
Abstract--MoBeTrack (Mobile Behaviour Tracking) is a toolkit 

for automated collection of data necessary to support User 

Experience (UX) assessment of mobile applications. In contrast to 

existing frameworks, it is able to collect user demographic 

information (i.e., age and gender), trace any user interaction and 

recognize user’s emotions during the use of an application. An 

SDK for iOS allows to easily embedding the toolkit in every 

mobile application in a flexible and scalable way. 

I. INTRODUCTION 

Nowadays, to compete successfully in the ultra-competitive 

market of mobile devices applications, understanding UX in 

the wild is of paramount interest. In fact, mobile applications 

have to face a wide variety of external stimuli and 

environmental conditions that are difficult to simulate in a 

laboratory (e.g., the user might not be sitting in front on the 

screen; it could perform a number of other general tasks while 

using an application). Consequently, although formal tests with 

users are important, they are not sufficient to understand the 

actual application performances [1].  

Currently available systems do not enable to carry out UX 

evaluation in a proper way. Commercial frameworks such as 

Flurry, Google Analytics or Localytics are only designed to 

collect usage analytics (e.g., user demographics) so that they 

do not allow to collect users’ performance data or users’ 

behavioral information. Several frameworks and toolkit have 

been proposed in literature to support usability analysis (e.g., 

EvaHelper Framework [2], RobotME [3]) and enable 

unsupervised usability evaluation [4]. However, they only 

provide navigational data and user input, while they do not 

allow the collection of objective data related to user's behavior 

(e.g., user's gaze and emotions).  

To fully support UX assessment of mobile apps in the wild, 

MoBeTrack provides users’ demographic data (e.g. age and 

gender), performance data (e.g., time to navigate a screen) and 

usage data (e.g., scrolling, tapping). Moreover, it exploits eye 

tracking and emotion recognition systems to allow the 

collection of behavioral information. 

II. MOBETRACK SYSTEM ARCHITECTURE 

This system makes use of a centralized architecture that, as 

shown in Figure 1, has two main actors: the iOS SDK on the 

client side, and the Deep Learning (DL) platform on the server 

side. The mobile SDK is an iOS framework that exposes some 

APIs to monitor all the user interactions during the mobile app 

usage. Among these features, there is the possibility to activate 

the camera that takes different photos with a certain frequency.  

 
Fig. 1. The system architecture 

These photos are Base64-encoded and sent to a server by 

HTTPS protocol. The central server that supports all the 

platform architecture, handles incoming calls from the iOS 

framework through a REST interface developed in Python, 

that waits for POST HTTPS calls addressed to the exposed 

endpoint. Once the call is received, the content is parsed and 

decoded to get all the data, included the original JPEG 

subsequently stored in the physical memory. After that, the 

JPEG file name, that uniquely identifies the photo, is stored in 

three different Redis queues so that, through the path of the 

directory where the files are physically located, it is possible 

for every DL Tracker module to obtain the position of the 

photos every time it arrives. These queues are so used by the 

three Tracker modules to respectively obtain the estimation of 

the user's gaze x-y coordinates, his emotional state, and the 

gender and age information. All of DL Tracker modules are 

based on Convolutional Neural Networks (CNN) implemented 

in Python. Whenever the processing of a photo is terminated 

for all CNNs, the resulting data will be stored in a database 

and the photo itself will be permanently deleted from the 

server. All the stored data will be available through an 

Analytics Web Platform.  

III. SYSTEM FEATURES 

A.  iTracker 

MoBeTrack implements a CNN for eye tracking described 

in [5], called iTracker, which has been trained with a large-
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scale dataset for eye tracking (i.e. GazeCapture) that contains 

data from 1474 subjects (~2.5M frames). Such dataset was 

collected through crowdsourcing, so that its large data 

variability allows to improve model robustness. The CNN 

takes in input the images of the left eye, the right eye and the 

face detected and cropped from the original image, and a 

binary mask (face grid) used to indicate location and size of 

the face within the frame, and provides in output the x-y 

coordinates from the camera (in centimeters). 

B.  EmoTracker 

A CNN was defined, based on a revised version of the 

VGG13 [7]. It consists of 10 convolution layers spaced with 

max pooling and dropout layers. It was trained from scratch on 

the FER+ dataset [6] able to recognize 8 types of emotion: 

neutral, happiness, surprise, sadness, anger, disgust, fear, and 

contempt. The CNN takes in input an aligned grayscale face 

image at 64x64 and gives in output a probability for each 

emotion.  

C.  Age and Gender Tracker 

Estimation of age and gender is accomplished by another 

CNN trained from scratch on the IMDB-WIKI dataset [8]. The 

Wide Residual Network (WideResNet) [9] architecture was 

adopted and two classification layers were added: one with 

101 units for age estimation and another with 2 units for 

gender classification. The deepening and widening factors of 

the network are set to 16 and 8 respectively. The model is fed 

with 256x256 aligned face image and it outputs the age and 

gender probabilities. 

D.  iOS SDK 

The client-side of MoBeTrack is a framework designed for 

Apple smartphones. This framework, once embedded in iOS 

applications, allows to send to the server all the activities 

performed by the user with the app. Firstly, by using the 

smartphone front camera, it takes photos silently with a 

frequency of 0.5 Hz and analyzed them at the server-side. 

Secondly, each time a user taps the screen, it stores the x-y 

coordinates of the tapped point (in pixels). Also information 

about scroll activities is taken into account. Each time the user 

scrolls the current view, the y-offset from the left-top corner of 

the screen is updated. All these values are sent to the server 

whenever one of the aforementioned actions is performed. 

 
Fig. 2. The Overview section of the Analytics platform. 

 

E.  Analytics Web Platform 

A web platform (Figure 2) has been developed to visualize 

the analytic data about the app usage. The tap and gaze 

information is used to generate heatmaps. 

IV. RESULTS AND CONCLUSION 

This work proposed a system able to collect, analyze, and 

visualize data about user interactions/behaviour with mobile 

applications supporting UX designers. 

Preliminary tests have been carried out on iPhone 4, iPhone 

6s and iPhone 7 Plus to determine CPU and battery 

consumption and required RAM allocation, by varying the 

screen brightness and the frame shots frequency. Results are 

reported in the following table. 

Table 1. Test Results 
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50% 

25% 10 
11% 

7% 21 
7% 
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4% 

100% 16% 15% 13% 

1 Hz 
50% 

28% 6 
12% 
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19% 38 
5% 

100% 17% 15% 14% 

3 Hz 
50% 

56% 9 
12% 

15% 21 
10% 

24% 90 
7% 

100% 19% 18% 15% 

 

 Future system improvements mainly concern SDK versions 

for Java/Android and cross-platform frameworks, and lighter 

CNN models to be embedded directly inside the SDK, 

reducing network traffic. 
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