
Abstract--MoBeTrack (Mobile Behaviour Tracking) is a toolkit

for automated collection of data necessary to support User

Experience (UX) assessment of mobile applications. In contrast to

existing frameworks, it is able to collect user demographic

information (i.e., age and gender), trace any user interaction and

recognize user’s emotions during the use of an application. An

SDK for iOS allows to easily embedding the toolkit in every

mobile application in a flexible and scalable way.

I. INTRODUCTION

Nowadays, to compete successfully in the ultra-competitive

market of mobile devices applications, understanding UX in

the wild is of paramount interest. In fact, mobile applications

have to face a wide variety of external stimuli and

environmental conditions that are difficult to simulate in a

laboratory (e.g., the user might not be sitting in front on the

screen; it could perform a number of other general tasks while

using an application). Consequently, although formal tests with

users are important, they are not sufficient to understand the

actual application performances [1].

Currently available systems do not enable to carry out UX

evaluation in a proper way. Commercial frameworks such as

Flurry, Google Analytics or Localytics are only designed to

collect usage analytics (e.g., user demographics) so that they

do not allow to collect users’ performance data or users’

behavioral information. Several frameworks and toolkit have

been proposed in literature to support usability analysis (e.g.,

EvaHelper Framework [2], RobotME [3]) and enable

unsupervised usability evaluation [4]. However, they only

provide navigational data and user input, while they do not

allow the collection of objective data related to user's behavior

(e.g., user's gaze and emotions).

To fully support UX assessment of mobile apps in the wild,

MoBeTrack provides users’ demographic data (e.g. age and

gender), performance data (e.g., time to navigate a screen) and

usage data (e.g., scrolling, tapping). Moreover, it exploits eye

tracking and emotion recognition systems to allow the

collection of behavioral information.

II. MOBETRACK SYSTEM ARCHITECTURE

This system makes use of a centralized architecture that, as

shown in Figure 1, has two main actors: the iOS SDK on the

client side, and the Deep Learning (DL) platform on the server

side. The mobile SDK is an iOS framework that exposes some

APIs to monitor all the user interactions during the mobile app

usage. Among these features, there is the possibility to activate

the camera that takes different photos with a certain frequency.

Fig. 1. The system architecture

These photos are Base64-encoded and sent to a server by

HTTPS protocol. The central server that supports all the

platform architecture, handles incoming calls from the iOS

framework through a REST interface developed in Python,

that waits for POST HTTPS calls addressed to the exposed

endpoint. Once the call is received, the content is parsed and

decoded to get all the data, included the original JPEG

subsequently stored in the physical memory. After that, the

JPEG file name, that uniquely identifies the photo, is stored in

three different Redis queues so that, through the path of the

directory where the files are physically located, it is possible

for every DL Tracker module to obtain the position of the

photos every time it arrives. These queues are so used by the

three Tracker modules to respectively obtain the estimation of

the user's gaze x-y coordinates, his emotional state, and the

gender and age information. All of DL Tracker modules are

based on Convolutional Neural Networks (CNN) implemented

in Python. Whenever the processing of a photo is terminated

for all CNNs, the resulting data will be stored in a database

and the photo itself will be permanently deleted from the

server. All the stored data will be available through an

Analytics Web Platform.

III. SYSTEM FEATURES

A. iTracker

MoBeTrack implements a CNN for eye tracking described

in [5], called iTracker, which has been trained with a large-

MoBeTrack: A Toolkit to Analyze User Experience of Mobile

Apps in the Wild

A. Generosia, A. Altieria, S. Ceccaccia, G. Foresib, A. Talipua, G. Turria, M. Mengonia
aDipartimento di Ingegneria Industriale e Scienze Matematiche,

bDipartimento di Ingegneria dell’Informazione,

Università Politecnica delle Marche, Ancona, Italy

Email: {a.generosi, a.altieri, g.foresi, t.abudukaiyoumu, l.giraldi}@pm.univpm.it ,

{s.ceccacci, g.turri, m.mengoni}@univpm.it

L. Giraldi a

Authorized licensed use limited to: Universita' Politecnica delle Marche. Downloaded on January 04,2023 at 12:49:27 UTC from IEEE Xplore. Restrictions apply.

scale dataset for eye tracking (i.e. GazeCapture) that contains

data from 1474 subjects (~2.5M frames). Such dataset was

collected through crowdsourcing, so that its large data

variability allows to improve model robustness. The CNN

takes in input the images of the left eye, the right eye and the

face detected and cropped from the original image, and a

binary mask (face grid) used to indicate location and size of

the face within the frame, and provides in output the x-y

coordinates from the camera (in centimeters).

B. EmoTracker

A CNN was defined, based on a revised version of the

VGG13 [7]. It consists of 10 convolution layers spaced with

max pooling and dropout layers. It was trained from scratch on

the FER+ dataset [6] able to recognize 8 types of emotion:

neutral, happiness, surprise, sadness, anger, disgust, fear, and

contempt. The CNN takes in input an aligned grayscale face

image at 64x64 and gives in output a probability for each

emotion.

C. Age and Gender Tracker

Estimation of age and gender is accomplished by another

CNN trained from scratch on the IMDB-WIKI dataset [8]. The

Wide Residual Network (WideResNet) [9] architecture was

adopted and two classification layers were added: one with

101 units for age estimation and another with 2 units for

gender classification. The deepening and widening factors of

the network are set to 16 and 8 respectively. The model is fed

with 256x256 aligned face image and it outputs the age and

gender probabilities.

D. iOS SDK

The client-side of MoBeTrack is a framework designed for

Apple smartphones. This framework, once embedded in iOS

applications, allows to send to the server all the activities

performed by the user with the app. Firstly, by using the

smartphone front camera, it takes photos silently with a

frequency of 0.5 Hz and analyzed them at the server-side.

Secondly, each time a user taps the screen, it stores the x-y

coordinates of the tapped point (in pixels). Also information

about scroll activities is taken into account. Each time the user

scrolls the current view, the y-offset from the left-top corner of

the screen is updated. All these values are sent to the server

whenever one of the aforementioned actions is performed.

Fig. 2. The Overview section of the Analytics platform.

E. Analytics Web Platform

A web platform (Figure 2) has been developed to visualize

the analytic data about the app usage. The tap and gaze

information is used to generate heatmaps.

IV. RESULTS AND CONCLUSION

This work proposed a system able to collect, analyze, and

visualize data about user interactions/behaviour with mobile

applications supporting UX designers.

Preliminary tests have been carried out on iPhone 4, iPhone

6s and iPhone 7 Plus to determine CPU and battery

consumption and required RAM allocation, by varying the

screen brightness and the frame shots frequency. Results are

reported in the following table.

Table 1. Test Results

iPhone 4 iPhone 6s iPhone 7 Plus

Shots
frequency

Screen
brightness

C
P

U
 (

%
)

R
A

M
 (

M
B

)

B
at

te
ry

 (
%

)

C
P

U
 (

%
)

R
A

M
 (

M
B

)

B
at

te
ry

 (
%

)

C
P

U
 (

%
)

R
A

M
 (

M
B

)

B
at

te
ry

 (
%

)

0.5 Hz
50%

25% 10
11%

7% 21
7%

14% 30
4%

100% 16% 15% 13%

1 Hz
50%

28% 6
12%

9% 15
9%

19% 38
5%

100% 17% 15% 14%

3 Hz
50%

56% 9
12%

15% 21
10%

24% 90
7%

100% 19% 18% 15%

 Future system improvements mainly concern SDK versions

for Java/Android and cross-platform frameworks, and lighter

CNN models to be embedded directly inside the SDK,

reducing network traffic.

REFERENCES

[1] Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I.,

& Shayandeh, S. AppInsight: Mobile App Performance Monitoring in

the Wild. In OSDI, Vol. 12, pp. 107-120.

[2] Balagtas-Fernandez, F., & Hussmann, H. A methodology and

framework to simplify usability analysis of mobile applications. In Proc.

of the 2009 IEEE/ACM International Conference on Automated

Software Engineering, pp. 520-524.

[3] Zduniak, M. (2007). Automated gui testing of mobile java applications.

Master's thesis, Poznan University of Technology Faculty of Computer

Science and Management.

[4] Lettner, F., & Holzmann, C. Automated and unsupervised user

interaction logging as basis for usability evaluation of mobile

applications. In Proc. of the 10th ACM International Conference on

Advances in Mobile Computing & Multimedia, pp. 118-127.

[5] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W.

Matusik, and A. Torralba, “Eye tracking for everyone”, In Proc. of the

IEEE conference on computer vision and pattern recognition, 2016, pp.

2176-2184.

[6] E. Barsoum, C. Zhang, C. C. Ferrer, and Z. Zhang, “Training deep

networks for facial expression recognition with crowd-sourced label

distribution,” In Proc. of the 18th ACM International Conference on

Multimodal Interaction, 2016, pp. 279-283.

[7] K. Simonyan, and A. Zisserman, "Very deep convolutional networks for

large-scale image recognition." In arXiv preprint arXiv:1409.1556,

2014.

[8] R. Rothe, R. Timofte, and L. Van Gool, "Dex: Deep expectation of

apparent age from a single image," In Proc. of the IEEE International

Conference on Computer Vision Workshops, 2015, pp. 10-15.

[9] S. Zagoruyko, and N. Komodakis, "Wide residual networks," In arXiv

preprint arXiv:1605.07146, 2016.

Authorized licensed use limited to: Universita' Politecnica delle Marche. Downloaded on January 04,2023 at 12:49:27 UTC from IEEE Xplore. Restrictions apply.

