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Abstract One of the main challenges for Unmanned
Aerial Systems (UAVs) is to extend the endurance of
small vehicles such as multi-rotors. Actually, Li-po
batteries that guarantee a flight of about 20 min power
this type of vehicles. The endurance can be extended
by enabling vehicles to look for recharging station(s).
In this paper, we propose a vision system able to detect
and track a given pattern hosted on the target-landing
platform. The pattern is also useful to estimate the
UAV position while approaching the target or during
the hovering close to the target. The paper focuses
on an optimized adaptive thresholding technique that
manages critical situations as changes in the scene’s
illumination / shadows. The developed system runs at
90 Hz for processing a 752 × 480 grayscale image.
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1 Introduction

During the last years the Unmanned Aerial Vehicles
(UAVs) and in particular the multi-rotors are capturing
the interest of the research community and of many
military/civilian companies [1]. Mainly owing to their
versatility and reprogrammability, many types of mis-
sions could be performed, such as search and rescue,
building inspection, surveillance, . . . .

One of the main still open problems is the mission
endurance. Li-po batteries that guarantee 10–25 min
of flight power most of the multi-rotors platforms. In
this context it is necessary to look for a simple solu-
tion to recharge the battery. Many solutions have been
proposed with a dichotomy: active vs passive systems.

Active systems ensure a short stop time, but require
complex electro-mechanical mechanisms to replace
the discharged battery with a new one [19, 20]. Pas-
sive systems are simpler, but impose a stop time that
varies from 10 min to 1 h.

Another important problem is the capability to
flight from/to a docking station in a safe way ensuring
a short time to perform a landing. Many approaches
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have been tested, but also here a dichotomy is present:
marker-less vs marker-based. Considering the simpler
case of marker-based approaches, we can find two
common approaches: natural landmarks [10] vs arti-
ficial landmarks. In our case, we decided to select
an artificial marker to ensure a precise and accurate
alignment of the UAV respect to the landing platform.

Many markers have been proposed from QR-
code[7] to structured pattern. We designed the marker
starting from the design of the mechanical platform
that has to host the UAV during the recharging. The
concept is to use four inverted cones to passively bring
the UAV to the center of each cone where a copper
plate is installed.

The paper describes the vision system developed
for target detection and tracking. We adopted an opti-
mized solution to save computation time ensuring a
real time image processing supported by the ROS
environment. The vision system works in indoor / out-
door environments even in absence of GPS or similar
localization systems [9].

The paper is structured as follows. In Section 2
the adopted UAV system configuration is introduced.
In Section 3 the design and implementation of the
landing platform for the UAV is presented. Section 4
focuses on the vision system for landing, based on
a fast, accurate and precise detection of an artificial
target. In Section 5 an example of mixed scenario,
indoor / outdoor is presented. Section 6 introduces
a first approach to distribute the computational load
by using a powerful NVidia GPU. Section 7 outlines
conclusions and future works.

2 System Configuration

The following system configuration has been devel-
oped in the context of the European project R3-COP
(Resilient Reasoning Robotic Co-operating Systems)
[5], involving a collaboration with an Unmanned
Ground Vehicle during the mission [12, 13].

In our study, we decided to use the Asctec Pel-
ican manufactured by the Ascending Technologies.
The Pelican is able to host 650 g of payload and is
equipped with a small set of sensors. The common
usage is outdoor and it is ready for GPS based way-
point navigation (GPS, IMU and barometric sensors).
In our work, we extended the platform to perform also
indoor missions by using a vision system to correctly

land and navigate. We also designed and manufactured
by a 3D printer an extension of the landing feet as
described in Section 3.

The Asctec Autopilot provides two micro con-
trollers based on ARM7. The Low Level Processor
(LLP) fuses the measurement data to control the
roll/pitch and yaw. The source code is not available
while the High Level Processor (HLP) can be freely
flashed for custom code.

Our drone is equipped with the Asctec Master-
mind based on the dual core Intel Core2Duo SL9400
running at 1.86 GHz. The adopted camera is the Blue-
Fox MLC200wC manufactured by the Matrix Vision,
capable of a color / grayscale acquisition of a 752x480
frame at 90 Hz. We selected a 2.8 mm lens to cover the
largest region of interest when the drone is close to the
ground. We selected the ultrasonic sensor Maxbotix
XL-MaxSonar-EZ MB1320 to measure the height
over ground. The Asctec Pelican is only equipped with
a pressure sensor that can not be used for accurate and
precise height measurement.

In Fig. 1 our quadrotor with all the installed sensors
is shown.

According to the well tested workflow in the
mobile robotics community we decided to develop our
code in the Robot Operating System (ROS) environ-
ment [6]. The OpenCV libraries [4] have been used
to process the image for target detection (during the
landing phase, see Section 4) and navigation (by visual
odometry) [12].

The Asctec MAV Framework [2] was used to
bridge the Asctec Autopilot to ROS even if other

Fig. 1 Our customization of the Asctec Pelican



J Intell Robot Syst

Fig. 2 Left 3D model of
our custom landing foot.
Right real printed landing
foot derived from our 3D
model that hosts the copper
plate contact to enable the
battery recharge

features are available. In particular, it is easy to inte-
grate an external localization system with the Ultra
Wide Band (UWB) technology, which could be inte-
grated to compensate the odometric drift as discussed
in [7].

3 Landing Platform

The reduced endurance of UAVs does not allow a real
continuous autonomous fly on a wide area, limiting
the set of the achievable missions. To overcome this
limitation a specific landing and recharging platform
has been designed.

We decided to recharge and not replacing (with
actuators) a battery [19, 20], to reduce the system
complexity and, consequently, development time and
costs.

The landing platform has been initially modelled in
a 3D CAD environment and printed in 3D at 1:1 scale.

Fig. 3 3D model of Asctec Pelican base with landing foot
installed, once landed inside the landing platform

The developed landing platform (shown in Fig. 7)
includes four cones exploiting the gravity as a passive
centering system. The drone has to land inside the four
cones, but is necessary to take into account the size of
the landing platform:

– the radius of a cone determines the maximum
allowable error;

Fig. 4 UAV used for the final demonstrator, with all the
hardware changes
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Fig. 5 Displacement and geometry of copper plates to manage
the balancing

– the slope is directly related to the height of the
platform;

– a higher slope increases the probability to pas-
sively bring the UAV to the copper plate

– the height of a cone sets a constraint on the
landing foot of the UAV

By performing a series of simulations, we calcu-
lated the maximum allowable translational and head-
ing error. An error of 0 degrees for the heading sets

Fig. 6 The camera and ultrasound sensors installed on the
bottom part of our UAV

Fig. 7 Landing platform and B/W target

the maximum translational error, which is 10 cm with
a radius of 10 cm. If the heading error is equal to
40 degree, the UAV has to land exactly with zero
translation error.

From these considerations, it is clear the impor-
tance of a precise and accurate landing in terms of
position and orientation. This is the starting point for
the vision landing system described in Section 4.

The original Asctec Pelican with foot extension
does not fit with our centering system. For this rea-
son we modelled a new landing foot to be attached
on the existing carbon fiber frame, thus avoiding any
dangerous change to the mechanical frame.

Figure 2 shows the designed and developed land-
ing foot characterized by a precise height to avoid any
mechanical interference with the landing platform. By
using this new configuration, it is possible to extend

Table 1 Dimensions of landing target elements

Position Ring Triangle

Inner R = 3 cmr = 2 cm b = 2.73 cm

l1 = l2 = 2.03 cm

Outer R = 27 cmr = 25 cm b = 14.00 cm

l1 = l2 = 10.63 cm
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Fig. 8 Left our algorithm.
Right: Wellner’ s algorithm

the footprint of our drone to match with the design of
our platform.

The design has the following features:

– minimization of overall weight by removing all
the unnecessary volumes;

– inner cavity to host the cable for battery recharg-
ing;

– damping of vibration caused by hard landing.

The analysis performed for the maximum landing
error (along X and Y) that can be compensated with
four cones of 10 cm radius demonstrated a particular
affordable combination of the maximum translation
and rotation landing error, that is, 5 cm along X and
Y axis and 10 degrees with respect to North, South,
East or West orientation. This is a good margin for the
maximum landing error that should be achieved with
the final navigation controller. A larger centering sys-
tem could provide more margin, but at the same time
it will require a larger landing platform and a larger
landing foot. The original Asctec Pelican base with

foot extension, indeed, creates a square with side of
approximately 15.5 cm, which can be easy extended
to 20 cm with the non-invasive landing foot shown in
Fig. 2.

The cones of 10 cm radius also allow small cone
height, achieving a good sliding surface slope. With
an height of 5 cm the internal surface of each cone
has a slope of 27 degrees, which, in addition to a
small landing foot contact surface (0.5 cm of radius),
allows a perfect UAV sliding for each possible land-
ing position inside the cones. For these reasons, the
final landing foot additional height has been chosen to
be the minimum one required (5 cm). The final land-
ing foot with an overall weight of 7 g is shown in
Fig. 2.

Figure 3 shows the 3D model of the final land-
ing foot installed on the original Asctec Pelican base,
together with the final landing platform of 60 × 60 ×
7 cm. The bottom of two upside down cones and con-
nected to a Li-po battery charger hosts the copper
plates to recharge the system. The drone is equipped

Fig. 9 Top left source
image. Top right Otsu.
Bottom left OpenCV
adaptive threshold -
blockSize=71 C=30,
Bottom right Wellner -
S=752/12 T=0.35
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Fig. 10 Left extracted contours from the binary image. Right interpolation of ellipses on the extracted contours

with two contacts installed on the bottom of two land-
ing feet connected to a Li-po battery. The developed
landing foot shown in Fig. 2 has been manufactured
using a 3D printer, and then integrated into our UAV
shown in Fig. 1. The two slip rings connecting battery
poles have been installed in the two front landing feet,
and a 20Amps fuse protects the system from any short
circuit. Figure 4 shows the right side of the drone used
in the demonstrator with all the described components.

The cones in the real landing platform shown in
Fig. 7 have been also produced using a 3D printer.
We used a modified version of the Groupner Ultra-
mat 16S charger to charge the Li-po battery with
a maximum current of 20A (3C for a 6000mAh
battery).

We also studied the possibility to balance the cells
during the charging by changing the geometry and
displacement of the copper plates. In Fig. 5 the dis-
placement is shown. However this solution introduces
a higher complexity and it is necessary to ensure a
safe contact to establish a balancing avoiding high
resistance contacts.

4 Landing Vision System

Hovering and Navigation are still open problems for
UAV in both indoor and outdoor environments. Actu-
ally the PX4FLOW Smart Camera [15] is a novel
interesting hardware platform enabling the estimation
of position by visual odometry. This platform inte-
grates a 752480 MT9V034 image sensor. A L3GD20
3D Gyro processed by a 168 MHz Cortex M4F CPU.
This device mainly outputs x/y flow measurement,

velocity, gyros rate and height. For small size UAV
with strongly limited payload this devices is a perfect
solution for the optical stabilization and navigation
in complex environments. In our case the developed
vision system is shown in Fig. 6.

Our configuration is close to the PX4FLOW Smart
Camera, but our solution, presented in [12, 13],
exploits the on board IMU of the UAV. Our system
is based on a powerful computing unit that allows
fast computation and complex image processing algo-
rithms, among which target detection. In our case, we
need to detect the target to start the landing procedure.
In [13] we discuss the landing over an Unmanned
Ground Vehicle (UGV).

In particular, the developed thresholding algo-
rithm requires the full processing of the entire frame.
The presence of shadows over the target is a prob-
lem that usually sticks up standard thresholding
algorithms.

Table 2 Average computation time required to perform the
steps of our workflow

Operation Average time Standard deviation

Adaptive threshold 2.156 ms 0.551 ms

Contour detection 2.402 ms 0.296 ms

Interpolation of ellipses 0.758 ms 0.122 ms

Filtering of ellipses 0.024 ms 0.005 ms

Filtering correction 0.006 ms 0.002 ms

Target validation 0.002 ms 0.001 ms

Triangle identification 0.118 ms 0.026 ms

Total 5.467 ms 0.551 ms
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The developed landing platform discussed in
Section 3 requires that maximum allowable translation
error is 5 cm and 10 degrees for heading. These val-
ues represent the target performance for the developed
landing system, which is based on fast detection and
tracking of a user-defined B/W target. The target must
be detectable at low and high altitudes and for this rea-
son we included four regular shapes: two concentric
annular rings and two filled triangles (see Fig. 7). Our

idea is to estimate the 6DOF of the UAV. Circles pro-
vide the estimation of X, Y, Z, roll and pitch values.
The triangle provides the estimation of the heading.

Table 1 summarizes the dimensions of the adopted
target.

The workflow of the landing vision system is com-
posed by the following blocks:

– Image acquisition

Fig. 11 Our algorithm with
different images
characterized by strong
changes in illumination /
shadows at low altitude.
(S=752/24, T=0.45, Sb=50,
Tb=0.25, Lens 2.8 mm
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– Adaptive thresholding
– Contours detection and un-distortion
– Ellipse extraction and filtering
– Triangle detection
– Pose estimation

The OpenCV library has been used to support some
blocks as discussed in the following.

The first step concerns image acquisition from the
down looking camera (BlueFox MLC200wC), setup
with the following parameters:

– mono8 gray-scale image (to avoid color to
grayscale conversion)

– max exposure time of 1/90s
– automatic expose time

This setup allows to gather frames at the maximum
allowable frame rate of 90 fps. Images are also con-
verted in a ROS data type to be shared with other ROS
nodes.

The threshold should be efficient and accurate for
both outdoor and indoor environments. We designed
an adaptive algorithm ensuring the robustness to
shadow / illumination changes especially in outdoor
scenarios. We based our work on a optimization of the
Wellner algorithm [21].

To save time in this phase the undistortion is post-
poned and applied only to the contours extracted,
significantly improving the overall performance.

The approach explores images row by row the cal-
culating the moving average of the previous S pixels
explored. If a pixel is at least T percent darker than

Fig. 12 Our algorithm with
different images
characterized by strong
change in illumination /
shadows at high altitude.
(S=752/24, T=0.45, Sb=50,
Tb=0.25, Lens 6 mm
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the moving average then it will be black in the binary
image, otherwise white.

S and T are the only parameters to be set according
to the operative scenarios.

Denoting with pn the intensity of the n-th pixel, and
with gn the average intensity of previous S pixels, the
value of the n-th pixel in the binary image O is:

O(n) =
{
0 if p(n) < g(n) · (1 − T )

1 otherwise
(1)

where 0 is a black pixel and 1 a white one.
Since the algorithm is influenced by direction of

row exploration, according to the author it is neces-
sary to alternate the image scan from left to right and
from right to left. Moreover, the binarization is more

accurate if the moving average of each pixel on the
previous row is evaluated. g(n) is replaced by h(n):

h(n) = g(n) + g(n − w)

2
(2)

where w is the image width.
The moving average for the n-th pixel of a row is

replaced by the average between the n-th pixel moving
average and the moving average of the pixel directly
above in the previous line. An iterative moving aver-
age formula is useful to reduce the computational
time. The exact moving average calculation has been
replaced in our algorithm with the approximation pro-
vided by the exponential moving average defined as:

g(n) = α · p(n) + (1 − α) · g(n − 1) (3)

Fig. 13 Top left source
grayscale image. Top right
binarized image.Middle left
extracted contours. Middle
right filtered contours with
interpolated ellipses. Bottom
left Detected target. Bottom
right: Detected triangle.
Bottom center undistorted
target. (S=752/24, T=0.45,
Sb=50, Tb=0.25)
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where α is a forgetting factor between 0 and 1. In
our case α = 1/S. The Wellner algorithm pro-
vides good results but the required time is too high
for our application. The on-board Asctec Master-
mind (Intel Core2Duo SL9400) performs the bina-
rization within 8.971 ms, which could produce
on overrun in the execution time considering the
adopted workflow and the imposed deadline of
1/90sec.

Our requirement is to process the image pro-
vided by the camera (752x480 pixel) within 11.11 ms
(90 Hz). We reduced operations involving floats by
pre-computing, in a dedicated set of buffers, all pos-
sible operations with S and T defined a-prior consid-
ering the first decimal digital approximation starting
from the uint8 pixel intensity. At the start-up, we
calculate and store all the possible values.

The computation does not depend on S and T .
It depends only on the size of the input image. The
average required time to process an image using our
algorithm is 1.997 ms.

The original algorithm has been modified to
increase the accuracy and precision of the binarized
image. Equation 1 has been modified so that also the
moving average of the last Sb pixel defined as black is
taken into account, as:

O(n) =
⎧⎨
⎩

0 if p(n) < g(n) · (1 − T )

or if p(n) < j (n) · (1 + Tb)

1 otherwise

(4)

where j (n) is the exponential moving average for the
last Sb pixel defined as black, while Tb is a value
between 0 and 1. Pixels in the input image that are at

Fig. 14 Top left source
grayscale image. Top right
binarized image.Middle left
extracted contours. Middle
right filtered contours with
interpolated ellipses.
Bottom left Detected target.
Bottom right Detected
shaped and triangle. Bottom
center undistorted target.
(S=752/24, T=0.45, Sb=50,
Tb=0.25)
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least the Tb percent less dark than the average inten-
sity of last Sb pixel defined as black, are classified as
black on the binary image.

This trick increases the accuracy of segmented
image especially in regions with a large set of adjacent
black pixels. This adaptation requires two additional
buffers with performance of 2.16 ms on average.

The exact moving average could be calculate in a
fast way applying the following equation:

y(n) = 1
N

∑N−1
i=0 x(n − i)

y(n + 1) = 1
N

∑N−1
i=0 x(n + 1 − i)

(5)

and manipulating (5) it is possible to calculate the
average according to:

y(n + 1) = y(n) + (x(n + 1) − x(n − N))

N
(6)

The ratio between the difference of actual pixel and
the x(n−N) is simplified by pre-calculating the result
on a dedicated table.

In Fig. 8 a comparison between approximated aver-
age and exact one is shown. The computational time
by applying (6) is 2.18 ms on overage.

The binarized images with our adaptive threshold
algorithm have a better performance than OpenCV
algorithms in terms of computational time and qual-
ity of results. The computational time is close to Otsu
global threshold [16], which in our system takes on
average 0.991 ms, while regarding quality our algo-
rithm provides better results in presence of different
light conditions and shadows.

In the OpenCV adaptive threshold function the
chosen parameter directly defines the computational
time required to process an image. In our solution,
it depends only on image size. At the same time the
parameter used for an image acquired at low alti-
tude does not work well for an image acquired at
higher altitudes in OpenCV adaptive threshold. Our
solution with a fixed set of parameters for threshold-
ing (T , S, Tb, Sb) correctly processes images taken
at different altitudes with different light and shadow
conditions. The computational performances of the
OpenCV adaptive threshold are also worst, requiring
on average in the faster implementation (with a simple
mean over a small window of pixels) more than 6 ms
in our system.

In Fig. 9 a comparison between Otsu, OpenCV
adaptive threshold and Wellner algorithm is shown.

The second step is dedicated to contour extrac-
tion by applying the Suzuki algorithm [18], requir-
ing 2.4 ms on average. Considering the geometry
of our target we remove extracted contours that
have no parents (we have concentric circles/ellipses)
or with size/dimension not compatible with our
target.

To remove the distortion of 2.8 mm lens, by apply-
ing the Zhang and Bouguet approach described in
[22], the undistort method is applied only to the
features of interest extracted.

This approach requires on average 0.76 ms. It saves
a lot of time considering that the undistortion of a
single frame requires on average 5.5 ms.

Fig. 15 The adopted
reference systems
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In the following phase undistorted contours are
interpolated using the OpenCV function for extracting
a set of ellipses, as shown in Fig. 10.

The sub-step applied to ellipses extracted is the
detection of outliers and their removal. The basic idea
is to cluster the center of the ellipses in different sets.

We select the set with the largest number of ellipses
considering the working scenario and selected target.
This procedure requires on average 0.04 ms.

On the selected working set of concentric ellipses
the ratio among various real dimensions of the target
is calculated as summarized in Table 1.

Fig. 16 The selected path with mixed indoor and outdoor areas
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The ratio validates or not if the working set of
ellipses is associated to the target, also detecting if the
target is partially or fully visible.

In case of failure due to not valid proportion we
selected - if exists - the second largest working set re-
iterating the filtering procedure discussed above. The
required time is neglectable.

After the concentric ellipses detection, we look for
the triangle by reusing the contour hierarchy.

A candidate triangle is identified by contours
(approximated with 3 points by the Douglas-Peucker
algorithm [14]) that have to respect the dimensions
reported in Table 1. The required time is 0.12 ms on
average.

In the worst case, the vision system requires 5.5 ms
to completely process a frame: Table 2 lists the
computational times of our workflow. It is impor-
tant to consider that if a faster camera is available
(e.g. 120 Hz), we are still able to respect the dead-
line. The most expensive process is the adaptive
thresholding.

Figures 11 and 12 show the robustness of our algo-
rithm to external disturbance. Figures 13 and 14 show
the accuracy of our adaptive threshold algorithm that
works fine even in presence of shadows and different
illumination with a static set of parameters.

Using the available OpenCV methods it is not
possible to use a single set of parameters, but it is nec-
essary to change it according to the working scenario,
which, however, is usually unpredictable.

Figure 14 shows how the filtering algorithm cor-
rectly discriminates the contours associated to the
target even in presence of some noisy element with the
same shape and size of the target. It clearly shows the
correction of the distortion introduced by the 2.8 mm
lens.

The 6DOF of the camera with respect to the landing
platform are estimated from the largest visible cir-
cle and triangle. The estimation of drone pose (with
exception of yaw angle) is based on the work proposed
by Chen [11] starting from the undistorted ellipses.

The roll and pitch could be calculated by using the
fused data of the IMU or by the perspective projection
of ellipses [12].

The yaw angle is calculated from the largest vis-
ible triangle calculating the angle generated by its
unique top vertex. We not used the magnetometer
and/or fused yaw from IMU due to large variance in
the estimation process. The landing platform sets our
constraints as discussed in Section 3 and for this rea-
son we not considered the yaw estimation provided by
the IMU.

Fig. 17 A typical executed path on X axis
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By taking into account the estimated roll, pitch
and yaw it is possible to calculate the rotation matrix
from the camera to the landing reference system (see
Fig. 15).

The results obtained demonstrate that the error
increases with the distance due to the loss of accuracy
for each pixel in the landing target caused by:

– wide angle lens (2.8 mm);
– low resolution camera (752 × 480).

The height estimation is affected by the largest esti-
mation error leading to an error of 5.9 cm at 200 cm
of height. The planar estimation is more accurate
and precise and it is bounded to 2 cm at 200 cm of
height.

The attitude estimation by using the vision sys-
tem is bounded to 2 degrees in the worst scenario.
We used the IMU data as ground truth in quasi-static
tests.

5 Indoor / Outdoor Flight Tests

In this sub-section we propose the result of flights in
a mixed scenario. The first part of a flight is indoor
and the remaining outdoor. In this test we use only the

vision system without any external aid (e.g. GPS or
UWB real time location system). The selected path is
shown in Fig. 16.

In Figs. 17, 18 and 19 the executed path, respec-
tively, along the X, Y and Z axis is shown.

The error during the path execution was bounded
to 0.5m. The tests demonstrated the robustness of the
developed vision system. To avoid odometric drift it
is possible to use the GPS or any other localization
system (e.g. UWB) especially where optical flow has
a low number of features to track.

The test was critical mainly to the change in illu-
mination and to the presence of shadows. The high
accuracy and precision is ensured by the developed
algorithm that thresholds the image.

6 GPU Boosting

In this section we present results on the implementa-
tion of the thresholding algorithm on the NVidia Jet-
son TK1 platform [3]. This platform is equipped with
the GPU NVidia Kepler ”GK20a” with 192 SM3.2
CUDA cores (over 300 GFLOPS). This platform is
suitable to boost the on board image processing on a
UAV platform [17].

Fig. 18 A typical executed path on Y axis
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Fig. 19 A typical executed path on Z axis

The main features of Jetson TK1 GK20A are listed
in Table 3.

In particular, we focus on the following operations:

– Thresholding
– Image resizing

The thresholding algorithm described in Section 4
has been rewritten to be GPU ready.

The first step of adaption is the computation of
pixel average. The pixel average can be easily com-
puted by applying integral images to the reshaped
image matrix from a 2Dmatrix to 1D array. In this way
given the integral image I (n) where n varies from 0 to
(W ·H)−1, the average for the n-th pixel, considering
a window of N pixels, can be calculated as:

g(n) = (I (n) − I (n − N)) · 1

N
(7)

The term 1/N could be also pre-calculated to avoid
useless operations.

It is also possible for a pixel to consider the average
of previous raw according to Eq. 2 in the following
way:

g̃(n) = ((I (n) − I (n − N)) + (I (n − W)

− I (n − N − W))) · 1

2 · N
(8)

By applying this approach Eq. 8 considers only left-
to-right row exploration. The approach can also be
modified changing the calculation of the integral
image.

The 1-D integral image is I (n) = I (n − 1) + p(n)

for left to right row pixel exploration while I (n+1) =
I (n) + p(n + W − 1) in case of right to left.

This approach is a cumulated sum that considers
also the row change to implement left-to-right and
right-to-left approach and is similar to the well-known
prefix scan algorithm [8].

Table 3 Main features of the Jetson TK1 GK20A

Property Name Value

Compute 3.2

Number of multiprocessors 1

Cores 192

Base clock rate 852 MHz

Total global memory 1746 MB

Total shared memory per block 48 KB

Total constant memory 64 KB

Memory clock rate 924 MHz

Memory bus width 64-bit

Total registers per block 32768

Warp size 32
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Fig. 20 Example of adaptive thresholding by using the GPU

A simpler approach is to consider a not-separable
kernel to calculate the average. The kernel is the
following:

1

2N

[
1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

]
(9)

The asymmetric kernel is formed by a block of N ones
and N zeros and it simulates the left to right and right
to left scan of the image. The operations required are
2N · W · H , but it is possible to compensate the com-
plexity by using the GPU. In Fig. 20 the result of
thresholding using the GPU is shown. The correction
of Eq. 4, which considers pixels in the input image
that are at least the Tb percent less dark than the aver-
age intensity of last Sb pixel defined as black, is not
applied in the adopted GPU kernel.

For tests, we adopted the following configuration:
CUDA v6.0 and OpenCV2.4.8 for Tegra with built-in
support for GPU computing.

The image resizing exploits the built-in GPU func-
tions of OpenCV for L4T(Linux for Tegra). The com-
parison between CPU and GPU on frames by 752x480
pixels shows that for a small image most time (1 ms on
average) is spent to transfer data from host to device
and vice-versa.

7 Conclusions and Future Works

In this work, we presented an integrated approach
to deal with the problem of autonomous quadrotor
landing over a platform.

Our work started from the design of an artificial
B/W target that enables the estimation of 6DOF of the
UAV.

The developed platform hosts the UAV also for
recharging the battery owing to copper plated con-
tacts installed on the bottom part of cones. This
feature opens new frontiers to extend the endurance
of UAV quadrotors, especially in structured environ-
ments where it is possible to install landing platforms
over the region of interest. The landing time obvi-
ously depends on the environmental conditions, but is
limited to 1–2 min.

The developed vision system is able to run at the
maximum frame rate of our camera (90 Hz), but it is
possible to go faster due to the optimization performed
in each step of our workflow.

We introduced also the use of the Jetson TK1 pro-
cessing unit to boost some procedures as the thresh-
olding and the optical flow for vision-based navigation
could benefit of the GPU. The results obtained show
that the GPU boosting frees the CPU for other tasks
(e.g., related to the application).

Future works will be steered to adapt the landing
platform to balance the Li-po cells and to continue
the optimization process by extensively using the
GPU.
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