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Abstract 
Driver behaviour recognition is of paramount importance for in-car automation assistance. It is widely 
recognized that not only attentional states, but also emotional ones have an impact on the safety of the 
driving behaviour.  
This research work proposes an emotion-aware in-car architecture where it is possible to adapt driver’s 
emotions to the vehicle dynamics, investigating the correlations between negative emotional states and 
driving performances, and suggesting a system to regulate the driver’s engagement through a unique user 
experience (e.g. using music, LED lighting) in the car cabin. 
The relationship between altered emotional states induced through auditory stimuli and vehicle dynamics 
is investigated in a driving simulator. The results confirm the need for both types of information to improve 
the robustness of the driver state recognition function and open up the possibility that auditory stimuli can 
modify driving performance somehow. 
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1. Introduction 

Equipping vehicles with intelligent driver assistant systems seems to be a promising 
way of preventing road traffic accidents since most of them are due to driver's 
performances (Panou, 2018; Stephens and Groeger, 2009). Therefore, driver Monitoring 
and Assistance Systems (DMAS), acting on the user’s status, are increasingly used 
(Saulino et al., 2015). Driver monitoring is the key function allowing for the adaptation 
of the assistance provided by the automation to the driver. To date, psychophysiological 
monitoring of human states has the chance of exploiting a plethora of sensors, and the 
detection results can be combined with the analysis of the driving context to provide by 
means of adaptive HMI (Human Machine Interfaces) the best driving experience (Khan 
& Lee, 2019). Partially autonomous driving still needs the human "in the loop" in some 
circumstances, and control switch from the automation to the human must ensure his / her 
suitability of being able to drive, thus calling even more for the critical role of human 
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behavior monitoring and assessment (Davoli et al., 2020). Besides distraction, the 
detection of driver's emotions got momentum, given the potentially dangerous effects 
emotions can have on the driver's performance (Zepf et al., 2020; Jeon, 2017). Research 
demonstrates that attention and emotions are linked with driving performances (Pêcher et 
al., 2009), and aggressive driving, related to the difficulty in managing human emotions, 
is one of the primary cause of cars accidents (Özkan et al., 2011; Sârbescu, 2012). 
Negative emotions, like anxiety and anger, can affect perception and decision-making 
and, sometimes, even alter physical capabilities (Lisetti and Nasoz, 2005; Matthews, 
2002). According to (Jeon et al., 2017), some emotions have different effects on others: 
for example, anger and happiness significantly reduce the driving performances and 
safety level compared to neutral and especially fear. Equipping cars with an emotion-
aware system would provide warning and proper stimuli to regulate emotions, ranging 
from ambient light modulation to empathic vocal interactions with the assistance systems 
or acting on the vehicle's dynamics (Braun et al., 2019). AI technologies allow human 
emotions to be detected and monitored automatically. Today's different technologies are 
used to recognize people emotions differ mainly at an intrusiveness level: especially 
biofeedback sensor, like EEG (Electroencephalography), can introduce a strong bias that 
could affect the subjects' behavior and the experienced emotion itself (Ceccacci et al., 
2018). For this reason, this research area is starting to focus on non-intrusive devices in 
the last year to automatically recognize human emotions, particularly for speech and 
facial coding analysis. Most of the facial expression recognition systems today make use 
of Deep Neural Networks (especially Convolutional Neural Networks), like the one 
presented by (Generosi et al., 2018; Generosi et al., 2019), taking pictures of human faces 
in input and providing a prediction of the relative Ekman's primary emotions (i.e., 
happiness, surprise, sadness, anger, disgust, and fear) (Ekman and Friesen, 1978), just 
like most of the state-of-the-art systems that involve this kind of technologies (Li et al., 
2018). The literature proposes different emotion-aware car systems, some using voice 
analysis (Jones and Jonsson, 2007) others wearable devices (Nasoz et al., 2010; Katsis et 
al., 2008). Many of the proposed Driver Monitoring Systems (DMS) aim to recognize: 

1) Inappropriate driving behaviour and abnormal driver’s state through car’s dynamic 
data 

2) Driver’s looking direction and so every kind of visual distraction and drowsiness, 
through cameras. 

This basics equipment already allows for integrating emotion awareness in the 
interactive dialogue between the driver and the automation and constitutes the 
infrastructure considered for the architecture proposed and discussed in the following 
chapters. 

2. Research aim 

Extending the research work proposed in (Ceccacci et al., 2020), with a more structured 
tool design proposal and experimental phase, this project aims to provide a model and 
implement an in-car emotion-aware architecture through a reactive and “symbiotic” 
human-computer interface able to: 

1) Analyze driver's facial expression and his/her emotional state; 
2) Increase the driver's comfort and safety by creating a link between emotions and 

the car interface 
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An overall architecture with preliminary implementation and assessment results are 
presented. In particular, a comparative study, within a driving simulation environment, 
has been carried out in order to: 

1) Observe the relationship between driving performance parameters and detected 
emotions, induced through acoustic stimuli; 

2) Evaluate the impact of the driving task on emotions elicited through acoustic 
stimulation. 

3. The proposed system 

The architecture presented in Figure 1 is characterized by: 
1) A Driving Monitoring System, leveraging (i) a Driving Style Detection module and 
(ii) an Emotion Recognition module; 
2) A smart car interface, controlling led lights and music within the car environment. 

The functionalities of such modules and the implementation details of some of them are 
described in the following sub-paragraphs. 

 

 
 

Figure 1: The proposed system architecture. 

3.1 Driving Style Detection module 

Different research works (Toledo and Lotan, 2006; ROSPA, 2013; Verster and Roth, 
2011) demonstrated that driving data, often acquired from the vehicle CAN (Controller 
Area Network), are significant and objective indicators to assess any driver’s impairment: 
these include steering frequency (expressed in Steering Wheel Reversal Rate, SWRR) 
(Macdonald and Hoffmann, 1980) and the driver steering respect to the center of the lane 
(Standard Deviation from Lateral Position, SDLP, i.e. the results of the vehicle’s 
movement induced by driver steering actions with respect to the road environment) 
(Verster and Roth, 2011). Another crucial data for this approach is time required for two 
vehicles to collide at a certain speed, from the start of braking, on the same path (Time to 
Collision, TTC) (Van Der Horst and Hogema, 1993).  
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The Driving Style Detection module follows the trend dictated by today's DMS and 
DMAS, designed to use and depend on this kind of data acquired from the vehicle CAN, 
to assess the driving behavior (Saulino et al., 2015). 

3.2 Emotion Recognition module  

The Emotion Recognition module is based on a Convolutional Neural Network (CNN) 
trained using a merged dataset with both “in the wild'' and “in lab” properties, and the 
Python version of Tensorflow and Keras frameworks (Talipu et al., 2019). In particular, 
this CNN has been trained with the public dataset CK+ (Lucey et al., 2010) and FER+ 
(Barsoum et al., 2016) built in laboratory, and the “in the wild '' dataset provided by 
Affectnet. Combining and cleaning these datasets with different properties, has been 
possible to improve the resulting model reliability, obtaining a dataset composed of 250k 
photos. The merged dataset has been splitted using the 80-20 proportion, so using 80% 
of the dataset for the training phase and 20% for the validation phase. The deploy script 
has been developed in Python using Dlib, Tensorflow and Keras frameworks: giving the 
face images to the trained model’s network input layer, it returns in output the six main 
Ekman’s Emotions (happiness, surprise, anger, disgust, sadness, fear and neutral) 
classification probabilities. Different Keras model architectures such as Inception 
(Szegedy et al., 2016), VGG13, VGG16 and VGG19 (Simonyan and Zisserman, 2014) 
have been tested. Considering the test results, VGG13 has been chosen as the best one, 
with a 75.48% of accuracy.   

3.3 Smart Car Interface 

The Smart Car Interface is the module that manages the adjustment of dashboard lights 
and radio music playlists based on the detected driver's affective state and rules generated 
by the application of predictive Machine Learning models.  The objective is to adjust the 
driver's emotional state as soon as specific conditions, considered dangerous for the 
driving style, are detected. This goal is achieved through the activation of lights and 
sounds/music judged suitable to bring the driver's detected emotional condition to a 
neutral state. A classic example that can be taken into consideration is when a driver is in 
an altered emotional state due to an incorrect driving style by other drivers, in this case 
the objective of the Driver Monitoring System becomes to detect as soon as possible such 
a condition and activate through the Smart Car Interface a different tone/color of the 
dashboard lights and a musical playlist suitable for the driver emotion regulation. As a 
first step, how to match five Ekman’s basic emotions (Joy, Surprise, Fear, Sadness and 
Anger) with lighting colors and most common musical genres, has been investigated. 
Following the main approach described in (Altieri et al., 2019) and (Altieri et al., 2019),  
to follow this purpose it has been necessary to define 5 color transitions (for every 
investigated Ekman’s emotion) using a survey carried out involving about 300 Italian 
people (58.4% females and 41.6% males), older than 18 years (27.3% aged between 18 
and 24, 61.1% aged between 25 and 35, 11.6% older then 35) so to get an association 
between Ekman’s emotions and color. Results are shown in Table 1.     
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Table 1. Predominant emotions-color associations 

 
 

About music tracks, it has been considered to map seven musical genres (Pop, Rock, 
Classical, Latin, R&B, Jazz, and Metal) with the bi-dimensional valence-arousal model 
proposed by Russel in (Russel et al., 1980). To associate this scale of values with the most 
popular music tracks the Spotify Web APIs has been used: these APIs provide metadata 
for songs belonging to a Spotify playlist, including genre, loudness, energy, bpm, valence 
etc. In this context, following also results discussed in (Kim et al., 2011) it has been 
possible to notice that songs characterized by “high-valence/high-arousal” values are 
strongly related with exciting sensations, while “low-valence/low-arousal” values are 
associated with sad, melancholic, and boring music. Accordingly with this approach, and 
as showed in (Altieri et al., 2019), five areas have been identified in this valence-arousal 
space, so to map Ekman’s emotions with the Russel quantitative system.  

As investigated in this paper and as will be further explored in future research works, 
there exists a statistical correlation between some of Ekman’s emotions and an aggressive 
driving style. To bring the driver's altered emotional state back to acceptable threshold 
levels for a correct driving style, the most immediate association could be to modify the 
dashboard lights by proposing blue or purple (associated with emotions of sadness and 
fear) as the dominant colors, together with playlists composed of genre songs and 
valence/arousal values associated with the same emotions. For example, it is possible to 
notice how the Jazz genre, or many tracks of the Classic genre are associated with the 
emotions of Sadness and Fear, while songs belonging to the Rock or Metal genre, are 
often associated with emotions such as Surprise or Anger. Although the system described 
in paragraph 4.2 can apply the proposed solutions, it is not the purpose of this paper to 
investigate at an experimental level whether these types of feedback actually have the 
effect of changing the emotional state of the user driving and how they may affect his/her 
driving style, but it is instead to show the rationale that is behind its functioning. 

4. Experimental case study 

The availability of driving performance data via the car CAN network and the 
possibility of leveraging low-cost video-based analysis systems for the emotion 
recognition encourages the development of driver state detection techniques exploiting 
such kind of information.The study presented in this section of the paper investigates 
within a driving simulation environment the relationship between driving performance 
parameters and detected emotions, that are the objectives of the two fundamental 
components of the proposed driving monitoring system, i.e., the driving style detection 
module and the emotion recognition module.   

Experimental design and procedure, data collection and the statistical methods used in 
the analysis are described in detail below. 

  



European Transport \ Trasporti Europei (2021) Issue 84, Paper n° 5, ISSN 1825-3997 
 

6 
 

4.2 Experimental design. 

The experiment setting involved a driving simulator equipped with a camera capturing 
the frontal video of the driver. 

To the aim of inducing emotions in participants, sound stimuli were considered 
because of their proved efficacy and efficiency, i.e., their capacity to induce emotion 
despite their short duration time (Jeon, 2017).  A set of seven easily recognizable, clearly 
distinguishable, and strongly connotated audio tracks of few seconds were used: car crash, 
child's laughter, vomiting, fart, zombie, car horn, and scream of pain. 

Participants were randomly assigned to two groups: a control one, where no sound 
stimuli were provided during the driving task, and an experimental one, where the sound 
stimuli were randomly provided every 45 seconds. The control group allowed for the 
collection of a baseline of driving performance data, while the experimental group 
allowed for the collection driving performance data under elicited emotional conditions. 

This first study is indeed conducted to understand the impact of altered emotional 
states on driving performance (dependent variable), i.e., how different are driving 
parameters between neutral emotional states (condition: no sounds provided while 
driving) and non-neutral emotional states (condition: sounds provided while driving). 

Revealing significant differences in the dependent variable implies that sound-elicited 
emotions can change driving parameters and that, in turn, driving parameters are 
important sources of information to detect altered emotional states in the driver. 

A further analysis was conducted within the same study to understand if the driving 
task (independent variable) altered the emotional response (dependent variable). 
Participants of the control group, indeed, after the driving task, were asked to stay sit 
down in front of the shut-down simulator screen (condition: without driving) while 
listening to the randomized sequence of the 45’’- separated sounds. 

This second analysis is conducted to understand if the emotions detected under the two 
different conditions (i.e., while driving, for the experimental group, and without driving, 
for the control group) are different.  

If no differences are revealed between the two groups, we can conclude that: 
1) The driving task does not impact on the emotional response to the considered stimuli; 
2) We can consider the emotional responses of subjects from both groups to label the non-
neutral emotional states under which the driving simulator data were collected. 

   

Figure 2. The driving simulator (on the left) and the circuit shape used for the driving 
scenario (on the right). 

The driving simulator used for the experiment (Figure 2) was built on Oktal SCANeR 
II platform, enriched with real car commands (e.g., gearbox, pedals, wipers and 
indicators). The simulation software engine was SCANeR Studio 1.7, including ADAS 
(Advanced Driver Assistance Systems) and Autonomous Driving functionalities and the 
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driving scenario was visualized through a projector. The simulation engine ran on a 
Windows 10 pc, while the drivers of the commands ran on a Windows 7 pc connected 
with an acquisition board able to digitalize the signal coming from the commands. Two 
audio sources were located on both sides of the driver’s seat, in order to ensure an 
immersive and realistic audio experience. The steering wheel was a SensoDrive force-
feedback steering wheel, connected through Peak-CAN to the simulator. The driving 
scenario was based on a two-lane highway, with no traffic, road signs with speed limit, 
and a countryside landscape as background. The shape of the circuit was similar to two 
circles connected by a straight line for a total length of 12 km (Figure 2). For the emotion 
recognition software, a Logitech Brio 4K webcam has been used. 

4.3 Participants 

A total of 20 voluntary subjects (9 females and 11 males) have been involved and 
randomly splatted into the two groups. The control group counts a total of 10 subjects (5 
females and 5 males) aged between 24 and 30 (Mean = 26.6, SD = 1.34). The 
experimental group consists of 10 subjects (4 females and 6 males) aged between 25 and 
34 (Mean = 29.4, SD = 2.83). All the participants had a valid driving license since at least 
3 years and no particular hearing problems.  

4.4 Experimental Procedure and Data Collection 

Before starting the test, all participants were instructed about the objectives of the 
experiment, were asked to sign the informed consent, and to complete a 5-minute training 
in order to become familiar with the driving simulator. 

After that, all the participants (both of the control and experimental groups), one per 
time, had to execute a driving task lasting 6 minutes. They were required to respect the 
code of the road as they would in a natural setting. Their speed information was shown 
on the dashboard speedometer. 

For all the participants, several driving parameters were monitored and used as 
dependent variables for the driving performance evaluation. In particular, the simulator 
was able to record the Standard Deviation of the Lane Position (SDLP) and the Standard 
Deviation of the Steering Wheel Angle (SDSTW). These parameters have been 
considered as metrics to evaluate later control performance. On the other hand, the 
indicators of longitudinal control performance, Standard Deviation of Pressure (SDP) for 
the gas pedal and Standard Deviation of Speed (SDS), have instead been considered. 

During the driving task, only the participants of the experimental group were asked to 
listen to the seven acoustic stimuli (i.e., car crash, child's laughter, vomiting, fart, zombie, 
car horn, and scream of pain) of approximately 5 seconds each and delivered with a delay 
of 45 seconds between each other. The order the stimuli have been administered has been 
counterbalanced across subjects. For the participants of the experimental group, video 
captured from the camera was processed through the Emotion Recognition system and 
resulted information data were also collected and synchronized with driving performance 
data. In particular, all the main Ekman's emotions, in terms of percentage probability that 
a photo belongs to a particular emotional category, have been recorded. After the driving 
task, only participants of the control group were asked also to complete a listening task 
equal to that performed by participants in the experimental group during the driving task 
(i.e., 7 acoustic stimuli, 5 seconds each and delivered every 45 seconds, order of stimuli 
counterbalanced across subjects). Participants of the control group listened to the audio 
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stimuli sitting on the simulator chair without driving, so focusing on the stimulus itself. 
In this case, only emotional information has been recorded. The test for the control group 
lasted about 20 minutes, while the experimental group test lasted 15 minutes. 

5. Results 

5.1 Emotion aroused by acoustic stimuli.  

The emotions detected in the six seconds following the start of each acoustic stimulus 
were compared between groups (Figure 3) using the non-parametric Mann Whitney U 
test due to the categorial of the variables and the lack of normality of the distributions.  

 
Figure 3: Emotions detected in the six seconds following the start of each acoustic 
stimulus. 

 
Results revealed only a statistically significant difference (U = 24, p < .005) between 

the level of anger elicited by stimulus 1 (car crash) while driving (Mdn = 7,99) compared 
to non-driving (Mdn = 2,44). There are no significant differences between the emotions 
elicited while driving and non-driving for all the other stimuli. This suggests that, in 
general, the driving task does not impact on the emotional response to the considered 
stimuli, so that the emotions induced by the sounds do not differ in the driving context 
compared to the non-driving context. Therefore, we used the responses of all participants 
(both control group and experiment group) to "label" the sounds used. 

To determine which prevailing emotions (if any) were elicited, a within-group 
assessment was conducted for each stimulus using Wilcoxon signed-rank test. 
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Results revealed that the stimulus 1 (car crash) most aroused both anger and disgust. 
In fact, the detected level of anger (Mdn = 2,75) is statistically significantly higher than 
the level of fear (Mdn = 0,41), Z = 2.805, p = .005.  

Also, the level of disgust (Mdn = 2,25) is statistically significantly higher than the level 
of fear, Z = 2.701, p = .007. While there is no statistically significant difference between 
the levels of anger and disgust and between the levels of fear, happiness (Mdn = 0,4575) 
and surprise (Mdn = 1,38). The stimulus 2 (child’s laughter) most aroused anger. In fact, 
the detected level of anger (Mdn = 2,63) is statistically significantly higher than the level 
of fear (Mdn = 0,52), Z = 2.599, p = .009. There are no statistically significant differences 
between the levels of fear, happiness (Mdn = 0,865), sadness (Mdn = 0) and surprise (Mdn 
= 1,03) and disgust (Mdn = 1,065). The stimulus 3 (vomiting) most aroused both anger 
and disgust. The level of fear (Mdn = 0,98) is statistically lower than the level of anger 
(Mdn = 3,05), Z = 2.497, p = .013, and disgust (Mdn = 2,445), Z = 2.090, p = .037. 
Whereas there are no statistically significant differences between the levels of fear, 
happiness (Mdn = 1,35), sadness (Mdn = 0) and surprise (Mdn = 1,24). There are no 
statistically significant differences between anger and disgust. The emotion most aroused 
by the stimulus 4 (fart) is happiness. In fact, the detected level of happiness (Mdn = 
29,45) is statistically significantly higher than the level of fear (Mdn = 0,46), Z = 2.191, 
p = .028. There are no statistically significant differences between the levels of fear, 
disgust (Mdn = 0,45), sadness (Mdn = 0), anger (Mdn = 1,90) and surprise (Mdn = 0,57). 

Stimulus 5 (zombie) predominantly elicited anger, and secondarily disgust. In fact, 
the detected level of anger (Mdn = 5,20) is statistically significantly higher than the level 
of fear (Mdn = 0,92), Z = 2.803, p = .005. Besides, the level of disgust (Mdn = 2,34) is 
statistically significantly higher than fear, Z = 2.395, p = .017, but it is statistically 
significantly lower than anger, Z = 2.599, p = .009. There are no statistically significant 
differences between the levels of fear, sadness (Mdn = 0), happiness (Mdn = 0,75) and 
surprise (Mdn = 0,86). Anger resulted in the emotion most aroused by the stimulus 6 (car 
horn). The level of anger (Mdn = 5,32) is statistically significantly higher than the level 
of fear (Mdn = 0,90), Z = 2.652, p = .008. There are no statistically significant differences 
between the levels of fear, disgust (Mdn = 2,16), sadness (Mdn = 0), happiness (Mdn = 
0,33) and surprise (Mdn = 0,98). Stimulus 7 (scream of pain) mainly aroused both anger 
and disgust. The level of fair (Mdn = 0,73) is statistically significantly lower than the 
levels of anger (Mdn = 4,94), Z = 2.701, p = .007, and disgust (Mdn = 2,93), Z = 2.293, p 
= .022. There are no statistically significant differences between the levels of anger and 
disgust. There are no statistically significant differences between fear, sadness (Mdn = 0), 
happiness (Mdn = 0,36) and surprise (Mdn = 0,98). 

5.2 Driving performance  

The analysis of the driving performance in the different conditions was conducted 
firstly at the level of the two groups with all the stimuli aggregate, to investigate the effect 
of general acoustic emotional distraction on the driving performance. Secondly was 
investigated the impacts of each single stimulus (each characterized for a specific 
predominant emotion) on driving. Thirdly, at the level of the single stimulus as within-
group analysis only for the experimental group to assess if, on the same subject, different 
emotional sounds can generate a different driving performance. 

Regarding the driving performance between the two driving test groups (with and 
without acoustic stimuli), only SDLP is statistically relevant (Figure 4), also if not 
normally distributed. However, comparing these two groups with an unpaired two-
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samples Wilcoxon test, it showed a statistically higher value (W = 81, p = 0.018) in the 
tests without acoustic stimuli (Median=0.56) concerning the other group (Median = 0.28). 

 

Figure 4:  Comparison of the Standard Deviation of Lane Position (SDLP) between 
groups 

At the level of each considered sound, different stimuli resulted to be statistically 
different in the effects on the three considered driving performance indicators. Indeed, 
the stimulus 1 (sound of car crash) generated a statistically different lateral driving 
performance t(18) = 2.746, p = 0.01328, for what concern the SDSTW (Figure 5), which 
also showed a normal distribution and resulted to be lower in the control group (mean = 
0.46, SD = 0.21) than in the experimental group (mean = 0.72, SD = 0.20); hence, 
highlighting a lower driving performance in the control group respect to the experimental 
group. Similarly, also the stimulus number 4 (Fart/raspberry) had caused an impairing 
driving performance in the experimental group for what concerns the SDS (Figure 6), 
which resulted to be not a normal distribution, but significantly higher (W = 79, p = 
0.02881) for the experimental group (median = 2.48), respect to the control group (median 
= 0.57). 

 

Figure 5: Comparison of the Standard Deviation of Steering Wheel angle (SDSTW) for 
stimulus 1 
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Figure 6: Comparison of the standard deviation of Standard Deviation of Speed (SDS) 
for stimulus 4 

The stimulus number 5 (Noise of zombie), from its part was associated with two 
contradictory outcomes (Figure 7). For what concern the SDLP (as lateral performance 
index) it resulted to be significantly higher (W = 23, p = 0.0432) for the control group 
(median = 0.21) (hence a lower driving performance) respect to the experimental group 
(median = 0.1). Contrarily, for what concern the standard SDS (as longitudinal 
performance index), the experimental group evicted a significantly (W = 78, p = 0.04) 
lower performance (median = 1.19) respect to the control group (median = 0.10).   

The last stimulus that was associated with a statistically significant difference (t(18) = 
-- 3.5192, p = 0.00245) in terms of driving performance was the number 7 (scream of 
pain) for what concern the SDLP (Figure 8); this resulted to be higher in the control group 
(mean = 0.28, SD = 0.071) respect to the experimental group (mean = 0.15, SD = 0.03). 
Showing a better lateral performance for the experimental group respect to the control 
group. 
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Figure 7: Comparison of the SDLP (on the top) and SDS (on the bottom) for stimulus 5 

 

Figure 8: Comparison of the standard deviation of lane gap for stimulus 7 
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For what concern the within group analysis, the Friedman test showed a statistically 
significant difference for the indexes related to the SDLP (X2(6) = 13.3, p = 0.039) and 
the SD of the speed (X2(6) = 21.8, p = 0.00134). However, the effect size of both the 
indexes was small (respectively 0.111 and 0.181) and the pairwise Wilcoxon signed rank 
test between groups did not reveal statistically significant differences. 

6 Conclusion 

This research work proposed an emotion-aware Driving Monitoring System supported 
by a low-cost Deep Learning-based emotion recognition tool and driving performance 
parameters. A preliminary experiment has been carried out to investigate the relation 
between altered emotions and driving parameters, showing the need for both the sources 
of information to better monitor and understand the driver’s state. 
The experiment herein presented raises the possibility of leveraging sounds to 
elicit/regulate emotions and, contextually, altering driving performances. Indeed, the 
exposure to the auditory stimuli has somehow modified driving performance in terms of 
SDLP. It seems that the driving task with emotional stimulation gave better lateral control 
of the trajectory. This behavior could be related to the characteristics of the driving route, 
really linear and repetitive, and consequently boring. According to (Jeon et al., 2017), 
boredom is often related to the low activation of emotional states during driving activities. 
Considering this, acoustic stimuli could have improved the enjoyment of the experience, 
so the positive engagement, during the driving activities. However, this result deserves to 
be better investigated through future studies aimed at better understanding the effects of 
acoustic stimulation on driving performance. Furthermore, given that the research in the 
sector is still in its early stages, the results must obviously still be taken with caution for 
an application on the road. In particular, future studies should be conducted to better 
evaluate how certain acoustic stimuli can change the driver's emotional state and affect 
driving performance, so that a knowledge base can be built to automatically manage 
emotional state induction/regulation functions to increase driver comfort and improve 
driving performance. In the same way, it will be necessary to investigate how in a real car 
context the activation of lights proposed for the Smart Car Interface can cause distraction 
and inevitably affect driving performance negatively. 
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