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Preface

GRASPA 2021 is the biennial conference of the Italian research group for Environ-
mental Statistics GRASPA-SIS and the major event on Environmental Statistics in
Italy. GRASPA 2021 is also the 2021 European regional conference of The Inter-
national Environmetrics Society and a Satellite Meeting of the 2021 World Statis-
tics Congress. GRASPA 2021 endorses cooperation among statisticians, academics
from environmental sciences, and practitioners from government and independent
environmental agencies, creating a space for exchanging experiences and ideas on
various aspects relevant to protecting the natural environment. GRASPA 2021 is an
opportunity to share research interests related to the development and the use of sta-
tistical methods in environmental sciences, fostering methodological developments
and applications in various environmental fields. This year the online choice for the
conference may seem to limit personal exchanges and discussions. We prefer to view
it as the occasion to learn how to use newways to communicate effectively.We imag-
ined a workshop with fewer talks, but all in plenary sessions, posters transformed to
short videos and zoom rooms to allow exchanges in small groups. We hope to meet
in person very soon and, in the meantime, keep the scientific exchange alive with
whatever tool we can use.

Rome, Giovanna Jona Lasinio
June 2021 Francesco Lagona
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Part I
Keynote sessions





Spatial “Data Science” Meets Bayesian Inference

Sudipto Banerjee

Abstract Geographic Information Systems (GIS) and related technologies such as
remote sensors, satellite imaging and portable devices that are capable of collecting
precise positioning information, even on portable hand-held devices, have spawned
massive amounts of spatial-temporal databases. Spatial "data science" broadly refers
to the use of technology, statistical methods, computational algorithms to extract
knowledge and insights from spatially referenced data. Applications of spatial-
temporal data science are pervasive in the natural and environmental sciences;
economics; climate science; ecology; forestry; and public health. With the abun-
dance of spatial BIG DATA problems in the sciences and engineering, GIS and
spatial data science will likely occupy a central place in the data revolution engulfing
us. This talk will provide an overview of the various challenges data scientists are
encountering in analysing massive spatial-temporal data sets in diverse applications.
We will begin with a description of different types of spatial data structures and the
relevant data analytic questions they pose. We will show, with several examples, the
importance of formal statistical inference and, in particular, the many benefits of
Bayesian modeling for spatial and spatial-temporal data. We will elucidate recent
developments in Bayesian statistical science that harness high performance scientific
computing methods for spatial-temporal BIG DATA analysis and emphasize how
such methods can be implemented on very modest computing architectures (such
as a laptop). The talk will include specific examples of Bayesian hierarchical mod-
eling in Light Detection and Ranging (LiDAR) systems and other remote-sensed
technologies; environmental sciences; and public health.

Department of Biostatistics CHS UCLA Fielding School of Public Health, Los Angeles CA e-mail:
sudipto@ucla.edu
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A year of Covid-19 pandemic in Italy: impact on
air pollution and mortality

Michela Cameletti

Abstract The Covid-19 pandemic exploded worldwide in early 2020 has given
rise to an enormous amount of research questions across a wide range of research
fields, including medicine, economy and psychology among others. In this context,
data and statistical models have been playing a major role in the production of
scientifically sounds and empirical based results. This talk will discuss two research
applications connected with the pandemic. The first part of the talk will regard a
comprehensive analysis of the spatio-temporal differences in excess mortality during
2020 in Italy. A spatio-temporal Bayesian model will be presented for the prediction
of all-cause weekly deaths and mortality rates at the province level, while adjusting
for age, localised temporal trends and the effect of temperature. It will be shown
that there are significant differences across gender and geographical areas and that
lockdown measures seem to be effective in reducing mortality. The second part of
the talk will focus on the effect of the first lockdown (in Spring 2020) on air quality
and pollutant concentrations in Lombardia region (Italy). Given the complexity of
air pollution in the Po Valley, it is well known that a reduction in emissions, due
to the lockdown or other restrictions, does not automatically lead to a significant
decrease in concentrations. This is because other factors such as weather conditions
and chemical–physical reactions occurring in the atmosphere play an important role
in the dynamics of air pollution. Thanks to a spatio-temporal Bayesian model we
will be able to show the differences, in terms of NO2 concentrations, between 2020
and the previous years with a weekly temporal resolution. More importantly, this
information will be available across the entire region, also where no monitoring
stations are available. The effect of the lockdown on air quality will be evident, even
if with some geographical peculiarities.

University of Bergamo, Italy e-mail: michela.cameletti@unibg.it
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Global Woodfuel Production: A Simple Model?

E. Ashley Steel

Abstract Woodfuel, just sticks or lumps of charcoal, is the core of essential global
systems: energy, human health, and ecology. An estimated 2.8 billion people use
woodfuel as a primary energy source. The use of woodfuel is a significant contrib-
utor to household air pollution and the third leading risk factor of disease burden
worldwide. Globally, woodfuel production may also be a driver of deforestation
and forest degradation. For statisticians, estimating exactly how much woodfuel is
produced or consumed is a particular challenge because so much of woodfuel pro-
duction and trade is informal and unregistered. Over the past two years, FAO’s Forest
Products and Statistics Team, which provides the best available global data on pro-
duction and trade of forest products via FAOSTAT, has taken the lead in updating the
model, or collection of models, used to estimate national woodfuel production where
countries do not supply official data. I will describe the development of a conceptual
model to underpin the work, insights from a systematic country-by-country search
for new data, and trade-offs in final model selection. I will conclude with the essential
interaction between topical knowledge and statistical knowledge, the importance of
mapping information flow, and thoughts on what constitutes a “simple” model.

Food and Agriculture Organization UN, Rome Italy e-mail: Ashley.Steel@FAO.org
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Part II
Session 1: Environmental spatio-temporal

statistics





Effects of COVID-19 Control Measures on Air
Quality in North China

Song Xi Chen

Abstract Corona Virus Disease-19 (COVID-19) has substantially reduced human
activities and the associated anthropogenic emissions. This study quantifies the ef-
fects of COVID-19 control measures on six major air pollutants over 68 cities in
North China by a Difference in Relative-Difference method that allows estimation
of the COVID-19 effects while taking account of the general annual air quality
trends, temporal and meteorological variations, and the spring festival effects. Sig-
nificant COVID-19 effects on all six major air pollutants are found, with NO2 having
the largest decline (-39.6%), followed by PM2.5 (-30.9%), O3 (-16.3%), PM10 (-
14.3%), CO (-13.9%), and the least in SO2 (-10.0%), which shows the achievability
of air quality improvement by a large reduction in anthropogenic emissions. The
heterogeneity of effects among the six pollutants and different regions can be partly
explained by coal consumption and industrial output data. This is a joint work with
Xiangyu Zheng, Bin Guo, and Jing He.

Keywords: Difference in Relative-Difference method, Meteorological adjustment,
Treatment effects estimation

Song Xi Chen,
Peking University, Beijing 100871 P.R. China, e-mail: songxichen@pku.edu.cn
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Model selection and inference in spatio-temporal
models using a penalised likelihood approach

Paolo Maranzano, Alessandro Fassò and Philipp Otto

Abstract In this paper we discuss model selection techniques based on penalised
likelihood and LASSO regularisation [2, 1] for geostatistical models. In particular,
we are interested in applying feature selection algorithms to the Hidden Dynam-
ics Geostatistical Models, or HDGM, [6] using a multiple-stage approach. HDGM
represents the phenomenon of interest using a mixed-effects structure, in which
the random-effect term describes the spatio-temporal dynamics and the fixed-effect
component models the interaction between the response variable and exogenous phe-
nomena via linear regression. Our focus is on identifying a procedure to select the
subset of relevant covariates included in the fixed-effect component. Feature selection
issues in geostatistical framework are receiving great attention from researchers due
to the increasing availability of georeferenced data. Recent contributions proposed
model selection strategies based on graphical-LASSO algorithms ([9]) or penalised
likelihood methods with covariance-tapering ([8]). Here we propose a multistage
algorithm which integrates model estimation, parameters shrinkage and forecasting
performances evaluation. We suggest using a scheme that combines the reduction of
the initial number of predictors using a LASSO-like mechanism and the selection of
the optimal model via spatio-temporal and spatial cross-validation. Suchmethods are
applied to both simulated and real-world data. The empirical data concerns the case
study of airborne pollutant concentrations observed during the lockdown period im-
posed in 2020 to face the COVID-19 virus spread in Northern Italy. Spatio-temporal
models are common tools in statistical air quality control. In this context the number
of exogenous factors involved, e.g. weather and seasonal components, can grow very
rapidly and negatively affecting the computational demand. For this reason, feature
selection covers a remarkable role.

Paolo Maranzano & Alessandro Fassò
University of Bergamo, Dept. of Management, Information and Production Engineering, Via Pa-
subio 7, Dalmine, Italy, e-mail: paolo.maranzano@unibg.it

Philipp Otto
Institute of Cartography and Geoinformatics, University of Hannover Germany e-mail: philipp.
otto@ikg.uni-hannover.de
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Key words: Spatio-temporal models, PMLE, LASSO, Feature selection, Spatio-
temporal cross-validation, HDGM
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Boltzmann-Gibbs Models for Spatiotemporal
Data

Dionissios T. Hristopulos

Abstract Boltzmann-Gibbs (BG) models enforce spatial (temporal) dependence by
means of interactions at neighboring sites and/or times. The interactions are incorpo-
rated in a scalar energy functional which acts as the exponent of the exponential BG
density. For Gaussian BGmodels, the spatial structure of the interactions determines
the model’s precision matrix. The latter is sparse by construction if the interactions
are local. This property can lead to computationally efficient, estimation, interpola-
tion and simulation algorithms. This contribution reviews Boltzmann-Gibbs models
in relation to spatial and space-time data. Three different topics are discussed: (1)
The construction of new covariance models. (2) The connection of lattice-based BG
models to Gauss-Markov random fields. (3) Extensions to irregular grids by means
of interactions modulated via kernel functions.

Keywords: spatial estimation, kriging, space-time models, big data, interpolation,
kernel function

1 Introduction

Boltzmann-Gibbs (BG) models have their roots in statistical physics and the early
works of Boltzmann and Gibbs on statistical mechanics [Feynman, 1982]. The main
idea is that different realizations of “interacting random variables” can be repre-
sented in terms of exponential probability density functions f ∼ exp(−H), where H
are suitably defined energy functions. Sets of interacting random variables on spa-
tiotemporal domains represent space-time random fields. A famous BG paradigm
is the magnetic Ising model [Ising, 1925] which is equivalent to the auto-logistic
model of Besag in spatial statistics [Besag, 1972].
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In the following, we refer to both the random field and its realizations (states)
by x(s), s ∈ D ⊂ Rd . In continuum domains the states represent functions and
on discrete domains (grids) vector variables. The energy H is a functional of the
random field states x(s). The functional form of H determines the joint probabil-
ity density function via f ∼ exp(−H). Gaussian random fields are obtained if H
is a quadratic functional of x(s). In contrast with the common definition used in
statistics, BG random fields are defined in terms of the interactions incorporated in
the energy functional instead of the mean and covariance function. The interactions
couple values of the states at different locations (and/or times); for Gaussian fields
defined on discrete domains the interactions determine the precision matrix (inverse
covariance). In the continuum case, the inverse covariance corresponds to a precision
operator [Hristopulos, 2020].

The main reasons for studying BG models are the following: (1) Development of
new covariance models that provide parametric flexibility. (2) Generation of efficient
and intuitive local models for regular grids. (3) Extensions to irregular grids. In cases
(2) and (3) the models are defined in terms of sparse precision matrices leading to
computationally efficient approaches for estimation, interpolation and simulation.

2 BG Models defined in Continuum Domains

Spatial covariance models: Let us consider BG scalar Gaussian random fields
Rd 7→ R with energy expressed by means of the integral

H =
1
2

∫
Rd

x(s) pM (L)x(s) ds , (1)

where pM (L) =
∑M

m=0 cm∇2m is a polynomial of the Laplacian operator L = ∇2.
Proper definition of the derivatives requires the formalism of generalized random
fields [Gelfand et al, 2014 ]. Furthermore, let the image of pM (L) under the Fourier
transform be p̃M (k) =

∑M
m=0(−1)mcmk2m, where k is the Euclidean measure of the

wavevector (spatial frequency vector) [Lighthill, 1958]. Assuming that p̃M (k) has no
real-valued roots, Eq. (1) defines an admissible energy functional which corresponds
to a radial spectral density given by rational function C̃(k) = 1/p̃M (k).

BG covariance functions for M = 2 were obtained in [Hristopulos, 2003,
Hristopulos and Elogne, 2007,Hristopulos, 2015]. Covariances for general M (hence-
forward, BG-M) were obtained in [Yaremchuk and Smith, 2011]. BG-M (M > 2)
models were derived from rational spectral densities without connection to BG ran-
dom fields. BG-M models can have spectral densities with multiple modes which
are useful for modeling ocean waves.

The interesting property of M = 2 BG covariance functions is that in one dimen-
sion (i.e., for time series or drill-hole data), they generate the three different regimes
(underdamped, overdamped, critical) corresponding to the covariance of a linear
damped harmonic oscillator driven by white noise [Hristopulos, 2020]. In two- and
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three- dimensional domains they retain the three-regime form and provide functions
of the spatial lag with oscillatory and heavily damped dependence. The parameters
of BG-2 covariance functions involve, in addition to the variance and characteristic
length, a dimensionless rigidity coefficient which determines the respective regime.

Karhunen-Loéve expansion: In one dimension the Karhunen-Loéve (KL) rep-
resentation of BG-2 covariance functions over a bounded domain has been derived
in terms of regime-dependent eigenbases that involve combinations of harmonic
and hyperbolic functions [Tsantili and Hristopulos, 2016]. This result can be used
for dimensionality reduction in spaces d > 1 using separable covariance functions
constructed by means of the product rule and the KL basis expansion in d = 1.

Anisotropy and vector random fields: It is mathematically trivial to extend
BG-M covariance models to include geometric anisotropy. It is also possible to
extend Gaussian BG energy functionals to multivariate models and respective
matrix-valued covariance functions applicable to vector random fields as is done
in [Hristopulos and Porcu, 2014].

Space-time covariance models: Extending Gaussian BG models to space-time
is in principle trivial using suitable modifications of the energy function to in-
clude time as well as space. However, obtaining explicit covariance functions
for such models is not an easy task [?]. Nonetheless, an explicit, non-separable,
space-time covariance which involves the error function was obtained by com-
bining the BG representation with linear response theory and the turning bands
method [Hristopulos and Tsantili, 2017].

Alternatively, space-time covariance functions can be constructed using the spatial
BGmodels and a composite space-time distancewith lag h =

√
‖r‖2 + α2τ2, where r

and τ are respectively the spatial lag vector and the temporal lag [Varouchakis and Hristopulos, 2019].

3 BG Models defined on Grids

Connection with Markov Random Fields: The continuum BG models defined by
the energy functional (1) can be discretized on regular grids by replacing derivatives
with finite differences approximations [Hristopulos, 2003, Hristopulos, 2020]. Then
the BG models become equivalent to Gaussian Markov random fields (GMRFs),
with a specific structure (precision matrix) inherited from the energy functional. The
theoreticalmachinery and computational efficiency ofGMRFs [Rue and Held, 2005]
can be applied to grid-based BG models.

Irregular Grids: BG models with sparse precision matrices, in the spirit
of GMRFs, can also be constructed for irregular spatial [Hristopulos, 2015a,
Hristopulos, 2020] or space-time grids [Hristopulos and Agou, 2020]. Themain idea
is to express the energy in terms of kernel functions that extend the interactions over
adaptively determined local neighborhoods. For compactly supported kernel func-
tions the precision matrix is quite sparse (the fraction of non-zero elements is less
than 1%). Sparsity allows for direct calculations of the full likelihood for datasets
comprising 104−105 points. In addition, the conditional mean and variance are fully
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determined from the precision matrix. Hence, matrix inversion is not required for
predictive purposes.

4 Conclusions and Future Research

TheBG formulation provides a fruitful and flexible framework for the development of
space-timemodels which is complementary to the covariance-based approach. Links
of Gaussian BG models with stochastic partial differential equations can be further
explored [Hristopulos, 2020]. The development of sparse models for irregular grids
is ongoing and involves topics related to model flexibility, estimation and simulation.
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Persistent homology in network analysis and its
application to environmental data

L. Fontanella, S. Fontanella, R. Ignaccolo, L. Ippoliti, P. Valentini

Abstract Recent years have seen a growing interest in network modelling applied to
many scientific fields, such as social sciences, medicine, physics and environmen-
tal science. In the conceptualization of complex systems as networks, the system
components are represented as nodes and interactions between components are rep-
resented as links. Correlation-based networks and graph-theory based properties can
be successfully used to investigate the relational structures among the components.
As correlation weighted networks are difficult to interpret and visualize, a common
approach is to construct a sparse threshold network, that is the binary network ob-
tained by setting a threshold weight λ and keeping only connections with weights
higher than λ. Several approaches have been proposed to choose the threshold; how-
ever, different choices of the filtration parameter λ will result in different solutions
in the statistical model. In this work, to overcome this issue, we discuss a framework
that performs statistical inferences over the whole parameter space using persistent
homology [Horak et al., 2009]. In this context, persistent homology allows to inves-
tigate the structural properties of the network and their changes for a collection of
threshold values. This procedure results in the definition of a collection of nested net-
works over every possible threshold using graph filtration, which is a threshold-free
framework for analysing a family of hierarchical graphs. Using persistent homology,
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topological features, such as the connected components and cycles of a graph, can
be expressed in terms of the Betti numbers which will be used for differential net-
work analysis. As an application of the proposed method, we apply the technique to
quantify the spreading and diffusion of NO2 concentration patterns via correlation
networks, where sites are considered as nodes and link weights express the similar-
ity between the time series of sites. Since there is no prior study on the statistical
distribution of Betti numbers, a discussion on how to perform inferential analysis
using MCMC algorithm is also provided.

Keywords: Network analysis, Persistent homology, Graph filtration, Differential
correlation analysis
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An object-oriented approach to the analysis of
natural background level concentrations of
chemical species in large-scale groundwater
bodies

A. Menafoglio, L. Guadagnini, A. Guadagnini, and P. Secchi

Abstract Natural background levels (NBLs) of a chemical species in a groundwater
body represents concentrations corresponding to natural conditions which can be
considered as unaffected by anthropogenic activities. Characterization of the NBL
of aquifer systems is key to identify significant trends of contaminant concentrations
and to plan possible actions to reverse undesired trends.
Here, we propose a novel framework to assess the NBL of target chemical species
in large-scale groundwater bodies. As atom of the analysis, we consider the proba-
bility density function (PDF) of the chemical species of interest. Setting the latter
as the object of the statistical analysis is a critical element of innovation with re-
spect to previous works (e.g., [Molinari et al, 2012]), which are mainly focused
on the median or on selected quantiles of chemical concentrations. The PDFs of
the chemical species are here modeled as random points in a Bayes Hilbert space
[Boog et al, 2014] and analyzed in the context of Object Oriented Spatial Statistics
(O2S2, [Menafoglio and Secchi, 2017]). In this contribution, we present our novel
approach proposed in [Menafoglio et al, 2021], which enables us to take advantage
of the entire information content provided by these objects for the purpose of (i) iden-
tification of central and outlying observations, through empirical prediction bands
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based on depth measures; (ii) prediction, e.g., via kriging, (iii) uncertainty quan-
tification based on the generation of multiple scenarios (i.e., conditional stochastic
simulation), or (iv) assessment of indicators inferable from the PDFs, including, e.g.,
the probability of exceeding reference thresholds.
This work is motivated by the analysis of the NBL of Ammonium (NH4), based on
the temporal observation records available at 61 monitoring locations in an alluvial
aquifer of the Apennines and Po river plains in the Emilia-Romagna region, North-
ern Italy. We describe the results of the proposed methodological and theoretical
framework with reference to this case study, and illustrate the potential of the new
approach in comparison to previous works.
Keywords: Kriging; conditional simulations; probability density functions; spatial
depth measure.
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Bayesian estimation of multiple ecological
abundances

C. Calculli and S. Martino and P. Maiorano

Abstract Ecological processes driving the spatial and spatio-temporal distribution
of marine species are complex to assess. In fact in several ecological studies, counts,
abundances or biomass of interacting species are collected from different sites re-
sulting in sparse datasets that include highly correlated responses. The analysis of
relationships among such responses requires a suitable statistical framework to glob-
ally study the ecosystem, including relevant variables and combining in a single step
environmental and community information. Inspired by Joint species distribution
models, we propose a Bayesian model-based approach to deal with the zero-inflation
issue, common to semi-continuous data, and with the spatial (and spatio-temporal)
structure of abundance monitoring data. The proposal takes its cue from a case study
concerning marine litter data collected by fishery surveys in the central Mediter-
ranean. To jointly infer different litter categories, a multiple response Hurdle-model
is proposed. This model allows to combine both information on occurrence and
conditional-to-presence abundance of litter categories and the effects of environ-
mental potential drivers. Shared spatial effects that link abundances and probabilities
of occurrences, together with temporal effects, are efficiently implemented using the
SPDE-INLA approach. Results support the possibility of better understanding the
spatio-temporal dynamics of marine litter in the study area.

Keywords: spatio-temporal data, species distributionmodels, hurdle models, marine
litter, INLA
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Incorporating biotic information in Species
Distribution Models: a coregionalised approach

X. Barber, David Conesa, A. Ló pez-Quí lez, J. Martí nez-Minaya, I. Paradinas and
M.G. Pennino

Abstract In this work, published in Barber et al (2021), we discuss the use of
a methodological approach for modelling spatial relationships among species by
means of a Bayesian spatial coregionalized model. Inference and prediction is per-
formed using the integrated nested Laplace approximation methodology to reduce
the computational burden.We illustrate the performance of the coregionalizedmodel
in species interaction scenarios using both simulated and real data. The simulation
demonstrates the better predictive performance of the coregionalized model with
respect to the univariate models. The case study focus on the spatial distribution of a
prey species, the European anchovy (Engraulis encrasicolus), and one of its predator
species, the European hake (Merluccius merluccius), in the Mediterranean sea. The
results indicate that European hake and anchovy are positively associated, resulting
in improved model predictions using the coregionalized model.
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Keywords: Bayesian hierarchical models; coregionalized models; fisheries; INLA;
predation; SPDE; species interaction.

References

Barber et al, 2021. X. Barber, D. Conesa, A. Ló pez-Quí lez, J. Martí nez-Minaya, I. Paradinas
and M.G. Pennino (2021). Incorporating Biotic Information In Species Distribution Models:
A Corregionalised Approach. Mathematics, 9(4), 417.



Combining spatial data derived from
conventional research protocols and social media
platforms: making the integration possible to
predict dolphin distribution

Sara Martino, Daniela Silvia Pace, Giovanna Jona Lasinio

Abstract Presence-only data are typically used in species distribution modeling.
Data are often originated from different sources: their integration is both a resource
and a challenge. We propose a new protocol for presence-only data fusion, where in-
formation sources include social media platforms, with the aim to investigate several
possible solutions to reduce uncertainty in the modeling outputs. As a case study,
we use spatial data on two dolphin species with different ecological characteristics
and distribution, collected in the central Mediterranean through traditional research
campaigns and derived from a careful selection of social media images and videos.
We build a Spatial Log-Gaussian Cox Process that incorporates different detection
functions and thinning for each data source. The Bayesian framework, allows us
to specify slightly informative priors to avoid identifiability issues when estimating
both the animal intensity and the observation process. We compare different types
of detection functions and accessibility explanations. We show how the shape of the
detection function affects ecological findings on two species under examination. Our
findings allow for a sound understanding of the species distribution in the study area,
confirming the proposed approach’s appropriateness. Besides, fast inference and
the straightforward implementation in the R software, make the proposed approach
widely functional and easy to apply on different species and ecological contexts. This
work has beenmadewith the collaboration of: StefanoMoro, EdoardoCasoli,Daniele
Ventura, Alessandro Frachea, Margherita Silvestri, Antonella Arcangeli, Giancarlo
Giacomini, Giandomenico Ardizzone
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Estimating the biodiversity of a system
with covariates and dependence structures

Linda Altieri and Daniela Cocchi

Abstract Entropy is widely used in ecological and environmental studies, with data
often presenting complex interactions. Difficulties arise when the interest is to link
such measure to available covariates or data dependence structures, as all existing
approaches to entropy estimation assume independence. We focus on improving the
estimation of the probabilities of the species in biodiversity studies, accounting for
any data dependence and correlation. Estimating entropy is then straightforward and
may be an informative index of a system’s biodiversity. An application is presented
about the biodiversity of rainforest tree data.

Keywords: Entropy estimation, biodiversity, Bayesian multinomial regression, cor-
related data, rainforest trees.

1 Introduction

Let us consider the estimation of the biodiversity of a system: the number of species
is I, the total number of observations is n and the number of observations for each
species is ni , with i = 1, . . . , I. Let us take p̂(xi) = ni/n as the ML estimate of
p(xi), the probability of occurrence of the i-th species; then, ĤML(X) is the plug-in
estimator of Shannon’s entropy of the number of species [3]

H(X) =
I∑

i=1
log p(xi) log

1
p(xi)

. (1)
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ĤML(X) is the maximum likelihood (ML) estimator [5]; it is known to be biased
and cannot include covariates or correlation.

To our knowledge, in biodiversity studies, the ML estimator only considers the
number of observed species for each site; it cannot account for absent species and
for the possibility that species are not the same across observation sites, nor for
covariates or other structures. No studies are currently able to include dependence.

We take a new perspective to entropy estimation. If the probability mass function
(pmf) of the variable of interest can be properly estimated accounting for dependence
to covariates or spatial/temporal factors, such information can be used to enrich
an estimator of entropy. In the case of categorical variables, a Bayesian model-
based approach for multinomial data allows to derive the pmf parameters including
dependence structures. The posterior distribution of entropy may be obtained as a
transformation of the posterior estimated pmf.

Our motivating dataset documents the presence of tree species over Barro Col-
orado Island, Panama. Barro Colorado Island has been the focus of intensive research
on lowland tropical rainforest since 1923 (http://www.ctfs.si.edu). Research identi-
fied several tree species over a rectangular observation window of size 1000x500
metres; information is available about the soil elevation and slope. We focus on 4
tree species with different spatial configurations, where it is plausible to hypothesize
dependence on the covariates and/or other spatial structures. Data is shown in Figure
1.

Inga

Heisteria

Beilschmedia

Astronium

Fig. 1 Rainforest tree data

2 Model-based estimation of entropy components

Let X be a categorical response variable with I outcomes; consider a series of n
realizations, which are independent given the distribution parameters, indexed by
u = 1, . . . , n, each presenting a value xu ∈ {x1, . . . , xI }. When I = 2 the well
established class of Bayesian logistic regression models may be used, but difficulties
arise when I > 2. The natural option is an extension to the multinomial logit model,
and the model becomes more complicated. For each location u we have nu1, . . . , nuI ,
that may be equal or greater than 0, and we use them as a starting point to estimate
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pu1, . . . , puI , with
∑I

i=1 pui = 1; to ensure that all probabilities are proper, we model
them as [4]

pui =
gui(θ)

Gu(θ)
with gui(θ) = exp{z

′

uiβ + φu} and Gu(θ) =

I∑
i=1

gui(θ) (2)

where θ is shorthand notation for all model parameters, β ∼ N(0, 10−6) and the
vector z

′

u contains the covariates associated to the u-th unit. The vector of random
effects is φ ∼ IGMRF(0, τφK), with τφ ∼ Gamma(aφ, bφ). The Intrinsic Gaussian
Markov Random Field structure matrix K defines the type of dependence between
the random effects, such as temporal or spatial correlation.

Fitting a multinomial model is very complicated in practice, due to the pres-
ence of Gu(β). We exploit the multinomial-Poisson transform [1] which turns the
multinomial likelihood into a Poisson likelihood with extra parameters. It is estab-
lished that the transform returns the same estimates and asymptotic variances as the
original distribution. When covariates and/or dependence structures are detected as
relevant, pui varies across sites; therefore, we can compute one entropy value for
each observation site. In such general case, the system’s entropy may be plotted as a
two dimensional surface over the observation area.

A simulation study (here not reported) assesses the validity of our approach:
we generated data under scenarios of independence, binary covariates, continuous
covariates, temporal effects and spatial effects. Running a comparison to a selection of
existing estimators (frequentist, non parametric and Bayesian), our method reported
by far the best RMSE in all departures from independence.

3 Results on rainforest tree data and concluding remarks

Our dataset is a marked point pattern with n = 5639 over a rectangular window of
500000m2, where the tree species is X and constitutes the point data categorical
mark. The four species are x1 =Inga sapindoides, x2 =Heisteria concinna, x3 =
Beilschmiedia pendula, x4 =Astronium graveolens, with n1 = 487, n2 = 1141, n3 =
3887, n4 = 124. The ML estimator for Shannon’s entropy (1) is ĤML(X) = 0.875,
and is 63% of the maximum possible entropy (log(4)). Such low value hints at an
underlying structure in the data, but nothing can be said with the ML estimator, nor
with any other correction proposed in the literature.

In order to evaluate the biodiversity of the system, we partition the area into
20×40 cells of size 25×25 metres. For each cell, we know the average values of
the elevation and slope covariates and the counts of all species: our multinomial
response variable is a table of 800 × 4 counts. We fit four versions of model (2)
that differ as regards the covariate: one with covariate elevation, one with slope,
one with both and one with no covariates. All models allow the coefficients to be
species-specific, and all include a smooth RW2d spatial effect (i.e. a CAR model
with a 12 neighbourhood). The four models are compared by Information Criteria
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and Likelihood ratio tests and the best model is the one with covariate elevation.
Based on the model we obtain, for each species, a smooth surface estimating its
probability of occurrence over the observation area, and derive the final surface for
the estimated entropy, which is displayed in Figure 2, left panel. The right panel of
the figure shows the ML estimator of the entropy computed for each cell, i.e. the
standard existing competitor of our approach. Both entropies are in relative terms,
i.e. they range ∈ [0, 1] where 1 is the maximum heterogeneity of the system.

0.
55

0.
6

0.
65

0.
7

0.
75

0
0.

2
0.

4
0.

6
0.

8
1

Fig. 2 Model-based entropy estimator (left) vs cell-specific ML estimator (right)

In biodiversity studies, the richness of species may depend on several factors, such
as environmental covariates (altitude, soil slope, temperature...), spatial location,
temporal structures. The main drawback of traditional Shannon’s entropy is that it
cannot account for data dependence. Even when the estimator is allowed to vary over
a series of small locations such as in Figure 2, right panel, it looks like white noise
and is not able to grasp a behaviour in the data; a further limit is that the entropy value
is not sensitive towhich species are present at a location, but only to their number and
relative abundance. Our model-based approach allows to include information about
which species are present/absent at each location, available covariates and smooth
spatial effects: the result is an entropy surface that captures the biodiversity of the
system. As regards our application, we can conclude that the biodiversity of the
rainforest tree system depends on the covariate elevation, whose effect is particularly
strong on the Beilschmiedia pendula species, based on the regression coefficient;
entropy also shows an underlying spatial structure, and ranges from 50% to 80% of
the maximum possible heterogeneity.
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Space-time modeling of Ocean Carbon in the
North Atlantic

Elias Krainski, Mike Dowd, Claire Boteler, Eric Oliver, Doug Wallace

Abstract In this study, we aim to build maps of ocean carbon in the North Atlantic
area using available ocean data from this region. To do this, we propose a statistical
model that accounts for covariate effects as well as spatial and temporal variations, all
the while working within the constraints imposed by the limitations of the available
data. A spatio-temporal mixed model is proposed to estimate ocean carbon, and is
then fitted for the observed data. To build high resolution synoptic monthly carbon
maps over the full north Atlantic domain, we further make use of numerical ocean
model outputs of temperature and salinity for prediction scenarios.

Keywords: Spatio-temporal, Bayesian, Ocean Carbon

1 Introduction

The ocean plays an important role in global carbon cycling and is a major sink
for anthropogenic CO2 emissions [20]. The north Atlantic is a key area for carbon
uptake due to wintertime deep convection which acts to transport atmospheric CO2
to the deep ocean [22].

Direct measurements of core variables in the ocean carbonate system from water
samples obtained during research cruises have been compiled in the comprehensive,
quality-controlled, global data archive GLODAPv2 [14]. However, these data are
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sparse in space and time and the opportunistic sampling results in a data distribution
with a sampling bias towards summer months and along repeated transects.

We provide an approach for estimating surface ocean carbon in the northwest At-
lantic for the region 40◦−60◦N, 10◦−60◦Wusing observations from theGLODAPv2
data archive. (Figure 1). To do this, we use direct ocean carbon measurements (total
inorganic carbon, or TIC) by exploiting the robust relationship that TIC has with
other well-sampled covariates, sea surface temperature and salinity. The approach
taken is to fit a spatio-temporal mixed model to provide monthly estimates of TIC
over the north Atlantic domain. We also seek to separate natural carbon variability
from that due to anthropogenic sources.

Fig. 1 The computational mesh used for the spatial-temporal analysis. Locations of observations
used in the analysis are given as red dots.

2 Methods

In the mixed model, the surface TIC is the response variable y, while temperature
(T) and salinity (S) observations are used as fixed effects covariates. The model takes
the form

y(s, t) = β0 + β1T + β2S + β3t + u(s, t) + e(s, t) (1)

where s designates space (2-D geographic coordinates) and t designates time. β0
is the intercept, and β1 and β2 are the regression coefficients for T , S respectively
and β3 captures a temporal trend. The random effects are given by u(s, t), and
e(s, t) represents the error or noise term. The random effect is further split into
u(s, t) = us(s)a + ut (t), where us(s)a is the annual spatial effect, and ut the temporal
effect.
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The seasonal variation in ut is modelled according to an auto-regressive order
2 process with coefficients chosen so it has a periodicity at the annual period.
Note that since we have not enough data to estimate well us for every month,
we consider us to be replicated for each year (annual spatial effect). Specifically,
us(s)a ∼ N(0,Q−1) follows a Gaussian random field where Q−1 = Σ(θ) is a Matérn
covariance. The estimation of the posterior marginal distributions is carried out
using the R-INLA software ([7]), with us being modeled using the Stochastic Partial
Differential Equations (SPDE) approach [6].

In order to build comprehensive TIC fields, we make use of an ocean reanalysis
product from Copernicus, [3], in order to provide full temperature and salinity fields
over the domain. The mean TIC is estimated using the fitted model parameters as

µ(s, t) = β̂0 + β̂SS(s, t) + β̂TT(s, t) + γ̂t + v̂(t) + û(s)a

where the domain is now defined over a spatial grid and at monthly intervals.

The variance of the estimated fields, V(µ(s, t)), is computed considering inde-
pendent samples from the posterior joint marginal for all the model parameters.
This is performed following three steps: (i) sample from the model parameters joint
distribution, (ii) compute µ(s, t) for each joint sample, and (iii) compute the sample
variance for each µ(s, t). We can then add this to the noise variance in order to have
an estimate of the overall prediction variance: V(y(s, t)) = V(µ(s, t)) + σ̂2

e .

3 Preliminary results

We are interested in temporal trends in ocean carbon due to anthropogenic processes
(atmospheric C02 increase) as well as spatial variations across our study domain.
This is expressed as an anomaly of TIC about a space-time mean value. The spatial
random effect for each year may be viewed as the spatial pattern of the annual TIC
anomalies over the NWAtlantic that cannot be explained by temperature and salinity,
and hence is due to the ocean’s uptake of anthropogenic CO2 from the atmosphere.

The monthly surface fields for TIC over the 23 years duration of the study period
(1993-2016) were estimated. Figure 2 shows the posterior mean of surface TIC for
the year 1993. In the TIC mean field in Figure 2 indicates the seasonal progression
of TIC moving from higher late winter values to lower values in the summer.

In this initial work, we have assumed a linear relationship for the relationship
between the covariates T and S and the response variable TIC. For future work, this
could be made more sophisticated for enhanced realism, e.g. we could use lagged
relationships, include interaction terms, or even other environmental covariates.
Another possible option is to consider variable regression coefficients. Finally, when
considering the random effects another possible improvement is to work towards a
space-time seasonal model.
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Fig. 2 TIC mean field for each month of the year 1993.
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A Bayesian spatio-temporal model for
integrating multiple sources of covid burden

Tullia Padellini, Brieuc Lehmann and Marta Blangiardo
on behalf of Turing – RSS SMML Lab

Abstract COVID-19 tests are commonly used to provide an estimate of the progress
of the pandemic. However, community testing programs are typically biased due to
the differential uptake across the population, for instance by symptoms or occupa-
tion. We propose an integrative framework to provide an estimate of the burden of
COVID-19 at high spatio-temporal resolution. Anchored in a Bayesian hierarchical
modeling perspective, our modular framework allows, if appropriate, to incorpo-
rate different sub-models for each data source and to include spatial and temporal
dependencies as well as adjusting for covariate effect. At the same time the joint
formulation means that uncertainty is propagated throughout the model. We apply
our framework to integrate two different types of information on the daily number
of cases at the lower tier local authority level in England: direct estimates coming
from randomized surveys and testing programs and indirect estimates coming from
hospital admission numbers. We show how this integrated framework is able to
estimate metrics of disease progression such as incidence or prevalence, and how
favorably our estimates compare to those based on unadjusted test counts only.
Keywords: COVID-19, spatio-temporal model, data integration, Bayesian hierarchi-
cal model
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Nonparametric local inference for functional
data with manifold domain and temporal
dependence

Niels Lundtorp Olsen, Alessia Pini, Simone Vantini

Abstract A topic which is becoming more and more popular in Functional Data
Analysis is local inference, i.e., the continuous statistical testing of a null hypoth-
esis along the functional domain. The principal issue in this topic is the infinite
number of tested hypotheses, which can be seen as an extreme case of the multiple
comparisons problem. During the talk we will define and discuss the notion of False
Discovery Rate (FDR) in the setting of functional data defined on amanifold domain.
We will then introduce a continuous version of the Benjamini-Hochberg procedure
able to control the functional FDR over the functional domain, and finally describe
its inferential properties in terms of control of the Type-I error probability and of
consistency. The proposed general method will be then applied to the analysis of
global satellite measurements of Earth’s temperature with the aim of identifying the
regions of the planet where temperature distribution has significantly changed in the
last decades. In detail, yearly Earth’s temperature maps are modelled as an instance
of a functional concurrent auto-regressive process with the Earth’s surface acting
as the functional domain. Inference is performed fully nonparametrically relying on
a joint use of a functional version of the Freedman and Lane permutation scheme,
of the Phipson and Smyth method for the computation of the unadjusted p-values
maps, and of the newly proposed approach to spatially adjust the p-value maps. The
approach is shown to be very convenient in real space-time applications since it both
allows a simple modeling of temporal dependence through standard time series tools
and it does not require an explicit modeling of spatial dependence.
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Keywords: Functional data, local inference, false discovery rate, Benjamini–Hochberg
procedure, regression, time series.
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Bias correction for underreported data in small
area mapping.

Serena Arima, Loreto Gesualdo, Giuseppe Pasculli, Francesco Pesce, Silvia
Polettini and Deni Aldo Procaccini.

Abstract Data quality is emerging as an essential characteristics of all data driven
processes. The problem is particularly severe when health or vital statistics are
concerned, with important consequences on government intervention policies and
distribution of financial resources. In this paper, we deal with the underreporting
issue with particular attention on its effects on the estimation of the prevalence of
a phenomenon. We propose a non parametric compound Poisson model that allows
for the estimation of underreporting probabilities. We will apply the proposed model
to original data about the incidence of Chronic Kidney Disease (CKD) in Apulia.

Keywords: Underreporting probability disease mapping, non parametric model,
MCMC.

1 Introduction

Data quality is an essential prerequisite for taking appropriate data driven decisions.
As experienced in the last year, inaccurate data collection leads to inappropriate
conclusions even when accurate and complex statistical methodologies had been
performed. The problem is particularly severe when health or vital statistics are
concerned, with important consequences on government intervention policies and
distribution of financial resources. For example, the area-specific prevalence of a
particular disease is the first criterion considered for distributing financial resources
to hospitals and health devices. However, most often the number of individuals
affected by the disease is inferred from patient registers, usually compiled upon
registration by the health services, e.g. in hospitals when the medical examination
occurs. A similar argument applies when it is of interest the geographical distribution
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of different crimes or the regional distribution of forest fires. In all these cases, data are
affected by underreporting and estimation of the prevalence of the phenomenon under
study is substantially biased. The problem of underreporting is well known in the
literature. [2] propose a bias correction method based on a compound Poisson model
for count data that includes an area-specific reporting probability, whose uncertainty
is accounted for in the model. In the proposal, areas are clustered according to
their data quality. Since underreporting probabilities might reflect socio-economic,
political and/or demographic characteristics of each region, we focus on modelling
the underreporting rates in different areas. Extending the idea in [2], we consider
the compound Poisson model. Following the approach described in [4], we propose
to introduce covariates to define the clustering structure for the underreporting
probability εi .
We will apply the proposed method to unpublished data coming from a retrospective
study conducted between the 1st of January 2011 and the 31st of December 2013
for evaluating the incidence of Chronic Kidney Disease (CKD) in Apulia. To our
knowledge, no prior studies have investigated the underreporting issue with respect
to CKD prevalence in Italy and specifically in Apulia. But since the seminal paper
by [3], it is clear that the availability of medical care tends to vary inversely with the
need for it in the population served. Hence the need to further investigate possible
underreporting in Apulia also considering that it is one of the most deprived regions
in Italy. Moreover, Apulia is also characterized by very different geographical as
well social conditions that we will consider in accounting for underreporting in
CKD disease mapping.

2 Modelling underreported data

Consider a region consisting of m areas and denote by Yi the observed counts in area
i (i = 1, ...,m). Let Ei denote a known offset representing the expected number of
events in the i−th area. The observed counts are modeled as a compound Poisson
model (CPM)

Yi |θiεi ∼ Poisson(Eiθiεi)

and the relative risks are related to a set of covariates X1, ..., Xp:

log(θi) = β0 + β1X1i + ... + βpXpi

The parameter εi defines the reporting probability in the i−th area: low values of εi
indicate areas whose observed counts are underreported. As in [2], we assume that
areas can be clustered according to their data quality. Moreover, we assume that the
reporting probabilities are equal for areas where the covariates related to the report-
ing process take similar values. In the aforementioned paper, this goal is achieved
by using a-priori information that induces a clustering structure among the areas: in
particular, they fix the number of cluster and model the probability of underreporting
according to a-priori knowledge of data quality. Very informative priors are defined
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especially for the areas that are supposed to be characterized by the best data quality.
In this work we consider an alternative approach: we specify a clustering structure
for the underreporting probability εi following a non parametric approach based on
a dependent Dirichlet process, that allows the aggregating property of the DP to
depend on covariates. Although such a specification is more complex from a theo-
retical as well as computational point of view, it significantly increases the flexibility
of the model since it does not require a-priori knowledge of the number of clusters
and it defines the clustering structure in a complete nonparametric way. Indeed, the
clustering is induced by introducing covariates in the stick breaking construction of
the Dirichlet process.

2.1 The proposed model

Let εn = (ε1, ..., εm) and Zn = (z1, ...., zm) denote, respectively, the entire vector of
the underreporting probabilities and the covariate Z used as predictor for ε .

A simple nonparametric model can be defined by introducing a DP model on the
underreporting probabilities:

p(yi |θi, εi) =
kn∏
j=1

e−(Eiθiε j )
(Eiθiεj)

yi

yi!
(1)

log(θi) = βi + β1X1i + ... + βpXpi (2)
εi ∼ iid G (3)
G ∼ DP(α,G0) (4)

For any measurable set B, the DP process has the well known stick-breaking
representation [5]

G(B) =
∞∑
j=1

wjδη j (B)

where δη j (·) is the Dirac measure at ηj and wj = Vj
∏

l< j[1 − Vl] with Vj |α
i.i.d.
∼

Beta(1, α)
[1] propose a modification of the well known stick-breaking representation of the

DP in which the weights are made dependent on covariates, this is achieved replacing
the Beta random variables by normally distributed random variables transformed
through the normal cdf. The resulting measure is defined as the probit-stick breaking
(PSB) process, see also []. As described by [4], [1] allow for dependence on covariates
via the introduction of independent Gaussian processes indexed by the covariates as
specified in the following formula:
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Gz(·) =

∞∑
j=1

Φ(ηj(z))
∏
l< j

[1 − Φ(ηl(z))]
 δε j (·)

where ηj(z) = z′γ,
The proposed model will be applied to the data described in Section 1 and results

will be presented during the conference.
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Bayesian small area models with
log-transformed response

A. Gardini, E. Fabrizi and C. Trivisano

AbstractWhen unit-level small area models must be fitted with a positively skewed
response, the log-normal linear mixed model represents a common choice. The fea-
ture of this model are explored within the hierarchical Bayes framework, proposing
prior distributions for the variance components that guarantee the existence of the
area means posterior moments, that are not finite under the most widespread prior
settings. The theoretical findings are corroborated with a simulation study where the
proposed estimators resulted competitive with the empirical Bayes estimates.
Keywords: Generalized InverseGaussian distribution, Log-normal distribution, Pos-
terior moments, Unit-level models.

1 Introduction

This work pertains to unit-level small area models estimated with Hierarchical Bayes
(HB) methods [4]. Small area estimation is surely widespread in economic statistics
but examples of environmental applications are also available: land management
[1], soil erosion monitoring [3], and pollutants exposure assessment [7], among the
others.

When positive right-skewed responses are analyzed, specifying the popular ran-
dom intercept model by Battese, Harter and Fuller [1] on the logarithmic transfor-
mation of the variable is a common choice (e.g., see [3, 2]). These papers target the
log-normal mixedmodel from the Empirical Bayes perspective, whereas some issues
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specific of the fully Bayesian setting have not received attention yet. In particular, it
is known that the posterior moments related to quantities in the original data scale
under a log-normal model might be not defined [6, 5].

In this paper, after introducing the notation and the considered model (Section
2), we show the conditions for the existence of the posterior moments of quantities
of interest in the small area context (Section 3). In Section 4, some details about the
simulation study and the real data application are presented.

2 The model

Let’s assume we target a finite population U of size N , partitioned into D sub-
populationsU1, ...,UD whose sizes N1, ..., ND are such that N =

∑D
d=1 Nd . A random

sample s of size n is drawn according to a possibly complex design from U. The
domain-specific sub-samples s1, ..., sD with sizes n1, ..., nD , nd ≥ 0 with

∑D
d=1 nd =

n. The notation s̄d represents the non-sampled part of Ud . The unit-level values of
the response variable are denoted as ydi , i = 1, . . . , Nd , d = 1, . . . ,D.

If we are interested in a positive, positively skewed variable for which it is
reasonable the log-normality assumption, then it is possible to define wdi = log ydi
and specify the random intercept model for the transformed variable. Under the
additional assumption of non-informativeness of the sampling design, implying that
the same model holds at both the population and the sample level, we can write:

wdi = xTdiβ + ud + edi;

ud ∼ N(0, τ2), edi ∼ N(0, σ2); d = 1, ...,D; i = 1, ..., ND .

To estimate the model parameters, only the sample information can be used and
we define the design matrix as Xs ∈ R

n×p , where p is the number of observed
covariates, and the vector containing the responses id ys . Since we focus on the HB
framework, prior distributions on the model parameters must be specified. A flat
improper prior is assumed for the coefficients vector β, whereas the priors for the
variance components σ2 and τ2 will be discussed in Section 3.

In the small area framework, a target quantity to estimate is the area mean:

Ȳd = N−1
d

Nd∑
i=1

ydi .

In the HB setting, the expectation of the posterior predictive distribution represents
a natural prediction for the response variable of unsampled units, inducing the
following estimator for the area mean:

ˆ̄yHB
d = N−1

d

[∑
i∈sd

ydi +
∑
i∈s̄d

E [ydi |ys]

]
; (1)
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We remark that, to evaluate the previous estimator, all the covariates values must
be available for the unsampled units. Alternatively, if only area-level covariates (i.e.
xdi = xd, ∀i) are included in the model, it is possible to estimate the area mean
through the functional:

ˆ̄yHB′

d = E
[
xTd β + ud + edi |ud, ys

]
= exp

{
xTd β + ud +

σ2

2

}
, (2)

that can be deduced using the properties of the log-normal distribution.

3 Main results

Both estimators (1) and (2) can be easily evaluated ifMCMCposterior samples of the
parameters are available. Nonetheless, it can be proved that the prior distribution of
the variance components is crucial to assure the existence of the posterior moments
of (1) and (2).

Focusing on the posterior predictive distribution p(ydi |ys), it can be proved that
its moment of order r is well defined if the prior of σ2 has a density containing an
exponential term exp

{
−cσ2}, where

c >
r2 + r2xT

di
XT

s Xsxdi
2

.

Note that this conditionmust be fulfilled for any unsampled ydi to assure the existence
of the moments of estimator (1). A similar condition can be derived for the posterior
moments of functional (2):

c >
r + r2xT

di
XT

s Xsxdi
2

.

A possible prior for the variance components is the generalized inverse Gaussian
(GIG) prior, in line with [6]. If W ∼ GIG(λ, δ, γ), then the density is:

p(w) =
wλ−1

2Kλ (δγ)
exp

{
−

1
2

(
δ2

w
+ γ2w

)}
, w ∈ R+;

where Kν (z) is the modified Bessel function of the second kind. The value of γ
must be fixed in agreement with the previous existence conditions for the posterior
moments. To preserve the prior balance between the variance component, the same
prior is also used for τ2. Eventually, we fix λ = 1 and δ → 0 to induce a uniform
prior distribution on the intraclass correlation coefficient ρ = τ2/

(
τ2 + σ2) .
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4 Empirical findings summary

To investigate the frequentist properties of the Bayes estimators obtained under
the proposed prior setting, an extended simulation study has been performed. The
empirical Bayes estimator for the areamean is used as benchmark and theHBmethod
with the proposed prior strategy outperformed it in terms of root means square error.
In particular, the gain in efficiency is evident when the model is fitted on small
samples.

Eventually, the discussed methodology has been applied to estimate the Radon
concentration level in the Counties of Minnesota [7]. In this example, the response
was recorded at the household level (unit), whereas the logarithm of the Uranium
concentration, available at the County level, was considered as auxiliary variable.
Hence, the estimator (2) is proposed.
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Poisson mixed models for predicting number of
fires

M. Boubeta, M.J. Lombardía, M. Marey-Pérez and D. Morales

Abstract Ecological studies consider wild fires to be one of the main causes of
forest destruction. In the early years of the 21st century, the number of forest fires
has increased in Europe, especially in the Mediterranean regions where the burned
areas are very extensive. This problem particularly affects Galicia (north-west of
Spain). Modeling wildfires in small areas can have a high error if temporal corre-
lation structures are not taken into account. For this reason, four area-level Poisson
mixed models with time effects are proposed. The first two models contain inde-
pendent time effects, whereas the random effects of the other models are distributed
according to an autoregressive process AR(1). A parametric bootstrap algorithm is
given to measure the accuracy of the plug-in predictor of fire number under the tem-
poral models. A significant prediction improvement is observed when using Poisson
regression models with random time effects. Analysis of historical data from Galicia
finds significant meteorological and socioeconomic variables explaining the number
of forest fires by area and reveals the presence of a temporal correlation structure
captured by the area-level Poisson mixed model with AR(1) time effects.

Keywords: bootstrap, empirical best predictor, forest fires, mean squared error,
method of moments, plug-in predictor, time dependency.
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1 Introduction

This communication summarizes some results of Boubeta et al. (2019) related to
Poissonmixedmodels for predicting number of fires. The presentation contains some
mathematical developments and an application to real data.

With regard to the statistical methodology, these authors considered four area-
level Poisson mixed models with time random effects. The first, Model 1, assumes
that the time effects are independent whereas the second, Model 2, assumes that they
are AR(1)-correlated within the areas. Simplified versions of Model 1 and Model
2, Model 12 and Model 22, with only area-time random effects are also consid-
ered. A Newton-Raphson algorithm was implemented for calculating the method-
of-moments estimators of the model parameters. Plug-in predictors of the Poisson
mean parameters were proposed in both contexts: independence across time and
AR(1) time correlation. The empirical best predictors for the area-time random
effects under Poisson mixed models were provided. The mean squared error of pre-
dictors is estimated by a parametric bootstrap. The statistical methodology is adapted
to obtain predictions for out-of-sample data. The method is of a general nature and
is demonstrated against the Galician wild fire data sets.

The developed methodology is applied to forest fires data in Galicia, by month,
in the period 2007-08. Further, an application to predict the number of fires in 2009
is given. As the meteorological variables change over time, different scenarios for
predicting the number of fires are assumed. On the other hand, the auxiliary variables
related to type of vegetation, human activities and land ownership do not vary much
over time and depend only on the forest areas. The values of these variables in a near
future are easy to establish and facilitates the profitability of deriving predictions.
As an example of application, true meteorologic variables for 2009 were used.

Acknowledgements Supported by the Instituto Galego de Estatística, by the grants MTM2017-
82724-R and PGC2018-096840-B-I00 of theMINECO and by theXunta deGalicia (Grupos de Ref-
erencia Competitiva ED431C-2016-015, Centro Singular de Investigación de Galicia ED431G/01,
Unidades de investigación competitivas ED431C 2020/14), all of them through the ERDF.
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Dynamics of SARS-CoV-2 infection in the Italian
regions: a descriptive study based on
compartmental models

Michela Baccini, Giulia Cereda and Cecilia Viscardi

Abstract Compartmental models are widely used to model epidemic dynamics. In
their simplest form, they assume an Exponential distribution on the transition times
between compartments. This assumption is quite unrealistic for the waiting time
in the infection status because it assigns not negligible probability to very short
and very long times, while a less dispersed distribution could be more appropriate.
Additionally, assuming an Exponential waiting time implies that the probability of
recovering or dying is constant over the infectivity time, thus independent of the time
passed since infection onset. A known solution to this problem consists of assuming
an Erlang distribution on the waiting times. From a practical point of view, this is
achieved by including in the model several contiguous sub-compartments that the
infected person must pass through before exiting the status of infection.
In this work, we propose an Erlang-modified SIRD model to describe the epidemic
dynamics of the SARS-CoV-2 infection in the Italian regions. We specify for each
region a deterministic SIRD model under the assumption that the time of infection
has an Erlang(k, k/T) distribution. We model the time-varying pattern of the infec-
tion reproduction number R0(t) through a parametric cubic regression spline.
We focus on the second wave of the SARS-CoV-2 epidemic in Italy. Setting k to 5,
the average time of infection T to 14 days, and the infection fatality rate to values
reported by the literature, we calibrate the SIRD model on the notified daily deaths
reported by the Protezione Civile, via the minimization of a loss function under a
positive constraint on R0(t). We obtain bootstrap confidence intervals both for the
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model parameters and for the compartments sizes.
The results from the Erlang-modified SIRD are compared with those obtained by
using a standard SIRD model (k = 1). Finally, by varying the infection fatality rate
within a range of plausible values, the model is used to get insights into the sub-
merged portion of the SARS-CoV-2 epidemic in the Italian regions.

Keywords: SARS-CoV-2, COVID19, Compartimental models, SIRD, Erlang distri-
bution, splines



A time varying parameter regression model to
investigate the relationship between intensive
care occupancies and confirmed COVID-19
deaths in European NUTS-2 Regions

Valentini P. and Ippoliti L. and Bucci A.

Abstract The impact of the COVID-19 pandemic varied significantly across differ-
ent countries, with important consequences in terms of population health status and
medical resources allocation. In this paper, to investigate the relation between the oc-
cupancy of intensive care units by COVID-19 patients and the number of confirmed
deaths through time and space, we apply a Bayesian approach for multivariate time
series. The model provides a flexible framework for the analysis of time series data,
allowing the analysis of different features of the series, such as spatial correlations,
time varying parameters and clustering. We evaluate the effect of intensive care
units occupancy on the death counts recorded at regional level for several European
countries in the period from March 2020 to April 2021.

Keywords: COVID-19, Dynamic linear models, Spatio-temporal series analysis
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1 Introduction

The coronavirus disease (COVID-19) pandemic has affected the health of the entire
world population and has put health systems under stress in terms of needed staff
and hospital beds in intensive care units (ICU). High-quality supportive care is the
more effective solution for ensuring that people with COVID-19 who present severe
symptoms have the best chance of surviving. In the early stages of the spread of
COVID-19, hospitals have been experimenting capacity saturation from increased
patient volume that may have resulted in an increased number of confirmed deaths
by COVID-19 [1]. For example, when the pandemic spread at February 2020, Italy
had a total of 5 000 ICU beds throughout the Italian territory. However, due to the
asynchronous insurgence, in time and space, of the outbreaks, local hospitals and
ICUs were rapidly saturated in the most hit Regions, such as Lombardy and Veneto
[5].

Generally, ICUs are characterized by a low number of beds with high turnover [2]
andmost of the patients stay in intensive care only for fewdays atmaximum.However,
a study on ICUs occupancy by COVID-19 patients in Lombardy [3] reports a median
length of stay of 9 days (6-13 [95% CI]). Longer stays imply higher occupancy rate,
higher risk of collapse of the national health system and higher mortality rate in
patients who do not manage to arrive in a ICU.

Lockdown measures, implemented at country level, and possibly other factors,
allowed to alleviate the burden of the pandemic on the ICU system, with mostly of
the patients with early symptoms being treated at home or in COVID-19 dedicated
structures. However, further waves of the pandemic have put again under pressure
the health system with higher geographical heterogeneity throughout the territory
of several European countries. Despite the analysis of mortality during an outbreak
may not be an easy feat, some studies [4] show that regions where fewer patients
could be admitted into an ICU, due to scarce availability of beds, presented higher
rates of mortality by COVID-19, and that this was especially true in the first phase
of the pandemic when the countries were not ready in terms of personnel and ICU
beds. For this reason, it is appealing to understand and investigate the existence of a
direct relation of ICU beds occupancy and mortality rate, and it is of further interest
to analyse this effect through time and space.

To this extent, we implement a time varying parameter model on weekly data
on COVID-19 confirmed deaths and ICU occupancy from 92 regions of France,
Germany, Italy, Spain, Switzerland and United Kingdom. We adopt a Bayesian
approach with time varying parameters that foresees the use of a spatial effect in
the error term of the model. The objective of such specification is to provide a
flexible framework for estimation and interpretation of time variation in the effect
of ICU occupancy on confirmed deaths by COVID. The dynamic linear model we
propose also allows for the use of Dirichlet process priors in a mixture of Gaussian
processes to identify latent common structure among the time series. Moreover, the
introduction of a spatial effect can help entailing proximity effects in terms of spread
of the pandemic and occupancy of beds in neighbour hospitals.
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A geostatistical framework for combining
spatiallyreferenced disease prevalence data from
multiple diagnostics

Benjamin Amoah, Peter J. Diggle, Emanuele Giorgi

Abstract Multiple diagnostic tests are often used due to limited resources or be-
cause they provide complementary information on the epidemiology of a disease
under investigation. Existing statistical methods to combine prevalence data from
multiple diagnostics ignore the potential overdispersion induced by the spatial cor-
relations in the data. To address this issue, we develop a geostatistical framework
that allows for joint modelling of data from multiple diagnostics by considering two
main classes of inferential problems: (a) to predict prevalence for a gold-standard
diagnostic using low-cost and potentially biased alternative tests; (b) to carry out
joint prediction of prevalence frommultiple tests. We apply the proposed framework
to two case studies: mapping Loa loa prevalence in Central and West Africa, using
miscroscopy, and a questionnaire-based test called RAPLOA; mapping Plasmodium
falciparum malaria prevalence in the highlands of Western Kenya using polymerase
chain reaction and a rapid diagnostic test. We also develop a Monte Carlo procedure
based on the variogram in order to identify parsimonious geostatistical models that
are compatible with the data. Our study highlights (a) the importance of accounting
for diagnostic-specific residual spatial variation and (b) the benefits accrued from
joint geostatistical modelling so as to deliver more reliable and precise inferences on
disease prevalence. The work presented is based on the publication of Amoah et al.
[1].

Keywords: disease mapping, geostatistics, malaria, multiple diagnostic tests, ne-
glected tropical disesaes, prevalence. . . .
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Revisiting space-time disease mapping models

Maria Franco-Villoria, Massimo Ventrucci and Håvard Rue

Abstract The linear predictor of a spatio-temporal disease mapping model can be
expressed as a sum of main and interaction terms, each of these specified by smooth
functions of time, space and time and space respectively. We present the use of Pe-
nalized Complexity Priors (PC priors) for spatio-temporal smoothing models, where
the interaction model shrinks to the model with only main effects.

Keywords: base model, Gaussian Markov random field, interaction, penalized com-
plexity

1 Introduction

Disease mapping models [4] aim to estimate the relative risk of a particular disease
over time and space. In doing so, smoothing models are used to borrow information
across neighbouring areas and time points. In some practical applications, an inter-
action term is required to model the complex space-time relationship in the data.
Assume data collected at space locations s = 1, . . . , S and time t = 1, . . . ,T , the
linear predictor takes the following form:

ηst = α + f (space)s + f (time)t︸                       ︷︷                       ︸
marginal

+ f (space, time)st︸                ︷︷                ︸
interaction

(1)
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We regard each smooth component as a process modelled by a Gaussian Markov
Random field (GMRF) prior [7], conditional on one or more hyper-parameters
responsible for the complexity introduced in the model. In particular, we focus on
cases where marginal effects are modelled with intrinsic GMRFs and the interaction
term is modelled with a Kronecker product GMRF (for examples of Kronecker
product GMRFs see [6] sec 3.2).

2 Penalized Complexity (PC) Priors

In this section we briefly outline the four principles underpinning the construction
of PC priors, namely: support to Occam’s razor (parsimony), penalisation of model
complexity, constant rate penalisation and user-defined scaling. For a more detailed
presentation of these principles the reader is referred to [8].

Let f1 denote the density of a model component w where τ is the parameter for
which we need to specify a prior. The base model, corresponds to a fixed value of
the parameter τ = τ0 and is characterized by the density f0.

1. The prior for τ should give proper shrinkage to τ0 and decay with increasing
complexity of f1 in support of Occam’s razor, ensuring parsimony.

2. The increased complexity of f1 with respect to f0 is measured as d(τ) =√
2KLD( f1 | | f0), where KLD( f1 | | f0) is the Kullback-Leibler divergence (KLD)

[5].
3. The PC prior is defined as an exponential distribution on the distance, π(d(τ)) =

λ exp(−λd(τ)), with rate λ > 0, ensuring constant rate penalization. The PC prior
for τ follows by a change of variable transformation.

4. The usermust selectλ based on his prior knowledge on the parameter of interest (or
an interpretable transformation of it, e.g. T(τ)). This knowledge can be expressed
in terms of a probability statement, e.g. P(T(τ) > U) = a, where U is an upper
bound for T(τ) and a is a (generally small) probability.

3 Space-time interaction models

Model (1) can be expressed using random effects modelled by intrinsic GMRFs.
Consider the model

ηst = α + βs + δt + γst (2)

where β = (β1, . . . , βS)
T and δ = (δ1, . . . , δT )

T are vectors of spatial and temporal
random effects, respectively. For the spatial effects we assume an intrinsic CAR
model [1], while a second order random walk [2] is assumed for the time effects.
Vector γ = (γ11, . . . , γST ) contains interaction random effects modelled as a Kro-
necker GMRF with structure matrix given by the Kronecker product of the structure
matrices of the spatial and time effects.
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The random effects in Eq. (2) are GMRFs depending on precision (hyper-
)parameters to which an (hyper-)prior has to be assigned. A popular approach
consists in assigning conjugate Gamma priors to both the main effect and inter-
action precision terms. However, the individual precision parameters are difficult to
interpret in terms of the total variance explained by the interaction and marginal
terms. Instead, we re-parametrize model (2) introducing a mixing parameter φ, for
which we consider a PC prior. This provides a simple way for setting the prior to
the user who has prior information on the balance of the interaction and marginal
components; to do so one could use the scaling approach described above requiring
choice of U and a so that P(φ > U) = a. This PC prior guarantees the interaction
model shrinks towards a model with only main effects, thus avoiding overfitting.

4 Simulation study

We perform a small simulation study to compare the performance of the PC prior
with a Gamma prior on the precision parameters of main effects and interaction.
We set S = T = 10 and simulate 100 datasets from a Gaussian response corrupted
by noise (standard deviation of the noise is equal to 1). We focus on three different
scalings (choice of λ) of the PC prior, varying according the relative weight assigned
to the interaction terms γ: PC tight assigns very small weight to γ basically saying
all the variance is explained by the additive model, while PC moderate and PC
flexible are more liberal towards the interaction model. We compare against two
specifications of the Gamma prior.

Figure 1 shows log mean square errors (MSE) in two scenarios, with interaction
and no interaction (additive model). The behaviour of the PC prior is stable with
respect to the choice of λ, whereas Gamma performance strongly depends on the
choice on shape and rate. In general, PC priors show better behaviour compared to
the Gamma family, except when an interaction is present in the data and the choice
of λ is strongly unbalanced in favour of the model having no interaction.

5 Summary and Work in Progress

One major advantage of PC priors is that they prevent overfitting by construction,
as they guarantee shrinkage towards the base model. Results from a preliminary
simulation study suggest that PC priors give stable results in the context of an
interaction model as in (2) for Gaussian data. We are currently working on extendign
simulation results to Poisson and Binomial responses and deriving the PC prior for
different types of interaction models as described in [3].
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Fig. 1 Boxplots of log(MSE) for the simulation study
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Scalable Gaussian Processes on Physically
Constrained Domains

Jin Bora, Herring Amy H. and Dunson David B.

Abstract Providing safe drinking water is a globally imperative issue. In order to do
so, it is necessary to properly understand the spatial distribution of aqueous pollu-
tants in groundwater, since many water systems use groundwater resources. One of
the distinctive characteristics of pollutants in groundwater is that the measurements
are collected and meaningful only in a constrained domain, i.e., groundwater bodies
with intrinsic geometry. Typical spatial Gaussian Process (GP) models ignore the
unique geometry of the domain, which may lead to inappropriate smoothing over
physical barriers. We focus on developing a scalable GP method that incorporates
the constrained domain, motivated by modeling of spatial variability of pollutants in
groundwater. One way to construct a scalable GP is via sparsity-inducing directed
acyclic graphs (DAGs) that limit neighbors and impose conditional independence to
the rest given the neighbors. A main contribution of this paper is the development
of the Barrier Overlap-Removal Acyclic Directed Graph GP (BORA-GP) that con-
structs neighbors conforming to barriers. It removes an edge in a DAG if a linear
path between two points overlaps the barriers, which enables characterization of
dependence in constrained domains. We analyze water pollutant measurements in
California collected through the Groundwater Ambient Monitoring and Assessment
Program.
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Some properties and applications of local
second-order characteristics for spatio-temporal
point processes on networks

Nicoletta D'Angelo, Giada Adelfio and Jorge Mateu

Abstract Point processes on linear networks are increasingly being considered to
analyse events occurring on particular network-based structures. In this work, we
extend Local Indicators of Spatio-Temporal Association (LISTA) functions to the
non-Euclidean space of linear networks, allowing to obtain information on how
events relate to nearby events. In particular, we propose the local version of two
inhomogeneous second-order statistics for spatio-temporal point processes on linear
networks, the K- and the pair correlation functions. We also show that these LISTA
functions are useful for diagnostics of models specified on the networks, and can
be helpful to assess the goodness-of-fit of different spatio-temporal models fitted
to point patterns occurring on linear networks. Our methods do not rely on any
particular model assumption on the data, and thus they can be applied for whatever
is the underlying model of the process. Furthermore, we use the LISTA functions to
build a test for the identification of differences in the local spatio-temporal structure
of two point patterns: a pattern of interest and a background one, both occurring on
the same linear network. We finally present a real data analysis of traffic accidents
in Medellin (Colombia).

Key words: Linear networks, Local properties, Residual analysis, Second-order
characteristics, Spatio-temporal point patterns
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A water level prediction using ARMA and
ARIMA models: A case study of the river Niger

Umar Nura and Alison Gray

Abstract Flooding is one of the most frequently occurring natural hazards globally.
Studies on how to reduce or prevent this extreme event have used various approaches.
Recent studies have proposedwater level forecasting as an important techniquewhich
enables effective water resources management, helping to prevent flood disasters. In
this work, as well as descriptive analysis, we use time series modelling to predict
monthly water level discharges using data for the period 2010-2016 collected from
Nigeria Hydrological Services Agency for three different water stations along the
river Niger, namely Baro, Jebba and Kainji water stations, using Autoregressive
MovingAverage (ARMA) andAutoregressive IntegratedMovingAverage (ARIMA)
models. The performance of these time series models was tested using three different
performance measures, including mean absolute error, root mean square error and
Nash-Sutcliffe efficiency, to find an appropriate model which will be utilised to
predict the water level discharges from the three water stations. This will provide
information to the populace and water management authorities of what to expect in
future, so as to mitigate the impact of flooding when it occurs. To the best of our
knowledge, this is a novel application of this approach on water level discharge data
from Nigeria.

Key words: ARMA; ARIMA; climate change; environment; flooding; modelling;
water level discharges
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Penalized functional clustering with
environmental applications

Nicola Pronello, Sara Fontanella, Rosaria Ignaccolo, Luigi Ippoliti

Abstract With the advance of modern technology, and with data being recorded
continuously, functional data analysis has gained a lot of popularity in recent years.
Working in a model-based framework, we develop a flexible clustering technique
embedding dimensionality reduction schemes for functional data. The proposed pro-
cedure results in an integrated modelling approach where shrinkage techniques (L1
type penalty) are applied to enable sparse solutions in both the means and the co-
variance matrices of the mixture components, while preserving the best clustering
structure. This leads to an entirely data-driven methodology suitable for simultane-
ous dimensionality reduction and clustering. In order to compare cluster structures
resulting from different model specifications, as well as choosing the number of
components, measures of cluster validity assessment and suitable information cri-
teria are considered for model validation. A comparison of the proposal with other
existing clustering algorithms is carried out both in a Monte Carlo study and by
empirical analysis of real-world environmental data.
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Predicting Water Temperature Profiles in the
Middle Fork River: a Geostatistical Approach
for Functional Data Over a Stream Network
Domain

Chiara Barbi, Alessandra Menafoglio and Piercesare Secchi

Abstract The analysis of data collected on river networks is becoming increasingly
frequent in ecological and environmental settings. The complex reticular nature of the
domain requires to use geostatistical methods based on the specific concept of Stream
Distance, which captures the spatial configuration of points in a river, the network
branching and connectivity. Moving Average models based on Stream distance have
been proposed in literature to describe the structure of spatial dependence in a
network. However, these models remain mostly restricted to the context of scalar
data. This work aims to extend geostatistical methods for spatially distributed data
on a river network to the functional case. The contribution will deal specifically
with this issue, first proposing a strategy for variographic analysis and estimation
of the spatial covariance structure, then adapting the functional Kriging predictor to
the Stream distance scenario. In particular, empirical semivariograms able to deal
with Stream Distance and functional data are proposed. To illustrate the procedure, a
comprehensive geo-statistical analysis on real data is conducted, aiming to (spatially)
predict the summer water temperature profiles in theMiddle Fork River, Idaho, USA.
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Model-based clustering for monitoring cetaceans
population dynamics

Greta Panunzi, Gianmarco Caruso, Marco Mingione, Pierfrancesco Alaimo di
Loro, Stefano Moro, Edoardo Bompiani, Caterina Lanfredi, Daniela Silvia Pace,
Luca Tardella and Giovanna Jona Lasinio

Abstract We introduce a Bayesian multivariate framework to investigate the site-
fidelity patterns and estimate the population size of bottlenose dolphins (Tursiops
truncatus) at the Tiber River estuary (central Mediterranean, Tyrrhenian Sea, Rome,
Italy) between 2017 and 2020. In order to compare the results obtained through a
distance-based clustering (Pace et al., 2021), a model-based clustering is performed
using the same site-fidelity metrics: in particular, a multivariate finite mixture model
is assumed for the vector of metrics (McLachlan et al., 2019). The proposed ap-
proach consists of two steps. We start with a Bayesian model-based classification of
individuals in three different clusters labeled resident, part-time and resident using
347 unique individuals identified. Each individual is allocated to the group with the
greatest estimated posterior probability. Finally, for each group, we estimate the cor-
responding population size via a capture-recapture analysis based on the Jolly-Seber
model (Schwarz and Arnason, 1996): this kind of model allows to take into account
the apparent survival probability of the animal in the population along with the cap-
ture probability. The results are compared to those obtained by the distance-based
classification provided by Pace et al. (2021).

Key words: Jolly-Seber model, capture-recapture analysis, wildlife population, fi-
nite mixture models
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Joint Cetacean Database and Mapping (JCDM)
in Italian waters: a tool for knowledge and
conservation

Pierfrancesco Alaimo Di Loro, Edoardo Bompiani, Gianmarco Caruso, Giovanna
Jona Lasinio, Caterina Lanfredi, Marco Mingione, Stefano Moro, Daniela Silvia
Pace, Greta Panunzi, Luca Tardella

Abstract Today, besides carrying out new research, it is pivotal for science to make
data and results directly accessible to the public and, in particular, to decision-makers
for conservation purposes. In this light, statistical methods, data visualization, and
data sharing tools make it easy to visualize and share raw data (databases) as well as
data elaborations. Cetaceans are strictly protected in many Mediterranean Sea sec-
tors, though our understanding of species abundance, spatial distributions and habi-
tat use is still deficient. These represent basic information to understand cetaceans’
ecology better and identify zones overlapping with human activities. However, these
mammals are elusive and highly mobile, able to migrate for thousands of kilometers.
Hence, targeted surveys are expensive, and occurrence data are sparse in space and
time. We aim at building a comprehensive database of cetaceans’ occurrences in
the Italian waters to estimate the distribution patterns and abundance of cetaceans,
with novel data modeling approaches. The JCDM database will archive presence-
only records provided by different sources (existing data geoportals, social media,
and scientific surveys) to develop, in the R framework, new analytical mapping and
informative tools to reduce uncertainty in the modeling outputs. The JCDM will
be nestled in a standardized framework controlling for heterogeneous observation
efforts yielded by data sources. The statistical methodology will view these sources
of variability and the specific features of presence-only data. Elaborations will be
presented in a web app in the form of interactive descriptive maps and tables. Users
could navigate the map and simulate different predictive scenarios of occurrence
probability based on environmental predictors. Elaborated data will be available to
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the scientific community for further investigations through direct downloads from the
app. The latter will be regulated according to different access levels defined accord-
ing to legal regulation on data ownership. The JCDM modeling outputs/outcomes
will represent an easily readable tool for managers and decision-makers to plan
conservation actions.



Markov modulated Poisson processes for
stochastic modelling of background seismicity

Elisa Varini, Antonella Peresan, Amel Benali

AbstractDeclustering a seismic catalog is a relevant preliminary step in many appli-
cations, such as earthquake forecasting and seismic hazard assessment. Declustering
aims at partitioning an earthquake catalog into background seismicity, which is sup-
posed to reflect the steady tectonic loading, and clustered seismicity, which is formed
by dependent events. We decluster two Italian earthquake catalogs by applying two
different data-driven declustering algorithms, namely the nearest-neighbor method
(Zaliapin and Ben-Zion, J. Geophys. Res., 2013) and the stochastic declustering
method (Zhuang et al., J. Geophys. Res., 2004). We verify the general assump-
tion according to which the temporal sequence of background seismicity is suitably
modelled by the stationary Poisson model. Whenever the Poissonian hypothesis
is rejected, we get evidence of certain heterogeneity in the background sequence,
which leads us to rule out the Poisson process for background seismicity model-
ing in favor of the Markov Modulated Poisson Process (MMPP), which allows the
Poisson seismicity rate to change over time according to a finite (unknown) number
of Markovian states (Benali et al., Stoch. Environ. Res. Risk Assess., 2020). The
MMPP model turns out suitable for identifying and quantifying heterogeneities in
background seismicity, as well as for comparing them against the two considered
declustering algorithms.
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Spherical autoregressive change-point detection
with applications

Federica Spoto, Alessia Caponera and Pierpaolo Brutti

Abstract Spatio-temporal processes arise very naturally in a number of different
applied fields, like Cosmology, Astrophysics, Geophysics, Climate and Atmospheric
Science. In most of these areas, the detection of structural breaks or regime shifts
in the data stream is key. To this end, in the present work, we aim at generalizing
the recently introduced SPHAR(p) process by allowing for temporal changes in its
functional parameters and variability structure. Our approach, which intrinsically
integrates the spatial and temporal dimensions, could give multiscale insights into
both the global and local behavior of changes, and its performance will be tested on
a real dataset of global surface temperature anomalies.
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Using high-resolution density models to predict
white sharks’ hot spots in the Mediterranean Sea

Stefano Moro, Mattia Palma, Giovanna Jona-Lasinio, Francesco Colloca, Chiara
Gambardella and Francesco Ferretti

Abstract The white shark is an apex predator widely distributed between the
sub-polar and tropical oceanic regions in both hemispheres (Compagno, 2001).
In Mediterranean Sea it is a rare but persistent inhabitant. Here, its ecology is largely
unknown and we still lack information about its migratory behaviors and habitat
use, aspects that are critical for conservation and management. Moreover, in the
last 50 years, Mediterranean white sharks suffered a strong decline in abundance,
linked to a contraction of their spatial distribution toward the central sectors of the
Mediterranean Sea, such as the Strait of Sicily (Moro et al., 2019). In this study,
we estimated monthly high-resolution abundance density surfaces within the Strait
of Sicily, starting from opportunistic data. To account for spatial dependence, data
were modeled using Point Process in its log-Gaussian Cox Processes (LGCP) vari-
ant (Renner et al., 2015). A thinning procedure was also implemented to handle
and standardize the different observation processes characterizing the different data
sources (i.e. sightings, catches) (Martino et al., 2021). These abundance maps will
inform, for the first time, a scientific expedition aiming at collecting unprecedented
high-quality ecological data on this species in the Strait of Sicily.
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