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Given a query composed of a reference image and a relative caption, the Composed Image Retrieval goal is to retrieve images

visually similar to the reference one that integrates the modi�cations expressed by the caption. Given that recent research has

demonstrated the e�cacy of large-scale vision and language pre-trained (VLP) models in various tasks, we rely on features

from the OpenAI CLIP model to tackle the considered task. We initially perform a task-oriented �ne-tuning of both CLIP

encoders using the element-wise sum of visual and textual features. Then, in the second stage, we train a Combiner network

that learns to combine the image-text features integrating the bimodal information and providing combined features used

to perform the retrieval. We use contrastive learning in both stages of training. Starting from the bare CLIP features as a

baseline, experimental results show that the task-oriented �ne-tuning and the carefully crafted Combiner network are highly

e�ective and outperform more complex state-of-the-art approaches on FashionIQ and CIRR, two popular and challenging

datasets for composed image retrieval. Code and pre-trained models are available at https://github.com/ABaldrati/CLIP4Cir
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1 INTRODUCTION

Content-Based Image Retrieval (CBIR) is a fundamental task in multimedia and computer vision which has
undergone a continuous evolution since its early years [46], moving from the use of engineered features like SIFT
to CNNs [33, 56]. It has been applied to many di�erent specialized domains like artworks and cultural heritage
[4, 12], commerce [17, 54], surveillance [2], nature [24, 25]. In the basic form, the query is composed of only an
image, of which features are computed and compared with the ones extracted by a database of images.
We can extend CBIR systems to improve their e�ectiveness by adding additional information to the query

image. For example, interactive image retrieval systems extend CBIR systems by adding some form of user
feedback, e.g. to provide some measure of relevance [5]. In composed image retrieval, the visual query is extended
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I want a similar one but
blue with a different character

Add two more puppies
and change the breed

Fig. 1. The le� portion of the illustration depicts a specific case of composed image retrieval in the fashion domain, where

the user imposes constraints on the character a�ribute of a t-shirt. Meanwhile, the right part showcases an example where

the user asks to alter objects and their cardinality within a real-life image.

to an image-language pair [37] where a short textual description, typically expressed in natural language, may
request constraints and desired changes or add speci�cations on some attributes of the retrieved results [26].
Figure 1 illustrates two examples of this task. In both queries, a user selects a reference image and then provides
additional requests in the form of text, e.g. asking to change details, texture, color, or shape features of the
reference image. Composed image retrieval systems �nd applications in various domains such as web search,
e-commerce, and surveillance. However, developing solutions for this task can be challenging due to the need for
incorporating feedback and user intent while addressing the semantic gap between image and text content.
Very recently, researchers proved that deep neural networks combining visual and language modalities like

CLIP [41], ALIGN [28], and the more recent method proposed in [9], trained using an image-caption alignment
objective on large-scale internet data, can obtain impressive zero-shot transfer on a myriad of downstream tasks
like image classi�cation, text-based image retrieval, and object detection.

In this work, we show that features obtained from vision and language pretrained (VLP) models – we employed
CLIP-based features – can be e�ectively used to implement a composed image retrieval system where user
feedback is provided as natural language input to provide additional (or contrasting) requirements concerning
those embedded in the visual features of the image used to query the system. Firstly, we apply the system to
the fashion domain, performing experiments on the challenging FashionIQ dataset [51]. Then, to study the
generalization capabilities to a broader image domain, we perform experiments on the newly introduced CIRR
dataset [37]. Experiments show that the proposed approach obtains state-of-the-art results on both datasets.

To summarize, we highlight our main contributions as follows:

• We propose a novel task-oriented �ne-tuning scheme for adapting vision-language models to the composed
image retrieval task. The aim of such a task-oriented adaptation scheme is to reduce the mismatch between
the large-scale pre-training and the downstream task.

• We propose a novel two-stage approach that combines task-oriented �ne-tuning with the training of a
Combiner network which can perform a �ne-grained merging of the multimodal features. This two-stage
approach achieves state-of-the-art results on two standard and challenging datasets: FashionIQ and CIRR.

• We address the issue of using the CLIP model with images having a high aspect ratio since the CLIP visual
encoder can input only square pictures. We propose a novel preprocess pipeline suited for image retrieval
tasks that helps to reduce content information loss compared to the standard CLIP preprocess pipeline.

• To provide further insight into the workings of our proposed system, we perform several qualitative
experiments. The �rst experiment aims to demonstrate how our approach a�ects the feature distribution in
the embedding spaces and the impact of pairwise feature distances on retrieval performance. Additionally,
we report visualization experiments utilizing the gradCAM technique [44] to gain a deeper understanding
of the image portions that are most signi�cant during retrieval.
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2 RELATED WORKS

Traditional CBIR does not use user feedback or its intent to re�ne results. However, within interactive and
composed CBIR, much work has been done to improve retrieval performance by incorporating user’s feedback
in terms of relevance to the query [42] or by considering relative [30] and absolute attributes [20, 55]. The
limiting expressiveness of attributes was successively addressed in [19, 48] by considering purely textual feedback,
allowing richer expressiveness. Nonetheless, the performance of the textual model can limit the system in
understanding and reacting appropriately.

Visual and language pre-training

Models like GPT-2, BERT [15] and GPT-3 [6] have shown that large amounts of text combined with recent
improvements in attention mechanisms enable learning of powerful features that integrate vast knowledge.
Adding images to the learning process, CLIP [41] has very recently shown that it is feasible to perform multimodal
zero-shot learning, obtaining remarkable feature generalization of both images and text. CLIP is a deep neural
network trained to predict the association between text snippets and paired images. Unlike standard vision models
trained on speci�c datasets that are typically good at only one task, this new class of models learns associations
between images and natural language supervision that are widely available on the internet. They are not directly
optimized for a benchmark and yet can perform consistently well on di�erent tasks. CLIP e�ectiveness is still
subject of study [1], with �rst applications to art [13], image generation [11] and zero-shot video retrieval [18],
event classi�cation [32], visual commonsense reasoning [49]. Our work builds upon CLIP and further explores its
potential in the composed image retrieval task, applying the proposed approach to a speci�c domain, i.e. fashion,
and also to general images. ALIGN [28] uses a dual-encoder architecture to learn the alignment of visual and
language representations of image and text pairs using a contrastive loss in a noisy dataset. The extremely large
scale of such a dataset, composed of 1 billion pairs, twice the size of the CLIP training dataset, makes up for its
noise and leads to state-of-the-art representations even using such a simple learning scheme. Di�erently from
CLIP and ALIGN, the authors in [9] propose a data-e�cient contrastive distillation method that learns from
a training dataset that is 133× smaller than the one used by CLIP (400 million pairs), using a ResNet50 image
encoder and DeCLUTR text encoder.

Composed image retrieval

In the growing area of image retrieval with user feedback that combines images and text, our work relates to
two recently introduced datasets that address the composed image retrieval task: i) FashionIQ, a fashion image
retrieval with text [51], and with ii) the very recent composed image retrieval of generic images introduced in
[37]. In [8], a transformer that can be seamlessly plugged into a CNN to selectively preserve and transform the
visual features conditioned on language semantics is presented. Text Image Residual Gating (TIRG) [48] combines
image and text features using gating and residual features. The authors of [45] leverage skip connections by
combining them with graph neural networks, resulting in improved performance. The authors of [31] employ two
di�erent neural network modules to address image style and content. In [29], the authors present a Correction
Network which explicitly models the di�erence between the reference and target image in the embedding space.
In [37], a new dataset (CIRR) for composed image retrieval on real-world images is proposed, along with a novel
transformer-based model that uses rich pre-trained vision-and-language knowledge, called CIRPLANT, to modify
visual features conditioned on natural language. CIRPLANT leverages visual-and-language pre-trained models
in composed image retrieval: the OSCAR model [34] is carefully adapted to the task with promising results.
In [16], the authors proposed the Modality-Agnostic Attention Fusion (MAAF) model to tackle the composed
image retrieval task. The model treats the convolutional spatial image features and learned text embeddings
as modality-agnostic tokens and passes them to a Transformer for further processing. In [36], the authors
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propose a Multi-Grained Fusion (MGF) module which fuses features at di�erent stages. ComposeAE [3] is an
autoencoder-based model that learns the composition of image and text features for retrieving images by adopting
a deep metric learning (DML) approach instead of fusing them by passing through a few fully connected layers.
CurlingNet, proposed in [52], measures the semantic di�erential relationships between images concerning a
conditioning query text. The main components are two networks: the �rst one, called the Delivery �lter, delivers
the source image to the candidate cluster according to a given query in embedding space, while the second one,
called the Sweeping �lter, checks the attributes highlighted in the query and learns the path from the center of
valid target candidates to the target image. In [53], the composed image retrieval task is extended to a multi-turn
conversation. The authors proposed a system that utilizes ComposeAE [3] to combine image and text at each
turn. The combined representation is then fed into a recurrent network, following the turn order, for further
processing. In [26], the authors present the SAC (Semantic Attention Composition) framework, which consists of
two modules: the Semantic Feature Attention (SFA) module �nds the salient regions of the image w.r.t. the text,
and then the Semantic Feature Modi�cation (SFM) module determines how to change the relevant parts of the
image compositing coarse and �ne salient image features computed by SFA with text embeddings.
The proposed method starts with the hypothesis of having a uni�ed embedding space for images and text

achieved through the Vision-Language model CLIP. In the �rst stage, we �ne-tune both CLIP encoders to adapt
them to the composed image retrieval task. Next, using the task-adapted embedding spaces, we train a Combiner
network to merge the multimodal features. In contrast to fashion-oriented approaches like [8, 31], our method
does not rely on spatial features. Instead, we argue that when considering images of a broader domain, the
semantics hold greater signi�cance than local visual aspects.

3 THE PROPOSED METHOD

The proposed approach addresses the multimodal task of composed image retrieval. The input query consists of
a reference image �@ (e.g., an image of a black shirt with a cartoon lion) and a relative caption )@ that includes a
descriptive request from the user about the image (e.g., "has dog print and is dark grey color"). The goal is to
retrieve target images that satisfy similarity constraints imposed by both the input components (e.g., an image of
a dark grey shirt with a dog print, as shown in Fig. 3). For a successful retrieval, the system should understand
the semantics of the image and the meaning of the text, integrate the multi-domain information, and then use
the fused representation to retrieve the relevant images.
In contrast to previous works like [8, 29, 31, 45] that build from di�erent image and textual models, we

start from the hypothesis of having a uni�ed embedding of images and text, obtained through using the CLIP
model [41]. CLIP is a vision-language model trained to align images and their corresponding text captions in a
uni�ed embedding space. It consists of an image encoderk� and a text encoderk) . Given an image � , the image
encoder extracts a feature representationk� (� ) ∈ R

3 , where 3 is the size of the CLIP embedding space. Similarly,
for a given text caption ) , the text encoder extracts a feature representation k) () ) ∈ R

3 . CLIP learns to map
similar concepts expressed in images and text to similar feature representations. For instance, given the image of
a cat �2 and the text )2 “a photo of a cat", the way CLIP is trained should guarantee thatk� (�2 ) ≈ k) ()2 ).

We argue that, even though having a uni�ed embedding space is a good starting point, it is not exactly what
we need in the task we are considering. In composed image retrieval, the goal is to move from the reference to the
target image point in the image embedding space with the aid of textual information. Hence, instead of utilizing
a uni�ed image-text embedding space, our approach involves creating two separate embedding spaces that can
be combined through a sum operation. Formally, given an image of a black dress �G and the corresponding text
)~ ("is blue"). Let �I represent the image of a blue dress. Our aim is to shape the embedding spaces such that
k� (�G ) +k) ()~) ≈ k� (�I). When this equation is satis�ed, we can a�rm that the textual embedding space exhibits
strong "additivity properties" in relation to the image space, or equivalently, the embedding spaces are additive.
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Has dog print and
is dark grey color

Reference Images Target Images

Relative Captions Caption
Features

Combined
Features

Reference
Features

Target
Features

CLIP
Text

Encoder

CLIP
 Image

Encoder

CLIP Image
Encoder

Element-wise
Sum

Query Target

Fig. 2. First stage of training. In this stage, we perform a task-oriented fine-tuning of CLIP encoders to reduce the mismatch

between the large-scale pre-training and the downstream task. We start by extracting the image-text query features and

combining them through an element-wise sum.We then employ a contrastive loss to minimize the distance between combined

features and target image features in the same triplet and maximize the distance from the other images in the batch. We

update the weights of both CLIP encoders.

Ideally, the embeddings of the relative caption should correspond to the displacement vector from the query
image to the target image features, i.e.k) ()~) ≈ k� (�I) −k� (�G ).

We propose a two-stage approach to address the task of composed image retrieval by taking full advantage of
the capabilities of CLIP’s features. In the �rst stage, we tackle the objective mismatch between the large-scale
pretraining of CLIP and the downstream task: we propose a novel �ne-tuning scheme tailored to improving the
additivity properties of the embedding spaces. In the second stage, starting from the task-oriented features, we
train from scratch a Combiner neural network that learns to perform a �ne-grained combination of image-text
features. Although we train the Combiner network from scratch, we design its structure to take full advantage of
the �rst stage of training (see Section 3.2 for more details). During both stages the training is performed using
triplets (�@ , )@ , �C ), where @ = (�@,)@) is the query and �C is the target image that we aim to retrieve given @.
At inference time, given a query (�@,)@), we utilize the �ne-tuned CLIP encoders and the trained Combiner

network to generate the combined features. Subsequently, following the standard image-to-image retrieval
approach, we compute the cosine distances between the combined features and the database of index image
features. The results are then sorted based on their similarity.

3.1 Task-oriented fine-tuning

In this stage, we adapt both CLIP’s encoders to composed image retrieval reducing the mismatch between
the large-scale pre-training and the downstream task. Given a query consisting of a reference image �@ and a
relative caption )@ , we extract their feature representations using the CLIP image encoderk� and text encoderk)
respectively. This results ink� (�@) ∈ R

3 andk) ()@) ∈ R
3 , where 3 denotes the size of the CLIP embedding space.

To combine the query features, we perform an element-wise sum, resulting in q@ = k� (�@) +k) ()@).
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Our objective is to minimize the distance between the query combined features q@ and the target image features
qC = k� (�C ) belonging to the same triplet and, at the same time, maximize the distance from the other target
images in the same batch. To this end, following [31, 45, 48], we employ a batch-based contrastive loss:

L2>=CA =
1

�

�∑

8=1

−log
exp{g ∗ ^ (q8@, q

8
C )}

∑�
9=1 exp{g ∗ ^ (q

8
@, q

9
C )}

(1)

Here, ^ (·) denotes the cosine similarity, g is a temperature parameter that controls the range of the logits, and �
is the number of images in a batch. We update the weights of both CLIP encoders. We use this loss because, being
a batch-wise contrastive loss, it does not require the de�nition of a sampling strategy: it considers all negative
samples in a mini-batch. Figure 2 shows an overview of the task-oriented �ne-tuning stage.
Using the element-wise sum as the combination of query features goes in the direction of making CLIP’s

embedding spaces more additive. Consequently, similar concepts expressed in text and images no longer share
similar features. Instead, the textual features serve as displacement vectors from the query to the target in the
image space. From a high-level perspective, we notice that, in composed image retrieval, the image and the text
do not play the same role. The task is not symmetric with respect to the input: we start from an image, and
we would like to retrieve another image using textual guidance. For this reason, the break up of the uni�ed
embedding space is not an undesirable side-e�ect.

We will denote the �ne-tuned image encoder and text encoder ask� andk) , respectively.

3.2 Combiner training

During the training of the Combiner network, we follow the same general framework as in the previous stage.
However, this time we train from scratch the Combiner network instead of updating the weights of the CLIP
encoders. In contrast to the �rst stage, we use the Combiner network�\ to combine the query features. Speci�cally,

the combined features are obtained as q@ = �\ (k� (�@),k) ()@)). We optimize the Combiner network by utilizing

the L2>=CA loss described in Eq. (1) with q@ and qC = k) (�C ) as inputs. Figure 3 depicts a visual overview of the
Combiner network training stage. By employing the contrastive loss, we train the Combiner �\ to produce
features as close as possible to the target features and as far away as possible from all other image features.
The Combiner network, depicted in Fig. 4, is designed to take full advantage of the �rst stage of training

and the increased additivity properties of the adapted embedding spaces. The idea is to learn the residual of a
convex combination of the image-text query features. We begin by projecting the text and image features through
a linear transformation followed by a ReLU function. The resulting projected features are then concatenated
and passed to two separate branches. The �rst branch, labeled as (1) in Fig. 4, is responsible for computing the
coe�cients of a convex combination between the image and text features. To compute these coe�cients, we feed
the concatenated features into a linear layer, followed by the ReLU function, another linear layer, and the sigmoid
function. The sigmoid output provides the coe�cients needed for the query image-text convex combination. The
second branch, labeled as (2), outputs the mixture contribution of the image and text features. The structure
of this branch is the same as the �rst branch, except it does not include the �nal sigmoid function. Finally, we
sum the convex combination of the query features and the learned image-text mixture. To reduce over�tting, we
apply dropout to each layer.

By denoting the outputs of the �rst branch (1) as _ and 1 − _, and the output of the second branch (2) as E , we

can express the combined features as q@ = (1 − _) ∗k� (�@) + _ ∗k) ()@) + E . Notably, the convex combination

(1−_) ∗k� (�@) +_ ∗k) ()@) is a generalization of the element-wise sum of the query features. Consequently, as the
embedding spaces exhibit stronger additivity properties, the Combiner’s e�ectiveness in its task is enhanced. We
intentionally design the Combiner to capitalize on the task adaptation achieved during the �rst stage of training.
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Fig. 3. Second stage of training. In this stage, we train from scratch a Combiner network that learns to fuse the multimodal

features extracted with CLIP encoders. We start by extracting the image-text query features using the fine-tuned encoders,

and we combine them using the Combiner network. We then employ a contrastive loss to minimize the distance between

combined features and target image features in the same triplet and maximize the distance from the other images in the

batch. We keep both CLIP encoders frozen while we only update the weights of the Combiner network. At inference time the

fine-tuned encoders and the trained Combiner are used to produce an e�ective representation used to query the database.

Linear ReLU Dropout

Concat +

Linear ReLU Dropout

Linear ReLU LinearDropout 1 - σ

Linear ReLU LinearDropout

X

X

Shared
Weights

Linear ReLU LinearDropout σ

Reference
Features

Combined
Features

Caption
Features

(1)

(1)

(2)

Fig. 4. Architecture of the Combiner network �\ . It takes as input the multimodal query features and outputs a unified

representation. f represents the sigmoid function. We denote the outputs of the first branch (1) as _ and 1 − _, while the

output of the second branch (2) as E . The combined features are q@ = (1 − _) ∗k� (�@) + _ ∗k) ()@) + E
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(a) Dataset comparison (b) FashionIQ categories

Fig. 5. Histogram of image aspect ratios in FashionIQ and CIRR datasets (a) and the three categories of FashionIQ (b). The

x-axis represents the aspect ratio defined as<0G (F83Cℎ, ℎ486ℎC)/<8=(F83Cℎ, ℎ486ℎC) while the y-axis represents the number

of images (in logarithmic scale). The width of each bin is 0.5, and the first bin starts at 1. More than half of the dataset’s

images are skewed and have at least a 1.5 aspect ratio. In the FashionIQ dataset, the issue is evident in the Dress category.

3.3 Preprocess Pipeline

The standard preprocess pipeline of CLIP is mainly composed of two steps: a resize operation where the smaller
side of the image matches the CLIP input dimension 8=?DC_38< followed by a center crop operation which results
in a square patch 8=?DC_38< × 8=?DC_38< output. Subsequently, as the ratio between the largest and the smaller
side increases, the area of the image lost after the preprocess increases. From now on, we will say that an image
has a high aspect ratio when it is far from having a square shape. In Fig. 5 is shown how, in the datasets we
consider (detailed in Section 4), the number of images with a high aspect ratio is not negligible. As can be seen,
this is especially true for the FashionIQ dress category and the CIRR dataset.

One way to address the loss of information due to the center crop operation is to apply zero-padding to match
the smaller side to the larger side, e�ectively squaring the image. Although this approach eliminates the loss
of content information, it also reduces the resolution of the useful portion of the image since the CLIP image
encoder input dimension cannot change. Thus, we develop a preprocessing pipeline that seeks to balance the
two approaches discussed above. Speci�cally, we apply padding to an image only if its aspect ratio exceeds a
prede�ned target ratio. Additionally, instead of squaring the image, we adjust its aspect ratio to match the target
ratio when padding is applied. The pseudocode for the proposed preprocess pipeline is shown in Algorithm 1.

Figure 6 presents the preprocess pipelines as mentioned earlier. It is evident that when the ratio between the
larger and smaller sides deviates signi�cantly from one, the standard CLIP preprocess removes a substantial portion
of the image, which considerably hampers the retrieval process. Although the visual disparities between the
square pad and the proposed pad (with a target ratio of 1.25) approaches are not substantial, we will demonstrate
that the model bene�ts from having such an increased usable portion in the images during retrieval.

4 EXPERIMENTAL RESULTS

4.1 Implementation details

We perform the experiments using two CLIPmodels of di�erent sizes. The smallest one relies on amodi�ed ResNet-
50 (RN-50) [22] architecture. It takes input images of 224 × 224, and the size of its embedding space is 3 = 1024.
The biggest one, denoted as RN-50x4, follows the E�cientNet-style model scaling and uses approximately 4× the
computation of RN-50. It takes input images of 288 × 288, and the size of its embedding space is 3 = 640.
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# in_image: input image to be preprocessed

# target_ratio: target aspect ratio

# dim: CLIP image encoder input dimension

def preprocess(in_image , target_ratio , dim):

w, h = in_image.size

aspect_ratio = max(w, h) / min(w, h)

# pad the image only if the aspect ratio

# is above a fixed target

if aspect_ratio < target_ratio:

out_image = in_image

else:

# zero -pad the image to bring its aspect

# ratio to target ratio

scaled_max_wh = max(w, h) / target_ratio

hp = max(( scaled_max_wh - w) // 2, 0)

vp = max(( scaled_max_wh - h) // 2, 0)

padding = (hp, vp, hp, vp)

out_image = pad(in_image , padding , 0)

# Resize and center crop the image

out_image = resize(out_image , dim)

out_image = center_crop(out_image , dim)

return out_image

Algorithm 1: Python-style pseudocode of the pro-
posed preprocess pipeline.

Full
Image CLIP Standard Square pad Proposed pad

Fig. 6. Comparison among di�erent preprocesses

pipelines. The proposed padding method results in

images that contain more details than square padding

and provides a be�er overview than the standard CLIP

padding.

In the Combiner network (Figure 4), the �rst two linear layers before the concatenation have input-output
dimensionality equal to (3, 43). After the concatenation in both branches, we have two linear layers. In the
�rst branch (1), the �rst linear layer has input-output dimensionality of (43, 83), and the second one (83, 1). In
the other branch, the �rst linear layer has input-output dimensionality of (43, 83) while the second one (83,3).
Following the standard practice, we set the dropout rate to 0.5. During retrieval, we normalize both the combined
and index set features to have a unit !2-norm.
Following the original CLIP training strategy, in the �ne-tuning stage, we employed AdamW optimizer [38]

with a learning rate of 24 − 6 and a weight decay coe�cient of 14 − 2. Due to GPU memory constraints, we set the
batch size to 512 for �ne-tuning the RN-50-based CLIP model and 192 for �ne-tuning the RN-50x4-based model.
We kept the batch normalization layer frozen. We �ne-tuned the CLIP encoders for a maximum of 150 epochs.
During the training of the Combiner network, we keep both �ne-tuned CLIP encoders frozen and only train the
Combiner function. We set the learning rate to 24 − 5 and train the model for a maximum of 300 epochs. We set
the batch size to 4096 when using both backbones. We used the PyTorch library throughout the experiments.
We set the target ratio in the preprocessing pipeline to 1.25. Following the approach described in [41], we set
the parameter g in Eq. (1) to 100. This value ensures that the logits have a su�cient dynamic range. To mitigate
over�tting, we adopt an early stopping strategy. We use mixed-precision training [39] to save memory and speed
up the training in both stages. We employ gradient checkpointing [7] to further reduce memory usage.
We conduct all experiments on a single NVIDIA Titan RTX (24GB) GPU. The �rst stage of training requires

approximately 4 hours for the RN-50x4 model and 2 hours for the RN-50 model. The training of the Combiner
network takes less than an hour for both models.

4.2 Datasets and metrics

4.2.1 FashionIQ. FashionIQ [51] is composed of 77,684 fashion images crawled from the web and split into the
train, validation, and test sets, divided into three di�erent categories: Dress, Toptee and Shirt. Among the 46,609
training images, there are 18,000 training triplets made of a reference image, a pair of relative captions, and a

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article . Publication date: August 2023.



10 • Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo

target image. The captions describe properties to modify in the reference image to match the target image. The
validation and test sets consist of 15,537 and 15,538 images, respectively, with 6,017 and 6,119 triplets.

We follow the standard experimental setting as in [29, 31]. We employ the average recall at rank K (Recall@K)
as an evaluation metric, namely Recall@10 (R@10) and Recall@50 (R@50). Note that for each triplet, there is
only a positive index image. Hence, each query has R@K zero or one. All results are on the validation set since,
at the time of writing, test set ground-truth labels have not been released yet.

4.2.2 CIRR. The authors of [37] designed the CIRR dataset to address two common problems encountered in
composed image retrieval datasets, such as FashionIQ. These problems are the lack of su�cient visual complexity
caused by the restricted image domain and the numerous false negatives due to the unfeasibility of extensively
labeling target images for each (reference, text) pair. As a result, some images in the dataset that correspond to
valid matches for a query are not labeled as valid targets. CIRR (Compose Image Retrieval on Real-life images)
dataset consists of 21,552 real-life images taken from the popular natural language reasoning #!+'2 dataset
[47]. It has the same structure as the FashionIQ dataset and contains 36,554 triplets randomly assigned in 80%
for training, 10% for validation, and 10% for the test. The dataset images are grouped in multiple subsets of six
semantically and visually similar images. To have negative images with high visual similarity the relative captions
are collected describing the di�erences between two images in the same subset.
The standard evaluation protocol proposed by the authors of the dataset is to report the recall at rank K

(Recall@K) at four di�erent ranks (1, 5, 10, 50). Moreover, thanks to the unique design of the CIRR dataset, it
is also possible to report the RecallSubset metric that considers only the images in the subset of the query. This
subset metric has two main bene�ts: it is not a�ected by false-negative samples and, thanks to negative samples
with high visual similarity, it captures �ne-grained image-text modi�cations. The reference metrics are the R@5
which accounts for possible false negatives in the entire corpus, and the RSubset@1, which better illustrates the
�ne-grained reasoning abilities.

4.3 Task-oriented fine-tuning e�ects

In this section, we present a set of experiments that illustrate how the task-oriented �ne-tuning of CLIP encoders
and their increased additivity properties contribute to easing the task of the Combiner network and help to
improve retrieval performance. For each dataset, we compare the performance varying the combining function
and the modality of the CLIP �ne-tuning. Throughout all the experiments, we use the RN-50 CLIP model. For
each �ne-tuning modality, we train from scratch a di�erent Combiner network. We report the results in Table 1
for the FashionIQ dataset and in Table 2 for the CIRR dataset.

Notably, the element-wise sum of out-of-the-box CLIP features achieves impressive results without domain or
task-speci�c training on both datasets. This performance is intriguing as it demonstrates that the CLIP image-
text common embedding space exhibits good additivity properties, even though its training objective does not
explicitly optimize for this aspect. Fine-tuning only the CLIP image encoder brings an interesting performance
boost compared to the out-of-the-box CLIP features. This improvement is expected when employing the element-
wise sum as the combining function, given that the out-of-the-box CLIP features lack domain or task-speci�c
training. However, the most promising improvement occurs when utilizing the trained Combiner network. The
text encoder �ne-tuning achieves slightly better performance than image encoder �ne-tuning. We can notice that
on the FashionIQ dataset, the improvement over the image encoder �ne-tuning remains constant when using
either the element-wise sum or the Combiner network as a combining function. However, on the CIRR dataset, the
situation di�ers. When comparing with the performance of the image encoder �ne-tuning, using the element-wise
sum to combine the query features results in comparable global metrics, but signi�cantly improved �ne-grained
subset metrics. In contrast, when utilizing the Combiner network, we observe a reduction in the gaps within the
subset metrics, while achieving a greater improvement in the global metrics. We achieve the best results on both
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Shirt Dress Toptee Average

CF IFT TFT '@10 '@50 '@10 '@50 '@10 '@50 '@10 '@50

Sum

✗ ✗ 19.53 35.57 17.70 36.29 21.88 42.93 19.70 38.26
✓ ✗ 30.08 52.94 29.10 52.01 34.42 57.62 31.20 54.19
✗ ✓ 32.29 53.73 27.76 52.31 35.14 60.12 31.73 55.39
✓ ✓ 38.67 59.42 35.99 62.22 43.35 67.52 39.34 63.05

Combiner

✗ ✗ 31.85 52.50 27.22 50.62 33.81 57.57 30.96 53.56
✓ ✗ 34.30 55.79 32.47 55.18 38.45 62.36 35.07 57.78
✗ ✓ 35.87 57.21 31.43 54.98 38.20 63.22 35.16 58.47
✓ ✓ 39.87 60.84 37.67 63.16 44.88 68.59 40.80 64.20

Table 1. Recall at K on the FashionIQ validation set while varying the combining function and the modality of CLIP fine-

tuning. We denote IFT (image encoder fine-tuning) and TFT (text encoder fine-tuning) to represent whether the image

encoder or the text encoder is fine-tuned in the first stage. CF (combining function) indicates the function used to combine

the query features. We highlight the best scores in bold and underline the second-best scores.

Recall@K Rsubset@K

CF IFT TFT  = 1  = 5  = 10  = 50  = 1  = 2  = 3

Sum

✗ ✗ 21.38 50.85 64.00 87.23 54.48 76.01 87.16
✓ ✗ 31.67 66.08 79.36 95.38 58.12 78.42 89.78
✗ ✓ 32.72 66.63 79.22 94.86 67.21 86.00 93.81
✓ ✓ 40.97 74.70 85.51 96.94 68.81 86.96 93.90

Combiner

✗ ✗ 31.26 64.79 77.71 95.31 61.56 81.08 91.12
✓ ✗ 34.01 69.07 81.77 95.72 62.78 81.80 91.41
✗ ✓ 36.86 71.32 82.32 96.24 68.28 86.51 94.14
✓ ✓ 42.05 76.13 86.51 97.49 70.15 87.18 94.40

Table 2. Recall at K on the CIRR validation set while varying the combining function and the modality of CLIP fine-tuning.

We denote IFT (image encoder fine-tuning) and TFT (text encoder fine-tuning) to represent whether the image encoder or

the text encoder is fine-tuned in the first stage. CF (combining function) indicates the function used to combine the query

features. We highlight the best scores in bold and underline the second-best scores.

datasets when we �ne-tune both encoders. The element-wise sum of the �ne-tuned features outperforms the
performance of the out-of-the-box features combined with the trained Combiner network by a signi�cant margin.
Moreover, when we combine the query features with the Combiner network, the performances further improve.
It is worth highlighting that when utilizing the Combiner as a combining function, the improvement achieved
by �ne-tuning both encoders over the out-of-the-box CLIP features is the arithmetic sum of the improvements
obtained by �ne-tuning either the image or the text encoder.
Given this last observation and all the other results, we formulate the hypothesis that the �ne-tuning of

the image and the text encoder learn di�erent and complementary information that improves performances
di�erently. We conjecture that the �ne-tuning of the image encoder adapts the image manifold to the domain of
the data (e.g., the fashion domain for the FashionIQ dataset). On the contrary, the �ne-tuning of the text-encoder
adapts the text embedding space to the task of composed image retrieval by transforming textual features into
displacement vectors within the image embedding space. In support of this conjecture, we highlight the di�erence
in performances between the global metrics and subset metrics on the CIRR dataset when comparing the image
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Shirt Dress Toptee Average

Model '@10 '@50 '@10 '@50 '@10 '@50 '@10 '@50

Element-wise sum 38.67 59.42 35.99 62.22 43.35 67.52 39.34 63.05
Convex combination 39.45 60.16 36.44 62.57 44.05 67.87 39.98 63.53
W/o convex combination 31.40 55.64 35.94 61.03 40.29 64.97 35.87 60.55
Static skip 39.00 60.54 36.99 63.11 44.26 68.23 40.08 63.96
Proposed Combiner 39.87 60.84 37.67 63.16 44.88 68.59 40.80 64.20

Table 3. Recall at K on the FashionIQ validation set, with variations on the Combiner architecture. We highlight the best

scores in bold and underline the second-best scores.

Recall@K Rsubset@K

Model  = 1  = 5  = 10  = 50  = 1  = 2  = 3

Element-wise sum 40.97 74.70 85.51 96.94 68.81 86.96 93.90
Convex combination 41.11 75.56 85.55 97.44 70.46 87.08 94.33
W/o convex combination 36.98 72.06 82.83 96.67 65.53 84.74 93.06
Static skip 41.88 75.87 86.20 97.46 69.89 87.35 94.21
Proposed Combiner 42.05 76.13 86.51 97.49 70.15 87.18 94.40

Table 4. Recall at K on the CIRR validation set, with variations on the Combiner architecture. We highlight the best scores in

bold and underline the second-best scores.

and the text encoder �ne-tuning using the element-wise sum as a combining function (second and third row in
Table 2). We note that in the global metrics, where the domain of the images is diverse, the performance di�erences
between the two experiments approach zero. Conversely, in the subset metrics, where the visual di�erences
among the images are low, the image �ne-tuning is not capable of capturing the �ne-grained di�erences making
the textual information more discriminative and thus making the �ne-tuning of the text encoder perform better.
The experiments described in Section 4.8 provide additional con�rmation of our intuition.

4.4 Combiner ablation study

In this section, we present a set of experiments with ablations and variations of the proposed Combiner network.
We perform all the experiments using the �ne-tuned RN-50 CLIP model. We train all the Combiner networks
using a batch size of 4096 and a learning rate of 24 − 5.
Given the proposed Combiner network illustrated in Fig. 4, we denote the outputs of the �rst branch (1) as _

and 1 − _, while the output of the second branch (2) as E . The output features of the proposed Combiner are:

q@ = (1 − _) ∗k� (�@) + _ ∗k) ()@) + E .
To evaluate each component of the proposed design, we tested the following variations:

• Element-wise sum: �ne-tuned image and text features are summed: q@ = k� (�@) +k) ()@)

• Convex combination: only convex combination of image and text features, i.e. the model without the

mixture contribution of text and image: q@ = (1 − _) ∗k� (�@) + _ ∗k) ()@)

• W/o convex combination: only the mixture contribution of text and image, i.e the model without the

convex combination of text and image features: q@ = E

• Static skip: the convex coe�cients are statically set to 0.5: q@ = 0.5 ∗k� (�@) + 0.5 ∗k) ()@) + E

• Proposed Combiner: the Combiner architecture illustrated in Fig. 4.
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Shirt Dress Toptee Average

Approach IFT TFT '@10 '@50 '@10 '@50 '@10 '@50 '@10 '@50

End-to-end
✓ ✗ 31.79 53.14 30.29 53.49 33.55 59.15 31.87 55.26
✗ ✓ 33.02 54.41 30.19 53.64 35.90 61.60 33.03 56.55
✓ ✓ 37.29 59.02 34.65 60.83 41.20 65.99 37.71 61.95

Two-stages
✓ ✗ 34.30 55.79 32.47 55.18 38.45 62.36 35.07 57.78
✗ ✓ 35.87 57.21 31.43 54.98 38.20 63.22 35.16 58.47
✓ ✓ 39.87 60.84 37.67 63.16 44.88 68.59 40.80 64.20

Table 5. Recall at K on the FashionIQ validation set employing either the two-stage or the end-to-end approach. We denote

IFT (image encoder fine-tuning) and TFT (text encoder fine-tuning) to represent whether the image encoder or the text

encoder is fine-tuned in the first stage. We highlight the best scores in bold and underline the second-best scores.

We report the results for each variation in Table 3 for the FashionIQ dataset and in Table 4 for the CIRR dataset.
The element-wise sum of the �ne-tuned features serves as a solid starting point. As shown in section 4.3, the
task-oriented �ne-tuning process is highly e�ective and results in signi�cant improvements over the out-of-the-
box features on both datasets. The convex combination baseline, which dynamically computes text and image
convex coe�cients for greater adaptability to the query, achieves a slight improvement over the element-wise
sum of the features. Notably, when we remove the text and image convex combination, we observe a signi�cant
drop in performance compared to the proposed Combiner. This emphasizes the importance of the text and
image convex combination in achieving good performance. This result demonstrates that allowing the Combiner
network to learn the residual from the element-wise sum (or its generalization, the convex combination) leads to
a considerable improvement in performance. This outcome is expected because without the contribution of the
image-text convex combination, the e�ectiveness of the �rst-stage training, which aims to enhance the additivity
properties of the embedding spaces, is compromised. It is worth noting that setting the convex coe�cients
statically to 0.5 leads to a slight decrease in performance, which is attributed to the greater adaptability of the
dynamically computed coe�cients.
Our experiments demonstrate the crucial role of the Combiner architecture in e�ectively exploiting the full

potential of the additive embedding spaces constructed during the �rst stage of training. By enabling the network
to learn the residual from the dynamically computed convex combination, we observe signi�cant performance
improvements.

4.5 Analysis of Two-Stage vs. End-to-End approach

In order to explain why a two-stage training method, where the CLIP encoder and Combiner are trained separately,
in contrast to an end-to-end approach, we perform an experiment where we compare the two settings on both
CIRR and FashionIQ datasets. First, we train end-to-end by �ne-tuning CLIP encoders while training the Combiner
network simultaneously. Then, we followed the proposed two-stage approach. In both settings, we also enable
�ne-tuning of the textual or image encoders separately and jointly. In all the experiments in this section, we use
the RN-50 CLIP model.
We present the results in Table 5 for the FashionIQ dataset and in Table 6 for the CIRR dataset. Remarkably,

the two-stage approach consistently outperforms the end-to-end one on both datasets. These superior results
remain consistent even when varying the �ne-tuning modality.
The results validate the e�ectiveness of constructing an embedding space with robust additivity properties

before combining the features using a non-linear function. We hypothesize that when training the Combiner
network simultaneously with the CLIP encoders, the entire system struggles to e�ectively learn the additive
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Recall@K Rsubset@K

Approach IFT TFT  = 1  = 5  = 10  = 50  = 1  = 2  = 3

End-to-end
✓ ✗ 33.19 67.01 79.83 95.52 58.90 79.33 90.28
✗ ✓ 33.58 67.59 79.57 95.28 67.37 85.58 93.44
✓ ✓ 40.03 74.09 85.14 97.12 68.14 86.06 93.64

Two-stages
✓ ✗ 34.01 69.07 81.77 95.72 62.78 81.80 91.41
✗ ✓ 36.86 71.32 82.32 96.24 68.28 86.51 94.14
✓ ✓ 42.05 76.13 86.51 97.49 70.15 87.18 94.40

Table 6. Recall at K on the CIRR validation set employing either the two-stage or the end-to-end approach. We denote IFT

(image encoder fine-tuning) and TFT (text encoder fine-tuning) to represent whether the image encoder or the text encoder

is fine-tuned in the first stage. We highlight the best scores in bold and underline the second-best scores.

embedding spaces and the non-linear combining function in a cohesive manner. As a result, this limitation
negatively impacts the overall performance, leading to suboptimal outcomes.

4.6 Preprocess upshot

In this section, we show how the proposed preprocess pipeline, described in Section 3.3, contributes to further
improving performance. We compare the proposed preprocess with two other methods: the standard CLIP
preprocess pipeline, primarily consisting of resize and center crop operations, and the Square preprocess, which
involves applying a square zero-pad to the image before resizing and center cropping. The comparison among the
di�erent preprocess techniques is presented in Table 7 for the FashionIQ dataset and Table 8 for the CIRR dataset.

On the FashionIQ dataset, the improvement obtained using the proposed preprocess pipeline over the standard
one is substantial in the Dress category and noticeable in the Toptee category. Conversely, the square pad
preprocess technique achieves comparable performance to the proposed one in the Dress and Toptee categories
while su�ering a performance de�cit in the Shirt category. Overall, we observe a correlation between the di�erence
in performance among the methods and the number of images with a high aspect ratio, as depicted in Figure 5.
In other words, when dealing with images with a high aspect ratio, it is preferable to pad them to avoid losing
crucial portions of the image during the center crop operation. On the other hand, when images have a low aspect
ratio, it is more e�ective not to reduce the usable portion of the image with padding. The proposed preprocess
pipeline achieves the best performance by e�ectively adapting to the aspect ratio of each image. On the CIRR
dataset, we observe that the proposed preprocess signi�cantly improves performance compared to the standard
CLIP and the square preprocess. The performance gain is particularly signi�cant in low-rank recall measures,
where the importance of every lost detail is crucial.

4.7 Comparison with SotA

We compare the proposed method with state-of-the-art approaches on two standard and challenging datasets.
To ensure a fair comparison, we follow the standard experimental settings of the two datasets [37, 51]. Unless
speci�cally mentioned, we report the metrics for each method as documented in the o�cial papers, and we refer
to those papers for more comprehensive details about the individual approaches.
Table 9 reports the comparison between the proposed method and other state-of-the-art approaches. We

divide the table into two sections: the upper section includes methods that are not directly comparable to our
approach. These approaches either do not utilize a pre-trained textual encoder [8, 29, 31, 45, 50, 52] or, in the case
of TRACE [27], they use BERT [15] as a pre-trained textual encoder but do not update its weights. It is important
to note that even when a competitor [8, 29, 45] utilizes the GloVe word embedding [40], we do not consider
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Shirt Dress Toptee Average

CF Preprocess '@10 '@50 '@10 '@50 '@10 '@50 '@10 '@50

Sum
Standard 37.64 59.76 33.42 59.84 40.90 66.80 37.32 62.13
Square 37.09 58.52 35.94 62.03 42.53 66.29 38.52 62.28

Proposed 38.67 59.42 35.99 62.22 43.35 67.52 39.34 63.05

Combiner
Standard 39.40 61.33 35.25 60.44 43.95 67.72 39.53 63.16
Square 38.71 60.21 37.97 62.86 44.12 68.03 40.26 63.70

Proposed 39.87 60.84 37.67 63.16 44.88 68.59 40.80 64.20

Table 7. Recall at K on FashionIQ validation set varying the combining function and the preprocessing pipeline used. CF

(combining function) indicates the function used to combine the query features. We highlight the best scores in bold and

underline the second-best scores.

Recall@K Rsubset@K

CF Preprocess  = 1  = 5  = 10  = 50  = 1  = 2  = 3

Sum
Standard 39.51 74.00 84.72 97.20 68.36 86.15 94.26
Square 41.26 74.34 85.00 96.84 69.15 85.89 93.90

Proposed 40.97 74.70 85.51 96.94 68.81 86.96 93.90

Combiner
Standard 40.08 74.15 84.67 97.20 69.53 86.27 94.45

Square 41.95 74.96 85.24 96.58 70.65 86.67 94.24
Proposed 42.05 76.13 86.51 97.49 70.15 87.18 94.40

Table 8. Recall at K on CIRR validation set varying the combining function and the preprocessing pipeline used.CF (combining

function) indicates the function used to combine the query features. We highlight the best scores in bold and underline the

second-best scores.

their textual encoder as pre-trained. All the methods in this section rely on a ResNet model pre-trained on the
ImageNet dataset [43] and �ne-tuned during training. We include the results of these methods to provide a more
comprehensive discussion. The lower section of Table 9 reports methods that are directly comparable to ours: they
rely on both pre-trained visual and language models updating all the weights of both backbones during training.
CIRRPLANT [37] relies on the OSCAR pretrained model as a textual backbone, while [16, 21, 26] rely on the
pre-trained BERT model. It is worth mentioning that FashionViL is a fashion-oriented approach that carries out a
large-scale pre-training for learning V+L representation in the fashion domain. For this reason, it is not surprising
that it exhibits strong performances in a fashion dataset such as FashionIQ. When considering the RN50-based
method, the proposed approach outperforms the competitors by improving up to 9% in average R@10 and 7% in
average R@50 compared to the best-performing competitor, FashionViL, when using the same visual backbone
architecture. Our method demonstrates the highest recall across all categories, with a particularly signi�cant
margin observed in the Shirt category. When considering the larger RN-50x4-based model, we observe an
improvement ranging from 2% to 4% in all categories compared to the smaller backbone. This result demonstrates
that our approach scales well when using larger and heavier VL models.

In Table 10, we report a comparison between the proposed method and other state-of-the-art approaches. As
for FashionIQ, the upper section of the table reports methods that are not directly comparable with the proposed
one: they do not utilize a pre-trained textual encoder. As the visual backbone, they employ a ResNet-based model,
which is pre-trained on ImageNet and �ne-tuned during training. The lower section of the table includes directly
comparable methods, such as MAAF, which utilizes BERT as a text encoder, and CIRPLANT, which relies on the
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Encoder Shirt Dress Toptee Average

Method Visual Textual '@10 '@50 '@10 '@50 '@10 '@50 '@10 '@50

TRACE [27] RN-50 BERT [15] 20.80 40.80 22.70 44.91 24.22 49.80 22.57 46.19
VAL [8] RN-50 LSTM(GloVe) [23] 22.38 44.15 22.53 44.00 27.53 51.68 24.15 46.61
CurlingNet [52] RN-152 biGRU [10] 21.45 44.56 26.15 53.24 30.12 55.23 25.90 51.01
RTIC-GCN [45] RN-50 LSTM(GloVe) 23.79 47.25 29.15 54.04 31.61 57.98 28.18 53.09
CoSMo [31] RN-50 LSTM 24.90 49.18 25.64 50.30 29.21 57.46 26.58 52.31
DCNet [29] RN-50 Conv1D(GloVe) 23.95 47.30 28.95 56.07 30.44 58.29 27.78 53.89
CLVC-Net [50] RN-50 LSTM 28.75 54.76 29.85 56.47 33.50 64.00 30.70 58.41

CIRPLANT [37] RN-152 OSCAR [34] 17.53 38.81 17.45 40.41 21.64 45.38 18.87 41.53
MAAF [16] RN-50 BERT 18.55 37.63 18.59 39.66 23.05 45.95 20.06 41.08
SAC [26] RN-50 BERT 28.02 51.86 26.52 51.01 32.70 61.23 29.08 54.70
FashionViL [21] RN-50 BERT 25.17 50.39 33.47 59.94 34.98 60.79 31.20 57.04
Ours RN-50 Transformer 39.87 60.84 37.67 63.16 44.88 68.59 40.80 64.20
Ours RN-50x4 Transformer 44.41 65.26 39.46 64.55 47.48 70.98 43.78 66.93

Table 9. Comparison between our method and current state-of-the-art models on the Fashion-IQ validation set. We highlight

the best scores in bold and underline the second-best scores. The upper section of the table presents methods that are not

directly comparable to our proposed approach, as they either do not utilize a pre-trained textual encoder or do not update its

weights. "RN" stands for ResNet.

Encoder Recall@K Rsubset@K

Method Visual Textual  = 1  = 5  = 10  = 50  = 1  = 2  = 3

TIRG† [48] RN-18 LSTM 14.61 48.37 64.08 90.03 22.67 44.97 65.14

TIRG+LastConv† [48] RN-18 LSTM 11.04 35.68 51.27 83.29 23.82 45.65 64.55

MAAF† [16] RN-50 LSTM 10.31 33.03 48.30 80.06 21.05 41.81 61.60

MAAF−IT† [16] RN-50 LSTM 9.90 32.86 48.83 80.27 21.17 42.04 60.91

MAAF−RP† [16] RN-50 LSTM 10.22 33.32 48.68 81.84 21.41 42.17 61.60
ARTEMIS [14] RN-152 biGRU 16.96 46.10 61.31 87.73 39.99 62.20 75.67

MAAF† [16] RN-50 BERT 10.12 33.10 48.01 80.57 22.04 42.41 62.14

CIRPLANT† [37] RN-152 OSCAR 19.55 52.55 68.39 92.38 39.20 63.03 79.49
Ours RN-50 Transformer 40.91 74.53 84.77 97.35 70.22 87.80 94.46
Ours RN-50x4 Transformer 44.82 77.04 86.65 97.90 73.16 88.84 95.59

Table 10. Comparison between our method and current state-of-the-art models on the CIRR test set. We highlight the

best scores in bold and underline the second-best scores.. † denotes results cited from [37]. The upper section of the table

presents methods that are not directly comparable to our proposed approach, as they either do not utilize a pre-trained

textual encoder or do not update its weights. In the lower section, we report methods that are directly comparable to our

approach. "RN" stands for ResNet.

pre-trained Vision-Language model OSCAR. The results presented in Table 10 are obtained through the o�cial
evaluation server. Our approach consistently outperforms the competitors by a signi�cant margin, particularly in
low-rank recall measures, where we notice an improvement of approximately 20% in R@1 when using the RN50
visual backbone. When considering the larger RN-50x4 model, we observe improvements ranging from 3% in
low-rank recall metrics to 1% as the recall rank increases.
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(a) FashionIQ dataset (b) CIRR dataset

Fig. 7. Histograms of cosine similarities between image/text feature pairs. The x-axis represents the cosine similarities. The

y-axis represents the (normalized) number of pairs. In the top-line plots, we have used the out-of-the-box CLIP model. In

the bo�om line, we have used the model fine-tuned during the first stage of training. In the le�-side plots, we compare the

image features. In the right ones, we compare the text features. The histograms are normalized such that the area under

each curve integrates to 1.

4.8 Feature distribution study

The experiments in this section aim to provide intuition on how the feature distribution in the embedding spaces
a�ects the retrieval performances. All the experiments were carried out on the validation sets using the RN-50
model. We are going to present two di�erent sets of experiments that have slightly di�erent purposes. The �rst
set aims to investigate how the image and text features are distributed in the embedding spaces, while the second
one explores how the distribution of the features a�ects retrieval performance.
To investigate how the features distribute in the embedding spaces, we followed [35] and calculate pairwise

similarities among them. If the features occupy the embedding space uniformly, their similarities will be lower.
Throughout all experiments, due to the quadratic growth of possible pairs, we compute the similarities between
50K randomly sampled pairs. Figure 7 shows the histograms of the features pairwise similarities on both FashionIQ
and CIRR datasets. First of all, we can notice that due to the broader domain of CIRR, on such a dataset, both
the image and text features similarities are higher when compared to FashionIQ. On both datasets, �ne-tuning
the image encoder leads to a drastic reduction in the average similarity of the visual features and, thus, to much
more e�cient use of the embedding space during retrieval. This fact con�rms our hypothesis (Section 4.3) that
�ne-tuning the image encoder adapts the image manifold to the data domain. The �ne-tuning of the text encoder
leads to a lower reduction in the average pairwise similarity of textual features (almost negligible in FashionIQ)
than that observed in visual ones. We suppose that e�cient use of the image embedding space is far more critical
than e�cient use of the textual space since the retrieval is carried out in the image space. In all the experiments,
we observe that the �ne-tuning of CLIP encoders contributes to reducing the cone e�ect: “the e�ective embedding
space is restricted to a narrow cone for trained models and models with random weights" [35].

The previous experiments demonstrate how the two-stage approach proposed in this study a�ects the textual
and visual CLIP embedding spaces. However, these experiments do not clarify why this increased utilization
of embedding space can improve the retrieval process. We conducted additional experiments to investigate the
impact of this embedding space reshaping on the image retrieval task. We compute and compare the cosine
similarities (the distance function used in the retrieval) between the combined and the index image features.
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(a) FashionIQ dataset (b) CIRR dataset

Fig. 8. Histograms of the cosine similarities between combined and target/non-target feature pairs. The x-axis represents the

cosine similarities. The y-axis represents the (normalized) number of pairs. In green•: cosine similarities between combined

and non-target index features. In violet•: cosine similarities between combined and target features. In red•: similarity gap

between combined-target and combined-non target features. In dark green•: intersection over union area between the two

histograms. In the top-line plots, we have used the simple sum as a combining function. In the bo�om line ones, we have

used the Combiner network. In the le�-side plots, we used the out-of-the-box CLIP model. In the right ones, we used the

model fine-tuned during the first stage of the training. The histograms are normalized such that the area under each curve

integrates to 1.

Speci�cally, we perform two distinct computations: in the �rst one, we compute the similarity between the
combined features and the target image features belonging to the same query triplet. In the second one, we
compute the similarity between the combined features and random image features that di�er from the target
ones. Given a query, we will refer to the images that di�er from the target as non-target images. We compare
each combined feature with ten non-target image features to reduce the variance.
Figure 8 emphasizes the similarity gaps between the combined and target/non-target features. On both

FashionIQ and CIRR datasets, we notice that the element-wise sum of out-of-the-box CLIP features achieves the
highest average combined-target features similarity. During both the �ne-tuning and the Combiner network
training stages, the contrastive training increases the cosine distances between the combined and non-target
features instead of increasing their similarity to the target features. By observing both Fig. 8a and Fig. 8b and
the corresponding retrieval results in Table 1 and Table 2, we argue that, in these two datasets, the retrieval
performances are highly correlated with the similarity gap between combined-target and combined-non target
features (displayed as the red arrows in Fig. 8) and with the size of intersection area between the histograms (the
smaller the intersection area, the smaller the retrieval errors will be). On the contrary, the absolute value of the
combined-target similarity does not seem to be of great importance.

The two sets of experiments highlight di�erent but strongly related aspects. The �rst set shows that �ne-tuning
both CLIP encoders leads to more e�cient use of the embedding spaces. In the second set, we prove that the
increased occupation of the image space helps to “move away" the combined features from the non-target features.

4.9 �alitative results

To obtain a clearer understanding of which parts of the images the system considers most important during
retrieval, we conducted qualitative experiments using the GradCAM technique [44]. Instead of computing
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Add a horse  
pulling the
carriage

Query

Adult monkey 
 hold up baby 
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 both arms
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Make the dog  
run in the grass

QueryTarget Target Target

Fig. 9. Examples of GradCAM visualization on CIRR dataset computing the gradients with respect to the Combiner output.

Has no sleeves 
 but beige color 

 [and] is tan with  
black buckle

Query

The shirt is black  
with Mexico and  
the Mexican Flag 
[and] has a black  

collar on it

Query

Is a solid color  
and is sleeveless  

[and] is more  
colorful

QueryTarget Target Target

Fig. 10. Examples of GradCAM visualization on FashionIQ computing the gradients with respect to the Combiner output.

gradients versus an output class, we compute gradients with respect to the combined features, which summarize
both the visual and textual content of the image and caption, using the GradCAM technique. This approach makes
each heat map generated by GradCAM dependent on the reference image and its relative caption, simulating the
retrieval process. We use the last convolutional layer of CLIP’s image encoder as the saliency layer.

In Fig. 9 and in Fig. 10 are displayed some examples of the above-described visualization technique. The system
is capable of attending to a wide range of concepts, such as style and color changes for the fashion dataset and
behavior modi�cation for the CIRR dataset, as we can notice from the experiments with the GradCAM technique.
For instance, in Fig. 9, the system attends to the carriage and horse in the �rst example, the pose of the holding
monkey and the baby monkey in the second example, and the pose of the dog in the third example. In Fig. 10, the
system attends to the arms and shoulders of the person when the conditioning text referred to the sleeves of the
dress and to the logo of the shirt when it was requested to change the Norwegian �ag into a Mexican one.
Finally, we complete the qualitative analysis of our approach by presenting examples of multimodal queries

and their corresponding results on both datasets in Fig. 12 and Fig. 11. In FashionIQ, the correct result is returned
most of the time in the �rst three results, while in CIRR, it is returned in the top-5 global and top-3 subset results.
Interestingly, the excellent performance of the proposed system let us notice an issue with the FashionIQ dataset:
from these examples, we can see that in the FashionIQ dataset, the existence of many false negatives is a real
issue that can harm both the results and the training process; examining the �rst four and the last queries, we can
observe that several results returned in the �rst positions are corresponding to the conditioning text, although
only one of them is marked as such. E.g. in the �rst query, where several dresses have light �oral patterns and
bright colors, similarly, the �rst three results for the shirts should be considered correct. We can also see that
in the CIRR dataset, the domain of the images is wider compared to FashionIQ, and the problem of the false
negatives is a minor issue.
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Query Top 10 Global Retrieved Images
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in color
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has no sleeve

is a solid color 

 [and] is red and 

 has a dot pattern

Has no sleeves 

 and is green 

 [and] black

Has no sleeves 

 and is black  

[and] has shorter 

 sleeves

Fig. 11. �alitative results for the FashionIQ dataset. We highlight with a green border when the retrieved image is labeled

as ground truth for the given query.

5 CONCLUSIONS

In this work, we propose a novel task-oriented �ne-tuning scheme to adapt vision-language models for the
composed image retrieval task. The primary goal of this �ne-tuning is to address the mismatch between the
large-scale pre-training of CLIP and the downstream task, thereby enhancing the additivity properties of the
embedding spaces. We then propose a two-stage approach that combines �ne-tuning with the training of a
carefully crafted Combiner network, enabling the meaningful fusion of the �ne-tuned multimodal features. To
further enhance performance, we introduce a novel pre-processing padding method, which, as demonstrated
in the ablation studies, improves performance on datasets with images of varying aspect ratios. We perform
experiments on the challenging fashion dataset FashionIQ and the recently presented CIRR dataset. Experiments
on both datasets show that our approach outperforms state-of-the-art methods by a signi�cant margin. We also
perform qualitative experiments to explain how our approach works. These experiments investigate the impact
of the proposed approach on the feature distribution in the embedding spaces and how the reshaping of such
embedding spaces in�uences retrieval performance. Additionally, we conduct visualization experiments using
the gradCAM technique.

ACKNOWLEDGMENTS

This work was partially supported by the European Commission under European Horizon 2020 Programme,
grant number 101004545 - ReInHerit.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article . Publication date: August 2023.



Composed Image Retrieval using Contrastive Learning and Task-oriented CLIP-based Features • 21

Two bottles are 

 identical, and  

in the middle 

 one pepsi bottle

Query Top 5 Global Retrieved Images Top 3 Subset Retrieved Images

Gorilla rest on  

a trunk with green 

 leaves behind it

Remove the cat  

and make the  

dog younger with  

his tongue out

Put white and  

pink pillows on 

 the white bed 

 with canopy.

Remove some of  

the chairs and  

make them red  

and the table white

Put the opened  

safety pin against  

a gray background

Fig. 12. �alitative results for the CIRR dataset. We highlight with a green border when the retrieved image is labeled as
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