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Abstract: This paper improves the existing literature on the shrinkage of high dimensional model
and parameter spaces through Bayesian priors and Markov Chains algorithms. A hierarchical
semiparametric Bayes approach is developed to overtake limits and misspecificity involved in
compressed regression models. Methodologically, a multicountry large structural Panel Vector
Autoregression is compressed through a robust model averaging to select the best subset across
all possible combinations of predictors, where robust stands for the use of mixtures of proper
conjugate priors. Concerning dynamic analysis, volatility changes and conditional density forecasts
are addressed ensuring accurate predictive performance and capability. An empirical and simulated
experiment are developed to highlight and discuss the functioning of the estimating procedure and
forecasting accuracy.
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1. Introduction

This study aims to construct and develop a methodology to improve the Bayesian
compressed regression literature when dealing with (i) time-varying parameters, (ii)
volatility changes, (iii) the curse of dimensionality, and (iv) variable selection problems
accounting for large model and parameter spaces.

In macroeconomics and finance, existing approaches involve estimating high dimen-
sional multicountry Vector Autoregressions (VARs) and Panel VARs (PVARs) to appro-
priately model and evaluate time-varying linkages among sectors and countries, where
the number of parameters are highly larger than the obervational data. In thix context,
prior specification strategies and Monte Carlo Markov Chain (MCMC) algorithms are
constructed according to past information on the parameters’ distributions in order to
transform overparameterized models in low-dimensional parameter space. In this way,
forecasting analysis and policy evaluations are feasible and can be performed ensuring
good accuracy and quality of the point estimates. Most studies based on this literature
focus on frequentist and Bayesian approaches. The former generally work with a sparse
hierarchical prior distribution allowing to discriminate between zero and non-zero factor
loadings in order to identify unobserved factors and then provide a meaningful economic
interpretation for them. See, among many other, Bernanke et al. (2005) (Factor-Augmented
VARs); Pesaran et al. (2009) and Pesaran et al. (2004) (multicountry Dynamic Factor Models);
Dees et al. (2007); Feldkircher and Huber (2016); Cuaresma et al. (2016); Dovern et al. (2016);
and Huber (2016) (Global VARs); and Cogley et al. (2005); Primiceri (2005); Koop and
Korobilis (2009); Canova and Forero (2015); Banbura et al. (2010); and Koop and Korobilis
(2013) (Time-Varying Parameter VARs with multivariate stochastic volatility). Conversely,
according to Bayesian models, they typically use diffuse or informative priors to shrinkage
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high-dimensional parameter spaces relying on computationally intensive MCMC algo-
rithms in order to perform recursive forecasting exercises (see, for instance, Canova and
Ciccarelli (2009); Koop and Korobilis (2016); Giannone et al. (2015); Carriero et al. (2015a,
2016); Koop (2013); Korobilis (2016); George et al. (2008); Carriero et al. (2009); Canova and
Ciccarelli (2016); Canova and Forero (2015); Pacifico (2019, 2021)). Nevertheless, these meth-
ods requiring the use of MCMC algorithms and implementations are still not suitable for
forecasting with thousands of variables, that would be possible with random compression.

Concerning related Bayesian dimensionality reduction approaches, Bayesian com-
pressed regression models have been also used in macroeconomics, where high dimensional
parameter spaces are compressed by randomly drawing different projections according
to the explanatory variables (see, for instance, Guhaniyogi and Dunson (2015) among
others). They refer to supervised data compression method involving the use of Bayesian
Model Averaging (BMA) to assign different weights to the drawn projections based on the
explanatory power of the compressed covariates. However, the compressed regression
does not include any reference to the variable(s) of interest and then can result in inaccurate
estimates when the data show highly large causal relationships. In addition, the data com-
pression involved in these methods are unable to deal with variable selection problems such
as model uncertainty when a single model is selected a priori to be the true one (see, e.g.,
Madigan and Raftery (1994); Madigan et al. (1995); Raftery et al. (1995, 1997)), endogeneity
issues due to unobserved heterogeneity and omitted factors (see, for instance, Gelfand and
Dey (1994) and Pacifico (2020b) for related works), and risk of overfitting occurring when
the model is too rich relative to the sample size (see, for instance, Mullainathan and Spiess
(2017) and Pacifico (2020b) for more discussion).

As opposed to these models, Bayesian Compressed VARs (BCVARs) cover an impor-
tant role as an alternative to variable selection or shrinkage in high dimensional settings,
by randomly compressing the predictors prior to analysis. In this context, the curse of
dimensionality affecting the estimating process performance is minimized, obtaining a
low-dimensional subset of the predictors better fitting the data with minimal loss of infor-
mation about their response (explanatory power) for the dependent variable(s). The prior
specification strategy is more flexible—requiring less restrictive features—and the exact
posterior distribution conditional on the compressed data is available analytically, resulting
in shrinkage of high dimensional model and parameter spaces. Model averaging is used to
reduce sensitivity to the random projection matrix, while accommodating uncertainty in the
subspace dimension. In this way, BCVARs entail less computational costs by increasing the
speed at which the dependent variable(s) return to equilibrium after a change in the subset
of potential predictors and bypassing robustness issues due to convergence and mixing
problems with intensive MCMC methods. Thus, recursive forecasting methods become
computationally feasible for policy-making (see, for instance, Taveeapiradeecharoen and
Aunsri (2020); Taveeapiradeecharoen et al. (2019); and Götz and Haustein (2018) for some
important tools in macroeconomics and finance). However, in macroeconomic forecasting
applications, ignoring volatility changes (because of structural changes and policy regime
shifts) and time-variation in the coefficients and/or error covariance matrix, the estimation
procedure results in bad (or biased) estimates and poor (or low) quality of density forecasts
(see, for instance, Jacquier et al. (1994); Carriero et al. (2015b, 2019); Clark (2011); Cogley
and Sargent (2005); Primiceri (2005); and D’Agostino et al. (2013) (stochastic volatility and
structural changes); and Clark and Ravazzolo (2015) and Pacifico (2021) (time-varying
volatility)).

Recently, Koop et al. (2019) developed a BCVAR with time-varying parameters and
stochastic volatility by extending the Guhaniyogi and Dunson (2015)’s Bayesian random
compression method. More precisely, the two main features introduced are: (i) the ex-
tension to the VAR case using a BMA to obtain the subset of the VAR coefficients better
explaining the dependent variable(s) and the parameters better describing volatility pur-
poses, and (ii) a random process to shrink the large VAR in a low-dimensional subspace
of predictors according to the explanatory power they have for the dependent variable(s).
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A macroeconomic application highlights the estimating process performance and fore-
casting accuracy using an univariate Autoregressive process with a single lagged term
(AR(1)) as benchmark approach. Compared with the previous models, their method fits
better the data and achieve more accurate forecasts. However, the BMA used in shrink-
age of high dimensional parameter spaces consists in assigning different weights to the
projections based on the explanatory power of the predictors rather than the model size.
Thus, open variable selection issues when dealing with overparameterization—such as
model misspecification problems and overfitting—are not addressed. In addition, the
number of different projections are generated randomly and then does not involve the data.
Even if it is computationally useful in multiple model classes, common parameters can
change meaning from one model to another, so that prior distributions should change in
a corresponding fashion and be weighted more according to the model size. Last but not
least, when studying macroeconomic–financial linkages, issues concerning heterogeneity,
interdependence, and commonality among countries and sectors should be accounted for.

My computational approach aims to overtake these limits when estimating Bayesian
compressed regressions in large VAR settings with time-varying parameters and multivari-
ate stochastic volatilities. More precisely, its implementation consists of combining and
extending the underlying logic in Pacifico (2020b), regarding variable selection problems in
multiple model classes, and in Pacifico (2021), concerning high dimensional multicountry
dynamic analysis. Thus, conversely to Koop et al. (2019), the main features are: (i) the
selection of the best subset of predictors through Posterior Model Probabilities rather
random draws in order to weight priors according to the model size; and (ii) the es-
timation of a structural panel framework when jointly modelling parameter and model
spaces in order to perform accurate cross-country forecasts and policy issues. Here, best
stands stands for the model providing the most accurate predictive performance over all
candidate models, and PMP denots the probability of each candidate model fitting the
data. Methodologically, the developed approach—named Structural Bayesian Compressed
PVAR (SBCPVAR) model—is based on semiparametric prior assumptions to entail a strong
model selection in high dimensional model classes and MCMC algorithms to construct
posterior distributions.

In detail, the contributions of the proposed methodology are fourfold. First, additional
data matrices are considered containing predetermined1 variables (e.g., lagged dependent
and control variables) and observable endogenous variables including macroeconomic–
financial and socioeconomic–demographic factors. Multivariate Conjugate Informative
Proper Mixture (mvCIPM) priors and MCMC-based PMPs are then used in oder to: (i)
include all the information from the whole multidimensional framework; (ii) impose
specification choices to compress high dimensional parameter and model spaces; and
(iii) jointly deal with variable selection problems (model uncertainty and overfitting),
endogeneity issues, and structural model uncertainty (because of one or more parameters
are posited as the source of model misspecification problems). The mvCIPM priors are an
implementation of the conjugate informative proper priors in Pacifico (2020b) to deal with
overparameterization in large time-varying PVAR.

Second, related to the previous feature, properly specification choices to drop or down-
weight bad compressions are addressed instead of compressing the data randomly. To
do it, I build on and extend the Pacifico (2020b)’s analysis, who develops a Robust Open
Bayesian (ROB) procedure in two stages for implementing BMA and BMS in multiple linear
regression models and time-varying high dimensional multivariate data when studying
cross-country dynamic economics. In this way, the best subset of model solutions is ob-
tained by defining a criterion in accordance with either the data (explanatory power) and
the model size (different interactions between covariates). Thus, the complete compressed
subset regression method uses model-weighted combinations of all available subsets of
predictors and resorts to a less restrictive supervised dimension reduction technique. How-
ever, that framework even if ensures better accuracy and quality of the density forecasts, it
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would highly increase the computational costs involved in the procedure, representing an
important limit to be dealt with.

Third, I adapt the Pacifico (2021)’s strategy to transform an overparameterized struc-
tural PVAR into a compressed Seemingly Unrelated Regression model in order to account
for interdependence, heterogeneity (or homogeneity), and commonality when studying
macroeconomic–financial linkages. More precisely, I involve some auxiliary regression pa-
rameters in the extended ROB procedure to evaluate the time-varying VAR coefficients for
each country-variable pair in presence of potential unobserved changes (volatility effects).
Then, I construct a flexible factorization for the compressed regression parameters to make
them estimable. Finally, a multivariate Bayesian Information Criterion (mvBIC) is used
to depict the optimal number of lags in high dimensional multivariate model selection,
extending the standard BIC to the case of multiple response variables (see, for instance,
Sofer et al. (2014)).

Fourth, MCMC algorithms are addressed to construct appropriate posterior distribu-
tions and then perform cross-country conditional density forecasts. The diagnostic measure
computed to measure forecasting accuracy and then account for relative regrets dealing
with semiparametric forecasting problem is the multivariate Weighted Mean Squared
Forecast Error of Christoffersen and Diebold (1998).

An empirical application involving more than hundreds of macroeconomic–financial
and socioeconomic–demographic variables is developed to highlight the performance of
the proposed methodology. The empirical strategy is able to design conditional density
forecasts and strategic policy measures investigating either the impact of COVID-19 pan-
demic or real/financial shocks on potential output in a pool of advanced and emerging
countries, with ’potential output’ denoting the highest level of economic activity. Further-
more, a simulated experiment—compared to related works—is also addressed to discuss
theoretical properties.

The remainder of this paper is organized as follows. Section 2 introduces the econo-
metric framework and the estimating method. Section 3 displays the Bayesian model
selection procedure by clarifying prior specification strategy and posterior distributions.
Section 4 describes the data and the empirical analysis. Section 5 provides a simulated
example through Monte Carlo simulations to discuss theoretical properties and forecast-
ing accuracy compared to some existing approaches. The final section contains some
concluding remarks.

2. Econometric Model
2.1. Model Estimation

Consider a simplified version of the multicountry SPBVAR model developed in Paci-
fico (2021):

Yim,t =
l

∑
λ=1

[
Aim,jm̃Yim,t−λ + Biξ,jξ̃ Ziξ,t−λ

]
+ εim,t, (1)

where the subscripts (i, j) = 1, 2, . . . , N are country indices, t = 1, 2, . . . , T denotes time,
m = 1, 2, . . . , M and ξ = 1, 2, . . . , Ξ are directly observed endogenous variables for i, with
m̃ = 1, 2, . . . , M̃ and ξ̃ = 1, 2, . . . , Ξ̃ referring to the ones observed for j and independent
of i, λ = 1, 2, . . . , l stands for all available lags of every time-varying variable to be poten-
tially included in the shrinking process, and εim,t ∼ i.i.d.N(0, Ωt) is an NM · 1 vector of
heteroscedastic unobservable shocks with variance-covariance matrix Ωt.

Stacking for (m, ξ, m̃, ξ̃), all terms within the system are so defined. (i) Yi,t is an
NM · 1 vector of observed variables to be predicted for each i for a given m. (ii) Ai,j
are NM× NM matrices of lagged coefficients for each pair of countries (i, j) for a given
m, and Yi,t−λ is an NM · 1 vector of observed lagged variables for each i for a given m.

In this study, I decompose it in Yi,t−λ =
[
Yo′

i,t−λ, Yc′
i,t−λ

]′
, with Yo′

i,t−λ denoting lagged out-

comes (e.g., country’s productivity) to capture the persistence and Yc′
i,t−λ including lagged

control variables such as general economic–financial conditions. (iii) Bi,j are NΞ× NΞ
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matrices of lagged coefficients for each pair of countries (i, j) for a given ξ, and Zi,t−λ is
an NΞ · 1 vector including a set of additional observed lagged endogenous factors for
each i for a given ξ. Let the model (1) be a VAR process, when performing forecasting
analysis, every outcome for each country would depend on its lagged values (Yo′

it−λ) and
sudden changes in Yc′

it−λ due to unexpected shocks (misspecified dynamics). However,
when studying macroeconomic–financial linkages, other potentially endogenous related
factors would affect outcomes’ distribution because of not directly observed/measured
relationships (endogenity issues). In this study, I evaluate them assuming the decompo-

sition Zi,t−λ =
[

Zs′
i,t−λ, Zp′

i,t−λ

]′
referring to socioeconomic–demographic conditions and

policy factors, respectively. Then, in order to perform a Bayesian compressed variable
selection regression, I model the framework combining the (non-)homogeneous param-
eters into a 1 · Nk vector Xt = (Y

′
im,t−1, Y

′
im,t−2, . . . , Y

′
im,t−l , Z

′
iξ,t−1, Z

′
iξ,t−2, . . . , Z

′
iξ,t−l)

′
and

construct an auxiliary parameter Θt—indexed k—grouping the two matrices of time-
varying coefficients, where k = [M + Ξ] · l corresponds to the number of all matrix coeffi-
cients in each equation of model (1) for each pair of countries (i, j). Thus, the parameter
Θt = (Aim,j1, Aim,j2, . . . , Aim,jM̃, Biξ,j1, Biξ,j2, . . . , Biξ,jΞ̃) looks like a set of matrices of size
NM× Nk. Nevertheless, with these specifications, the (1) faces to be unfeasible and un-
reliable because of (possible) different dimensions between matrices (Ai,j, Bi,j) and high
dimensional parameter spaces, respectively. The proposed methodology overcomes these
problems by using a hierarchical factor structure and a prior shrinkage based on a multi-
variate ROB (mvROB) procedure.

For notational simplicity, I display the estimating procedure with no deterministic
terms2. The heteroscedasticity imposed in the variance-covariance matrix of the vector of
innovations (εi,t) is to capture and then investigate potential unobserved shocks (impulse)
among variables affecting cross-country spillover effects on the outcomes (response). It is
worth noting that when studying macroeconomic–financial linkages and other related
socioeconomic–demographic effects, the model in (1) is going to admit multiple and
multivariate structural breaks and policy regime shifts. Thus, according to the Primiceri
(2005)’s modelling strategy, without loss of generality, I re-write the error terms in (1) as:

εi,t = ∆t ·ωi,t with Ωt = ∆t∆
′
t, (2)

where ∆t is an NM× Nk matrix with elements either potentially different from zero or
close to zero and ωi,t ∼ N(0, INk) is a Nk · 1 vector for each set of variables (m, ξ). As an
illustrative example, stacking for m and k for simplicity, consider the following structure
for ∆t, in a three-by-three case:

∆t =

 di,j 0 di,j
di,j di,j di,j
di,j 0 di,j


(3×3)

, (3)

where the di,j’s indicate the elements potentially different from zero. Equation (3) implies a
variance covariance matrix of the residuals with zero in the positions (1, 2) and (3, 2). In case
of triangular decomposition, the solution would be incompatible with draws of Ωt or at
least approximate whether the elements (1, 2) and (3, 2) are very close to zero. However,
the latter does not ensure efficient estimation in a context of overidentified systems, unless
the overidentification derives from further zero restrictions. In addition, when studying
time-varying linkages, time-invariant variance-covariance matrices are undesirable or too
restrictive.

In this study, a more flexible Bayesian inference is addressed in order to overtake these
model misspecification problems by taking advantage of the shrinking process involved
in the procedure. More precisely, two considerations are in order: the use of a random
walk process to easily model the time-varying distributions of the elements in ∆t and
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a compression regression form to evaluate the time-varying coefficient vectors for each
country–variable pair (Θt) in presence of unobserved changes (di,j 6= 0).

Let δt = vec(∆t) = vec(d
′
im,j1, d

′
im,j2, . . . , d

′

im,jk̄)
′

be a NMK · 1 vector containing—

stacked by columns—the elements of the matrix ∆t, with K = Nk and k̄ denoting the
maximum value of the time-varying VAR coefficients for each pair of countries (i, j), the
parameter δt is then modelled as a random walk process:

δt = δt−1 + vt with vt ∼ N(0, Σδ), (4)

where Σδ = diag(σ2
dim,j1

, σ2
dim,j2

, . . . , σ2
dim,jk̄

) is a block diagonal covariance matrix of size

NM × NM defined according to the time-varying vector δt for each pair of countries
(i, j), and δ0 denotes the initial conditions to be estimated. Here, the variances generated
by (4) are unobserved components treated as permament shifts. I recall that random-walk
assumption assumed in (4) is an useful way to easily model time-varying parameters when
studying high dimensional multivariate dynamic models for a finite period of time. Thus,
one is able to: (i) reduce the number of parameters; (ii) allow for the evaluation of
permanent shifts; (iii) investigate any type of coefficient factors via their interactions;
and (iv) replace volatility changes by coefficient changes.

Here, some considerations are in order. (i) As discussed in Primiceri (2005), according
to some residuals’ positions, elements in ∆t different from or very close to zero would lead
to the solution to be approximate (even if probably still reliable) or rejected, respectively.
This limit is overtaken in this study by means of the variable selection procedure involved
in the empirical strategy. More precisely, the vector δt accounts for unobserved changes
when studying k time-varying variables’ distributions and their interactions (cross-terms).
Thus, whether a model solution (or combination of predictors Xt) is likely reliable, the BMS
used in the ROB procedure would automatically discard it by the data. Indeed, whether a
model solution is rejected, it means that no change-points (or structural breaks) and policy
regime shifts matter. In macroeconomics and finance, when investigating international
spillover effects given unexpected shocks, that scenario is implausible or—on the contrary—
a signal of an unfounded empirical case-study. (ii) In (2), the identification I use is not
based on a triangular decomposition of Ωt as with Koop et al. (2019) and Carriero et al.
(2015b), requiring an additional triangular scheme on ∆t. Conversely, the identifiability
of δt’s is guaranteed from the block diagonality of Σδ. The idea is to absorb potential
excessive spillover effects in the parameter Θt whether they matter (δt 6= 0) or discarding
them otherwise (δt ' 0), where excessive stands for a sudden (not directly observed)
highly large intensification of the spreading of spillovers among countries and/or sectors.
Thus, such a specification implies that volatility changes due to the presence of unobserved
components are replaced by coefficient changes and dealt with parameter shifts. (iii) In
this study, potential volatility changes are investigated through the excess kurtosis (κi,t) of
the SPBVAR prediction error evaluated over the information on the past year (F−1). As
highlighted in Koop et al. (2019) according to the GARCH literature, let the error terms be
Normally distributed, the excess kurtosis will be high in times of large volatility and zero
otherwise. (iv) According to the previous point, the empirical procedure would tend to
be sufficiently restrictive evaluating multiple structural breaks through permanent shifts.
A possible extension could be—for example—assuming time-varying log-volatilities in (1),
just as in Pacifico (2021). In that context, Autoregressive Conditional Heteroskedasticity
in Mean model effects are used to model time-varying conditional second moments so
as to quantify unexpected variations in Yt. The variance-covariance matrix of the vector
of innovations (Ωt) would be then a diagonal matrix containing the time-varying log-
volatilities δt = (δ1t, δ2t, . . . , δNt)

′
. Even if it improves the performance of conditional

density forecasts, highly larger computational costs matter requiring the use of MCMC
implementations (such as Metropolis-Hastings algorithm). (v) Potential structural changes,
dynamic feedback, and interactions among countries and variables are possible and allowed
to vary over time. Thus, the framework of (1) makes it able to investigate and quantify
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international business cycles, policy implications, and economic dynamics by jointly dealing
with endogeneity and volatility changes and functional forms of misspecification. These
features are then able to perform accurate conditional density forecasts. (vi) Finally,
the framework can be related to the literature on cointegrating approaches with time-
varying coefficients. More precisely, they provide an efficient method of estimation to
model macroeconomic–financial long-run relationships, where the coefficients are estimated
nonparametrically as smooth functions evolving over time (see, among many other, Hansen
(1992); Quintos and Phillips (1993); and Andrews (1991a, 1991b)). However, this study does
not rely on these methods because of their fruitless in multicountry dynamic analyses due
to the presence of omitted variables or parameter instability (e.g., endogeneity issues) and
unobserved change-points (e.g., misspecified dynamics).

With these specifications, I re-write (1) expressing it in a simultaneous-equation form:

Yt = ΘtX
′
t + ∆tωi,t, (5)

where Yt = (Y
′
1m,t, . . . , Y

′
Nm,t)

′
is an NM · 1 vector containing the observable variables of

interest and X
′
t is a Nk · 1 vector.

Let Γt = (Θt, ∆t) = (Aim,j1, ∆t , Aim,j2, ∆t , . . . , Aim,jM̃, ∆t , Biξ,j1, ∆t , Biξ,j2, ∆t , . . . ,
Biξ,jΞ̃, ∆t) be a NM × Nk matrices where every coefficient matrix (Ai,t, Bi,j) is combined
with the time-varying (unobserved) elements of ∆t, and γt = vec(Γt) be a NMK · 1 vector
containing—stacked into a vector—the time-varying coefficient vectors for each country–
variable pair. More precisely, the idea is to evaluate cross-unit lagged interdependencies
and dynamic feedback dealing with potential unobserved changes (volatility effects). Thus,
in times of large volatility (δt 6= 0), the construction of Γt would absorb and then include
these unexpected shocks in the estimating procedure.

The reduced form in (5) can be re-written according to a compression regression form:

Yt = Γt

(
X
′
t + ωi,t

)
.

The variable selection problem arises when there is some unknown subset of Xt with
predictors so small that it would be preferable to ignore them. Thus, the variable selection
procedure can be seen as one of deciding which of the γt’s regression parameters are
sufficiently small so that the predictor Xt should be ruled out from the system. Its aim is
to evaluate 2K subset choices, referring to any potential model solution (or combination
of predictors Xt) better fitting the data. Now, because the coefficient vectors in γt vary
in different time periods for each country–variable pair and there are more coefficients
than data points, it is impossible to evaluate them. To solve these problems, I apply a
flexible factorization for γt to estimate all coefficients and their possible interactions without
restrictions or loss of efficiency. The curse of dimensionality is then dealt with performing
the mvROB procedure in order to select the only γt’s regression parameters sufficiently
large to be included in the system.

Let φt be an additional auxiliary parameter containing the compressed γt’s regression
parameters (γc

t ), I assume the following factor structure:

γc
t = Φt · φt + ut, (6)

where φt denotes a Nϕ · 1, with Nϕ � NMK and {1 ≤ ϕ < k}, dim(φt) � dim(γt) by
construction, γc

t refers to the compressed time-varying coefficient vectors obtained through
the shrinking process, Φt is a NMK × Nϕ conformable matrix with elements equal to
zero (γc

t small and then absence of k-th covariate in the model for a given i) and one (γc
t

sufficiently large and then presence of k-th covariate in the model for a given i), and ut
is a NMK · 1 vector of disturbances with zero mean and variance-covariance matrix Σu,
with Σu = V · σt, with V = σ2 · INMK as in Kadiyala and Karlsson (1997) according to the
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methodology and σt ∼= Ωt ⊗ (X
′
tXt) denoting (potential) volatility changes. In this study,

the auxiliary variable φt is supposed to follow a random walk process:

φt = φt−1 + ηt with ηt ∼ N(0, Ψt), (7)

where Ψt = diag(Ψmt,1, Ψmt,2, . . . , Ψmt,k̄) is a block diagonal matrix, and Ψmt,k = (ψt ×
INMK), with ψt controlling the stringent conditions of the shrinking process of the time-
varying compressed coefficient parameters (γc

t ) in order to make them estimable. Here,
ut and ψt are correlated between them by construction, and ηt and ψt are allowed to be
correlated between them.

According to the factorization in Equation (6) and let X̃t = INM ⊗ (Xt + ω
′
i,t) be an

NM× NMK matrix containing all lagged time-varying variables and volatility elements
within the system stacked in Xt and ωi,t (respectively), the reduced-form SPBVAR model
in Equation (5) can be transformed into a Compressed Seemingly Unrelated Regression
(CSUR) model:

Yt = X̃t

[(
Φt · φt

)
+ ut

]
≡ χc

t φt + Ec
t , (8)

where χc
t ≡ (X̃t ·Φt) are NM× Nϕ matrices that stack all coefficients and their possible

interactions in the multicountry SPBVAR model in (1), and Ec
t ≡ X̃t · ut is an NM · 1 vector

having a particular heteroskedastic covariance matrix that needs to be accounted for.

2.2. Multivariate ROB Procedure

Let MK = (Mi1, Mi2, . . . , Mik̄) be a countable collection of all 2K possible subset choices,
with k̄ denoting the maximum value of the time-varying matrix coefficients in (1). The full
model class set is:

F =
{

MK : MK ⊂ F , MK ∈ M, k ∈ K, ΘtX
′
t + ∆tωt

}
,

whereM and K denote the multidimensional natural model and parameter spaces, respec-
tively.

According to the Pacifico (2020b)’s framework, I match all (potential) candidate mod-
els to shrink both the model space (M) and the parameter space (K). The shrinkage jointly
deals with overestimation of effect sizes (or individual combinations), dynamic interac-
tions (or cross-term lagged interdependencies), model uncertainty and misspecification
problems (implicit in the procedure), and endogeneity and volatility changes (involved in
the hierarchical framework).

Let the PMPs denote the probability of each candidate model fitting the data, they can
be defined as:

π(MK|Yt) =
π(Yt|MK) · π(MK)

∑MK∈M π(Yt|MK) · π(MK)
, (9)

where π(Yt|MK) =
∫

π(Yt|MK, γt) ·π(γt|MK)dγt is the marginal likelihood, and π(γt|MK)
is the conditional prior distribution of γt given MK. However, when N is high dimensional
and T sufficiently large, the calculation of the integral π(Yt|MK) is unfeasible and then
MCMC methods and implementations are needed.

The mvROB procedure entails in jointly shrinking the modelM and the parameter
K space to make Equation (9) estimable. Then, a lower-dimensional model class set is
obtained containing the only best model solutions (or combinations of predictors) fitting
the data. It corresponds to:

E =

{
MF : MF ⊂ E , E ⊂ F , ∑

MK∈M
π(MF|Yt, φt) ≥ τ

}
,

where MF denotes the submodel solutions of the CSUR in (8), with MF < MK, F � K,
where F = Nϕ and {1 ≤ ϕ < k}, and τ is a threshold chosen arbitrarily for an enough
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posterior consistency3. In this study, I use τ = 5% with N high dimensional and then more
restrictive than the one used in Pacifico (2020b).

The final model solution to perform forecasting and policy-making corresponds to
one of the submodels MF with higher log natural Bayes Factor (lBF):

lBFϕ,k = log

{
π(MF|Yt)

π(MK|Yt)

}
.

In this analysis, the lBF is interpreted according to the scale evidence in Pacifico
(2020b), but with more stringent conditions:

0 ≤ lBFϕ,k < 4.99 no evidence for submodel MF

5 ≤ lBFϕ,k < 9.99 moderate evidence for submodel MF

10 ≤ lBFϕ,k < 14.99 strong evidence for submodel MF

lBFϕ,k ≥ 15.00 very strong evidence for submodel MF.

2.3. Model Features

To illustrate the conformation and the Bayesian compression method of the multi-
country SPBVAR in (1), I suppose there are M = Ξ = 2 endogenous (directly) observed
variables for every N = 2 countries. For convenience, I suppose one lag and no intercept.
Thus, the time-varying SPBVAR in (1) assumes the form: Y11,t

Y21,t
Y12,t
Y22,t


(4×1)

=

 A11,11 A11,21 A11,12 A11,22
A21,11 A21,21 A21,12 A21,22
A12,11 A12,21 A12,12 A12,22
A22,11 A22,21 A22,12 A22,22


(4×4)

 Y11,t−1
Y21,t−1
Y12,t−1
Y22,t−1


(4×1)

+

+

 B11,11 B11,21 B11,12 B11,22
B21,11 B21,21 B21,12 B21,22
B12,11 B12,21 B12,12 B12,22
B22,11 B22,21 B22,12 B22,22


(4×4)

 Z11,t−1
Z21,t−1
Z12,t−1
Z22,t−1


(4×1)

+

( ε11,t
ε21,t
ε12,t
ε22,t

)
(4×1)

. (10)

Let M = (m1, m2) and Ξ = (ξ1, ξ2), I define the sub-index k = [(M + Ξ) · l] as
k = (m1, m2, ξ1, ξ2) = (1, 2, 3, 4) to better understand the shrinking process, with l = 1.
Thus, the NM× Nk matrix ∆t can be so expressed:

∆t =

 d11,11 d11,21 d11,12 d11,22 d11,13 d11,23 d11,14 d11,24
d21,11 d21,21 d21,12 d21,22 d21,13 d21,23 d21,14 d21,24
d12,11 d12,21 d12,12 d12,22 d12,13 d12,23 d12,14 d12,24
d22,11 d22,21 d22,12 d22,22 d22,13 d22,23 d22,14 d22,24


(4×8)

.

Consequently, recalling that K = Nk, the (NMK · 1) = (32 · 1) vector for each pair
of variables (m, ξ) sets to δt = vec(d

′
11,11, d

′
21,11, d

′
12,11, d

′
22,11, d

′
11,21, d

′
21,21, . . . , d

′
12,24, d

′
22,24)

′

containing elements close to or different from zero (absence or presence of unobserved time-
varying changes, respectively), the (1 · K) = (1 · 8) vector containing all lagged variables in
the system for each i for a given k sets to Xt = (Y

′
11,t−1, Y

′
21,t−1, Y

′
12,t−1, Y

′
22,t−1, Z

′
11,t−1, Z

′
21,t−1,

Z
′
12,t−1, Z

′
22,t−1)

′
, the (K · 1) = (8 · 1) vector accounting for volatility elements for each set

of variables (m, ξ) sets to ωi,t = (ω11,t, ω21,t, ω12,t, ω22,t, ω13,t, ω23,t, ω14,t, ω24,t)
′
, and the

NM× K matrix grouping the two matrices of time-varying coefficients (Aim,jk, Biξ,jk) for

each pair of countries (i, j) sets to Θt =
(

Aim,11, Aim,21, Aim,12, Aim,22, Biξ,13, Biξ,23, Biξ,14,

Biξ,24

)
. This latter can be also expressed in matrix form:
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Θt =

 A11,11 A11,21 A11,12 A11,22 B11,13 B11,23 B11,14 B11,24
A21,11 A21,21 A21,12 A21,22 B21,13 B21,23 B21,14 B21,24
A12,11 A12,21 A12,12 A12,22 B12,13 B12,23 B12,14 B12,24
A22,11 A22,21 A22,12 A22,22 B22,13 B22,23 B22,14 B22,24


(4×8)

.

According to the simultaneous-equation form of the multicountry SPBVAR described
in (5), the compression refression form of model (10) is:

Yt
(4×1)

= Γt
(4×8)

(
X
′
t

(8×1)
+ ωi,t

(8×1)

)
, (11)

where the NM× K matrices combining every matrix of coefficients (Aim,jk, Biξ,jk) with the

time-varying elements of ∆t sets to Γt =
(

Aim,11, dim,11 , Aim,21, dim,21 , . . . , Biξ,14, diξ,14 ,

Biξ,24, diξ,24

)
. Finally, Equation (11) contains 28 potential model solutions or combinations

of predictors Xt for each set of variables (m, ξ) and pair of countries (i, j).
Now, once performed the shrinking process involved in the mvROB procedure, I sup-

pose the following two findings are in order:

1. ξ2 is not relevant and then discarded from the system (absence of the 4-th covariate in
the model), but it shows some (potential) interactions with m1.

2. m1 does not depend on m2 and ξ1.

Thus, four additional results come in succession:

a. Z12,t−1 = Z22,t−1 = 0.
b. No conditional effect of Yi2,t−1 and Zi1,t−1 on Yi1,t given Yi1,t−1. More precisely, there

are no linear dependence of Yi1,t on Yi2,t−1 and Zi1,t−1 in the presence of Yi1,t−1.
c. (Biξ,j4 ·Yim,t−1) 6= 0 and (Biξ,j4 · Ziξ,t−1) = 0.
d. ϕ(= 3) < k(= 4) and then Nϕ(= 6)� NMK(= 32).

With these specifications, the CSUR model in (8) can be expressed as:

Yt
(4×1)

= X̃t
(4×32)

[ (
Φt

(32×6)
· φt
(6×1)

)
+ ut

(32×1)

]
with X̃t

(4×32)
= INM

(4×4)
⊗
(

Xt
(1×8)

+ ω
′
i,t

(1×8)

)
,

where the (Nϕ · 1) = (6 · 1) vector containing (compressed) the γc
t ’s parameters sets to

φt = (γ
′
im,11, γ

′
im,21,

γ
′
im,12, γ

′
im,22, γ

′
im,13, γ

′
im,23)

′
.

Let i1 = (1, 1, 0, 0)
′

and i2 = (0, 0, 1, 1)
′
, the (NMK × Nϕ) = (32× 6) conformable

matrix Φt can be displayed in the form of a Table in order to better understand its construc-
tion:

Φt :



Y11,t−1 Y21,t−1 Y12,t−1 Y22,t−1 Z11,t−1 Z21,t−1
Aim,11, ∆t 1 1 0 0 0 0
Aim,21, ∆t 1 1 0 0 0 0
Aim,12, ∆t 0 0 1 1 1 1
Aim,22, ∆t 0 0 1 1 1 1
Biξ,13, ∆t 0 0 1 1 1 1
Biξ,23, ∆t 0 0 1 1 1 1
Biξ,14, ∆t 1 1 0 0 0 0
Biξ,24, ∆t 1 1 0 0 0 0


. (12)

In Equation (12), some considerations are in order. (i) For simplicity, I do not explicit
i and (m, ξ). Thus, every matrix of coefficients has to be interpreted as expressed in 4 com-
ponents containing—as a whole—32 elements. (ii) Rows and/or columns equal between
them do not involve in multicollinearity problems since the matrix Φt is not estimated
in the mvROB procedure, but only used in shinkage of high dimensional parameter and
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model spaces. (iii) There are NM · Nϕ = 24 significant elements corresponding to those
set to 1 in Equation (12). (iv) According to the mvROB procedure, the final best subset of
predictors will correspond to the one with higher lBF.

3. Prior Specification Strategy and Posterior Distributions

The variable selection procedure entails estimating the parameters (Σδ, δt, φt, ψt) as
posterior means (the probability that a variable is in the model). In this context, mvCIPM
priors are used to hierarchically model them and then obtain analytical results:

π
(

Σ−1
δ , δ0, φ, ψ0

)
= π

(
Σ−1

δ

)
·∏

F
π(δ0) · π(φ) ·∏

F
π(ψ0),

where

π
(

Σδ|Yt, ψt

)
= IG

(
ω0

2
,

D0

2

)
, (13)

π(δ0|Ft−1) = N(0,κ), (14)

π(φt|Yt, ψt) = N
(

φ̄t−1|t−1, R̄t−1|t−1

)
, (15)

π(ψ0|Ft−1) = N(ᾱ, ρ̄). (16)

Here, N(·) and IG(·) stand for Normal and Inverse-Gamma distribution, respectively,
Ft−1 refers to the information given up to time t− 1, ψ0 denotes the initial conditions to be
estimated, and κ in (14) denotes the decay factor. This latter usually varies in the range
[0.9− 1.0] and controls the process of reducing past data by a constant rate over a period
of time.

According to the conjugate informative priors in (13) and (15), the posterior of the
Σδ’s and the φt’s depends on the draw of ψt. Moreover, ψt and Σδ are not independent of
one another. Thus, to allow different equations in the CSUR to have different explanatory
variables, I further model the hyperparameters in identifying φ and use Independent
Inverse Gamma (IIG) distribution for every draw of Σδ. Equations (13) and (16) are then
re-written as:

π
(

Σδ|Yt

)
= I IG

(
ω̄

2
,

D̄
2

)
,

π(ψ|Yt) = N(αψt , Λψt) with αψt ∼ N(0, ᾱ) , Λψt ∼ I IG
(

ν̄

2
,

ρ̄

2

)
.

All the hyperparameters are known. More precisely, collecting them in a vector
$ = (ω0, D0, ᾱ, ρ̄, ω̄, D̄, ν̄), they are treated as fixed and obtained either from the data to
tune the prior to the specific applications (such as ω0, ω̄, ν̄) or selected a priori to produce
relatively loose priors (such as D0, ᾱ, ρ̄, D̄). Finally, let φt evolve according to (7), a vari-
ant of Gibbs sampler approach—Kalman-filter technique—can be used through MCMC
integrations. Supposing that data run from (t = 0) to (t = T) in order to obtain a training
sample (t − 1, 0) and then to estimate the features of the φt’s over time, the (15) can be
re-written as:

π(φt|φt−1, Yt) = N
(

φ̄t|t, R̄t|t

)
,

where φ̄t|t and R̄t|t denote the conditional distribution of φt and its variance-covariance
matrix at time t given the information over the sample (t− 1, 0).

The posterior distributions for $̄ = (Σδ, δt, {φt}T
t=1, ψt) are obtained by combining the

conjugate informative priors with the conditional likelihood. This latter is proportional to:

L
(

Yt|$̄
)

∝
(

Ωt

)− T
2 · exp

{
− 1

2

[
∑

t

(
Yt − (X̃tΦt)φt

)′]
·Ω−1

t ·
[

∑
t

(
Yt − (X̃tΦt)φt

)]}
,
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where Yt = {Yt}T
t=1 denotes the data and $̄ is a vector collecting the unknowns whose joint

distribution needs to be found.
For the conditional posterior distribution of (φ1, . . . , φT |YT), the Kalman-filter tech-

nique provides the following forward recursions for posterior means (φ̄t|t+1) and covariance
matrix (R̄t|t+1):

π(φt|φt−1, YT) = N
(

φ̄t|t+1, R̄t|t+1

)
, (17)

where

φ̄t|t+1 = φ̄t|t +
T

∑
t=1

w|φ| ·
√

R̄t|t · Σ−1
δ ,

R̄t|t+1 =
[

INMK −
(

R̄t|t · R̄−1
t−1|t−1

)]
· (R̄t|t),

with

φ̄t|t = φ̄t−1|t−1 +
T

∑
t=1

(1−v) ·
√
(R̄t−1|t−1) · Σ−1

δ .

Here, R̄t|t and R̄t−1|t−1 refer to variance-covariance matrices of the conditional dis-
tributions of φ̄t|t at time t and φ̄t−1|t−1 at time t− 1, respectively, v = 0.92 denotes the
forgetting factor displaying the same function of the decay one, φ̄t−1|t−1

∼= 0.1, and w|φ|
denotes the Posterior Inclusion Probabilities (PIPs) obtained by the sum of the PMPs in (9).
The PIPs are computed according to the model size MK, through which the φt’s will require
a non-0 estimate or the γt’s should be included in the model. In this way, one would weight
more according to model size and—setting w|φ| large for smaller MK—assign more weight
to parsimonious model solutions.

Given (17), the other posterior distributions can be defined as:

π
(

Σδ|YT

)
= I IG

(
ω̂

2
,

D̂
2

)
, (18)

π(δ|YT) = N(0, κ̂), (19)

π(ψ|YT) = N(α̂ψt , Λ̂ψt). (20)

Here, some considerations are in order.
In Equation (18), ω̂ = ω0 · ω̄ and D̂ = D0 · D̄, with ω0 and D0 denoting the arbitrary

degree of freedom and the arbitrary scale parameter, respectively, ω̄ = (1−κ) and D̄ = S̄.
In this analysis, ω0 ∼= 0.01, D0 ∼= 1.0, and κ = 0.90.

In Equation (19), κ̂ = κ · exp{0.4 · κ}. The construction of κ̂ aims to put effort on
structural breaks affecting the time-varying parameters in Θt. More precisely, in time of
constant volatility (κ = 0), κ̂ will be close to the decay factor (0.90); conversely, in case of
highly large volatility changes (e.g., κ ∼= 1.0), κ̂ will assume higher values.

In Equation (20), α̂ψt ∼ N(0, α̂) and Λ̂ψt ∼ I IG(ν̂/2, Λ̂/2), where α̂ = ᾱ + (ε
′
itεit),

ν̂ = (ν̄ · κ), and Λ̂ = ρ̄ · κ̂. In this analysis, ᾱ ∼= 0.001 and ρ̄ ∼= 0.01 denote the arbitrary
scale parameters, and ν̄ ∼= 0.1 refers to the arbitrary degree of freedom. The inclusion of the
decay factor (κ) and the κ̂’s estimates in the covariance matrix (Λ̂ψt ) aims to absorb and
then replace volatility changes by coefficient changes.

4. Empirical Application
4.1. Data Description and Results

The SPBVAR in (1) contains 24 country-specific models, including 10 advanced
economies4, 9 emerging economies5, and 5 non-European Union countries6. All advanced
countries refer to Western Europe (WE) economies and all emerging countries—except
for GR—refer to Central-Eastern Europe (CEE) economies. All European countries are
Eurozone members, with the exception of CZ, HU, and PO, and thus interdependence,
heterogeneity (or homogeneity), and commonality can be investigated in depth.
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The estimation sample is expressed in quarters covering the period from December
1994 to March 2021, and all data comes from World Bank and OECD databases. Given the
hierarchical structural conformation of the model and a sufficiently large number of years
describing macroeconomic–financial and socioeconomic–demographic variables, it is able
to deal with: (i) endogeneity issues; (ii) policy-relevant strategies; and (iii) functional
forms of misspecification.

Given the CSUR in (8), the decomposed vectors of the lagged (observable) endoge-
nous variables (Yi,t−l , Zi,t−l) are: (i) Yo′

i,t−l denoting lagged outcomes to capture the

persistence; (ii) Yc′
i,t−l indicating general economic conditions; (iii) Zs′

i,t−l indicating

socioeconomic–demographic factors; and (iv) Zp′

i,t−l denoting macroeconomic–financial
variables (including policy tools). In this study, the outcome refers to country’s produc-
tivity measured through GDP per capita in logarithm (Table 1). The dataset contains
107 observable variables split in three groups: (i) Economic Status (hereafter, ECOST),
including 36 determinants combining information on economic conditions, economic de-
velopment, and labour market; (ii) Socioeconomic–demographic Statistics (hereafter,
SOCDEM), addressing 28 determinants concerning information on government health ex-
penditures and population growth; and (iii) Macroeconomic–financial Indicators
(hereafter, ECOFIN), referring to 43 determinants dealing with real–financial linkages and
financial markets. The estimation sample amounts, without restrictions, to 847, 584 regres-
sion parameters. More precisely, each equation of the time-varying SPBVAR in (1) has
K = Nk = 24 · [37 + 71] · 3 = 7776 coefficients (including lagged outcomes), with l = 3
denoting the optimal number of lags according to mvBIC, and 109 equations.

By running the shrinkage procedure described in Section 2.2, I find 34 best covari-
ates. Thus, there would be 2F = 2N f = 2816 (compressed) model solutions (MF ⊂ E ),
with Nϕ � NMK. The final model solution better performing the data consists of 20
final best subset of predictors, including lagged outcomes, with higher log Bayes Factor,
where lBF = 19.75, and Posterior Inclusion Probability (PIP) ≥ τ (Table 1 in bold). The
PIP corresponds to the sum of the PMPs in (9) for every best model solution. These
final covariates are so split: (i) predictor (1) for Yo′

i,t−3, predictors (2, 3, . . . , 9) for Yc′
i,t−3;

(ii) predictors (10, 11, . . . , 17) for Zs′
i,t−3; and (iii) predictors (18, 19, . . . , 34) for Zp′

i,t−3. All
their available lags—including lagged outcomes—are put as instruments on the estimating
procedure in order to deal with endogeneity issues and model misspecification problems.

Here, some preliminary results are addressed. (i) Let the Conditional Posterior Sign
(CPS) denote the sign certainty assuming values close to 1 or 0 whether a covariate in MF
has a positive or negative effect on outcomes (respectively), most of model uncertainty and
overfitting are deal with. Indeed, all predictors involved in the final model solution show
CPSs close to 0, such as predictors (21 and 30), and 1, such as predictors (1, 3, 5, 6, 7, 10, 11,
13, 16, 17, 25, 26, 34). (ii) When studying cross-country dynamic feedback, socioeconomic–
demographic factors and general economic conditions hold a relevant position and then
need to be accounted for. (iii) Macroeconomic–financial factors denote the indicators
that matter more to deal with endogeneity issues and misspecified dynamics being half
of the 34 best selected covariates (see, for instance, Pacifico (2019) and Pacifico (2021)).
(iv) Heterogeneity, interdependence, and co-movements are also addressed let the frame-
work be a multidimensional panel data.
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Table 1. Best Candidate Predictors—mvROB.

Idx. Predictor Label Unit PIP (%) CPS

ECONOMIC STATUS

1 GDPt−1 per capita, PPP dlgdp logarithm (current US$) 75.74 1.00
2 Employment in Industry empin total pop. (%) 0.65 0.54
3 Employment in Services empse total pop. (%) 63.13 0.96
4 Final Consumption Expenditure fexp % GDP 0.35 0.87
5 Gen. Gov. Final Cons. Expenditure fexp % GDP 37.72 0.95
6 GDP per capita Growth gdpg quarterly (%) 82.31 1.00
7 Labour Force labtot logarithm (total) 43.62 0.97
8 Total Debt Service totdeb export goods & services (%) 0.64 0.13
9 Trade in Services tradess % GDP 3.91 0.83

SOCIOECONOMIC–DEMOGRAPHIC STATISTICS

10 Dom. Gen. Gov. Health Expenditure gghe % GDP 43.31 0.96
11 Population Growth popg quarterly (%) 36.02 0.96
12 Fertility Rate frate births (total) 0.37 0.63
13 Gov. Expenditure on Education exedu % GDP 37.17 0.95
14 High-technology Exports hitech manuf. exports (%) 0.16 0.44
15 Urban Population Growth urbag quarterly (%) 30.94 0.87
16 Households Final Cons. Expenditure hfexp % GDP 23.74 0.95
17 Wage and Salaried Workers wage total employment (%) 73.28 0.99

MACROECONOMIC–FINANCIAL INDICATORS

18 Exports of Goods and Services exp % GDP 0.51 0.73
19 Imports of Goods and Services imp % GDP 0.47 0.68
20 External debt stocks exdeb logarithm (current US$) 0.47 0.07
21 Inflation Rate inf quarterly (%) 44.16 0.03
22 Bank Capital bcap asset ratio (%) 0.33 0.61
23 Bank Liquid Reserves blres asset ratio (%) 0.28 0.65
24 Foreign Direct Investment fdi % GDP 45.61 0.89
25 GNI Growth gni quarterly (%) 67.31 1.00
26 Gross Fixed Capital Formation gfcf % GDP 57.62 0.97
27 Net Financial Flows, Bilateral bfin logarithm (current US$) 2.95 0.57
28 Net Financial Flows, Multilateral mfin logarithm (current US$) 3.04 0.59
29 Trade trade % GDP 38.13 1.00
30 Unemployment Change unem total labour force (%) 73.64 0.00
31 Gross Savings gsav % GDP 23.51 0.84
32 Net Financial Account bop logarithm (current US$) 28.13 0.89
33 Net Foreign Assets netfa logarithm (current US$) 4.67 0.52
34 Credit Growth credit % GDP 54.41 1.00

- GDP per capita, PPP lgdp logarithm (current US$) - -

The Table is so split: the first column denotes the predictor number; the second and the third column display
the predictors and their labels, respectively; the fourth column describes the measurement unit; and the last two
columns display the PIPs (in %) and the CPS, respectively. The last row refers to the outcomes of interest at time
t. All contractions stand for: Gen. Gov., ’General Government’; Cons., ’Consumption’; Dom., ’Domestic’; pop.,
’population’; and manu f ., ’manufactured’. All data refer to World Bank and OECD databases.

4.2. Forecasting Results and Policy Issues

Let the final subset consist of 20 (potential) best subset of predictors, cross-country
spillover effects—given an unexpected shock—are evaluated in order to highlight the
performance of the CSUR in (8) (hereafter, CSURv). A total of 10, 000 draws for every
model solution has been used to conduct posterior inference at each t. Conditional density
forecasts are then obtained according to a time frame of 8 quarters (2 years) in order to
investigate how policy issues and their implications would affect cross-country economic
dynamics. Informative conjugate priors refer to three subsamples: (i) 2006q1–2009q4 to
deal with policy regime shifts concerning the global financial crisis; (ii) 2010q1–2018q4
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to evaluate postcrisis fiscal consolidation periods; and (iii) 2019q4–2021q1 to absorb
volatility changes due to the ongoing disease outbreak on the global economy.

Given the φt’s estimates—in terms of posterior means—concerning the 20 selected
predictors and their interactions (lagged effects), Systemic Contribution (SC) indexes are
constructed to evaluate and quantify dynamic features associated with systemic events
(excess spillover effects). The SCs are able to capture persistent long-run effects of an
impulse variable (net sender) to the response variable (net receiver) and is defined as the
ratio between Bilateral Net Spillover Effects and Total Net Positive Spillovers of the system
(see, for instance, Pacifico (2019) for further specifications). Thus, a cross-country spillover
analysis can be performed supposing (jointly) unobserved volatility changes in financial

economy (Zp′

i,t−3) and unexpected shocks in real economy (Y
′
i,t−3 and Zs′

i,t−3). Conditional
projections are then used to include forecasts from 2021q2 to 2023q1. Finally, to put more
emphasis on volatility changes, the estimation results are compared with a similar model
but assuming constant volatility (hereafter, CSURnv). In this latter, the variance-covariance
matrix of εi,t is homoscedastic (Ω) and then volatility changes are missing.

The aim of this analysis is to highlight the importance of accounting for socioeconomic–
demographic factors and policy regime shifts when investigating international spillover
effects in the last decade. All countries are grouped in three macro-areas: (1) advanced
economies (hereafter, AVE), such as AU, BE, FI, FR, DE, IE, IT, NL, ES, and PT; (2) emerging
economies (hereafter, EME), such as CZ, EE, GR, HU, LV, LT, PO, SK, and SV; and (3) non-
European Union countries (hereafter, NEU), such as CH, JP, KO, GB, and US. All series are
expressed in standard deviations with respect to the same quarter of the previous year
(qt/qt−1), and the real GDP per capita in logarithmic form (lgdp) is used to evaluate and
quantify the size and the spreading of cross-country international spillover effects over time

given a 1% unexpected shock on the variables within the system:
(
[Yo′

i,t−3, Yc′
i,t−3]

′
, [Zs′

i,t−3,

Zp′

i,t−3]
′
)

.
Four main findings are in order. (i) Persistent heterogeneity and interdependence

(common trends) matter among countries and sectors (Figure 1a). Moreover, most ad-
vanced and emerging countries tend to be net senders (positive SCs) and net receivers
(negative SCs), respectively. These results find confirmation with previous works, highlight-
ing the need to support ’quasi-flexible’ coordinated structural policy actions in order
to ensure: higher homogeneous real economic convergence among countries; stronger
international business cycle synchronization, mainly among emerging economies; and
faster reinforcement in financial systems, mainly with the ongoing pandemic crisis (see, for
instance, Pacifico (2021)). (ii) These findings are better highlighted in Figure 1b, where
every endogenous factor is gathered together in the three country-specific groups. Con-
cerning AVE, they would be net senders in ECOST and net receivers in ECOFIN and SOCDEM,
NEU show stringent outward spillover effects, and EME are mainly net receivers except
for SOCDEM. From a policy and global perspective, this implies that, given an unexpected
shock, advanced economies directly affect countries with middle and low economic status
(outward spillovers) and then absorb structural fiscal adjustments for boosting the output
to potential growth (inward spillovers). Conversely, emerging economies—with lower
socioeconomic status—initially do not fight back against unexpected shocks (outward
spillovers in SOCDEM), but strongly react to shocks in real economy and even more in fi-
nancial markets because of stronger cross-country financial linkages (inward spillovers).
Finally, outward spillovers in NEU confirm their importance about international spillover
effects affecting European financial shocks (see, for instance, Pacifico (2020a) and Curcio
et al. (2020)). (iii) Highly consistent cross-country heterogeneity across spillovers’ dy-
namics matters more in ECOST, followed by ECOFIN and SOCDEM (Figure 1c). Thus, when
investigating cross-country international spillovers, the performance of an economy to
face sudden and unpredictable events (e.g., economic shocks) needs to be assessed, mainly
evaluating conditional density forecasting in time of increasing volatility changes (misspec-
ified dynamics due to structural breaks). (iv) Finally, the empirical analysis confirms the
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importance to account for socioeconomic-demographic factors for performing conditional
density forecasts in multivariate settings (Figure 1c). Indeed, examinations of socioeco-
nomic status are useful to reveal inequities in access to resources along with (endogeneity)
issues related to real economy and financial markets (ECOFIN). Thus, the latter stand for
important drivers in evaluating the economic growth of a country affecting the spreading
and the intensity of spillover effects (see, for instance, Curcio et al. (2020); Pacifico (2019,
2020a) and Ciccarelli et al. (2018)). It means that a high rate of economic growth entails
an expansion in economic output and—in turn—higher socioeconomic status strongly
affecting outcomes (misspecified dynamics due to cross-country linkages).

(a) Country–specific Spillovers—Overall Period (b) Common Spillovers—Overall Period

(c) Variable–specific Spillovers—Overall Period

Figure 1. Systemic Contributions of the productivity given a 1% shock to the variables within the
system are drawn as standard deviations and split in the three cross-country variable groups: (i) eco-
nomic status (ECOST); socioeconomic–demographic factors (SOCDEM); and macroeconomic–financial
variables (ECOFIN). All estimates are expressed in posterior means and refer to country–specific
(plot a), common (plot b), and variable–specific (plot c) spillover effects.

The previous findings are deepened in Figure 2 by focusing on the three subsamples.
Concerning the results obtained through the CSURv model (Figure 2a), from a mod-

elling perspective, the spreading of spillover effects are larger due to triggering events,
mainly in ECOST confirming the importance to account for the economic status of a country.
In this context, AVE show higher responses and tend to be net receivers (inward spillovers)
with respect to EME, let economic conditions be highly affected by stronger inter-country
linkages in their financial dimension. As in Pacifico (2021), EME tend to be net senders
(outward spillovers) to catch up with the economic growth of the other advanced European
countries. Finally, positive spillovers among NEU highlight their role of main drivers affect-
ing the spreading of spillovers. According to SOCDEM, emerging economies are the only
net senders within the system because of lower socioeconomic status, and then reacting
ex-post when facing health crisis. Finally, dealing with macroeconomic–financial factors,
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emerging economies show larger and negative spillover effects. From a policy perspective,
these findings highlight the stringent interdependencies and economic–institutional link-
ages across advanced countries and larger fiscal adjustments across emerging ones. Thus,
the analysis confirms the need to encourage the use of ’quasi-flexible’ policy measures
that consist of two steps (see, for instance, Pacifico (2021)). (i) Coordinated and focused
policy interventions so as to deal with the stringent economic–institutional linkages among
countries even if not European members (e.g., trade and capital transmission channels,
international business, and other organisations facing international climate efforts and
crisis-management operations such as NATO)7. (ii) Flexibility to adopt stringent or
more prolonged measures according to the cross-country heterogeneous economy, without
overlooking the correct guidance to governments facing sudden socioeconomic–political
changes.

Having a look at the results conforming to constant volatility (CSURnv model in
Figure 2b), higher cross-country commonality and homogeneity matter, mainly among
ECOST and ECOFIN since coefficient changes are affected by macroeconomic–financial link-
ages only. In addition, spillover effects are mostly outwards, except for emerging economies
in ECOST and ECOFIN due to lower economic status. Overall, the intensity of spillovers is
lower than the one in CSURv model not accounting for volatility changes.

(a) Common Spillovers—CSURv Model (b) Common Spillovers—CSURnv Model

Figure 2. Systemic Contributions of the productivity given a 1% shock to the variables within
the system are drawn as standard deviations and split in the three cross-country variable groups:
economic status (ECOST); socioeconomic–demographic factors (SOCDEM); and macroeconomic–financial
variables (ECOFIN). All estimates are expressed in posterior means and refer to crisis and postcrisis
periods dealing with common spillover effects through CSURv (plot a) and CSURnv (plot b) models.

Conditional density forecasts are displayed in Figure 3 to summarise and highlight
the main previous findings. A total of 1000 retained replications has been used to conduct
posterior inference at each t, where the convergence has been obtained by amounting
about to 1 draw per regression parameter. I recall that the outcomes absorb the conditional
forecasts computed for a time frame of 2 years (8 quarters), and the natural conjugate
prior refers to the three subsamples: (i) 2006q1–2009q4, according to the Great Recession;
(ii) 2010q1–2018q4, dealing with postcrisis fiscal consolidation periods; and (iii) 2019q4–
2021q1, investigating further volatility changes due to the ongoing pandemic disease.
In Figure 3, the yellow and red curves denote the 95% confidence bands, and the blue and
purple curves denote the conditional and unconditional projections of outcomes YT for
each N country indexes and T time periods.
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Figure 3. The plot draws density forecasts for outcomes (YT) split in the three country groups:
non-European Union countries; advanced countries; and emerging economies. All time-varying
parameters are posterior means and correspond to conditional (blue line) and unconditional (purple
line) projections of every best predictor evaluated through the CSURv model in (8).

From a modelling perspective, three main findings are addressed. (i) Advanced
and non-European Union countries show similar spillovers’ dynamics (top- and middle-
plot), but with different spreading and intensity (endogeneity issues). (ii) Conversely to
unconditional projections, the conditional ones lie in the confidence interval highlighting
better forecasting accuracy. Thus, when investigating international spillovers and dynamic
feedback in a challenging unified framework, different set of variables need to be dealt with
(misspecified dynamics due to cross-country linkages). (iii) Mostly outward countries’
responses in AVE and NEU emphasize their role in driving the transmission of (global)
unexpected shocks, and then their stringent economic recovery, even if uneven and—
sometimes—overstrict (misspecified dynamics due to structural breaks).

From a policy perspective, the results highlight greater caution to fine-tune the econ-
omy via policy measures and boost productivity to potential growth via accurate structural
reforms. In this context, a hint of boosting productivity to potential (even if lower) growth
can be observed among countries in the next years, mainly among advanced and non-
European Union countries. It highlights strong heterogeneity in economy to be managed
carefully, affecting inter-related production and consumption activities that would aid in
determining how cross-country recovery resources need to be allocated.
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5. Simulated Experiment and Forecasting Accuracy

In this section, a simulated experiment is addressed to highlight and discuss the
performance of the estimating procedure of CSURv model in (8) by using Monte Carlo sim-
ulations. Four additional related models are accounted for: (i) Structural Panel Bayesian
VAR with Multivariate Time-varying Volatility (SPBVAR-MTV) as in Pacifico (2021), where
volatility changes are not replaced by coefficient changes but integrated out; (ii) CSURnv
model, with constant volatility; (iii) BCVAR as in Koop et al. (2019), with stocastic
volatility; and (iv) Factor-Augmented VAR (FAVAR) as in Bernanke et al. (2005), with
volatility changes.

Here, some considerations are in order. In the former (SPBVAR-MTV), (potential)
structural breaks, even if treated—by construction—as permament shifts, are re-evaluated
at each time period. Thus, in contrast to CSURv, excess spillover effects on outcomes
would be more stressed. As regards CSURnv, the variance-covariance matrix of εi,t is
homoscedastic (Ω) and then volatility changes are missing. According to BCVAR, non-
informative priors are used to obtain analytical posteriors for both Ω and σ2

i . In that
context, Ω would be modelled through a triangular decomposition and σ2

i would stand for
volatility changes observed in the vector ωi,t ∼ N(0, IN). Finally, FAVAR model is obtained
by selecting the optimal (best) number of factors through principal component methods
and using non-informative priors to perform forecasting.

According to model features in Section 2.3, a relatively large value for the lag length
(l = 5) is chosen for all methods with no intercept. Then, two distinct sets are constructed:
a training set by simulating 120 variables as independent standard normal vectors for
N = 15 and T = 100 time-series data; and a prediction set by generating 100 additional
observations in the same manner. Let the thrust of this analysis be to measure forecasting
accuracy and estimating process performance of the proposed methodology, I estimate
every model by keeping its framework. More precisely, stacking for all supposed variables,

* SBCPVAR model for CSURv and CSURnv:

Ys
i,t = As

i,j(L)Ys
i,t−λ + Bs

i,j(L)Zs
i,t−λ + ε

s
i,t,

where s stands for ’simulated’ and the 120 supposed variables are split for Ys
i,t−λ

and Zs
i,t−λ equally (60 supposed predictors for each composed vector). Thus, the

(simulated) estimation sample amounts, without restrictions, to 900, 000 regression
parameters, with K = Nk = 15 · [60 + 60] · 5.

* SPBVAR-MTV model:

Ys
i,t = As

i,j(L)Ys
i,t−λ + Bs

i,j(L)Ws
i,t−λ + B̈s

i,j(L)Ẅs
i,t−λ + Cs

i,j(L)Zs
i,t−λ + ε

s
i,t,

where the 120 supposed variables are split for Ys
i,t−λ, Ws

i,t−λ, Ẅs
i,t−λ, and Zs

i,t−λ equally

(30 supposed predictors for each vector). In this context, εi,t ∼ i.i.d.N(0, Σs
t ), with

Σs
t = diag

(
exp(hs

1t), exp(hs
2t), . . . , exp(hs

Nt)
)

and hs
t = (hs

1t, hs
2t, . . . , hs

Nt)
′

denoting the

(simulated) time-varying log-volatilities stacked for i, with K = Nk = 15 · [30 + 30 +
30 + 30] · 5.

* BCVAR model:
Ys

i,t = Θ̈s
i,t(Φ̈iZ̈

s
i,t) + σ

s
i,tωi,t,

where Θ̈s
i,t contains matrices of coefficients concerning (simulated) lagged outcomes

and elements of Ωs obtained by following a triangular decomposition, Φ̈i refers to
the randomly projection matrix shrinking the parameter space, Z̈s

i,t is a vector con-

taining the observable (simulated) outcomes observed at time t and t− λ, and σ
s
i,t
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denotes the (simulated) standard deviations of the volatilities associated to the vector
ωi,t ∼ N(0, IN)

8, with N = K.

* FAVAR model:
Ỹs

i,t = Λs
i,j F̈

s
i,t−λ + ε̈

s
i,t,

where Ỹs
i,t follows a VAR(l) process, Λs

i,j denotes the matrix of coefficients concerning

(simulated) lagged outcomes, F̈s
i,t−λ refers to the vector of lagged (simulated) outcomes,

and ε̈
s
i,t ∼ N

(
0, ΣỸs

i,t
)

, with N = K.

Forecasting accuracy is performed by computing the multivariate Weighted Mean
Squared Forecast Error (WMSFEij,h̃), with h̃ ∈ {1, 2, 3, 4, 8} referring to the step-ahead
predictive density forecasts evaluated at (t− 1, T). It is so obtained:

WMSFEij,h̃ =
∑T+h̃

t=t−1 weij,T+h̃

∑T+h̃
t=t−1 webmk,T+h̃

,

where weij,T+h̃ = (e
′

ij,T+h̃
· w|φ| · eij,T+h̃) and webmk,T+h̃ = (e

′

bmk,T+h̃
· w|φ| · ebmk,T+h̃) denote

the weighted forecast errors of every simulated model and the benchmark one at time
T + h̃, respectively, eij,T+h̃ and ebmk,T+h̃ are the (K · 1) vector of forecast errors, and w|φ|
refers to the PIPs in order to put more weight on large errors. The benchmark model used
in this analysis corresponds to a VAR(1) process with constant volatility and no cross-unit
lagged interdependencies and structural time variations. It has the form:

Yt = a0 + A1Yt−1 + εt, (21)

where Yt = (y1t, y2t, . . . , ynt)
′

is a n · 1 vector of time-varying outcomes for each i at time t,
with i = 1, 2, . . . , n denoting the country index, a0 denotes intercepts, A1 is a n× n matrix
of lagged coefficients for each i, Yt−1 is a n · 1 vector of lagged outcomes for each i at time
t − 1 (only one lag), and εt ∼ N(0, Ω) is a n · 1 unobserved white noise vector process
serially uncorrelated (or independent) with zero mean and time invariant covariance matrix
(Ω). Because of each equation has the same regressors (lagged values of yit), the VAR(1)
in (21) can be just written as a SUR model with lagged variables and deterministic terms as
common regressors so as to be compared with every supposed model.

Table 2 displays the (theoretical) WMSFEij,h̃ estimates computed simulating all five
supposed models with respect to the benchmark one displayed in (21). Four main findings
are addressed. (i) According to absence of volatility changes (such as CSURnv), lower
weighted forecast errors are obtained than high dimensional multicountry data (such as
FAVAR and SPBVAR-MTV), by reaching a not bad significance for the first two periods
ahead. Thus, a compressed regression in shrinkage of large parameter and model spaces
tend to perform better. (ii) Bayesian random compression method with stochastic volatil-
ity (such as BCVAR) shows significant estimates in the short-term and results close to
the CSURnv ones, highlighting the need to impose a robust Bayesian model averaging
procedure when modelling time-varying and inter-related factors. (iii) Multivariate
time-varying volatilities (such as SPBVAR-MTV) performs better than FAVAR but worse
than Bayesian compressed methods due to its quite expensive associated computational
costs compared to huge estimation sample (≥35,000)9. (iv) The lowest weighted forecast
errors are displayed in the CSURv model according to its hierarchical (structural) prior
specification strategy and shrinking process. Thus, the most amount of variability (or
dispersion) is adequately explained from the estimating procedure. In addition, let the
framework be multidimensional (panel data analysis), it would perform better dealing for
either endogeneity or valitility issues.
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Table 2. Forecasting Accuracy.

Forecast FAVAR SPBVAR-MTV BCVAR CSURnv CSURv

h̃ = 1 1.053 1.046 0.931 ** 0.932 ** 0.904 ***
h̃ = 2 1.037 1.021 0.939 * 0.929 ** 0.898 ***
h̃ = 3 1.028 1.019 0.957 0.965 0.913 **
h̃ = 4 1.025 1.013 0.974 0.981 0.927 **
h̃ = 8 1.010 1.004 0.981 0.998 0.908 ***

The first column denotes the h̃-step-ahead predictive density forecasts evaluated at (t− 1, T), and the remaining
five columns refer to the (theoretical) WMSFEij,h̃ estimates computed for every supposed model. The significance
codes stand for: (*) significance at 10%; (**) significance at 5%; and (***) significance at 1%.

6. Concluding Remarks

This paper improves the Bayesian compressed regression literature concerning VAR
models with time-varying parameters and stochastic volatilities. The proposed method-
ology is obtained by combining and implementing the underlying logic in the Pacifico
(2020b)’s analysis, which highlights the need to select the best subset of predictors through
MCMC-based Posterior Model Probabilities rather than random draws, and the estimating
procedure used in Pacifico (2021), by jointly modelling high dimensional parameter and
model spaces. Multivariate Conjugate Informative Proper Mixture priors are addressed
to select the best model solution (or combination of predictors) fitting the data, acting as
a strong model selection in large model classes. Finally, MCMC algorithms are used to
construct exact posterior distributions and shrink jointly VAR parameters and volatility
elements in order to perform accurate cross-country forecasts and policy issues.

An empirical application is developed by accounting for a large set of macroeconomic–
financial and socioeconomic–demographic variables to highlight the performance of the
methodology proposed in this study. Thus, conditional density forecasts and strategic
policy measures investigating either the impact of COVID-19 pandemic or real/financial
shocks on the economic activity are performed.

A simulated experiment—compared to related works—is also addressed to discuss
theoretical properties and forecasting accuracy through Monte Carlo simulations. The
findings prove that the hierarchical (structural) prior specification strategy and shrinking
process perform lower weighted forecast errors and then better conditional density forecasts
when studying large set of time-varying data with policy shifts and volatility changes.
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Notes
1 In econometrics, predetermined variables denote covariates uncorrelated with contemporaneous errors, but not for their past and

future values.
2 These can be easily added in a straightforward fashion with a NM · 1 vector of intercepts and an identity matrix of size NM in the

vector Xt. In the empirical and simulated applications, time-varying coefficients that multiply constant terms are added anyway.
3 In Bayesian analysis, posterior concistency ensures that the posterior probability (PMP) concentrates on the true model.
4 Austria (AU), Belgium (BE), Finland (FI), France (FR), Germany (DE), Ireland (IR), Italy (IT), Portugal (PT), and Spain (ES).
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5 Czech Republic (CZ), Estonia (ES), Greece (GR), Hungary (HU), Latvia (LV), Lithuania (LT), Poland (PO), Slovak Republic (SK),
and Slovenia (SV).

6 China (CH), Japan (JP), Korea (KO), United Kingdom (GB), and United States (US).
7 It is worth noting that the ongoing triggering events in the world due to the Russo-Ukrainian War are not included in the analysis

but evaluated through conditional density forecasts.
8 Φ̈i and ωi,t do not need to be described through the superscript ’s’ corresponding to randomly projections and country indexes

(i), respectively.
9 See, for instance, Pacifico (2021).
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