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Abstract
Forecasting covariancematrices is a difficult task inmany research fields since the predictedmatrices should be at least positive
semidefinite. This problem can be overcome by including constraints in the predictive model or through a parametrization
of the matrices to be predicted. In this paper, we focus on the latter approach in a financial application and analyse four
parametrizations of the covariance matrices of asset returns. The aim of the manuscript is to understand if the parametrizations
of the covariance matrices exhibit differences in terms of predictive accuracy. To this end, we critically analyse their predictive
performance through both a Monte Carlo simulation and an empirical application with daily and weekly realized covariance
matrices of stock assets. Our findings highlight that the Cholesky decomposition and the parametrization recently introduced
by Archakov and Hansen are the overall best-performing methods in terms of forecasting accuracy.

Keywords Volatility forecasting · Covariance model · Realized volatility · Parametrization

1 Introduction

The estimation and forecasting of covariance matrices are
common problems in many fields, such as finance, biostatis-
tics, signal processing and geostatistics. This is a difficult
task as covariance matrices lay on a curved manifold (Mar-
ron and Dryden 2021; Han and Park 2022). This means that
an estimation setting of covariancematricesmust account for
the fact that the resulting matrices must be at least positive
semidefinite (PSD).

In finance, estimating and predicting covariance matri-
ces are of major interest for the crucial role of asset returns
covariance matrices in portfolio optimization. Several meth-
ods aim at predicting returns conditional volatility in the
multivariate frameworkwhile guaranteeing positive semidef-
initeness of the covariance matrix. For example, Bollerslev
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(1990) and Engle (2002) provide a multivariate version
of autoregressive conditional heteroskedasticity models by
imposing different processes for the variances and covari-
ances in the Dynamic Conditional Correlation (DCC)model.
Subsequently, a non-parametric measure of volatility, pro-
posed by Andersen et al. (2001, 2003), Barndorff-Nielsen
and Shephard (2002b, a), approximates the volatility of stock
returns through high-frequency data and, in the multivari-
ate framework, guarantees a positive definite and symmetric
estimation of the real covariance matrix. The most attractive
feature of realized volatility is that any time series model can
be applied to estimate its relationship with explanatory vari-
ables andmake predictions. Nevertheless, predictedmatrices
must still be positive semidefinite.

Generally, two approaches can be performed to ensure
that predicted realized covariance matrices are symmetric
and at least positive semidefinite: a constrained optimiza-
tion in the predictive model or matrix parametrization. As
further pointed out in Pinheiro and Bates (1996), the for-
mer approach usually leads to sub-optimal solutions and
makes the statistical properties of the constrained predic-
tions difficult to characterize. Therefore,most of the literature
on the prediction of realized covariances has focused on
matrix parametrizations and, consequently, on modelling the
parameters obtained by these transformations. However, the
majority of these studies applies a single method without
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discussing possible differences in the predictive accuracy
due to the choice of the parametrization. This paper aims
to fill the gap in the literature by providing a critical analy-
sis of the unconstrained methods in a predictive setting both
through simulation and empirical application, highlighting
the strengths and weaknesses of the parametrizations.

There are several ways to parametrize the covariance
matrix, each ofwhich has distinctive properties. For example,
Halbleib-Chiriac and Voev (2011) use the Cholesky decom-
position to guarantee that predicted matrices through the
VARFIMAmodel are positive definite. The same happens in
Christiansen et al. (2012), C.Čech and Baruník, (2017) and
in the application of neural networks to realized covariances
in Bucci (2020). Conversely, Bauer and Vorkink (2011) and
Asai et al. (2022) propose using the matrix logarithm func-
tion transformation of the realized covariances and using
the exponential matrix function to guarantee positive defi-
nite predictions. As shown in Heiden (2015), both methods
present some pitfalls that should be accounted for in the
predictive setting. For instance, in the Cholesky decompo-
sition, the ordering of elements in the original matrix yields
different decompositions. Moreover, both models lack the
interpretability of parameters estimated in the predicting
model andmay produce biased forecasts due to the nonlinear
transformation of the covariance matrix.

For these reasons, the forecasting accuracy of a model
for predicting realized covariance strongly depends on the
parametrization of the realized covariance matrix. Since the
predictive model is usually applied to the parameters of
the covariance matrix transformation, any pitfall in these
approaches may lead to biased forecasts and consequent
poor predictive accuracy. The goal of this paper is then to
investigate if there are differences in the predictive accu-
racy of the covariance matrix by comparing four different
parametrizations. Specifically, we parametrize the realized
covariance matrices, we model the related parameters and
we apply the inverse transform to obtain positive semidefi-
nite matrices (most of the methods compared here guarantee
also the positive definiteness). As suggested by Pinheiro
and Bates (1996), we apply Cholesky decomposition and
matrix logarithm transformation to the covariance matrix.
Both approaches can be easily implemented and guaran-
tee symmetric positive definite predicted matrices. We also
implement a positive semidefinite matrix approximation
like the one introduced in Higham (1988) whose applica-
tion for realized covariance matrices has been proposed in
Barndorff-Nielsen and Shephard (2004) and implemented in
Fan et al. (2012). This allows computing the nearest symmet-
ric positive semidefinite matrix in the Frobenius norm to the
estimated/predicted covariance matrix. The main advantage
of this approach is that the time series model can be directly
applied to the realized covariances since their predictions are
a posteriori approximated to a positive semidefinite matrix.

Thus, the interpretability of coefficients in time seriesmodels
remains untouched, aswell as the unbiasedness of predictions
for not-approximated positive semidefinite matrices. Finally,
we use the parametrization recently suggested by Archakov
andHansen (2021). This approach is based on thematrix log-
arithmic transformation of the correlation matrix, offering a
new tool for the regularization of large covariance matrices
by imposing a structure on the off-diagonal elements. To the
best of our knowledge, this is the first study that presents a
comparison of parametrizations in the accuracy of the pre-
dicted covariance matrices. Moreover, the parametrization
proposed by Archakov and Hansen (2021) has been here
applied for the first time for predicting asset returns realized
covariances.

To understand possible differences in the predictions
obtained from these parametrizations, we analyse the fore-
casting accuracy by using both simulated and real data.
Following Andersen et al. (2003) and Halbleib-Chiriac and
Voev (2011), all the predictions are produced from a rather
generic model. In particular, we fit a Vector Autoregres-
sive (VAR) model either to the (unique) parameters of the
parametrizations or, as in the case of the positive semidefi-
nite matrix approximant, directly to the realized covariances.
The accuracy of the predictions is then evaluated by apply-
ing robust multivariate loss functions (Pástor and Veronesi
2012) in aModel Confidence Set procedure (seeHansen et al.
2011). In this context, we also propose the use of a Procrustes
Covariance Distance which, as discussed inMarron andDry-
den (2021), is less prone to swelling than Frobenius distance
and can be applied to non-full-rank covariance matrices like
realized covariance matrices in high-dimensional allocation
problems (Reiss and Winkelmann 2021).

The remainder of the paper is organized as follows. In
Sect. 2, we introduce the realized covariance matrix and
discuss the different parametrizations used to obtain posi-
tive semidefinite predictions. The parametrization predictive
ability is evaluated by a simulation study in Sect. 3 where
the data are simulated both from a stochastic volatility and a
DCC model. An application with real data is then presented
in Sect. 4 while Sect. 5 concludes the paper with a discussion
on further developments.

2 Realized covariancematrix
parametrization

The covariance matrix of asset returns plays a key role in
several financial applications, such as portfolio optimiza-
tion, risk management and option pricing. Throughout the
last three decades, several approaches have been proposed to
estimate such quantity (Engle andKroner 1995; Engle 2002).
Many of them (Andersen et al. 2003; Barndorff-Nielsen and
Shephard 2004) are built upon the notion of a measure of
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the latent volatility, i.e. the realized covariance, which can be
computed as

RCt =
Nt∑

τ=1

rτ r
′
τ (1)

where rτ is the n-dimensional vector of (intra-day) returns
sampled at higher frequencies τ = 1, . . . , Nt , where Nt is the
number of high-frequency observations in the t-th reference
period.

From the theoretical point of view, it is known that RCt

is an unconditional non-parametric estimator of the (ex-
post) quadratic covariation matrix on a reference period t .
Nonetheless, RCt measures are also useful in gauging the
conditional covariancematrix. In fact, as shown inBarndorff-
Nielsen and Shephard (2002a) and Andersen et al. (2001),
using high-frequency data, one can also obtain an estimate
of the matrix of quadratic covariation that differs from the
true conditional covariance matrix by a zero-mean error.

Since RCt changes over time, describing and predicting
its temporal dynamics is fundamental to financial decision-
making. Nevertheless, the predicted covariance matrices
should be guaranteed at least positive semidefinite, making
the predictive setting still difficult. To overcome this prob-
lem, several parametrizations of the covariancematrices have
been proposed (see Halbleib-Chiriac and Voev 2011; Bauer
and Vorkink 2011).

In order to fully understand the methods here imple-
mented, we need to specify some useful notation. The
operator vech (·) denotes the vectorization operator of the
ñ = n(n + 1)/2 lower elements of an n × n symmetric
matrix. As in Archakov and Hansen (2021), we use the oper-
ator vecl (·) to denote the vectorization operator of the lower
off-diagonal elements of the argument. The operator diag (·)
works in a twofold way. On the one hand, when applied to
an n-dimensional vector it denotes an n × n diagonal matrix
whose diagonal entries are the elements of the vector. On the
other hand, when applied to an n×n squarematrix, it extracts
the diagonal elements of it and stacks them in an n×1 vector.
The operator expm(·) returns thematrix exponential function
of a symmetricmatrix, as further described in Sect. 2.2, while
logm(·) gives the matrix logarithm transformation function
of a square and symmetric matrix.

Since the n×n covariancematrix, RCt , is symmetric, only
ñ parameters are necessary for its representation.Bydenoting
with ψt the set of parameters at time t that identifies RCt , a
general parametrization of RCt can be written as

RCt = Lt (ψt )
′Lt (ψt ) (2)

where Lt (ψt ) is an n × n full rank matrix derived from the
ñ-dimensional vector of unconstrained parameters ψt . The

choice of Lt (ψt ) in Eq. (2) leads to different parametrizations
of RCt . In general, the parametrization should guarantee that:

1. any nonsingular covariance matrix, �t , maps to a unique
vector ψt = v(�t ) ∈ R

ñ ;
2. any vector, ψt ∈ R

ñ , maps to a unique covariance matrix
�t = v−1(ψt ); therefore, the parametrization can be
inverted and this inversion is unique;

3. the parametrization, ψt = v(�t ), is ‘invariant’ to the
ordering of the columns that define �t ;

4. the elements of the parameters ψt can be easily inter-
preted.

Here, we consider three classes of unconstrained
parametrizations that respect most of the former properties,
one relying on the Cholesky decomposition of RCt , the other
based on its spectral decomposition, and the third based on
thematrix logarithm transformation of the correlationmatrix.

2.1 Cholesky decomposition

A computationally simple way to parametrize RCt is sup-
posing that the parameters of ψt in Eq. (2) are the elements
of an upper triangular matrix, such that

RCt = L ′
t Lt (3)

is the Cholesky decomposition of RCt . The elements of Lt ,
li j,t , can be calculated recursively by

li j,t =

⎧
⎪⎨

⎪⎩

1
l j j,t

(
ci j,t − ∑ j−1

k=1 lik,t l jk,t
)

, i > j
√
ci j,t − ∑ j−1

k=1 l
2
jk,t , i = j

(4)

where ci j,t is the i j-th element of RCt . Once obtained the h-
steps-ahead predictions of Lt , i.e. L̂ t+h , through a given time
series model, the predicted RCt+h is obtained by inverting
theCholesky decomposition in Eq. (3), R̂Ct+h = L̂ ′

t+h L̂t+h .

The major pitfall of this parametrization, already assessed
in Pinheiro and Bates (1996) and Heiden (2015), is that it is
not invariant to the ordering of variables, thus violating the
aforementioned property 3. In fact, since the calculation of
Cholesky factors is recursive, the ordering of the elements in
the original matrix, RCt , influences the definition of the fac-
tors. This means that up to 2n different set of parameters, ψt ,
may represent the same RCt . In terms of predictions, differ-
ent results may arise from the different ordering, especially
when the dimension of RCt is high.

The Cholesky decomposition does not even respect prop-
erty 4, since, except for the first Cholesky factor, it is difficult
to interpret the relationship between the parameters and ele-
ments of RCt . For example, this lack of a direct relationship
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between ψt and the elements of RCt makes it difficult to
interpret the coefficients in a time series model.

Furthermore, the prediction errors on the Cholesky fac-
tors quadratically propagate to the forecasts of the original
elements of RCt , making the predictions possibly biased, as
already shown in Halbleib-Chiriac and Voev (2011). In fact,
the forecasts of the parameters ψt from a Vector Autoregres-
sive model are unbiased (see Dufour 1985). However, in the
construction of R̂Ct+h , the prediction error for each element
of the covariance matrix, ei j,t+h = RCi j,t+h − R̂Ci j,t+h ,
has no longer mean zero and depends on the variance �h of
the forecast error of the Cholesky factors, uψ,t+h = ψt+h −
ψ̂t+h . Specifically, each element of the predicted covariance
matrix R̂Ci j,t+h is biased by E

[
ei j,t+h

] ≡ σ ∗
i j,h �= 0, where

σ ∗
i j,h is obtained from the elements of �h . For this reason,

Halbleib-Chiriac and Voev (2011) propose a bias correction
that strongly depends on the second moment of the fore-
casting error, which is model-dependent. Nevertheless, the
authors conclude in their manuscript that bias correction is
difficult to be empirically justified. Therefore, we do not con-
sider this correction in our paper.

2.2 Matrix logarithm function

Another possibleway toparametrize andpredict RCt is based
on its matrix logarithm function and the matrix exponential
function of the predicted parameters ψt+h . The matrix expo-
nential function gives a power series expansion on a square
matrix At such that

RCt = expm(At ) =
∞∑

m=0

1

m! A
m
t (5)

where expm = e(·) is the matrix exponential function as
defined in Chiu et al. (1996).

Conversely, given the square and symmetric matrix RCt ,
its logarithm At is a square and symmetric matrix that
satisfies the condition expm (At ) = RCt . It should be
remembered that a real matrix has a real logarithm if and
only if it is invertible and each Jordan block belonging to a
negative eigenvalue occurs an even number of times.

To obtain the logarithm transformation of RCt , a spectral
decomposition is necessary. Because RCt is positive defi-
nite by construction, it has n positive definite eigenvalues
λt . Letting Ut denote the orthogonal matrix of orthonormal
eigenvectors of RCt and�t = diag(λt ) be a diagonal matrix
with eigenvalues on its diagonal, we can write

RCt = Ut�tU
′
t . (6)

This is a reformulation of Eq. (2) by simply imposing

Lt = �
1/2
t U ′

t (7)

where �
1/2
t denotes the diagonal matrix with

[
�

1/2
t

]

i i
=√

[�t ]i i . Given the spectral decomposition of RCt , its matrix
logarithm function can be defined as

At = logm(RCt ) = Ut log(�t )U
′
t (8)

where log(�t ) = diag (log λt ) is the n × n diagonal matrix
with diagonal entries the logarithm of the eigenvalues. The
matrix At can take any value in the space of n×n symmetric
matrices. Letting ψt = vech(At ) be the upper triangu-
lar elements of log(RCt ), we obtain the matrix logarithm
parametrization of RCt . As for the Cholesky decomposition,
ψt is predicted h-steps ahead. Then, the inverse of the vech
operator is used to form the symmetric predicted logarithm
matrix, Ât+h , and the prediction of RCt is obtained through
its matrix exponential transformation such that R̂Ct+h =
expm

(
Ât+h

)
.

Differently from Cholesky decomposition, this
parametrization is unique as it defines a one-to-one mapping
between ψt and RCt . Indeed, it satisfies the first three prop-
erties of a covariance matrix reported before. Nevertheless,
the vector of parameters ψt does not directly refer to the ele-
ments of the original matrix RCt , hence the fourth property
stated before cannot be satisfied.

As for the Cholesky decomposition, the predictions of
RCt will be biased since the predictive model is imple-
mented in the log-volatility space and by Jensen’s inequality
E

(
R̂Ct+h

) �= expm
[
E (ψt+h)

]
. Once again, the solution

proposed by Bauer and Vorkink (2011) is to correct some-
how the predictions through a data-driven approach. Still,
their correction is based on the unrealistic assumption that
RCt is observed and, more worryingly, it may lead to pre-
dicted matrices no longer being positive semidefinite.

2.3 Positive semidefinite matrix approximant

In addition to the previous parametrizations of RCt , we
implement the positive semidefinite approximant, proposed
by Higham (1988) and Rousseeuw andMolenberghs (1993),
and used on realized covariance matrices in Fan et al.
(2012). This approach allows computing the nearest sym-
metric positive semidefinite matrix to an arbitrary matrix in
the Frobenius norm. This means that the realized covariances
can be directly modelled and that the predicted matrices are
a posteriori approximated to the nearest positive semidefi-
nite matrix. Therefore, the interpretability of the coefficients
of the predictive model remains unchanged, as well as the
forecasts are unbiased, at least when the approximation is
not necessary.

When a matrix Zt is symmetric but not positive semidef-
inite, some eigenvalues in the spectral decomposition as in
Eq. 6 are negative. Higham (1988) demonstrates that a PSD
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approximant of Zt can be obtained by simply replacing the
negative eigenvalues with zeroes. In such a case, the compu-
tation of the unique approximation of Zt is straightforward.
Given the spectral decomposition of Zt = Ut�tU ′

t , with
�t = diag(λt ), where λt = {

λ1,t , . . . , λn,t
}
is the vector of

eigenvalues, its PSD approximant, St , can be computed as
follows:

St = Utdiag(λ
∗
t )U

′
t (9)

where λ∗
t =

{
λ∗
1,t , . . . , λ

∗
n,t

}
with λ∗

i,t , for i = 1, . . . , n, is

defined as follows

λ∗
i,t =

{
λi,t , λi,t ≥ 0

0, λi,t < 0.
(10)

Alternatively, the approximant of Zt can be computed using
the iterative algorithm introduced by Higham (1986) based
on matrix inversions. Here, we do not consider this approach
and rely only on the approximant presented in Eqs. (9) and
(10).

From this specification, it follows that we can directly
model and predict the ñ-dimensional vectorization of the
realized covariancematriceswithout anyapriori parametriza-
tion of the matrices themselves and without caring about
semidefinite positiveness. Once obtained the forecast of the
realized covariances from a specific model, we approximate
the positive semidefinite version of the predicted matrix via
Eq. (9). This also allows the practitioner to directly interpret
the effect of possible explanatory variables on the realized
covariances and avoid any lack of the method in terms of the
properties defined in Sect. 3. Differently from the aforemen-
tioned approaches, the predictions of the realized covariances
remain unbiased and no bias correction methods should be
applied to them.

2.4 Matrix correlation parametrization

Finally, we implement the parametrization recently intro-
duced by Archakov and Hansen (2021) that allows us to
obtain positive definite forecasts of RCt from the matrix
logarithm transformation of the correlation matrix. Their
approach relies on the decomposition of the covariance
matrix into standard deviations and correlations, such that

RCt = DtCt Dt (11)

where Ct is the correlation matrix and Dt is the diagonal
matrix with the standard deviation of the asset returns on its
diagonal, see also Bollerslev (1990). By reformulating, Eq.
(11) can be written in terms of Eq. (2) with Lt = C1/2

t D′
t .

Archakov and Hansen (2021) propose to parametrize RCt

by the n log-volatilities, dt = log(diag(Dt )), and by the

n(n − 1)/2 off-diagonal elements of the matrix logarithm
transformation of Ct , such that Gt = logm(Ct ). Let γ (Gt )

be the off-diagonal elements ofGt , the parameters that define
RCt are then ψt = (dt , γt ). As in the case of the Con-
stant/DynamicConditional Correlationmodels byBollerslev
(1990) andEngle (2002), this approach allowsmodelling sep-
arately the variances and correlations. This may be crucial
in the modelling of high-dimensional covariance matrices
where a simple model may be imposed for the correlations
andmore complexmodelsmaybe supposed for the variances.

Once obtained the predictions ψt+h , reconstructing Ct+h

and then RCt+h from this approach is not straightforward. To
formalize the inverse process to obtain positive definite pre-
dicted matrices from dt+h and γt+h , Archakov and Hansen
(2021) introduce a new operator such that, given an n × n
matrix, B, and a vector ω ∈ R

n , then B[ω] is the matrix for
which ω has replaced its diagonal. This operator is useful for
the definition of Theorem 1 in their manuscript. According to
this theorem, for any real symmetricmatrix, B ∈ R

n×n , there
is a unique vector, ω∗ ∈ R

n , such that the exponential of B,
expm (B[ω∗]), is a correlation matrix. Obtainingω∗ requires
that the diagonal elements of expm (B[ω∗]) = eB[ω∗] are all
equal to one. At this end, the authors propose to apply the
following iterative procedure. Consider the sequence,

ω(k+1) = ω(k) − log diag
(
eB[ω(k)]

)
, k = 0, 1, 2, . . .

(12)

with an arbitrary initial vector ω(0) ∈ R, it follows that
ω(k) → ω∗, when ω∗ is the solution of the aforementioned
theorem. The authors find that this algorithm converges very
fast, also with high-dimensional matrices. This procedure
permits to map the values of γ̂t+h to Ĉt+h by simply cal-

culating Ĉt+h = expm
(
Ĝt+h[ω∗]

)
= eĜt+h [ω∗], where

Ĝt+h is the matrix with off-diagonal elements equal to
γ̂t+h and diagonal elements equal to ω∗, and then obtain
R̂Ct+h in combination with the prediction of the diago-

nal matrix of volatilities, D̂t+h = diag
(
ed̂t+h

)
, such that

R̂Ct+h = D̂t+hĈt+h D̂t+h .
As further discussed in Archakov and Hansen (2021), this

parametrization satisfies all the properties introduced before.
Additionally, this approach also permits separately mod-
elling variances and correlations, which is usually a desirable
feature in the modelling of asset returns covariances (Heiden
2015). However, the practitioner should account for the fact
that the procedure in Eq. (12) must be repeated for each pre-
diction, and this may entail a higher computational time in
high-dimensional problems.
We list the parametrizations of RCt considered in this paper
in Table 1.
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Table 1 Summary of parametrizations

Method Parameters modelled, ψt RCt parametrization

RC ψt = vech(RCt ) None

Cholesky ψt = vech
(
L ′
t

)
Equation (3)

logm ψt = vech (logm(RCt )) Equation (8)

Approximant ψt = vech (RCt ) Equations (9) and (10)

Corr ψt = (dt , γt ),dt = log diag(Dt )γt = vecl (logm(Ct )) Equation (11)

3 Monte Carlo simulations

In this section,we examine the performance of each approach
with simulated data. Specifically, we first simulate the time
series of high-frequency prices from the stochastic volatility
(SV) model proposed by Zhang et al. (2005) and then obtain
the daily RCt matrices from the high-frequency returns as in
Eq. (1). For comparison purposes, we also simulate directly
the return covariance matrices from a DCC model.

3.1 Simulation from a stochastic volatility model

The data-generating process for each element of the n ×
1 vector of prices, Pt = (p1,t , . . . , pn,t )

′, is the stochastic
volatility model by Heston (1993), such that

dpi,t = (μ − vi,t/2)dt + σi,t d Bt (13)

dvi,t = κ(α − vi,t )dt + γ v
1/2
i,t dWt , i = 1, . . . , n (14)

where vi,t = σi,t is the stochastic volatility of the i-th asset.
As in Zhang et al. (2005), we assume that the parameters
are constant through time and that they are common among
the simulated assets. In particular, following the simulation
set-up of Zhang et al. (2005), we set μ = 0.05, κ = 5,
α = 0.04, γ = 0.5 and ρ = −0.5, where ρ is the correlation
coefficient between the two Brownian motions, B and W .To
investigate the predictive accuracy of the procedures for a dif-
ferent number of assets, we simulate three samples of prices
with n equal to 5, 10 and 15. Assuming that the trading day
consists of 6.5 h, we are computing T = 3000 daily realized
covariance matrices as in Eq. (1), which is almost the same
amount of data available in the empirical application, from
39,000 prices sampled at a 30-min frequency.

3.1.1 Out-of-sample evaluation of simulated data from a
stochastic volatility model

We produce out-of-sample predictions by fitting a general
VAR model to the elements of ψt obtained with the differ-
ent parametrizations. This means that we apply the VAR to
make predictions on the elements of ψt and we reconstruct
the guaranteed positive semidefinite predicted matrix from

the predicted ψt+h , where h is the forecast horizon. The
order of the VAR is automatically selected in the training set
by information criteria with a maximum lag order of 5. We
then analyse the differences in the predictive accuracy among
the parametrizations and compare them with the predictions
from aVARapplied directly to the realized covariances. Con-
sidering that for a growing number of assets the dimension
of the coefficient matrix in a VAR can be very large, we have
also analysed the predictions from a penalized VAR as the
one introduced in Davis et al. (2016). In addition, we have
considered using the prediction from a random walk as an
additional competing model, nevertheless, the performance
of this is much worse than the one from the considered mod-
els and we do not report it in our results.

We divide the whole sample into two subsamples: the
in-sample one contains 2/3 of the total observations, i.e.
T1 = 2000, while the out-of-sample contains the remaining
1/3 of the total observations, hence T2 = 1000. The simu-
lated volatilities for n = 15 stocks are depicted in Fig. 1.
Since possible biases in the predictive setting further prop-
agate in a multistep-ahead procedure due to the recursive
mechanism, we consider both one- and multistep-ahead pre-
dictions. Supposing that the realized covariance matrices are
sampled at daily frequency, we analyse three forecast hori-
zons: short-term (h = 1, one day ahead), mid-term (h = 5,
one week ahead), and long-term (h = 22, one month ahead).
Out-of-sample forecasts are obtained from a rolling window
with a size of 2000 where the parameters are re-estimated at
each step. The size of the window is fixed, while T2 changes
with h as follows: T2 = 1000 for h = 1, T2 = 996 for h = 5
and T2 = 979 for h = 22. The order of the asset returns
in the construction of the covariance matrix of asset returns,
relevant for the Cholesky decomposition, is random.

To assess the predictive accuracy of the parametriza-
tions, we evaluate the Frobenius and the Procrustes (Dryden
and Mardia 2016) distances between the true and predicted
covariance matrices at time t . In general, for a pair of covari-
ance matrices S1 and S2, the latter is defined as the Euclidean
distance (or Frobenius) which minimises

D2(X1, X2) = ‖X2 − X1�‖F (15)
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Fig. 1 Volatility plots for n = 15 assets simulated from a SV model

where ||F is the Frobenius norm,� is an n×n rotationmatrix
and Xi , i = 1, 2 are unique non-negative matrix roots such
that Si = Xi X ′

i .

As discussed in Laurent et al. (2013), the Frobenius dis-
tance is robust to a volatility proxy, as in the case of RCt .
On the other hand, the Procrustes distance is less prone to
swelling than the Frobenius distance (Marron and Dryden

2021) and can be applied to non-full-rank covariance matri-
ces like realized covariance matrices in high-dimensional
allocation problems (Reiss and Winkelmann 2021).

In this paper, we use the average of these loss func-
tions over the out-of-sample observations to analyse the
predictions in the rolling window setting and, as descriptive
statistics, we also report the number of times theVARapplied
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to vech(RCt ) fails to predict a PSD matrix, denoted by T ∗
2 .

Moreover, the loss functions have been used to compute
multiple comparisons via the model confidence set (MCS)
methodology introduced by Hansen et al. (2011). For a given
confidence level, this procedure identifies the set of models
with the best out-of-sample forecasts. Specifically, we test
sequentially the equal predictive ability of the considered
models. The performance is measured pairwise via the loss
functions difference, ηi j,t = L(RCt , Hi,t ) − L(RCt , Hj,t ),
for all i, j = 1, 2, . . . , M with i �= j , where M is the num-
ber of compared predictive models (in our case M = 4),
L(·) is either a Frobenius loss function or a Procrustes met-
ric between the observed realized covariance matrix and its
prediction from the i/ j-th model, H·,t . Assuming that ηi j,t
is stationary, the null hypothesis takes the form

H0 : E(ηi j,t ) = 0. (16)

When the null hypothesis is rejected, we discard the model
with the largest loss function. Hence, the set of superior mod-
els (SSM) is composed of all non-discarded models. The
MCS p-values are calculated as the number of times the
model is included in the SSM through 10000 stationary block
bootstraps.

3.1.2 Results for data simulated from a stochastic volatility
model

In this section, we discuss the prediction results from fitting
the VAR model to the elements of ψt . An analysis of the
information criteria (Akaike, Bayesian and Hannan-Quinn
information criterion) for each parametrization over T1 sug-
gests that, independently of the number of assets, a first-order
VAR is a preferable specification to represent the dynamics
of the series of the training set. The average loss functions
and theMCS p-values for h = 1, 5, 22 are reported in Tables
2, 3 and 4.

When the forecast horizon is equal to 1 (Table 2), the
only predictions that always belong to the SSM are the ones
from the method proposed by Archakov and Hansen (2021).
Specifically, this method has the lowest average Frobenius
distance for n = 5 and 10, and the lowest Procrustes metric
for all the simulated samples. The only method compara-
ble with Corr is the Cholesky decomposition which also
exhibits a lower Frobenius distance for n = 15. It is worth
noticing that modelling directly the RCt series or using the
approximant by Higham (1988) leads to an average Frobe-
nius distance which is almost double that of the Cholesky
decomposition for n = 15.

In the cases of h = 5 and h = 22, the method of Archakov
and Hansen (2021) exhibits the lowest loss functions for all
the samples. Indeed, this is the only method included in the
SSM for pMCS > 0.75. Once again, the Cholesky decompo-

sition is the only parametrization with average loss functions
similar to Corr.

Conditioning on h, the number of non-PSD predictions
obtained by directly modelling the RCt series (T ∗

2 ) increases
with the number of assets. On the other hand, conditioning
on n, T ∗

2 decreases for larger values of h. There is, thus,
the hint that by extending the forecast horizon the recursive
predictions tend to the average realized covariance matrix
which is, in turn, generally positive definite. Interestingly,
a parametrization of the covariance matrix always leads to
improved predictions with respect to a linear model applied
directly on the covariances time series, even when T ∗

2 = 0.
Finally, for n = 15, we have also estimated a sparse VAR
(Davis et al. 2016) where the penalization parameter is tuned
at each step of the rolling procedure. The results show that
the performance of the different parametrizations under this
model is very much the same as the general VAR model and
they are thus not reported here.

3.2 Simulation from a DCCmodel

In order to analyse the forecasting accuracy of the
parametrizations with a different simulation setting that pro-
duces known covariance matrices, we also simulate the
return covariance matrices by a DCC model. With this sim-
ulation setting, we obtain time series of volatilities with
lower dispersion around the mean and no seasonality, see
Fig. 2. Therefore, we are investigating the robustness of
the results obtained in the previous section also when the
data-generating process changes. The steps of the simulation
process from a DCC model are described in Appendix A.

This simulation setting yields return covariance matrices
fully observed, allowing us to apply any parametrization
and multivariate time series model to make predictions.
Considering that the generating process is based on two
GARCHs(1,1), out-of-sample predictions are obtained by fit-
ting a VAR(1) model.

3.2.1 Results for data simulated from a DCC

The simulated sample is divided as in Sect. 3.1.1, thus we
have a training sample of T1 = 2000 observations and a
testing sample of T2 = 1000 observations. The simulated
volatilities for n = 15 stocks are depicted in Fig. 2. The
order of the assets in the construction of the return covari-
ance matrix, relevant for the Cholesky decomposition, is
random. It is worth noticing that the simulation design is
similar to that suggested by Archakov and Hansen (2021).
Accordingly, this may positively influence the accuracy of
their parametrization. The evaluation of the out-of-sample
forecasts is performed through the methods introduced in
Sect. 3.1.1.
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Fig. 2 Volatility plots for n = 15 assets simulated from a DCC model

Tables 8, 9, and 10 in Appendix B report the average of
both loss functions for each parametrization along with the
MCS p-values respectively for h = 1, 5, 22. Overall, the
results confirm the superiority of the method proposed by
Archakov and Hansen (2021) and the Cholesky decompo-
sition, as already emerged from Tables 2, 3 and 4 in the
application of simulated data from a stochastic volatility
model.

The first evidence from the tables is that the VAR(1) fails
to predict positive semidefinite matrices independently of the
number of assets and the forecasting horizon, underlining
how crucial a parametrization is in a forecasting approach.
Not surprisingly, the number of times (T ∗

2 ) a VAR(1) fails to
produce PSD predicted matrices increases with the number
of assets.
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Table 2 Average loss functions for a different number of assets and
h = 1 in the simulation study from a SV model

Model Frobenius pMCS Procrustes pMCS

n = 5

T2 = 1000, T ∗
2 = 0

RC 9.004 0.299 0.314 0.000

Cholesky 8.939 0.852 0.309 0.000

logm 9.039 0.260 0.311 0.000

Approx 9.004 0.299 0.314 0.000

Corr 8.523 1.000 0.303 1.000

n = 10

T2 = 1000, T ∗
2 = 75

RC 19.164 0.001 0.372 0.000

Cholesky 23.150 0.000 0.391 0.000

logm 21.722 0.000 0.397 0.000

Approx 19.152 0.000 0.372 0.000

Corr 18.524 1.000 0.363 1.000

n = 15

T2 = 1000, T ∗
2 = 861

RC 114.701 0.000 0.284 0.000

Cholesky 57.343 1.000 0.225 0.326

logm 69.296 0.104 0.234 0.005

Approx 113.100 0.532 0.278 0.000

Corr 62.466 0.874 0.221 1.000

Underlined values denote the lowest loss functions for each setting.
RC identifies the predictions from a VAR model directly on realized
covariances, without any transformation; Cholesky and logm refer
to the Cholesky decomposition and matrix logarithm transformation
respectively; Approx concerns predictions from the PSD approxi-
mant presented in Sect. 2.3, while Corr refers to the parametrization
proposed by Archakov and Hansen (2021). The p-value refers to the
probability of being included in the SSM over 10000 block bootstrap
replicates (in bold values with a pMCS greater than 0.75). T ∗

2 is the
number of times the VAR applied to vech(RCt ) fails to predict a PSD
matrix

For any combination of n and h, the differences between
the parametrizations are relatively small, while there emerges
a clear differencewith the approach inwhichno-parametrization
is performed and with the approximant of Higham (1988).
These differences explode for n = 10 and n = 15. In gen-
eral, the parametrization proposed by Archakov and Hansen
(2021) outperforms the compared methodologies for the
average of both loss functions. When looking at the aver-
age Frobenius distance, the use of Cholesky decomposition
obtains the overall best performance nomatter what the num-
ber of assets, only for h = 1. Still, its performance is closely
followed by the parametrization proposed by Archakov and
Hansen (2021),which is also the only parametrization always
included in the SSM for pMCS > 0.75 in terms of the Pro-
crustes measure. The matrix logarithm transformation seems
to be a valid tool to parametrize the covariance matrix, since

Table 3 Average loss functions for a different number of assets and
h = 5 in the simulation study from a SV model

Model Frobenius pMCS Procrustes pMCS

n = 5

T2 = 996, T ∗
2 = 0

RC 13.449 0.000 0.386 0.000

Cholesky 12.405 0.003 0.361 0.001

logm 13.143 0.000 0.375 0.000

Approx 13.449 0.000 0.386 0.000

Corr 11.769 1.000 0.352 1.000

n = 10

T2 = 996, T ∗
2 = 1

RC 25.747 0.000 0.441 0.000

Cholesky 25.451 0.004 0.429 0.000

logm 28.544 0.002 0.461 0.000

Approx 25.747 0.000 0.441 0.000

Corr 22.581 1.000 0.405 1.000

n = 15

T2 = 996, T ∗
2 = 387

RC 51.039 0.489 0.972 0.000

Cholesky 56.089 0.439 0.318 0.000

logm 258.125 0.016 0.299 0.000

Approx 50.895 0.592 0.971 0.000

Corr 50.029 1.000 0.294 1.000

Underlined values denote the lowest loss functions for each setting.
RC identifies the predictions from a VAR model directly on realized
covariances, without any transformation; Cholesky and logm refer
to the Cholesky decomposition and matrix logarithm transformation
respectively; Approx concerns predictions from the PSD approxi-
mant presented in Sect. 2.3, while Corr refers to the parametrization
proposed by Archakov and Hansen (2021). The p-value refers to the
probability of being included in the SSM over 10000 block bootstrap
replicates (in bold values with a pMCS greater than 0.75). T ∗

2 is the
number of times the VAR applied to vech(RCt ) fails to predict a PSD
matrix

it performs similarly to the approach proposed by Archakov
and Hansen (2021). In fact, it also belongs to the SSM for
h = 22 and n = 5. Furthermore, Cholesky decomposition is
strongly outperformed in terms of average loss functions for
n = 15 when the forecast horizon is different from h = 1.

4 Empirical evidence

4.1 Forecasting US stocks realized covariances

The dataset used to compare the forecasting accuracy of the
parametrizations comprehends the time series of hourly open
spot prices of the 10 largest (as of November 2021)US stocks
by market capitalization belonging to the S&P500 for the
period August 31, 2010–November 30, 2021, sourced from
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Table 4 Average loss functions for a different number of assets and
h = 22 in the simulation study from a SV model

Model Frobenius pMCS Procrustes pMCS

n = 5

T2 = 979, T ∗
2 = 0

RC 13.345 0.000 0.387 0.000

Cholesky 12.227 0.000 0.360 0.001

logm 12.935 0.000 0.374 0.000

Approx 13.345 0.000 0.387 0.000

Corr 11.703 1.000 0.353 1.000

n = 10

T2 = 979, T ∗
2 = 1

RC 25.990 0.000 0.443 0.000

Cholesky 25.424 0.000 0.430 0.000

logm 28.352 0.000 0.461 0.000

Approx 25.990 0.000 0.443 0.000

Corr 22.838 1.000 0.409 1.000

n = 15

T2 = 979, T ∗
2 = 7

RC 75.874 0.000 0.647 0.000

Cholesky 56.288 0.000 0.559 0.000

logm 94.764 0.000 0.749 0.000

Approx 59.928 0.000 0.563 0.000

Corr 56.285 1.000 0.559 1.000

Underlined values denote the lowest loss functions for each setting.
RC identifies the predictions from a VAR model directly on realized
covariances, without any transformation; Cholesky and logm refer
to the Cholesky decomposition and matrix logarithm transformation
respectively; Approx concerns predictions from the PSD approxi-
mant presented in Sect. 2.3, while Corr refers to the parametrization
proposed by Archakov and Hansen (2021). The p-value refers to the
probability of being included in the SSM over 10000 block bootstrap
replicates (in bold values with a pMCS greater than 0.75). T ∗

2 is the
number of times the VAR applied to vech(RCt ) fails to predict a PSD
matrix

Bloomberg (19,766 hourly observations). The choice of esti-
mating daily RCt covariance matrices from hourly data is
in line with De Pooter et al. (2008) which show that optimal
intra-day frequencies correspond to30minor anhour.Table 5
reports the complete list of stock names and tickers. Daily
realized volatility matrices are computed as in Eq. (1), for a
total amount of T = 2833 daily observations. The covari-
ance stationarity of each series is confirmed by Augmented
Dickey-Fuller (ADF), ADF-GLS, Phillips-Perron (PP), and
KPSS tests for unit roots. The realized volatilities of the
n = 10 stocks are depicted in Fig. 3.

In order to evaluate the forecasting accuracy of the
parametrizations, we use almost 1/3 of the total observations
(T2 = 943, 939, 922 respectively for h = 1, 5, 22) from
March 6, 2018 to November 30, 2021 for the out-of-sample
analysis. To avoid any look-ahead bias or distortion in the

predictions due to a bad sampling scheme, we produce one-
and multistep ahead forecasts for a rolling window of 1890
observations that foresees the estimation of the parameters
at each step.

We select the number of lags to be used in the predic-
tive VAR through information criteria applied to the training
sample. All the criteria for all the parametrizations suggest
a single lag, hence we make predictions of the dependent
variables, ψt , from a VAR(1).

4.2 Forecasting results for daily realized covariances

In this section, we evaluate out-of-sample forecasts through
the methods introduced in Sect. 3.1.1 and report the average
loss functions in Table 6. As in the case of simulated data,
Cholesky decomposition is the one with the lowest Frobe-
nius loss for h = 1. Nevertheless, in the comparison of the
predictions for h = 1, this does not lead to statistically signif-
icant differences, since all the models, except for the matrix
logarithm transformation, belong to the SSM. For one-step-
ahead predictions, the approach proposed by Archakov and
Hansen (2021) is the one with the lowest average Procrustes
metric. The supremacy of the Cholesky decomposition and
the Corr approach is also evident from multistep-ahead
predictions. In fact, for h = 5, these parametrizations out-
perform the competing ones and are both included in the
SSM when looking at the Frobenius distance. Surprisingly,
the PSD approximant has the lowest Procrustes measure
for h = 5. As already observed in the simulated data, the
differences in terms of predictive accuracy between these
parametrizations and the simple VAR(1) or the a posteriori
PSD approximation increase with the number of steps ahead.
For h = 22, the lowest losses are observed for the method of
Archakov andHansen (2021). Intuitively, the performance of
no-parametrization and the approximant by Higham (1988)
is mainly influenced by the poor accuracy in the observations
belonging to T ∗

2 . In Appendix A, we also report a heatmap
of the Root Mean Square Error (RMSE) calculated between
the observed and the predicted elements of the covariance
matrix through the different parametrizations for h = 1. The
heatmaps show that Cholesky and Corr outperform other
methods for almost all the elements of the lower triangular
part of the covariance matrix.

4.3 Forecasting results for weekly realized
covariances

For robustness purposes, we also use the hourly data pre-
sented inSect. 4.1 to computeweekly realized covariances. In
particular, weekly realized volatility matrices are computed
as in Eq. (1), for a total amount of T = 595 observa-
tions. To allow an out-of-sample evaluation, one-third of
the total observations (T2 = 200, 196, 179 respectively for
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3 Daily realized volatility plots
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Table 5 List of the 10 US
stocks used in this study

Ticker Stock Ticker Stock

AAPL Apple Inc. JPM JPMorgan Chase & Co.

AMZN Amazon.com, Inc. MSFT Microsoft Corporation

GOOGL Alphabet Inc. Class A. NVDA NVIDIA Corporation

HD Home Depot Inc. PG Procter & Gamble Co.

JNJ Johnson & Johnson UNH UnitedHealth Group Inc.

Table 6 Average loss functions for daily empirical data in different
forecast horizons

Model Frobenius pMCS Procrustes pMCS

h = 1

T2 = 943, T ∗
2 = 591

RC 4505.439 1.000 6.054 0.000

Cholesky 4204.497 1.000 5.518 0.228

logm 5869.325 0.299 5.860 0.000

Approx 4287.349 1.000 5.975 0.000

Corr 4623.503 1.000 5.494 1.000

h = 5

T2 = 939, T ∗
2 = 4

RC 9475.311 0.580 5.552 0.747

Cholesky 5589.961 1.000 5.630 0.299

logm 5951.430 0.038 5.907 0.000

Approx 9036.394 0.713 5.541 1.000

Corr 5601.428 0.976 5.617 0.347

h = 22

T2 = 922, T ∗
2 = 4

RC 153461.345 0.606 8.239 0.862

Cholesky 5861.231 0.158 5.652 0.872

logm 6038.107 0.007 5.919 0.000

Approx 153460.363 0.731 8.239 0.862

Corr 5744.141 1.000 5.643 1.000

Underlined values denote the lowest loss functions for each setting.
RC identifies the predictions from a VAR model directly on realized
covariances, without any transformation; Cholesky and logm refer
to the Cholesky decomposition and matrix logarithm transformation
respectively; Approx concerns predictions from the PSD approxi-
mant presented in Sect. 2.3, while Corr refers to the parametrization
proposed by Archakov and Hansen (2021). The p-value refers to the
probability of being included in the SSM over 10000 block bootstrap
replicates (in bold values with a pMCS greater than 0.75). T ∗

2 is the
number of times the VAR applied to vech(RCt ) fails to predict a PSD
matrix

h = 1, 5, 22) is used as a testing sample. As for the case of
daily realized covariances, we produce the forecasts from a
rolling window of 395 weekly observations and estimate the
parameters of the VAR at each step. We have performed unit

Table 7 Average loss functions for weekly empirical data in different
forecast horizons

Model Frobenius pMCS Procrustes pMCS

h = 1

T2 = 200, T ∗
2 = 131

RC 164065.06 1.000 20.990 0.126

Cholesky 56092.65 1.000 17.117 1.000

logm 95840.01 0.517 23.543 0.001

Approx 161207.99 1.000 20.815 0.213

Corr 85213.35 1.000 20.394 0.852

h = 5

T2 = 196, T ∗
2 = 35

RC 141896.36 0.129 20.694 0.000

Cholesky 76799.89 1.000 17.692 0.000

logm 77035.34 1.000 18.047 0.000

Approx 141950.56 0.138 20.694 0.000

Corr 75113.08 1.000 17.386 1.000

h = 22

T2 = 179, T ∗
2 = 64

RC 244928.00 0.225 21.472 0.000

Cholesky 83154.01 1.000 18.599 0.000

logm 84335.26 1.000 19.046 0.000

Approx 244544.71 0.225 21.472 0.000

Corr 82327.19 1.000 18.325 1.000

Underlined values denote the lowest loss functions for each setting.
RC identifies the predictions from a VAR model directly on realized
covariances, without any transformation; Cholesky and logm refer
to the Cholesky decomposition and matrix logarithm transformation
respectively; Approx concerns predictions from the PSD approxi-
mant presented in Sect. 2.3, while Corr refers to the parametrization
proposed by Archakov and Hansen (2021). The p-value refers to the
probability of being included in the SSM over 10000 block bootstrap
replicates (in bold values with a pMCS greater than 0.75). T ∗

2 is the
number of times the VAR applied to vech(RCt ) fails to predict a PSD
matrix

roots test to confirm the covariance stationarity of the time
series.

The average loss functions for weekly RCt are reported
in Table 7. The findings are mostly overlapping with those
from the previous Sections. In fact, the parametrization intro-
duced by Archakov and Hansen (2021) outperforms all the
alternatives in terms of predictive accuracy. Nevertheless, the
difference with the Cholesky decomposition and the matrix
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logarithm transformation for the Frobenius distance is not
significant for h = 5, since they are all included in the SSM
for a pMCS greater than 0.75.

5 Conclusions

Predicting return covariance matrices is of particular impor-
tance to the fields of riskmanagement, portfoliomanagement
and asset pricing. However, modelling the dynamics of a
covariance matrix is a challenging task as the chosen model
must guarantee the positive semi-definiteness of the predicted
covariance matrices.

In this paper, by using simulated and real data, we have
discussed the performance of different parametrizationmeth-
ods which allow the predicted covariance matrices to be
at least semidefinite positive. Our findings are that differ-
ent parametrizations can lead to different results in terms
of forecasting accuracy of asset return covariance matrices.
In particular, we have found that Cholesky decomposition
and the new parametrization proposed by Archakov and
Hansen (2021) provided the lowest loss functions and that the
difference between suchmethods is often statistically not sig-
nificant.As a result, directlymodelling the return covariances
or using the a posteriori approximant of Higham (1988) pro-
duce the poorest predictions. This evidence is mainly due to
the predictive errorsmade in non-positive semidefinite obser-
vations. Interestingly, we have found that a parametrization
of the covariance matrix always leads to improved predic-
tions with respect to a linear model applied directly on the
covariances time series, also when this method does not
fail to predict PSD matrices. This finding, which is worth
further investigations for future works, clearly emerges in
multistep-ahead forecasts, where non-PSDmatrices are used
recursively to produce successive predictions.

Among the two best-performingmethods, possible advan-
tages and disadvantages also emerge. Although computa-
tionally more complex, the one proposed by Archakov and
Hansen (2021) respects all the properties that a parametriza-
tion should have. Moreover, it allows the implementation of
different models for variances and correlations. In the ever-
evolving context of time series modelling, this can be crucial
for the practitioner to analyse possible nonlinear relations or
to investigate the role of explanatory variables on variances
and/or correlations. Conversely, Cholesky decomposition
does not satisfy all the properties of a parametrization. In
particular, the predictions from this method strongly rely on
the ordering of the series in the construction of the covariance
matrix. Nevertheless, this is the simplest method among the
ones we consider in this analysis and, unsurprisingly, it is the
most popular method so far implemented in the prediction of
realized covariances.

The analysis presented in this paper has been conducted
under simple hypotheses about the price process. However,

raw high-frequency data typically deviates from the ideal sit-
uations since, for example, jumps and market microstructure
noise appear as stylized features of financial data. Studying
the performance of the parametrization methods under more
complicated settings will be a task for future works.

Finally, it should be noted that the estimated VARs, espe-
cially for n = 15, involve a large number of dependent
variables. To deal with possible problems related to the
high number of coefficients, researchers typically use prior
shrinkage on the coefficients. In our simulation study, con-
sidering the case of n = 15 assets, we have compared
unrestricted formulations with L1-penalized versions of the
model. However, investigating the use of other approaches
in a high-dimensional setting, such as the Stochastic Search
Variable Selection model (George et al. 2008) and the
Bayesian Compressed regression (Guhaniyogi and Dunson
2015), could be worth considering in future works.
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Appendix A: Simulation process from a DCC
model

A first step in the simulation of the covariance matrix of
returns from a DCC foresees the simulation of univariate
Generalized AutoRegressive Conditional Heteroskedasticity
(GARCH) models for the diagonal entries of the covariance
matrix. Let us define ri,t the return of the i-th asset at time
t , from the ARCH specification by Engle (1982) it follows
that

ri,t = σi,tεi,t
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and

ri,t
σi,t

= εi,t
i id∼ N (0, 1),

where εi,t are the standardized residuals for the i-th asset.
Therefore, the dynamics of the asset returns volatility follows
a GARCH(1,1) on the form:

σ 2
i,t = ωi + αi r

2
i,t−1 + βiσ

2
i,t−1 (A1)

where αi and βi are respectively the coefficients associated
with r2i,t−1 and the lag of σ 2

i,t , while ωi is the long-run vari-
ance.

To initialize the simulation, we sample the first observa-
tion of the asset returns from a Normal distribution, ri,1 ∼
N (0, σ 2

i,1), where

σ 2
i,1 = ωi

1 − αi − βi

is the unconditional variance. For t = 2, . . . , T , we update
the dynamics of σ 2

i,t as in Eq. (A1). This allows us to compute

Dt = diag(σ 2
1,t , . . . , σ

2
n,t ).

After the simulation of the conditional variances for each
of the n assets, we need to use the standardized residuals to
simulate the DCC dynamics and reconstruct the correlation
matrix Rt . Specifically, we need to update the n × n covari-
ance matrix of standardized residuals, Qt , and obtain

Rt = Q̄−1/2
t Qt Q̄

−1/2
t

where Q̄−1/2
t contains the diagonal elements of Qt . Qt can

be further modelled as a GARCH(1,1)-like structure, such
that

Qt = Q̃(1 − a − b) + a(εt−1ε
′
t−1) + bQt−1 (A2)

where the assumption of weak-stationarity, given by a+b <

1, is necessary to ensure that Qt is positive definite, and
Q̃ is the unconditional covariance matrix of the multivariate
standardized residuals, εt = D−1/2

t rt ∼ N (0, Rt ), computed
as

Q̃ = 1

T

T∑

t=1

εtε
′
t . (A3)

From this, we can reconstruct the covariance matrix via
the using decomposition proposed by Bollerslev (1990) and
shown in Eq. (11), such that the covariance matrix of returns
is obtained as D1/2

t Rt D
1/2
t .

As for the case of simulated data from a stochastic volatil-
ity model, we generate three samples with a different number
of assets, n = 5, 10, 15. For each sample, we generate

T = 3000 observations. The data generating process for
the i-th asset return volatility is the following:

σ 2
i,t = 0.2 + αi r

2
i,t−1 + βiσ

2
i,t−1,

αi ∼ U (0.5, 0.7), βi ∼ U (0.2, 0.3) (A4)

whereU (φ1, φ2)denotes a uniformdistributionwith extremes
φ1 and φ2. Then, we set a = 0.35 and b = 0.4 for the simu-
lation of Qt as in Eq. (A2).

Appendix B: Tables of loss functions for sim-
ulated data from a DCC

See Tables 8, 9 and 10.

Table 8 Average loss functions for a different number of assets and
h = 1 in the simulation study from a DCC model

Model Frobenius pMCS Procrustes pMCS

n = 5

T2 = 1000, T ∗
2 = 156

RC 94.861 0.006 1.494 0.000

Cholesky 87.179 1.000 1.339 0.079

logm 97.736 0.239 1.320 0.000

Approx 94.250 0.568 1.493 0.033

Corr 93.842 0.555 1.304 1.000

n = 10

T2 = 1000, T ∗
2 = 549

RC 397.024 0.215 2.390 0.000

Cholesky 358.484 1.000 2.166 1.000

logm 523.325 0.150 2.335 0.046

Approx 389.295 0.542 2.378 0.000

Corr 373.328 0.902 2.231 0.764

n = 15

T2 = 1000, T ∗
2 = 861

RC 1147.012 0.000 2.840 0.000

Cholesky 573.432 1.000 2.250 0.326

logm 692.956 0.104 2.336 0.005

Approx 1131.002 0.532 2.783 0.000

Corr 624.663 0.874 2.213 1.000

Underlined values denote the lowest loss functions for each setting.
RC identifies the predictions from a VAR model directly on realized
covariances, without any transformation; Cholesky and logm refer
to the Cholesky decomposition and matrix logarithm transformation
respectively; Approx concerns predictions from the PSD approxi-
mant presented in Sect. 2.3, while Corr refers to the parametrization
proposed by Archakov and Hansen (2021). The p-value refers to the
probability of being included in the SSM over 10000 block bootstrap
replicates (in bold values with a pMCS greater than 0.75). T ∗

2 is the
number of times the VAR applied to vech(RCt ) fails to predict a PSD
matrix
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Table 9 Average loss functions for a different number of assets and
h = 5 in the simulation study from a DCC model

Model Frobenius pMCS Procrustes pMCS

n = 5

T2 = 996, T ∗
2 = 15

RC 172.768 0.051 1.968 0.000

Cholesky 163.171 0.841 1.796 0.200

logm 163.377 0.017 1.790 0.003

Approx 172.692 0.787 1.968 0.000

Corr 162.032 1.000 1.775 1.000

n = 10

T2 = 996, T ∗
2 = 156

RC 3813.088 0.234 3.954 0.010

Cholesky 919.405 1.000 3.148 0.495

logm 857.991 1.000 3.106 0.943

Approx 3798.891 0.237 3.944 0.084

Corr 848.520 1.000 3.054 1.000

n = 15

Full sample - T2 = 996, T ∗
2 = 306

RC 65039.131 0.489 9.717 0.000

Cholesky 1302.355 0.439 3.178 0.000

logm 1015.444 0.592 2.994 0.000

Approx 64990.408 0.016 9.709 0.000

Corr 1002.991 1.000 2.942 1.000

Underlined values denote the lowest loss functions for each setting.
RC identifies the predictions from a VAR model directly on realized
covariances, without any transformation; Cholesky and logm refer
to the Cholesky decomposition and matrix logarithm transformation
respectively; Approx concerns predictions from the PSD approxi-
mant presented in Sect. 2.3, while Corr refers to the parametrization
proposed by Archakov and Hansen (2021). The p-value refers to the
probability of being included in the SSM over 10000 block bootstrap
replicates (in bold values with a pMCS greater than 0.75). T ∗

2 is the
number of times the VAR applied to vech(RCt ) fails to predict a PSD
matrix

Table 10 Average loss functions for a different number of assets and
h = 22 in the simulation study from a DCC model

Model Frobenius pMCS Procrustes pMCS

n = 5

T2 = 979, T ∗
2 = 15

RC 187.289 0.055 2.096 0.001

Cholesky 175.187 0.469 1.942 0.079

logm 169.001 0.841 1.859 1.000

Approx 187.202 0.039 2.096 0.008

Corr 168.191 1.000 1.854 0.967

n = 10

Full sample - T2 = 979, T ∗
2 = 154

RC 4070.829 0.262 4.297 0.006

Cholesky 1020.997 0.546 3.464 0.003

logm 881.021 0.060 3.187 0.001

Approx 4054.282 0.489 4.287 0.008

Corr 875.804 1.000 3.163 1.000

n = 15

Full sample - T2 = 979, T ∗
2 = 294

RC 66489.107 0.484 10.147 0.000

Cholesky 1480.359 0.293 3.396 0.000

logm 1042.834 0.563 3.040 0.000

Approx 66439.507 0.001 10.127 0.000

Corr 1038.839 1.000 3.017 1.000

Underlined values denote the lowest loss functions for each setting.
RC identifies the predictions from a VAR model directly on realized
covariances, without any transformation; Cholesky and logm refer
to the Cholesky decomposition and matrix logarithm transformation
respectively; Approx concerns predictions from the PSD approxi-
mant presented in Sect. 2.3, while Corr refers to the parametrization
proposed by Archakov and Hansen (2021). The p-value refers to the
probability of being included in the SSM over 10000 block bootstrap
replicates (in bold values with a pMCS greater than 0.75). T ∗

2 is the
number of times the VAR applied to vech(RCt ) fails to predict a PSD
matrix.

Appendix C: Heatmap of RMSE for the empir-
ical application for h = 1

See Figs. 4, 5,6, 7, and 8.
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Fig. 4 Heatmap of the RMSE for the one-step ahead predictions from the VAR on the realized covariances. RMSE for the lower triangular elements
of the covariance matrix

Fig. 5 Heatmap of the RMSE for the one-step ahead predictions from the PSD approximant on the realized covariances. RMSE for the lower
triangular elements of the covariance matrix
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Fig. 6 Heatmap of the RMSE for the one-step ahead predictions from the Cholesky parametrization on the realized covariances. RMSE for the
lower triangular elements of the covariance matrix

Fig. 7 Heatmap of the RMSE for the one-step ahead predictions from the matrix logarithm parametrization on the realized covariances. RMSE for
the lower triangular elements of the covariance matrix
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Fig. 8 Heatmap of the RMSE for the one-step ahead predictions from parametrization proposed by Archakov and Hansen (2021) on the realized
covariances. RMSE for the lower triangular elements of the covariance matrix
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