𝛿 𝑥∗. (20)
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By Proposition 2, (20) has at most three roots. Since, as already proved, one of them is 𝑥∗ = 0, it follows that there are at most two
positive equilibrium points. In this particular case, deriving 𝐹 in (19) respectively once and twice, we get:

𝐹 ′(𝑥𝑡) =
1

1 + 𝑛
[

1 − 𝛿 + 𝑠𝑤𝑓
′(𝑥𝑡)

]

= 1
1 + 𝑛

[

1 − 𝛿 + 𝑠𝑟
𝑀

1 − 𝜎𝜅 (−𝑥𝑐 )
𝜎′
𝜅 (𝑥𝑡 − 𝑥𝑐 )

]

, (21)

and

𝐹 ′′(𝑥𝑡) =
𝑠𝑟

1 + 𝑛
𝑀

1 − 𝜎𝜅 (−𝑥𝑐 )
𝜎′′
𝜅 (𝑥𝑡 − 𝑥𝑐 ). (22)

If 𝑥𝑐 < 0, then, by Proposition 1, 𝜎𝜅 is concave for all 𝑥𝑡 ≥ 0 and, by (22), so is 𝐹 . Moreover, from (21) we see that 𝐹 is a strictly
increasing monotonic function because 𝐹 ′ is always positive. Thus, following a similar approach as previously done in (b), if 𝐹 ′(0)
computed in (21) is greater than 1, there exists a positive equilibrium point. Otherwise, there are no positive equilibrium points.

(d) It is a generalization of (c). We have:

𝑥𝑡𝑓
′(𝑥𝑡) =

𝑀
1 − 𝜎𝜅 (−𝑥𝑐 )

𝑥𝑡
√

1 + 𝜅2(𝑥𝑡 − 𝑥𝑐 )2
𝜎(𝑥𝑡 − 𝑥𝑐 )

(

1 − 𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 )
)

. (23)

The function defined in (23) and restricted to the domain R+ has no vertical asymptotes and lim𝑥𝑡→+∞
(

𝑥𝑡𝑓 ′(𝑥𝑡)
)

= 0, therefore it is
limited. Let 𝐾 > 0 be an upper bound to this function and let 𝛾 > 0. If |𝑠𝑟 − 𝑠𝑤| <

𝛾
𝐾 , then

𝐹 𝛾 (𝑥𝑡) < 𝐹 (𝑥𝑡) < 𝐹 𝛾 (𝑥𝑡) (24)

with

𝐹 𝛾 (𝑥𝑡) =
1

1 + 𝑛
[

(1 − 𝛿)𝑥𝑡 + 𝑠𝑤𝑓 (𝑥𝑡) − 𝛾
]

and

𝐹 𝛾 (𝑥𝑡) =
1

1 + 𝑛
[

(1 − 𝛿)𝑥𝑡 + 𝑠𝑤𝑓 (𝑥𝑡) + 𝛾
]

.

Both equations 𝐹 𝛾 (𝑥
∗) = 𝑥∗ and 𝐹 𝛾 (𝑥∗) = 𝑥∗ reduce to intersecting 𝑓 (𝑥𝑡) with a line and, as proved in Proposition 2, the related

equation has at most three solutions. We have that

lim
𝛾→0+

𝐹 𝛾 (𝑥𝑡) = lim
𝛾→0+

𝐹 𝛾 (𝑥𝑡) =
1

1 + 𝑛
[

(1 − 𝛿)𝑥𝑡 + 𝑠𝑤𝑓 (𝑥𝑡)
]

. (25)

As already proved in point (c), the equation

𝑥∗ = 1
1 + 𝑛

[

(1 − 𝛿)𝑥∗ + 𝑠𝑤𝑓
(

𝑥∗
)]

has at most three solutions. Therefore, putting these considerations all together, there is a small-enough 𝛾 such that if |𝑠𝑟 − 𝑠𝑤| <
𝛾
𝐾 ,

then 𝐹 has at most three equilibrium points. It is enough to choose 𝜖 = 𝛾
𝐾 and the thesis holds. Points (d.1) and (d.2) are carried

out as points (c.1) and (c.2) by observing that

𝐹 ′(𝑥𝑡) =
1

1 + 𝑛
[

1 − 𝛿 + 𝑠𝑟𝑓
′(𝑥𝑡) + (𝑠𝑟 − 𝑠𝑤)𝑥𝑡𝑓 ′′(𝑥𝑡)

]

, (26)

and

𝐹 ′′(𝑥𝑡) =
1

1 + 𝑛
[

(2𝑠𝑟 − 𝑠𝑤)𝑓 ′′(𝑥𝑡) + (𝑠𝑟 − 𝑠𝑤)𝑥𝑡𝑓 ′′′(𝑥𝑡)
]

. (27)

If 𝜖 is small enough, then it is possible to make 𝐹 ′ always positive. If 𝑥𝑐 < 0 then, by Proposition 2, 𝑓 is concave and so 𝑓 ′′ is
negative. We have:

2𝑠𝑟 − 𝑠𝑤 = 𝑠𝑟 + 𝑠𝑟 − 𝑠𝑤 = 𝑠𝑟 ± 𝜖

So, if 𝜖 is small enough, the term (2𝑠𝑟 − 𝑠𝑤)𝑓 ′′(𝑥𝑡) is negative. Moreover, 𝑥𝑡𝑓 ′′′(𝑥𝑡) is limited ∀𝑥𝑡 ≥ 0. To see this, after some algebra,
it is possible to prove that

𝜎′′′
𝜅 (𝑥) =

{

−
2𝜎𝜅 (𝑥)

(

1 − 𝜎𝜅 (𝑥)
)

1 + 𝜅2𝑥2
−

(

1 − 2𝜎𝜅 (𝑥)
)

𝜅2𝑥
(

1 + 𝜅2𝑥2
)
3
2

− 𝜅2 1 − 𝜅2𝑥2
(

1 + 𝜅2𝑥2
)2

+

[

1 − 2𝜎𝜅 (𝑥)
√

1 + 𝜅2𝑥2
− 𝜅2𝑥

1 + 𝜅2𝑥2

]2}

𝜎′
𝜅 (𝑥). (28)

It is easy to see that the function 𝑥𝜎′′′
𝜅 (𝑥) is bounded in R+ because there are no vertical asymptotes and lim𝑥→+∞

(

𝑥𝜎′′′
𝜅 (𝑥)

)

= 0.
Therefore, the function 𝑥𝑡𝑓 ′′′(𝑥𝑡) is bounded as well. Thus, not only is it possible to choose an 𝜖 such that the term (2𝑠𝑟−𝑠𝑤)𝑓 ′′(𝑥𝑡) is
negative but also such that, in magnitude, it is bigger than |𝑠𝑟 − 𝑠𝑤|𝑥𝑡𝑓 ′′′(𝑥𝑡) = 𝜖𝑥𝑡𝑓 ′′′(𝑥𝑡). Consequently, under these circumstances,
f 𝑥𝑐 < 0, 𝐹 is concave and analogous considerations to points (c.1) and (c.2) hold.

(e) If 𝑠𝑤 = 0, the map becomes:

𝑥𝑡+1 =
1

[

(1 − 𝛿)𝑥𝑡 + 𝑠𝑟𝑥𝑡
𝑀 𝜎′

𝜅 (𝑥𝑡 − 𝑥𝑐 )
]

. (29)
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In addition to the equilibrium point 𝑥∗ = 0, the other equilibrium points of (29) can be found solving the equation

𝜎′
𝜅 (𝑥𝑡 − 𝑥𝑐 ) =

(𝑛 + 𝛿)
(

1 − 𝜎𝜅 (−𝑥𝑐 )
)

𝑀𝑠𝑟
. (30)

By Proposition 1, the maximum value of 𝜎′
𝜅 is 1

4 and it is reached when the argument of 𝜎′
𝜅 is equal to zero. Therefore, if

(𝑛+𝛿)(1−𝜎𝜅 (−𝑥𝑐 ))
𝑀𝑠𝑟

> 1
4 , there are no positive equilibrium points. If 𝑥𝑐 > 0 and (𝑛+𝛿)(1−𝜎𝜅 (−𝑥𝑐 ))

𝑀𝑠𝑟
= 1

4 , there is exactly one positive equilibrium

oint for 𝑥∗ = 𝑥𝑐 . But if 𝑥𝑐 ≤ 0 there are no positive equilibrium points. If (𝑛+𝛿)(1−𝜎𝜅 (−𝑥𝑐 ))
𝑀𝑠𝑟

< 1
4 , (30) has two distinct roots that are

ositive depending on the value of 𝑥𝑐 . Therefore, in this case, there are at most two positive equilibrium points.
(f) After some algebra, the map 𝑥∗ = 𝐹 (𝑥∗) can be reformulated as

𝜎′
𝜅
(

𝑥∗ − 𝑥𝑐
)

=
(𝑛 + 𝛿)

(

1 − 𝜎𝜅 (−𝑥𝑐 )
)

𝑀(𝑠𝑟 − 𝑠𝑤)
−

𝑠𝑤
𝑠𝑟 − 𝑠𝑤

𝜎𝜅
(

𝑥∗ − 𝑥𝑐
)

− 𝜎𝜅 (−𝑥𝑐 )
𝑥∗

. (31)

et

𝐹𝜖(𝑥𝑡) =
(𝑛 + 𝛿)

(

1 − 𝜎𝜅 (−𝑥𝑐 )
)

𝑀(𝑠𝑟 − 𝜖)
− 𝜖

𝑠𝑟 − 𝜖
𝜎𝜅

(

𝑥𝑡 − 𝑥𝑐
)

− 𝜎𝜅 (−𝑥𝑐 )
𝑥𝑡

.

his function is bounded because

lim
𝑥𝑡→0+

𝜎𝜅
(

𝑥𝑡 − 𝑥𝑐
)

− 𝜎𝜅 (−𝑥𝑐 )
𝑥𝑡

= 𝜎′
𝜅 (−𝑥𝑐 )

nd, as proven in Proposition 1, 0 < 𝜎′
𝜅 (𝑥) <

1
4 ∀ 𝑥 ∈ R. Therefore,

lim
𝜖→0+

𝐹𝜖(𝑥𝑡) =
(𝑛 + 𝛿)

(

1 − 𝜎𝜅 (−𝑥𝑐 )
)

𝑀𝑠𝑟
.

ut this coincides with the case treated in point (e) which has at most two positive equilibrium points. Consequently, we can find
small-enough 𝑠𝑤 such that, for all 𝑠𝑤 ∈ (0, 𝑠𝑤), the map has at most two positive equilibrium points. □

According to Proposition 3, the growth model may admit multiple equilibria so that the investigation of their stability properties
ecome crucial. Unfortunately, it is not possible to qualify the nature of the equilibrium points due to the number of parameters
nvolved and it is only possible to identify the origin in a precise way.

Hence in Proposition 4, we present a result concerning the asymptotic stability of the trivial equilibrium point.
The proof of Proposition 4 relies on two theorems that can be found in [10], pages 27–30, and we restate adopting them to our

otation. The first theorem (on page 27) states that if 𝐹 is continuously differentiable at an equilibrium point 𝑥∗ and if |𝐹 ′ (𝑥∗) | < 1,
hen 𝑥∗ is asymptotically stable. Alternatively, under the same assumption about 𝐹 , if |𝐹 ′ (𝑥∗) | > 1, then 𝑥∗ is unstable. Although
his theorem is fundamentally important, it does not encompass the case when |𝐹 ′ (𝑥∗) | = 1. This case is partially covered by the
econd theorem (on page 29) that states that if 𝐹 ′ (𝑥∗) = 1 (and 𝐹 is differentiable up to the third order), then: (a) if 𝐹 ′′ (𝑥∗) ≠ 0,
hen 𝑥∗ is unstable, (b) if 𝐹 ′′ (𝑥∗) = 0 and 𝐹 ′′′ (𝑥∗) > 0 then 𝑥∗ is unstable. Finally, (c) if 𝐹 ′′ (𝑥∗) = 0 and 𝐹 ′′′ (𝑥∗) < 0 then 𝑥∗ is
symptotically stable.

roposition 4. Consider the map 𝑥𝑡+1 = 𝐹 (𝑥𝑡), with 𝐹 defined as in (15) with the equilibrium point at the origin.

(a) If 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) < (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , then the origin is asymptotically stable.

(b) If 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) > (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , then the origin is unstable.

(c) If 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) = (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 and 𝑥𝑐 ≠ 0 and 𝑠𝑤 ≠ 2𝑠𝑟, then the origin is unstable.

(d) If 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) = (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , 𝑥𝑐 = 0, and 3𝑠𝑟 − 2𝑠𝑤 > 0 then the origin is asymptotically stable.

(e) If 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) = (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , 𝑥𝑐 = 0, and 3𝑠𝑟 − 2𝑠𝑤 < 0 then the origin is unstable.

roof. (a) Substituting 𝑥𝑡 = 0 into (18), we have:

𝐹 ′(0) = 1
1 + 𝑛

[

1 − 𝛿 + 𝑠𝑟𝑓
′(0)

]

(32)

From Proposition 1 and the definition of 𝑓 , we have:

𝑓 ′(𝑥𝑡) =
𝑀

1 − 𝜎𝜅 (−𝑥𝑐 )
𝜎′
𝜅 (𝑥𝑡 − 𝑥𝑐 ) =

𝑀
1 − 𝜎𝜅 (−𝑥𝑐 )

𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 )
(

1 − 𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 )
)

√

1 + 𝜅2
(

𝑥𝑡 − 𝑥𝑐
)2

. (33)

Thus,

𝑓 ′(0) =
𝑀𝜎𝜅 (−𝑥𝑐 )
√

1 + 𝜅2𝑥2
. (34)
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The thesis holds by imposing 𝐹 ′(0) < 1.
(b) This point is proved similarly to point (a), this time imposing 𝐹 ′(0) > 1.
(c) If 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) = (𝑛+𝛿)

√

1 + 𝜅2𝑥2𝑐 , we are in the case where 𝐹 ′(0) = 1. In this limit case, we need to evaluate 𝐹 ′′(0). From (27),
e have:

𝐹 ′′(0) = 1
1 + 𝑛

[

(2𝑠𝑟 − 𝑠𝑤)𝑓 ′′(0)
]

. (35)

Considering the expression of 𝑓 and using (9), we find:

𝐹 ′′(0) = 1
1 + 𝑛

(2𝑠𝑟 − 𝑠𝑤)
𝑀𝜎𝜅 (−𝑥𝑐 )
√

1 + 𝜅2𝑥2𝑐

⎡

⎢

⎢

⎢

⎣

1 − 2𝜎𝜅 (−𝑥𝑐 )
√

1 + 𝜅2𝑥2𝑐
+

𝜅2𝑥𝑐
1 + 𝜅2𝑥2𝑐

⎤

⎥

⎥

⎥

⎦

(36)

he conclusion follows by noting that the term in the square brackets equals zero only when 𝑥𝑐 = 0. Thus, if 2𝑠𝑟 − 𝑠𝑤 and 𝑥𝑐 ≠ 0,
hen 𝐹 ′′(0) ≠ 0 and the origin is unstable.

To prove points (d) and (e), we differentiate (27) to get:

𝐹 ′′′(𝑥𝑡) =
1

1 + 𝑛
[

(3𝑠𝑟 − 2𝑠𝑤)𝑓 ′′′(𝑥𝑡) + (𝑠𝑟 − 𝑠𝑤)𝑥𝑡𝑓 𝐼𝑉 (𝑥𝑡)
]

. (37)

From (37), we deduce:

𝐹 ′′′(0) = 1
1 + 𝑛

(3𝑠𝑟 − 2𝑠𝑤)𝑓 ′′′(0). (38)

Recalling (28), if 𝑥𝑐 = 0 then (38) becomes:

𝐹 ′′′(0) = −1
2

( 1
2
+ 𝜅2

) 𝑀
1 + 𝑛

(3𝑠𝑟 − 2𝑠𝑤), (39)

nd this completes the proof because the sign of 𝐹 ′′′(0) is determined by (3𝑠𝑟 − 2𝑠𝑤) □

Although Proposition 4 states the nature of the equilibrium point at the origin in various circumstances, unfortunately, it does
ot contemplate all possible cases. For example, nothing is said when 𝑥𝑐 = 0 and 3𝑠𝑟 − 2𝑠𝑤 = 0. These particular cases require the
se of the Schwarzian derivative that has to be evaluated also in (28) for the general case. These investigations are far from trivial.
n essence, it is challenging to ascertain the sign of (28) and, even more so, of the Schwarzian derivative.

In any case, Proposition 4 point (𝑎) is very interesting from an economic point of view, stating a result in line with previous
iterature (see e.g. [6,12]). More precisely, some economies may incur in a poverty trap, where there is a set of initial conditions
eading to trajectories converging to the origin. This situation arises in economies characterized by a low development level
i.e., when 𝑀 is sufficiently small), a sigmoidal technology requiring a high minimum capital per-capita level before entering the
ecreasing return region (i.e., with 𝑥𝑐 sufficiently high), or when rare events are likely to occur (i.e., when 𝜅 is high enough).

As far as the existence of non-trivial steady state is concerned, by combining Proposition 3 with Proposition 4, the following
orollary 2 holds.

orollary 2. If 𝑠𝑟𝑀𝜎𝜅 (−𝑥𝑐 ) > (𝑛 + 𝛿)
√

1 + 𝜅2𝑥2𝑐 , then there exists at least a positive equilibrium point and the origin is unstable.

roof. It is enough to consider point (b) in Proposition 3 and point (b) in Proposition 4. □

According to Corollary 2, developed economies with concave production technology and with low probability to incur in rare
vents cannot fail in the poverty trap.

We proceed with our study about equilibrium points in Proposition 5. As it is usual in literature, we assume 𝑠𝑟 ≥ 𝑠𝑤,
.e. shareholders save more than workers. To preserve the economic meaning of the system, this new condition prevents the
nrealistic case where the map yields negative values for some 𝑥𝑡 ∈ R+. To see this, it is enough to consider the term 𝑓 ′(𝑥𝑡)
n (14). This term is never negative since

𝑓 ′(𝑥𝑡) =
𝑀

1 − 𝜎𝜅 (−𝑥𝑐 )
𝜎′
𝜅 (𝑥𝑡 − 𝑥𝑐 ) ≥ 0.

The following Proposition 5 shows that, under particular circumstances, 𝑥𝑐 and the development level of the economy measured
by 𝑀 play a crucial role in the existence of non-trivial equilibrium points. Moreover, it also studies the nature of the non-trivial
equilibrium point for a concave production function confirming previous results in economic literature, that is concave production
functions (i.e. 𝑥𝑐 < 0) produce economic growth patterns converging to the unique positive steady state.

Proposition 5. Consider the map 𝑥𝑡+1 = 𝐹 (𝑥𝑡), with 𝐹 defined as in (15) and with 𝑠𝑟 ≥ 𝑠𝑤.

(a) There exist 𝑥𝑐 and𝑀 = 𝑀
(

𝑥𝑐
)

> 0 such that for all 𝑥𝑐 > 𝑥𝑐 and 0 < 𝑀 < 𝑀 the origin is the sole equilibrium point and it is globally
stable.

(b) The positive equilibrium point arising in cases (c.1) and (d.1) in Proposition 3 attracts all trajectories starting from positive initial
360
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Table 1
Parameter values for the analyzed scenarios.
Scenario 𝑀 𝑥𝑐 𝜅 𝑠𝑟 𝑠𝑤 𝛿 𝑛

1 1 −2 0.5 1 0.2 0.2 0.5
2 10 −2 0.5 1 0.2 0.2 0.5
3 1 2 0.5 1 0.2 0.2 0.5
4 25 4 0.8 0.2 0.2 0.2 0.5
5 25 4 0.8 0.25 0.2 0.2 0.5
6 2.5 5 0.8 1 0.2 0.2 0.5
7 10 2 0.5 1 0.2 0.2 0.5
8 3.00941946 4.76959597 0.70003226 1 0.2 0.2 0.5
9 6 6 0.8 1 0.2 0.2 0.5
10 10 10 0.2 0.7 0.1 0.2 0.5

Proof. (a) In a neighborhood of +∞, say (𝑥̃, +∞), the map lies below the bisector of the first quadrant, regardless of the parameter
values. Thus, for the remainder of the proof, we focus on the behavior of the map in the interval [0, 𝑥̃). According to (15), the

ap is composed of a linear term (with a slope less than one) plus a second term proportional to 𝑀 𝜎𝜅 (𝑥𝑡−𝑥𝑐 )−𝜎𝜅 (−𝑥𝑐 )
1−𝜎𝜅 (−𝑥𝑐 )

and a third

term proportional to 𝑀
1−𝜎𝜅 (−𝑥𝑐 )

𝜎𝜅 (𝑥𝑡−𝑥𝑐 )(1−𝜎𝜅 (𝑥𝑡−𝑥𝑐 ))𝑥𝑡
√

1+𝜅2(𝑥𝑡−𝑥𝑐 )2
. If we demonstrate that both the second and third terms can be made sufficiently

mall, the thesis holds. The denominator 1 − 𝜎𝜅 (−𝑥𝑐 ) in the second and third terms cannot be arbitrarily close to zero because, by
ypothesis, 𝑥𝑐 > 𝑥𝑐 . Let 𝜖 ∈ (0, 1) and 𝑀 = 𝜖

2

(

1 − 𝜎𝜅 (−𝑥𝑐 )
)

. Applying the triangle inequality to the second term and considering that
is an upper bound to the 𝜎𝜅 function, we have:

|

|

|

|

𝑀
𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 ) − 𝜎𝜅 (−𝑥𝑐 )

1 − 𝜎𝜅 (−𝑥𝑐 )
|

|

|

|

≤ 𝑀
𝜎𝜅 (𝑥𝑡 − 𝑥𝑐 ) + 𝜎𝜅 (−𝑥𝑐 )

1 − 𝜎𝜅 (−𝑥𝑐 )
< 2𝑀

1 − 𝜎𝜅 (−𝑥𝑐 )
= 𝜖.

The third term is also bounded because there are no vertical asymptotes and we are not in a neighborhood of +∞. Therefore,
following the same logic as with the second term, we can also make the third term arbitrarily close to zero. As a result, for all
𝑥𝑡 > 0, 𝐹 (𝑥𝑡) < 𝑥𝑡. Furthermore, the incremental ratio of 𝐹 at the origin is 𝐹 (ℎ)

ℎ and is between zero and one. Thus, 0 < 𝐹 ′(0) < 1
and so the origin is globally asymptotically stable.

Proof of (b). Let 𝑥1 be the positive equilibrium point. Then, 𝐹 (𝑥1) = 𝑥1. We are dealing with a concave monotonous increasing
function. Let ℎ > 0 be small enough. In a right neighborhood of 𝑥1, we have 𝐹 (𝑥1+ℎ) < 𝑥1+ℎ. In this neighborhood, the incremental
ratio at 𝑥1 is:

𝐹 (𝑥1 + ℎ) − 𝐹 (𝑥1)
ℎ

=
𝐹 (𝑥1 + ℎ) − 𝑥1

ℎ
< 1.

Moreover, since 𝐹 (𝑥1 + ℎ) > 𝐹 (𝑥1), it follows that the incremental ratio is also positive. A similar argument holds for a left
neighborhood of 𝑥1. Thus, 0 < 𝐹 ′(𝑥1) < 1 and 𝑥1 is locally stable. However, since by Proposition 4 the origin is unstable and
there are no other equilibrium points, it follows that 𝑥1 attracts all trajectories starting from positive initial conditions. □

As outlined in Proposition 3, the model can exhibit multiple equilibrium points. As proved in Proposition 4, the origin can be
locally stable. As a result, the necessary conditions for the coexistence of attractors are met. Multistability, i.e., situations where
more than one attractor is present, must be further explored. Such a study will be undertaken by means of numerical simulations
in the next section.

5. Computational experiments

This section is dedicated to computational experiments with at least two primary objectives. First, we aim to validate the
theoretical findings from the previous section. Secondly, we attempt to uncover insights not possible through analytical means.
For instance, while we rigorously established that, under particular circumstances, the number of fixed points is at most three
(including the origin), we could not prove this for the general case. Nevertheless, as we show next, our computational tests confirm
this property more broadly.

Another goal of our computational experiments is to introduce innovative tools to explore the model’s properties, such as the
three-dimensional plots presented later.

Computational tests were conducted in Python, considering various parameter combinations, which from now on we refer to as
scenarios. Each scenario corresponds to a particular shape of the map. Thus, the aim of these scenarios is to explore the growth
behavior when the map exhibits particular properties assuming different shapes. Table 1 lists all the scenarios we analyzed, which
are also depicted in Figs. 3–6.

As already discussed in Proposition 3, the map can be concave when 𝑥𝑐 < 0. This situation is described in scenarios 1 and 2
which are depicted in Fig. 3.

In Proposition 5, point (a), we gave sufficient conditions such that the origin is the sole equilibrium point to the map 𝐹 . One of
these conditions requires 𝑀 to be sufficiently small, and 𝑥𝑐 to be above a certain negative threshold. This is the case of scenario 1
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Fig. 3. Scenario 1 (panel a) and scenario 2 (panel b).

Fig. 4. Scenario 3 (panel a), scenario 4 (panel b), and scenario 5 (panel c).

Proposition 5, point (b), we also have a positive equilibrium point 𝑥1 at which the slope of the map is less than 1. In particular, the
origin is a repellor, while 𝑥1 is an attractor. This is the case of scenario 2 which is represented in Fig. 3(b).

If 𝑥𝑐 > 0, the map 𝐹 is not concave in principle. This is the case for the remaining scenarios. In particular, the map can be strictly
increasing (scenarios 3–5) or bimodal (scenarios 6–10). The former scenarios are represented in Fig. 4.

In particular, scenario 3 in Fig. 4(a) is characterized by the condition where 𝑀 is relatively small and 𝑥𝑐 is greater than a negative
threshold. As a result, according to Proposition 5, the origin is the only globally stable equilibrium point. If 𝑀 is further increased,
we can reach a particular limit case where the map 𝐹 is tangent to the bisector of the first quadrant. This case is described by scenario
4 which is shown in Fig. 4(b). As it can also be seen from the picture, the origin is a stable equilibrium point because |𝐹 ′(0)| < 1.
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Fig. 5. Scenario 6 (panel a), scenario 7 (panel b), and scenario 8 (panel c).

The tangent point is another equilibrium point. In scenario 4 represented in Fig. 4(b), we see that this nontrivial equilibrium point
has a double nature because it is unstable from the left and stable from the right. Furthermore, we observe that a tangent bifurcation
occurs. In scenario 5 (depicted in Fig. 4(c)) the map is again monotonically increasing but non concave with a larger value of 𝑀 .
Consequently, there are two positive equilibrium points in addition to the origin. We denote these two points by 𝑥1 and 𝑥2, with the
convention that 𝑥1 < 𝑥2. As it can be seen in Fig. 4(c), the origin is a stable equilibrium point because |𝐹 ′(0)| < 1. 𝑥1 is an unstable
equilibrium point as |𝐹 ′(𝑥1)| > 1. Finally, 𝑥2 is a stable equilibrium point because |𝐹 ′(𝑥2)| < 1. In such a case economies starting
from low levels of capital per-capita may converge to the poverty trap.

The remaining scenarios are shown in Figs. 5 and 6. In these scenarios, the map 𝐹 is bimodal. We name 𝑥𝑚 and 𝑥𝑀 the points
of the local minimum and maximum of the map respectively. Evidence from the computational experiments shows that 𝑥𝑀 < 𝑥𝑚.

In scenario 6 (depicted in Fig. 5(a)), the map exhibits a bimodal behavior, but the value of 𝑀 is not sufficiently large, resulting
in 𝐹 always lying below the bisector of the first quadrant, except at the origin. Additionally, with 𝑥𝑐 > 0 the origin emerges as the
only equilibrium point, which, as per Proposition 5, is globally asymptotically stable and the economy cannot avoid the poverty
trap. It emerges if 𝑀 is low (i.e. if less developed economies are considered).

In scenario 7 (Fig. 5(b)), there is only a positive equilibrium point. This point is not tangent to the bisector of the first quadrant. In
the particular combination of parameter values of scenario 7, we can affirm that this non-trivial equilibrium point is stable because
the slope of the tangent line is less than one in modulus. Vice versa, the origin is unstable because the modulus of the tangent line
is greater than one. Unfortunately, we are not able to state whether this property holds in general. In fact, this would require to
tackling the equation 𝐹 (𝑥) = 𝑥, whose exact resolution is challenging.

A particular case is represented by scenario 8 (depicted in Fig. 5(c)), where 𝐹 is bimodal with just one positive equilibrium
point. However, in contrast to scenario 7, this time the map 𝐹 is tangent to the bisector of the first quadrant and the tangent point
coincides with the non-trivial equilibrium point. From Fig. 5(c), it turns out that this equilibrium point is stable from the right but
unstable from the left. Moreover, the origin is stable.

The last case we consider is when the map 𝐹 crosses the bisector of the first quadrant at the origin and at two positive equilibrium
points (say 𝑥1 and 𝑥2 with 𝑥1 < 𝑥2). This situation is represented by scenarios 9 and 10 reported in Fig. 6.

As it can be seen from Figs. 6(a) and 6(b), in these two last scenarios the origin is stable and 𝑥1 is unstable. In fact, any starting
point 𝑥 ∈ (0, 𝑥 ) generates a sequence approaching 0 as 𝑡 → +∞. Vice versa, any starting point such that 𝑥 > 𝑥 and 𝑥 ≠ 𝑥
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Fig. 6. Scenario 9 (panel a) and scenario 10 (panel b).

Fig. 7. 𝑀-bifurcation diagram for scenario 9 starting from 𝑥𝑀 (panel a) and 𝑥𝑚 (panel b).

generates a periodic or eventually periodic sequence. These results open the door to chaotic analysis. We conducted this analysis
starting from scenario 9, but mainly concentrating our numerical efforts on scenario 10 for a reason that will be explained soon.

As already stated, our model is characterized by a considerable number of parameters. Nevertheless, an analysis where all the
parameters can vary is not manageable, for at least two reasons. First, the number of diagrams resulting by considering all the
combinations of parameters would be too large. Secondly, it is not possible to represent diagrams with a dimension greater than
three. For these reasons, we decided to investigate the chaotic behavior by varying the three main parameters of the model, while
keeping constant the remaining ones. These parameters are 𝑀 , 𝑥𝑐 , and 𝜅. The importance of these parameters is confirmed by the
following considerations: first, 𝑀 is particularly significant in terms of the peak of a possible local maximum. The larger 𝑀 is, the
higher this peak. Moreover, as already proved and as already seen in scenarios 1, 3, and 6, if 𝑀 is set small enough, then 𝐹 has
no equilibrium points but the origin. Said in simpler words, 𝑀 resembles the amplitude of a sinusoidal function 𝑦 = 𝐴 sin(𝜔𝑡 + 𝜙).
Depending on the value of 𝐴, the peaks of the sinusoidal change accordingly.

Secondly, 𝑥𝑐 is the inflection point of the 𝜎𝜅 function. Although 𝑥𝑐 is not (in principle) an inflection point of 𝐹 , it significantly
influences the map.

Finally, as we showed in Figs. 1 and 2, the parameter 𝜅 influences the shape of the exp𝜅 and 𝜎𝜅 functions. Consequently, it also
influences the shape of the map.

Dealing with three varying parameters, there is an abundant number of ways we can combine them to study chaotic behavior. In
particular, we propose 1D, 2D, and 3D bifurcation diagrams. Concerning 1D graphs, we will show bifurcation diagrams by varying
in turn 𝑀 , 𝑥𝑐 , and 𝜅. For 2D graphs, we vary these parameters in pairs. Therefore, we have the following combinations: 𝑀 vs. 𝑥𝑐 ,
𝑀 vs. 𝜅, and 𝑥𝑐 vs. 𝜅. Having three varying parameters, we only have one 3D graph.

We consider the dynamics starting from the maximum point 𝑥𝑀 and the minimum point 𝑥𝑚.
Our first bifurcation diagrams are shown in Fig. 7, where we vary 𝑀 from 0 to 10 and setting the other values of the parameters

to those of scenario 9. In Fig. 7(a), we start from 𝑥𝑀 , while in Fig. 7(b) we start from 𝑥𝑚.
The two graphs are pretty similar. In particular, we can observe that for values of 𝑀 below a threshold around 3, the origin is

the only attractor. This is consistent with Proposition 5, as for sufficiently small values of 𝑀 and 𝑥𝑐 exceeding a negative threshold,
the origin acts as a globally asymptotically stable equilibrium point i.e. less developed economies may converge to the poverty trap.
For higher values of 𝑀 , the origin becomes unstable and at least a positive equilibrium point exists. This justifies the discontinuity
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Fig. 8. 𝑀-bifurcation diagram for scenario 10 starting from 𝑥𝑀 (panel a) and 𝑥𝑚 (panel b).

Fig. 9. 𝑥𝑐 -bifurcation diagram for scenario 10 starting from 𝑥𝑀 (panel a) and 𝑥𝑚 (panel b).

of the bifurcation diagram around 3. We also observe a bifurcation occurring for a value of 𝑀 between 4 and 5. Moreover, the
steady state is not attractive for 𝑀 ∈ (4.5, 8.5) and the dynamics converge toward an attractive period-two cycle. These dynamics
show the presence of a cycle but are not chaotic. For this reason, we conducted similar analyses, this time considering scenario 10.
From these analyses, it turned out that the dynamic system can have chaotic behavior. This can be clearly observed in Figs. 8(a)
and 8(b) where, setting the parameter values to those of scenario 10, we varied 𝑀 between 0 and 80.

Both bifurcation diagrams show different behaviors according to the value of 𝑀 . As expected, below a particular threshold, the
origin is a global attractor. After this threshold, we observe in turn periodic, chaotic, and converging dynamics, thus confirming
that developed economies can grow over time and even if cycles can emerge.

Similar diagrams are depicted in Figs. 9 and 10, where we respectively vary 𝑥𝑐 and 𝜅, while keeping the other parameters fixed
to the values of scenario 10. Such figures confirm that fluctuations may arise with convex–concave production functions and that
when rare events are very likely to occur, the poverty trap may emerge.

So far, we have presented bifurcation diagrams where only one parameter varies. However, a similar analysis with two parameters
varying simultaneously can be undertaken. In particular, three combinations are possible. The first combination consists of varying
the parameters 𝑀 and 𝑥𝑐 . The related diagrams are depicted in Fig. 11. In these diagrams, there is a color associated to a specific
coordinate, say (𝑀 ′, 𝑥′𝑐 ). This color is related to the period of the orbit starting from 𝑥𝑀 in Fig. 11(a) and from 𝑥𝑚 in Fig. 11(b),
with 𝑀 = 𝑀 ′, 𝑥𝑐 = 𝑥′𝑐 , and the remaining parameters set to the values of scenario 10. The association of the color to the period is
shown in the legends in Figs. 11(a) and 11(b).

The other combinations with two parameters varying at the same time are 𝑀 with 𝜅 and 𝑥𝑐 with 𝜅. The diagrams of these
combinations are respectively reported in Figs. 12 and 13.

The last plots we propose are about the combination of all three parameters 𝑀 , 𝑥𝑐 , and 𝜅. These plots are shown in Figs. 14,
15, and 16. We would like to emphasize how difficult it is to appreciate a three-dimensional plot presented in an article as it is not
possible to explore what happens inside it. For this reason, we have decided to make available the code used to create the plots of
Figs. 14, 15, and 16.1 The plots were created using the Plotly Python package. One remarkable aspect of Plotly is that once the code

1 In particular, the interested reader can find the code in The 𝜅-logistic growth repository, https://github.com/maurobaldi/kLogisticGrowth.
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Fig. 10. 𝜅-bifurcation diagram for scenario 10 starting from 𝑥𝑀 (panel a) and 𝑥𝑚 (panel b).

Fig. 11. Two-dimensional diagram for scenario 10 with 𝑀 and 𝑥𝑐 on the axes, starting from 𝑥𝑀 (panel a) and 𝑥𝑚 (panel b). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Two-dimensional diagram for scenario 10 with 𝑀 and 𝜅 on the axes, starting from 𝑥𝑀 (panel a) and 𝑥𝑚 (panel b).

is executed, the plot appears in a browser window, where it is possible not only to zoom in but also to rotate it and explore areas
of interest that may not be visible from a simple two-dimensional view, i.e., how the graph would appear on a sheet of paper. For
example, Figs. 14 and 15 show a slice of the associated graph corresponding to 𝑥𝑚 and 𝑥𝑀 , respectively. Fig. 15 also demonstrates
another capability of Plotly: by hovering the mouse cursor over a point of interest, the information associated with that point is
displayed next to the cursor. Finally, Fig. 16 is an enlarged and internal view of the graph in Fig. 15.
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Fig. 13. Two-dimensional diagram for scenario 10 with 𝑥𝑐 and 𝜅 on the axes, starting from 𝑥𝑀 (panel a) and 𝑥𝑚 (panel b).

Fig. 14. A particular three-dimensional view in Plotly associated with 𝑥𝑚.

6. Conclusions

In this paper we have explored a growth model using the 𝜅-logistic function coming from a modified exponential function able
to consider the occurrence of rare events.

The resulting production function leads to a generalization of the sigmoidal function, whose growth model has already been
studied in existing literature. This approach offers several advantages, including the ability to handle both concave and non-concave
production functions and to consider economies at different development levels or passing through rare events. As demonstrated,
multistability emerges, meaning that both the origin and an alternative attractor, even complex, may be stable. Consequently,
different initial conditions might result in economies displaying diverse growth patterns. Our theoretical results were substantiated
by comprehensive computational experiments that showed how the dynamical system behaves under all the most significant
circumstances.
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Fig. 15. A particular three-dimensional view in Plotly associated with 𝑥𝑀 .

Fig. 16. A three-dimensional zoomed view in Plotly associated with 𝑥𝑀 .

Our findings show that with S-shape production functions, economies at low development level or experiencing a sufficiently high

probability to incur in rare events can fail in the poverty trap. Differently, if the economy is sufficiently developed, then concave

production functions produce economic growth patterns converging to the unique positive steady state even in the presence of

relevant rare events.

Encouraged by these outcomes, we plan to pursue future developments. Potential directions include a more in-depth exploration

of the basins of attractions or the application of the 𝜅-logistic function in multi-dimensional growth models.
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