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Abstract

This paper presents a new measure (the Diffusion Delay Central-
ity - DDC) to identify agents who should be put into isolation to
decelerate a diffusion process spreading throughout a network. We
show that DDC assigns a high rank to agents acting as the gatekeep-
ers of the fringe of the network. We also show that the ranking of
nodes obtained from the DDC is predicted by the difference in the
values of betweenness and eigenvector centrality of network agents.
The findings presented might constitute a useful tool to reduce diffu-
sion processes both for policy makers and for corporate managers in
the organization of production.
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1 Introduction

Social networks play a key role in several facets of our life. The contagion of
diseases, the spreading of behavior, the transmission of ideas and information,
the adoption of a technology or a product, and propagation of a financial
crisis are all network-based phenomena. A crucial aspect when studying
such issues is the identification of who holds a vital position in the network
for enhancing or impeding a diffusion process. This recognition has sparked
a growing literature in investigating the individual prominence of an agent as
a channel of diffusion in terms of network centrality measures (see Jackson
et al., 2017, for a recent review).!

The present paper introduces a new measure of centrality which assesses
the importance of an agent in decelerating a diffusion process mediated
through a network. We refer to this measure as to Diffusion Delay Cent-
rality (DDC). In constructing this measure, we assume no prior knowledge
about the origin of the diffusion process and the way it is transmitted. In
this setting then, each area of the network is equally likely to be the source of
contagion, and transmission can be caused even by a single contact between
two nodes. Formally, this implies a simple deterministic contagion process,
where diffusion is transmitted by a direct contact between two agents. Simple
contagion processes are a well-documented phenomena from the empirical lit-
erature, and they govern the adoption of different technologies (Conley and
Udry, 2010; Fogli and Veldkamp, 2021; Foster and Rosenzweig, 1995; Mun-
shi, 2004), the circulation of a disease (Centola, 2013, 2018), the diffusion of
many behaviors within online communities (Dow et al., 2013; Karampourni-
otis et al., 2015; State and Adamic, 2015), the spreading of traffic jams in
urban networks (Saberi et al., 2020), and the transmission of a simple in-
formation (see e.g. Kim et al., 2015), among other things. Moreover, simple
contagion can trigger and coexist with complex contagion processes (Min and
San Miguel, 2018), where transmission is caused by the contact with multiple
nodes (for a discussion see Guilbeault et al., 2018).

To the best of our knowledge, this is the first network metric which allows
for investigation of how to slow down diffusion when the only information
known is the structure of the network. On the contrary, existing network
centrality measures are used to study agents as starting points of a diffusion

LA different strand of investigation instead has been devoted to understand how diffu-
sion is facilitated by the characteristics of the population and the way in which people con-
nect with each other. Seminal contributions on this issue were provided by the literature
on epidemiology (Pastor-Satorras and Vespignani, 2000, 2001), game theory (Jackson and
Yariv, 2005, 2007; Jackson and Lépez-Pintado, 2013; Lépez-Pintado, 2006, 2008, 2012),
and physics (Newman, 2002).



process, and predict whether the diffusion starting from an agent will or will
not remain confined within certain areas of the network, or the time needed
to reach other parts of the network (see e.g. Ballester et al., 2006; Banerjee
et al., 2014; Borgatti, 2005; Katz and Lazarsfeld, 1955; Kempe et al., 2003,
2005; Rogers, 1995). Other measures instead, require additional information
about diffusion dynamics or about the infected status of the agents to identify
how to decelerate the diffusion (Klemm et al., 2012; Liu et al., 2016; Lii et al.,
2016; Piraveenan et al., 2013).

The analysis of network centrality measures has relevant policy implic-
ations. Indeed, by targeting most central agents, it is possible to take full
advantage of the social interaction effects, and boost or react against the
diffusion process. Empirical studies on simple contagion processes show the
effectiveness of this approach when trying to sustain cooperative behavior
and community social capital (Jackson, 2020), accelerate the participation
to a microfinance program (Banerjee et al., 2013), and reduce the spread of
juvenile delinquency behavior (Lee et al., 2020). This is also the case when
dealing with complex contagion processes, when one wants to facilitate the
sharing of the knowledge base to develop an emerging industrial sector (Choi
et al., 2011), stimulate the adoption of a new insurance product (Cai et al.,
2015), reduce the financial contagion (see for extensive reviews of this large
literature Hiiser, 2015, and Neveu, 2018, among others), or decelerate the
diffusion of a severe acute respiratory syndrome (SARS) across the world
(Colizza et al., 2006; Colizza and Vespignani, 2007).?

When studying simple contagion processes, network centrality measures
adopt different criteria to rank the importance of an agent in facilitating a
diffusion process (see among others Wasserman and Faust, 1994; Jackson,
2010). By looking at the paths of a network originating from, terminating
at, or mediated by an agent, these measures identify better-connected indi-
viduals who can accelerate the diffusion and potentially determine a rapid
change in the network. At the network-local level, degree centrality has been
shown to be a useful predictor of diffusion processes (Christakis and Fowler,
2010). This records the maximum number of people who can be reached by
direct contact from the agent. An extension of degree centrality is closeness
(Bavelas, 1950), which is a weighted sum of the number of people who can
be reached by a node by direct or indirect contact (Bloch et al., 2021), with
weights given by the distance separating the node from each agent. This
measure can be used to assess how rapidly an agent can propagate diffusion.
At the network-global level, the most reliable measure of diffusion is provided

2See for further references and background Jackson and Yariv (2011) and Lamberson
(2016).



by the family of eigenvector centralities (Jackson et al., 2017), which also
represents an extension of degree centrality. Specifically, this set of metrics
tracks in various forms the ability of the agent to act as a social multiplier of
the diffusion process, by measuring how he or she can directly and indirectly
reach high degree agents in different local areas of the network (Gould, 1967).
Finally, another popular measure is betweenness, which proxies the ability of
the agent in being a connector or an intermediary of diffusion, by measuring
the agent’s involvement in the shortest diffusion paths between every pair
of agents in the network. Recent literature (Loepfe et al., 2013) found that
diffusion can be slowed down by removing some of the nodes with the highest
betweenness centrality.

With respect to extant measures used to investigate a simple contagion
process, the DDC ranks the importance of an agent by assessing how this is
able to alter the average speed of diffusion in the network by putting him
or herself in isolation, causing a discontinuity in the chain of interactions
existing in the network, and forcing the diffusion process to spread through
different and potentially longer paths. In this setting then, diffusion spreads
through direct contact, and the speed of contagion between two agents is
equal to the minimum number of interactions separating one agent from the
other: i.e. the shortest path length indirectly connecting a pair of agents in
the network.

A crucial feature of the DDC is that diffusion is analyzed regardless of
where the contagion process started. We discuss the theoretical details under
a broad set of hypotheses. The insights provided by the DDC on diffusion
are investigated by implementing a Monte Carlo experiment. Specifically,
we analyze the situation in which diffusion can reach any other agent only
throughout direct contact. We further assume that when a direct contact
occurs between two agents, diffusion can flow in either direction, and hence
all agents represent at the same time a potential starting point and a ter-
minal point of diffusion. From a theoretical standpoint, this represents the
case of a population embedded in an undirected and unweighted network,
where diffusion is equally likely to reach all nodes without following any spe-
cific direction. However, we will also show that DDC can be equally used
to examine directed and weighted networks, as well as single and multiple
component networks. The Monte Carlo experiment is conducted by simulat-
ing a number of undirected and unweighted networks with different densities.
Simulated networks are then used to compare how DDC ranks the relative
importance of the agents in spreading diffusion with respect to most com-
mon measures of centrality. Specifically, we consider degree, betweenness,
closeness, and eigenvector centrality, given their prominent relevance in the
literature.



The use of DDC is well suited to investigate situations in which a simple
diffusion process propagates from the periphery to the core of the network,
and vice versa. In fact, DDC assigns a high rank to agents with two specific
characteristics: first, they act as a major bridge for the diffusion process,
meaning that they feature a high betweenness centrality; second, they are in
contact with low-connected agents located at the periphery of the network:
i.e. they feature a low eigenvector centrality. In other words, high DDC
agents act as the gatekeepers of the fringe of the network. Once these are
isolated, the spreading of diffusion from the periphery to the core of the
network (or vice cersa) is prevented or at least decelerated. In line with this
finding, we also show that the DDC of an agent is strongly predicted by the
difference in the value of his or her betweenness and eigenvector centrality.

The contribution of this paper is twofold. First, we introduce a new met-
ric, the DDC, which easily allows the identification of agents to be isolated in
order to decelerate a simple diffusion process when this spreads from the peri-
phery to the core of the network, or the other way around. Second, we show
that, under a broad set of circumstances, DDC has a simple interpretation
in terms of standard centrality measures, because it has a straightforward
relationship with betweenness and eigenvector centrality: i.e., it is closely
approximated by the difference between the two. This also implies that one
can easily proxy the DDC ranking by simply taking the difference in the
value of betweenness and eigenvector centrality.

The results presented are relevant and easily implementable by a policy
maker interested in preventing the risks related to undesired diffusion pro-
cesses, like the Covid-19 pandemic of 2020-21. For instance, the DDC can be
used to identify those workers in a firm or a hospital who should be first put
into isolation or equipped with specific medical devices (e.g. high performing
respiratory protection masks) or vaccinated to prevent the diffusion of the
contagion. Of course, in order to do that it is crucial to have knowledge about
the structure of the network under analysis. However, this should not be a
primary concern given that it is now possible to retrieve this information, for
instance, from contact-tracing apps.

The remainder of the paper is organized as follows. Section 2 details the
steps needed to compute DDC. Section 3 presents the results of the Monte
Carlo experiment implemented to compare DDC to other network centrality
measures. Finally, section 4 concludes.



2 Diffusion Delay Centrality

A diffusion process can be studied as a network-based phenomenon, where
nodes represent agents, and links signal a direct contact between two agents.
In what follows, we detail a method to quantify the importance of a node in
decelerating a diffusion process in a network by using the DDC.

We describe our measure assuming that contagion does not follow a pre-
determined direction, but can spread from ¢ to j and vice versa, i.e. the
network is undirected, and that the probability of receiving the diffusion by
direct contact is equal to everyone, that is the network is unweighted. How-
ever, we will show in the following that the DDC can be easily extended to
other circumstances, and applied also when the network is directed and/or
weighted.

We measure the speed of diffusion originating from agent ¢ and reaching
agent j by counting the minimum number of contacts required among net-
work agents for the process to spread from ¢ to j. We refer to this measure
as to shortest path length (SPL) or geodesic distance, and we denote it with
the symbol d(i, 7). The sum of the length of shortest paths originating from
i are referred as to farness of agent i, and we denote it with f(7).3

HOEDIY) (1

We assume now that diffusion can start from any node. Since the starting
point of the process is unknown, our goal is to slow down the speed of diffusion
process regardless of where it initially started, by increasing the distance
between all nodes: i.e. incrementing the farness between each pair of nodes.
Our aim is then to identify the node who, once isolated, will maximally
increase the farness of all other nodes. In order to do that, we first need to
calculate the overall speed of diffusion in the network, that is the sum of all
agents’ farness:

) =350 e

Then, we need to identify the node to be isolated in order to maximally
increase f(N). This is done iteratively.

First, we isolate the generic node i, thereby interrupting all the shortest
paths on which ¢ was lying over. This has the effect of altering the speed of
the diffusion process from any node pair connected by one of the interrupted
paths. In fact, all the other alternative paths starting from one node and

30bserve that by definition the inverse value of the farness is equal to the closeness
centrality of agent .



reaching another will be by definition equal or longer with respect to the
shortest path passing through .

Second, we calculate the farness of nodes now that ¢ has been removed,
and diffusion flows through different paths. As a result, we obtain a new
value for the overall speed of diffusion in the network: i.e., f(N;).

Third, we compare the speed of diffusion in the network when 1 is isolated,
i.e. f(N;), with that obtained when i is included in the network. In order
to correctly make a comparison, we need to confront the overall speed in the
two networks considering the same number of nodes, and exclude from the
computation of f(NN) the value of farness relative to i, that is:

f(N) =2f(i)

The reason why we remove the farness of i twice, i.e. f(i), from f(N) is
straightforward. Since we are using an undirected network, the same shortest
path exists between agent ¢ and j, and between agent j and agent 7. Hence,
we need to discard both paths starting from and reaching agent ¢ from the
computation in order to correcly account for the removal of this node. Once
this is done, it is possible to calculate the decrease in the diffusion speed of
the network after ¢ has been isolated, that is the delay diffusion centrality of
node %:

DDC(i) = f(Ni) = [f(N) = 2- f(i)] (3)

This process is repeated for every node contained in the network, so
that each one is associated to a given DDC value. Then, DDC is used to
rank nodes and identify those who, once removed, maximally increases the
farness of all other nodes, and decelerate diffusion. When DDC is high, then
node i is very important to slow down the diffusion. Hence, a policy aiming
at decelerating the diffusion process will put this node into isolation. By
contrast, if DDC is close or equal to zero, then node 7 is not relevant for
determining the speed of diffusion. Consequently, a policy will not include
this node in the list of those to be put into isolation.

Intuitively, high DDC nodes are those involved in many shortest paths,
but embedded in a relatively isolated area of the network, characterized by
small path redundancies. When removed, many shortest paths connecting
the area of the network where they are located will be cut off, and this will
have a major impact on the diffusion process (at least in this area). On the
contrary, low DDC nodes are either poorly connected nodes, or well connec-
ted to well-connected nodes. Thus, by isolating them, we will not observe
any significant change in the speed of the diffusion process. Taken together,
these two observations suggest that DDC assigns a high rank to agents with
two specific characteristics: first, they act as a major bridge for the diffusion
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process, meaning that they feature a high betweenness centrality; second,
they are in contact with low-connected agents located at the periphery of
the network: i.e. they feature a low eigenvector centrality. We will further
explore this relation between DDC, eigenvector and betweenness centrality
in Section 3.

In what follows, we detail how DDC works in practice, we discuss a
number of interesting properties featured by this measure, and we present
some examples to show how this measure can be computed using different
network structures.

2.1 Diffusion Delay Centrality and Betweenness cent-
rality

An interesting property highlighted by the DDC is that the DDC of a node
with betweenness centrality equal to zero is zero by construction. In fact,
betweenness centrality is equal to the number of shortest paths passing
through a node. When a node features a betweenness centrality equal to
zero, the node is not involved in any shortest paths, hence its removal from
the network will not increase the farness of the other nodes, and its DDC
will be equal to zero.

It follows from this argument that nodes without connections with any
other nodes, i.e. isolated nodes, have DDC equal to zero. In fact, they do not
lie on any shortest paths contained in the network, and by definition their
betweenness centrality is equal to zero. As a consequence, one can disregard
the presence of isolated nodes when computing DDC. Since these are already
unable to get in contact with other agents and spread diffusion, it is not
necessary to evaluate whether they have to be put into isolation or not.

At the same time, DDC has notable differences with betweenness cent-
rality, because it includes a different set of information. The reason is that
betweenness simply counts the number of shortest paths through a node,
and it disregards the increase in the distances among agents resulting from
removing that node. We clarify the main difference between these two meas-
ures using the example contained in Figure 1 . In both networks, node 3 has
the same betweenness centrality. However, node 3 has a higher DDC in the
network represented on the right compared to the network on the left. This
is because, when removing node 3 in the network on the right, the distance
between nodes 2 and 7 increases by 2 steps.* By the same reasoning, one
can see that the distance between the node pairs 2 and 8, 1 and 7, and 1 and

4T.e. it takes alternatively 2 or 4 steps to reach node 7 from node 2, depending on
whether node 3 is present or not.



Figure 1: Example 1.
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Note: two toy networks used for illustrative purposes. In each network, a node
represents an agent. Two agents are connected if they interact with each other.
Observe that Node 3 has the same betweenness in both networks, but it has a
higher DDC in the network on the right.

8 increases by 2 when removing node 3. Of course, the same applies when
considering distances from the opposite direction (i.e. from 7 and 8 to 1 and
2). It follows, that the DDC of node 3 is equal to 16.

On the contrary, the removal of node 3 in the network on the left has a
smaller impact on the diffusion process, because the distance between the
aforementioned node pairs increases only by 1. As a result, the DDC of node
3 is only 12 in this case. To sum up, DDC highlights that node 3 is more
relevant in slowing down the contagion in the network represented on the
right compared to that on the left.

Moreover, a node with betweenness centrality different from zero can have
a DDC equal to zero, given the presence of path redundancies. This is the
case of nodes 5 and 6 in Figure 2.

For these reasons, we argue that DDC is different from betweenness and
other centrality measures which rely on the count of the number of shortest
paths passing through a node, such as the Percolation Centrality (Piraveenan
et al., 2013). We will further analyze this latter measure in Sections 2.4 and
2.5.



Figure 2: Example 2.

® ® ®

Note: A toy network used for illustrative purposes. Node 5 and 6 have a positive
betweenness centrality but DDC equal to zero.

2.2 Diffusion Delay Centrality: dealing with different
components

Until now we have implicitly assumed that the network is composed of a
single component: i.e. a set of nodes which can directly or indirectly reach
each other. However, it is often the case that a network features multiple
components, and not all nodes can reach all the other nodes in the net-
work. In theory, this does not represent a source of concern to us. In fact,
since nodes belonging to two different components cannot get in contact with
each other, one can study diffusion in the two components separately, and
calculate the DDC of the nodes in one component without considering the
presence of the other components. From a formal standpoint, the reason
is that the distance between two nodes belonging to different components
is infinite. Hence, when any node is put into isolation in one component,
the distance between this node and the nodes located in another component
remains unchanged: i.e. infinite.

However, dealing with the distance between nodes located in separate
components is an issue that should not be overlooked. The reason is that a
one-component network can sometimes be split into two or more components
when isolating a node. To understand why, consider a network where a node
has only one connection: i.e. its degree centrality is equal to one. When
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node j has only one link with node 7, and we put ¢ into isolation, also j
becomes automatically isolated: i.e. the network splits into two components,
one containing only j, and the other containing all other nodes.
By definition, the distance between two components is equal to infinity. As
a result, when calculating the SPL reaching and leaving from j when ¢ is
removed might become cumbersome. Of course, different choices can be
made depending on the definition of contagion that is applied. A possibility
is to give an infinite value to the DDC of a node that, if isolated, protects from
diffusion at least one more node compared to the baseline setting. However,
this choice implies that many nodes may potentially have DDC equal to
infinity, making it difficult to create a usable ranking of nodes. In fact, a
node able to isolate many nodes, and a node able to isolate only one node,
will have both DDC equal to infinity, and they will be ranked in the same
way even if their contribution to slowing down diffusion is different.
Another approach is to consider the maximum theoretical SPL from two
nodes in the one component network composed of n nodes, that is n — 1.
Then, one can use a value above n — 1 to measure the distance between
nodes located in two different components after the network is split. In
other words, when the distance d(7, 7) between two nodes is infinite, one can
replace it with a finite large value dx with n < dx < oco. This allows to
measure the distance 7 and j with a metric that is larger than the maximum
theoretical SPL in the network, thus mimicking a very large distance. As a
result, computation becomes tractable and the ranking emerging with this
choice will be unaffected in most practical situations, even if the DDC value
might be considered arbitrary. In our examples, we adopt this approach and
specifically we set d = n.
For instance, in the star network composed of 5 nodes represented in Figure
3, we can assume that an isolated node has a distance equal to 5 from all the
other nodes, that is the total number of nodes of the network (i.e. d = n).
Then, we can compute the DDC of each node:

e node 1 has a DDC equal to 36. When isolating node 1, the distance
between nodes 2 and 3 increases from 2 to 5. The same happens for the
distance between nodes 2 and 4 or 5. As a result, when isolating node
1, the distance of node 2 from the other nodes increases by 9 steps. The
same metric is obtained when considering nodes 3, 4 and 5. Hence, the
total DDC of node 1 is 36;

e nodes 2, 3, 4, and 5 have a DDC equal to 0, confirming what is stated
in Section 2.1, that is the DDC of a node with betweenness centrality
equal to zero is zero by construction.

11



Consequently, node 1 ranks first while all the other nodes ranks second in
terms of DDC, and this result does not change for every dx in the proposed
range n < dx < o0.

Figure 3: Example 3.

Note: A toy network used for illustrative purposes. Assuming that an isolated
node has distance=>5 from all the other nodes, node 1 has a DDC=36, while other
nodes have a DDC=0.

2.3 Diffusion Delay Centrality using directed and weighted
networks

When dealing with the potential threat of a diffusion that must be stopped,
but the origin of the diffusion process is unknown, and it is still unclear how
contagion is transmitted, a safe choice is to assume that any potential area
of the network may be the cause of the diffusion spread, and all nodes can
be equally infected.
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While we assume no prior knowledge over the diffusion process, we can still
hypothesize to have information about the direction of the links in the net-
work (this is for instance the case of international trade networks). For
instance, if links register the movements of agents, and we have knowledge
of such movements, it is possible to leverage this information to predict the
potential direction of diffusion across network areas, and identify those nodes
responsible for spreading diffusion along a specific direction. Formally, this
requires calculating the DDC of agents using a directed network. The com-
putation of the DDC can be easily extended to the case of directed networks
using Equation 4:

DDC(i) = f(N) = (V) = 1(0) = Y d(. 1) (4)

where d(j,7) is the SPL from all nodes js to node i.

Another interesting case is when the interactions of agents have different
intensities, that is the case when the network under study is weighted. In
this situation, one might suspect that only frequent or long interactions are
responsible for contagion, while sporadic contacts between agents cannot be
responsible for spreading the diffusion. Under these circumstances, we can
assume that the contagion is transmitted only if the weight of the link is above
a certain threshold. This approach can be used when the network is composed
of both strong and weak links, according to their weight, and contagion
is likely to pass only through strong (weak) links. Another application of
this approach is when diffusion is governed by a stochastic process, and the
probability of contagion is associated to the weight of the links of the network.
We shall leave a detailed study of these applications to future work.

2.4 Conditional Diffusion Delay Centrality

Until now we have assumed no prior knowledge on the source of diffusion, and
we have used the DDC to rank nodes so as to maximally increase the farness
between nodes, and slow down diffusion regardless of where it began. How-
ever, when the source of diffusion is known, nodes can be ranked conditional
to the information given, i.e. knowing the starting point of the contagion, one
can focus only on the set of nodes directly exposed to the source of diffusion.
We discuss this case in example 4 reported in Figure 4.

When the source of diffusion is unknown (unconditional choice), the DDC
is computed as usual. By definition, nodes 1 and 5 have a DDC equal to 0,
because their betweenness centrality is zero. Nodes 2 and 4 have a DDC
equal to 12. Computation of the DDC of nodes 2 and 4 is straightforward.
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Take for instance node 4. When this is put into isolation, node 5 becomes
isolated. As suggested in Section 2.2, we can set the distance of node 5 from
all other nodes equal to 5: i.e. the maximum theoretical SPL in the network
plus 1. Consequently, the distance of node 5 from all other nodes increases
by 6.°> At the same time, when node 4 is isolated, the distance of node 1
from all other nodes except for node 5 remains unchanged, while its distance
from node 5 increases from 4 to 5. The same applies for nodes 2 and 3: i.e.
their distance from all other nodes remains unchanged, except for node 5.
As a result, the distance from this node increases respectively by 2 and 3.
Consequently, the overall DDC of node 4 is: 6+1+2+3 = 12. By the same
reasoning, node 3 has a DDC equal to 16. Consequently, when the source of
diffusion is unknown and only one node can be isolated, the DDC suggests
to isolate node 3.

By contrast, when the source of contagion is known (conditional choice),
the decision of who should be isolated can change. For instance, if the source
of contagion is node 1, the best choice is to isolate node 2, so that diffu-
sion cannot spread throughout the rest of the network. Formally, conditional
DDC of generic node i can be computed by looking at the increase in the
farness of the infected node when i is removed from the network, and dis-
regarding the impact of its removal on the farness of all other nodes. This is
done with the formula:

CDDC(i) = f()n, — [f () — d(j, 1)) (5)

Where j is the infected node, f(j)n, and f(j) are respectively the farness
of j when i is removed from or included in the network, and the term d(j, 1)
is the distance between ¢ and j. As discussed in Section (2), the term d(j, )
is included in the formula to remove from the calculation the shortest path
existing between nodes i and 5.5

It follows from equation 5 that when confronted with a conditional choice,
that is when the source of contagion is known, CDDC assigns more import-
ance to the node(s) most relevant at the beginnning of the diffusion process:
i.e. the node(s) which can maximally increase the farness of the rest of the
network from the source of contagion.

The extant literature provides us with a large array of tools for dealing
with a conditional choice, complementing with the information provided by
the DDC. These are the measures derived from percolation methods (Del

5Specifically, distance from node 1 increases by 1, distance from node 2 increases by 2,
and distance from node 3 increases by 3.

60bserve that Equation 5 can be easily extended to the case of multiple infected nodes,
by summing the CDDC of i with respect to each infected node j.
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Figure 4: Example 4.

Note: A toy network used for illustrative purposes. Observe that node 3 has the
highest DDC, hence the isolation of this node is the best unconditional choice to
slow down the contagion. The same does not necessarily apply when the source of
diffusion is known, and nodes can be ranked conditional to the information given.

Ferraro et al., 2018; Pei et al., 2017, 2018; Teng et al., 2016). One that
recently emerged is the percolation centrality by Piraveenan et al. (2013),7
henceforth PC, which measures the proportion of “percolated” paths in a
network passing through a node: i.e. the paths beginning from an infected
(percolated) node. The advantage of PC over other centrality measures is
that it allows to rank the impact of all nodes over the contagion transmission
at any given time, not just at the beginning.® Moreover, PC allows to con-

"Observe that this measure is different from that discussed by Pei et al. (2017), even
though the two metrics have the same name.

8PC also allows to consider that nodes might feature different “viral loads” (i.e. they
have a different ability to transmit the contagion). However, this situation violates the
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stantly update the ranking of nodes while collecting new information about
the diffusion spread. That being said, it is easy to see that there are cases
when CDDC and PC provide the same information. This is for instance the
case of the network presented in Figure 5.

Figure 5: Example 5.

@

@
@

Note: A toy network used for illustrative purposes. Here, PC and Conditional
DDC returns the same rankings for nodes that should be first isolated to reduce
the spread of contagions starting from different nodes.

Suppose that node 5 is infected. In Table 1, we present how nodes 4 and
6 are ranked by PC and CDDC in this situation.® Table 1 shows that when
node 5 is infected, both metrics provide the same ranking. Node 4 should be
the first to be isolated, because it is the node which can maximally spread
contagion from node 5. Node 6 instead is considered of less importance,
because its impact over the contagion process is relatively minor compared
to that of node 4.

The consistency in the ranking between the two metrics emerges also
when choosing a different source of contagion. Consider for instance the case
when node 1 is infected, and we want to investigate the impact of nodes 4, 5,
and 6 over the diffusion process. In Table 2, we present the rankings obtained
in this case. Table 2 again shows that PC and conditional DDC agree on

assumption underlying this work, where one node is either infected or not. Therefore, it
falls outside the scope of this paper to discuss this case.

9We exclude from the discussion nodes 1, 2, 3, 7, and 8 because their betweenness
centrality is equal to zero, and thus by definition they have PC and CDDC equal to zero.
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Table 1: PC and DDC ranking of nodes in the network of Figure 5 when
node 5 is infected.

Node PC ranking Conditional DDC ranking
4 1 1
6 2 2
Note: for each considered node in the network of Figure 5, indicated in column 1,
we report its ranking according to PC (column 2), and CDDC (column 3) when
node 5 is infected.

Table 2: PC and DDC ranking of nodes in the network of Figure 5 when
node 1 is infected.

Node PC ranking Conditional DDC ranking

4 1 1
) 2 2
6 3 3

Note: for each considered node in the network of Figure 5, indicated in column 1,
we report its ranking according to PC (column 2), and CDDC (column 3) when
node 1 is infected.

the ranking of nodes to be isolated to decelerate contagion. This implies
that DDC and PC might provide consistent information in the presence of a
conditional choice. Of course, this is not always the case.”

2.5 Additional comments on the difference between
DDC and PC

It is important to stress that the consistency in the ranking provided by
DDC and PC is not necessarily verified when dealing with an unconditional
choice. Indeed, when the source of contagion is unknown, that is all nodes
are in the same “percolated state”, PC is by definition equal to betweenness
centrality.!! In this case, the DDC can provide additional information to

10We shall leave to future research a detailed comparison of the differences between
CDDC and PC, because this is out of the scope of this work.

1When the source of contagion is unknown, PC is obtained as follows. First, attribute
the source of contagion to one node and compute the PC of all other nodes. Second, iterate
the procedure over all other possible infected nodes. Third, assign to a node a PC equal
to the average PC obtained in all the considered scenarios. It is easy to show that this
“average percolation centrality” (APC) is equal to the betweenness centrality of a node.
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policy makers compared to that obtained from PC. Consider for instance the
case of the network in left panel of Figure 1. In Table 3, we report the ranking
of the nodes embedded in this network provided by PC and the unconditional
DDC. In this context, while PC (and betweenness centrality) assigns the same

Table 3: PC and DDC ranking of nodes in the network of left panel of
Figure 1 when nodes are not infected (or they are all equally infected).

Node PC ranking Unconditional DDC ranking

2 2 2
3 3 4
4 5 6
) 4 5
6 1 1
7 3 3

Note: for each considered node in the network of left panel of Figure 1, indicated
in column 1, we report its ranking according to PC (column 2), and unconditional
DDC (column 3) when nodes are not infected (or they are all equally infected).

importance to nodes 3 and 7, the unconditional DDC indicates that node 7
might have a potentially higher impact over the contagion process compared
to node 3. The reason is that node 7 plays a major role in diffusing contagion
from node 8 (and viceversa). Once removed, if node 8 is infected, contagion
is stopped. Hence, at least in one case, node 7 may have a crucial impact
over the diffusion process, and in all other cases it is able to save node 8 from
contagion. On the contrary, regardless of where the contagion starts, when
isolating node 3, diffusion can still spread on a different route. Following
this logic, when the source of contagion is unknown, DDC signals that node
7 should receive more attention than node 3. Coherently, we observe that
nodes 3 and 7 have the same betweenness centrality, but node 3 features
a higher eigenvector centrality due to the path redundancies in which it is
embedded.

The reason for this discrepancy between PC and DDC is straightforward,
and it follows from our discussion of example 1 in section 2.1. The former
measure focuses on the role of nodes in connecting different paths, and in
this context it cannot leverage any information about the percolation status
of the agents. Instead, the latter evaluates the extent to which a node can
decelerate contagion by maximally increasing the path distance between all
other nodes.

For additional details see Piraveenan et al. (2013).
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2.6 Diffusion Delay and Speed

Additional insights on the relation between slowing down contagion and DDC
can be observed by looking at the network in Figure 6. In order to do that,
for each node i, we calculate the average speed of contagion diffusion of all
other nodes before and after i is isolated. We report the results in Table 4.
To understand what we do in practice, take for instance node 1. We compute
how many steps are needed for a contagion starting from node 2 to reach, on
average, all other nodes except for node 1 (nodes from 3 to 9). We then do the
same considering a contagion starting from node 3 to reach all other nodes
except for node 1 (i.e node 2, and node from 4 to 9). The same calculation
is then replicated considering a contagion starting from each remaining node
(i.e. nodes from 4 to 9). Finally, we take the average value obtained from all
these calculations. This is the average speed of contagion when considering
node 1, and we report it under the column “Avg Speed” (first line, referring
to node 1). Then, we replicate the whole procedure in a network where node
1 has been removed, and we report the value obtained in this way under the
column “Avg Speed after node isolation” (observe that the speed to reach
nodes that are not reachable is set to 9, which is the number of nodes in
the network). Then we take the difference between these two metrics: i.e.
the average difference in speed generated from isolating node 7. Additionally,
we plot the difference in speed relative to 7 against its DDC in Figure 7. It
is easy to see that a linear relation exists between the two measures: i.e.
difference in speed increases for higher values of DDC.

An interesting feature that should also be observed is that the node which
maximally delays diffusion in the network (i.e. the node with the highest
DDC ranking) is not necessarily the node which maximally spreads contagion
if it is the first infected node. This feature has been already discussed in
extant literature (see among others Restrepo et al., 2006; Klemm et al.,
2012). We show this again using example 6 reported in Figure 6. In this
example, the node with the highest DDC ranking is node 1. When diffusion
starts from this node, contagion reaches 3 nodes in 1 step, other 3 nodes in 2
steps, and the remaining nodes in 3 steps. Now consider when diffusion starts
from node 2. In one step, diffusion reaches 3 nodes (1, 6 and 9). In two steps,
it reaches other 4 nodes (3, 4, 7, and 8). In three steps, diffusion has reached
all nodes. As one can see, after 2 steps, node 2 has infected more nodes than
node 1: i.e. 7 instead of 6. Therefore, node 1 is more relevant for delaying
the spreading of the contagion, while node 2 is more relevant for speeding up
the contagion. This difference is not surprising, because the network is split
into three different components when node 1 is isolated. By contrast, only
two components are generated when node 2 is put into isolation.
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Figure 6: Example 6.

Note: A toy network used for illustrative purposes. In this network, the node
(node 1) which maximally delays diffusion is different from the node (node 2) able
to infect most rapidly other nodes.

2.7 Higher order Diffusion Delay Centrality

Until now, we have analyzed the impact on the diffusion process of putting
into isolation one node, this is to say that we have considered a first order
delaying mechanism of the diffusion process. However, one can consider
the situation when the policy maker has already isolated the node with the
highest DDC ranking, thus generating a new network which modifies the
DDC value of the remaining nodes. In this situation, one should consider a
higher order delaying mechanism. In practice, this implies calculating the
DDC of the nodes which have not been put into isolation. We consider this
case by discussing example 7 in Figure 8. In the figure, only node 2 has DDC
different from zero. Therefore, before diffusion starts, a policy maker should
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Table 4: Speed of diffusion and DDC of nodes in the network of Figure 6

Node DDC Avg Speed Avg Speed after node isolation Difference in Speed

1 190 2.6429 6.0357 -3.3928
2 178 2.6786 5.8571 -3.1785
4 74 2.4643 3.7857 -1.3214
6 10 2.5357 2.7143 -0.1786
9 10 2.5357 2.7143 -0.1786
7 2 2.3929 2.4286 -0.0357
8 2 2.3929 2.4286 -0.0357
3 0 2.3929 2.3929 0

b} 0 2.2143 2.2143 0

Note: for each node in the network of Figure 6, indicated in column 1, we report
its DDC (column 2), the average speed of diffusion for a contagion starting from
all the other nodes to all the other nodes, except for the node indicated in column
1, when this is included in the network (column 3), or removed from it (column
4), and the difference between these two metrics (column 5).

put into isolation node 2. Once this is done, node 3 becomes the only node
relevant for delaying diffusion among the other nodes: i.e. it has the highest
DDC ranking. As a result, the higher (second) order delaying mechanism
indicates that node 3 should be the next one to be put into isolation.

3 Centrality measures to find nodes relevant
for the contagion

In this Section, we compare the ranking obtained using the DDC with that
produced by other common measures of network centrality, namely degree,
eigenvector, betweenness and closeness centrality.!?

In what follows, we will show that DDC ranking can be easily proxied
by a combination of the ranking produced by eigenvector and betweenness
centrality. This can be done in two different steps:

1. assign lowest ranking to all nodes with betweenness centrality equal to
Zero;

2. let BE be the difference in the value of betweenness centrality and
eigenvector centrality. Use BFE to rank the remaining nodes, so that

12Computations are performed using the R package IGRAPH.
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Figure 7: DDC vs Difference in Speed for the nodes in the network of
Figure 6

Absolute Difference in Speed

3
01 5

0 50 100 150
DDC
Note: on the x-axis, we report the DDC of the nodes in the network in Figure 6.
On the y-axis, we record the absolute difference in the speed of contagion when
removing a node in the network in Figure 6, as reported in Table 4. Labels indicate
to which value each node corresponds.

the node with highest ranking is that with the maximum value of BFE,

and the node with lowest ranking is that with the minimum value of
BE.

Observe that the support of eigenvector centrality is included between
zero and one. For this reason, one needs also to rescale the support of
betweenness centrality between zero and one in order to compute BE. This

: : bet trality;
is done with the formula; —><Hcenness CERTTatiyi__
max(betweenness centrality)

The relation between BE and DDC provides a simple intuition on the
role played by nodes featuring the highest DDC in delaying the network
process.'> The DDC assigns a high rank to agents with a high betweenness
centrality, meaning that they act as a central hub of the diffusion process,
and with a low eigenvector centrality, which implies that they are in contact
with low-connected agents located at the periphery of the network. For this
reason, we claim that high DDC agents act as the gatekeepers of the fringe
of the network. In fact, when these are isolated, the spreading of diffusion

13The BE rule also features important benefits in terms of computational complexity
compared to DDC. In fact, the computational complexity to calculate the DDC of all
nodes in a network is 2n*O(m+n). On the contrary, computational complexity to obtain
the betweenness and eigenvector centrality of all nodes in a network is O(m+n)+O(mn),
which is considerably lower with respect to 2n*O(m+n).
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Figure 8: Example 7.

Note: A toy network used for illustrative purposes. The BE rule ranks node
3 as more important than nodes 1, 4 and 5, whereas the DDC assigns the same
importance to all these nodes. Considering the second order DDC, node 3 becomes
more relevant than nodes 1, 4 and 5.

from the periphery to the core of the network (or vice cersa) is prevented or
at least decelerated.

The extent to which the BE and DDC are related is easy to verify by
looking at the examples already presented. We summarize the ranking of the
nodes returned by the DDC in some given examples in Table 5 along with
the ranking produced by the BE rule. For completeness, we also report the
centrality values obtained from DDC, betweenness, eigenvector, and BE.
In the first two reported examples, DDC and the BE rule produce the same
ranking. Example 7 instead presents two slightly different rankings. Still
both rankings indicate the same node (i.e. node 2) to be the first which
has to be put into isolation. However, the BE rule ranks node 3 as more
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important than nodes 1, 4 and 5, while the DDC assigns the same importance
to these nodes. To understand this difference, we observe that node 3 is the
most important node in spreading diffusion when node 2 is already isolated,
and we hypothesize that the BE rule is able to control for higher (second)
order mechanism as explained in Section 2.7. That said, what is important
to stress again is that the two rankings are consistent in pointing out what
is the node to be first put into isolation.

Of course, one can object that the examples provided so far are not ex-
haustive and a more thorough investigation of the DDC properties is required.
For this reason, in the next Subsection we perform a large Monte Carlo ana-
lysis to show the robustness of the relation between the ranking produced by
the two measures. Here, we also discuss the situations in which the BE rule
is less effective in reproducing the DDC ranking.

3.1 Monte Carlo analysis

We perform a Monte Carlo experiment by generating 49000 random networks
(Erdds and Renyi, 1959, 1960, 1961) for different random network configur-
ations. In practice, we use a network with 100 nodes, and a variable number
of edges is randomly generated. We perform 1000 simulations for each given
number of edges included from 100 to 4900 with steps of 100 edges (therefore,
we perform 49 steps). We do not to consider networks with a lower or higher
number of edges to avoid degenerate situations, where it is unlikely to find a
relevant pattern of diffusion (Anderson and May, 1992; Rogers, 1995; Colizza
and Vespignani, 2007).4

For each simulation we compute the DDC of each node. In doing so, we
do not consider simulations where all nodes have a DDC equal to zero. As
already explained, in these cases, the DDC ranking is meaningless because
there are no nodes able to slow down the contagion.!® As a result, we focus

14In the simulations, we generate networks with a single component where all nodes
have degree centrality higher than 1 so as to make the computation easier (see Section
2.2 for additional details). This implies a reduction of the number of nodes in simulations
with an initial number of edges equal to 100 and 200 (and very rarely also in network up
to 600 edges): simulations with 100 edges feature on average 47.9 nodes, and simulations
with 200 edges feature on average 91.1 nodes. Consequently, in these simulations, also the
final number of edges is reduced compared to the initial amount.

15From a formal standpoint, it means that we have to discard a number of simulations
producing networks with a density higher than 25% and below 40%, and all simulations
returning networks with a density higher than 40% (practically, this implies that we discard
all simulations producing networks with a number of edges above 2000) Observe that
network density is equal to the ratio of the actual edges over the potential number of
edges in the network.
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Table 5: Comparison between DDC ranking and the ranking obtained with
the proposed BE rule.

DDC DDC rank | Bet. Cent. FEig. Cent. Difference Bet-Eig rank

Example 4

Node 1 0 4 0.00 0.50 4
Node 2 12 2 0.75 0.87 -0.12 2
Node 3 16 1 1 1 0.00 1
Node 4 12 2 0.75 0.87 -0.12 2
Node 5 0 4 0.00 0.50 4
Example 6

Node 1 190 1 1 0.43 0.57 1
Node 2 178 2 1 0.52 0.48 2
Node 3 0 8 0 0.19 8
Node 4 74 3 0.41 0.24 0.17 3
Node 5 0 8 0 0.11 8
Node 6 10 4 0.30 0.37 -0.07 4
Node 7 2 6 0.07 0.3 -0.23 6
Node 8 2 6 0.07 0.3 -0.23 6
Node 9 10 4 0.30 0.37 -0.07 4
Example 7

Node 1 0 2 0.00 0.22 3
Node 2 18 1 1 0.58 0.42 1
Node 3 0 2 0.14 0.52 -0.38 2
Node 4 0 2 0.00 0.41 3
Node 5 0 2 0.00 0.41 3

Note: we report for each node in a considered network, indicated in column
(1): its DDC and how DDC ranks it with respect to all other nodes in the net-
work (columns 2 and 3, respectively); its betweenness and eigenvector centrality
(columns 4 and 5, respectively); the difference between these measures (column
6); how the node is ranked using the metric reported in column 6 compared to the
other nodes in the network (column 7).

the analysis on simulations producing networks where the sum of agents’
DDC is above zero, that is 15,557 simulations. Here, we use the DDC in order
to rank the nodes according to their importance in slowing down diffusion.
Then, we compare the DDC ranking with the ranking obtained with the BE
rule, and with the rankings obtained with degree, closeness, betweenness, and
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eigenvector centrality.'® In order to compare rankings, we use the Spearman’s
Rho. In Table 6, we report the number of times in which the BE rule
obtains a higher value of the Spearman’s Rho compared to one of the other
centrality measures: i.e. it produces the ranking that most resembles the
one returned by the DDC. Complementing with this, Figure 9 shows the
average Spearman’s Rho comparing the rankings between the DDC and the
other measures as obtained by all the simulations performed for a given
(initial) number of edges.!'” Both Table 6 and Figure 9 show that the BE
rule clearly outperforms all the other centrality measures in replicating the
DDC ranking. In particular, the Spearman’s Rho appears to be very low for
the ranking obtained with the eigenvector centrality. Also the Spearman’s
Rho comparing DDC and closeness centrality rankings is surprisingly low,
even though the DDC is obtained from the computation of farness, which is
the inverse of closeness.

With respect to the BE rule, only betweenness centrality manages to better
replicate the ranking of the DDC for a given number of times. To dig deeper
into this finding, we compare the performance of the BE rule versus the
performance of the betweenness centrality in replicating the DDC ranking in
different situations (i.e. by considering networks with a different number of
edges). We present the results of the analysis in Table 7. This highlights that
the BE rule almost always obtains the best performance when the number
of edges is included between 200 and 2000. Only when the number of edges
is very low (up to 100), the BE rule is outperformed by the betweenness
centrality. Hence, we can conclude that the BE rule best reproduces the
ranking of the DDC when the network is not extremely sparse. When the
network is very sparse instead, betweenness produces a ranking most similar
to that of the DDC compared to the BFE rule. Still, the BE rule has a high
degree of correlation with the DDC, with an average Spearman’s Rho above
0.9. We show this in Figure 9. In the next subsection, we discuss these
results in more detail.

6We provide additional insights on the relation between DDC and other centrality
measures in Appendix A.

ITWe stress again that in each simulation we generate a network with a fixed number
of edges. This number is what we refer to as the initial number of edges. However, the
reader should remember that after a network is produced by a simulation, some edges and
nodes might be removed to comply with our theoretical setting (i.e. analyzing a network
composed of a single component where all nodes have degree centrality higher than one).
As a result, the number of edges contained in a network after this procedure is completed
might be different from that declared at the beginning of the simulation. This is especially
the case of simulations with an initial number of edges equal to 100 or 200, as explained
above.
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Table 6: Performance of the BE rule compared to other centrality measures
in the simulated networks.

Higher Spearman’s Rho | Degree Closeness Betweenness Eigenvector
BE rule 15238 15239 13545 15186
Other centrality measure | 319 318 1341 317
Same result 0 0 671 o4

Note: row “BFE rule” reports the number of times in which the BFE rule obtains
a higher value of the Spearman’s Rho compared to the other centrality measure
in the simulated networks. Row “Other centrality measure” reports the number
of times in which the degree, closeness, betweenness, and eigenvector centralities
respectively obtain a higher value in the simulated networks. Row “Same result”
compare the performance of the considered metrics, by reporting the difference in
the value between the first and the second row.

3.1.1 When the BFE rule works well

Using the statistical properties of the simulated networks (the first three
central moments of the distribution of node degree, closeness, betweenness,
and eigenvector centrality, the network density, the number of edges and the
number of nodes), we perform a number of regression analyses in order to
understand what are the characteristics of the network explaining a high
Spearman’s Rho between the DDC ranking and that produced by the BE
rule. Our main result is that a non-linear relationship exists between the
density of the network and the Spearman’s Rho, which is summarized in
Figure 10. When increasing the density of the network from 0.05 to 0.1, the
BE increases its ability to predict the DDC ranking, which is consistent with
our claim in Section (3.1) that too sparse networks might generate degenerate
situations which are unfit to our analysis, and the correlation between the
BE and the DDC increases when we sufficiently increase the density of the
network. When the network density is around 0.1, the BE rule performs
best in recovering the DDC ranking (Spearman’s Rho is always above 90%),
and it performs very well up to a network density equal to 20%. From that
point on, we observe the presence of a negative relationship between the
Spearman’s Rho and the network density. Consequently, we conclude that
the ranking obtained with the BE rule works better in the situations that
are of most interest to us: when the network is not too sparse, i.e. diffusion
is not locked within certain areas of the network, and it is not too dense,
that is diffusion cannot spread across an almost fully-connected population.

We delve more into our findings by considering three different sets of
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Figure 9: Mean Spearman’s Rho computed between DDC ranking and
rankings obtained with a different measure.
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Note: for every batch of simulated networks with the same (starting) num-
ber of edges, x-axis, we report the Mean Spearman’s Rho, y-axis, com-
puted between DDC ranking and the rankings obtained with BE rule, de-
gree/closeness/betweenness/eigenvector centralities.

networks: those where the number of edges is low (200 or less and, there-
fore density is always below 10%), intermediate, and large. Consistent with
previous finding, when density is low, we see from figures 9 and 10 that
the average Spearman’s Rho between the DDC and the BFE rule ranking
increases as density increases.

When the number of edges is intermediate, that is the situation of most in-
terest to us, the BE rule performs well and the Spearman’s Rho between
the ranking of this metric and the DDC is over 0.9 in networks with edges
between 300 and 700. Then, as network density significantly increases, we
observe a decrease of the average Spearman’s Rho. As already said, this is
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Table 7: Performance of the BE rule compared to the betweenness
centrality in obtaining a higher value of the Spearman’s Rho.

Edges | BE rule Betweenness Same result Valid simulations
100 330 670 0 1000
200 763 237 0 1000
300 981 19 0 1000
400 999 1 0 1000
500 998 2 0 1000
600 999 1 0 1000
700 1000 0 0 1000
800 1000 0 0 1000
900 1000 0 0 1000
1000 999 1 0 1000
1100 995 5 0 1000
1200 987 12 1 1000
1300 922 66 12 1000
1400 767 144 88 999
1500 502 114 270 886
1600 228 54 201 483
1700 57 15 74 146
1800 13 0 20 33
1900 4 0 5 9
2000 1 0 0 1

Note: for every batch of simulated networks with the same (starting) number of
edges, indicated in column 1, we report: the number of times in which the BE
rule obtains a higher value of the Spearman’s Rho compared to the betweenness
centrality (column 2); the number of times in which the betweenness centrality
obtains a higher value of the Spearman’s Rho compared to the BE rule (column
3); the number of times the two metrics report the same Spearman’s Rho (column
4); the number of simulated networks considered (column 5).

due to the fact that nodes become less and less relevant in slowing down the
contagion, since almost all of them are connected and the diffusion process
would be unaffected by putting one node into isolation (i.e. the DDC ranking
becomes increasingly useless). It is not surprising that the relation between
the DDC and the BE rule is even less evident when the number of edges
is very high, since DDC ranking is meaningless in these situations (because
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all agents” DDC approaches or reaches zero).!'® As a result, we can conclude
that the BE rule is useful when the density of the network is relatively low,
i.e. below 20%, that is also when the results returned by the DDC are most
informative.

In order to investigate whether other factors can be relevant beside dens-
ity, we separately investigate specific groups of simulations returning net-
works with the same number of edges: i.e. from 400 to 900 edges. We choose
these simulations because networks from these groups feature on average a
high value of Spearman’s Rho, meaning that we are examining situations
when the BFE rule is effective in recovering the DDC ranking, but they also
display relevant differences, since the standard deviation of the Spearman’s
Rho is markedly high. Hence, it is possible to investigate what drives the
effectiveness of the BFE rule in recovering more or less efficiently the DDC
ranking holding network density constant.

Unsurprisingly, given the relation between the BE rule and the between-
ness centrality, we find that an important driver in explaining the relation
between the BE rule and the DDC is the standard deviation of the between-
ness centrality in a network: i.e. an increase of the standard deviation in-
creases the Spearman’s Rho value. A reason for that might be that a high
standard deviation of the betweenness centrality signals situations in which
there are few nodes that are important for spreading the contagion, and a
trail of nodes that are less relevant. This confirms that a strict relation
between the BE rule and the DDC exists when the network is neither too
sparse nor too connected. These are the circumstances under which it is more
desirable to use DDC, because we are dealing with not-degenerate networks
where contagion can be actually slowed down by isolating specific nodes.

A specific analysis is then performed on simulations with 100 (or less)
edges. In this case, the Spearman’s Rho increases when both the standard
deviation and the skewness of betweenness decreases, when skewness of ei-
genvector centrality decreases, and when the number of nodes increases.
This is not surprising, given the very small value of the network density.
Under these circumstances, many nodes feature a small network centrality
regardless of the measure considered. Similarly, few nodes are assigned to a
high value by any network centrality measure. Consequently, the skewness of
both betweenness and eigenvector centrality is higher compared to the value

8That said, one can still speculate on the reason for such differences in the rankings
produced by the DDC and the BFE rule when density is high. In these cases, the consider-
ations made when discussing Example 7 and the higher order DDC might come in handy.
In fact, one could speculate that the differences in the rankings are determined by the BE
rule assigning more importance to nodes that are relevant for the mechanism considered
by the higher order DDC.
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found in all other simulations. When this is the case, the values produced
by the BE rule tend to be very similar and close to zero, thus returning a
ranking which is of little use to us. The reason is that both the betweenness
and eigenvector centrality are rescaled between 0 and 1 when applying this
rule, and when this is done while skewness is very high, most of the rescaled
values approach zero. This confirms that the BE rule becomes less efficient
in recovering the ranking of the DDC when the network is extremely sparse.

Figure 10: Spearman’s Rho between DDC ranking and BFE rule ranking
related to network density.
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Note: on the x-axis, we register the density of a simulated network. On the y-axis,
we report the Spearman’s Rho between DDC ranking and BFE rule ranking.

4 Conclusions

This paper presents a simple measure to assess the importance of a node
in decelerating diffusion processes in a network. Specifically, this measure
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quantifies the extent to which an agent is able to alter the average speed of
diffusion in the network by putting him or herself in isolation. Consequently,
it can be used to identify the agents to be targeted by a policy intending to
reduce diffusion when the source of this process in unknown. The relevance
of this topic in the literature has many different applications. For instance,
this is the case when analyzing how efficiently real systems may be controlled
by manipulating a single node (as in Klemm et al., 2012; Mobilia, 2003), or
when investigating the impact of deleting a single node. This latter case is
discussed in many different fields, when studying the failure of hierarchical
networks such as nested split graphs (see among others Konig et al., 2012)
and infrastructural networks (see for a recent discussion Currarini et al.,
2016), an optimal change in the aggregate activity level of a network (e.g.
Ballester et al., 2006; Lee et al., 2020), and strategic complementaries games
on networks (Belhaj et al., 2004; Jackson and Yariv, 2005; Jackson and Zenou,
2015), where a shock propagating through a single central agent may end up
affecting every other agent in the network.

We also show that the ranking of the DDC can be easily proxied by a dif-
ferent measure, that is the difference of the betweenness and the eigenvector
centrality of the agents (the so called BE rule). This finding has the merit
to facilitate the interpretation of the role played by high DDC nodes in the
diffusion process. These are the nodes who control the access from the center
to the periphery of the network. Once put into isolation, diffusion is confined
within a certain area, or at least is significantly slowed down. This finding
is also useful because it shows that one can easily reproduce the ranking of
the DDC without actually computing DDC centrality, a task that might be
often computationally heavy.

When examining the relation between BFE rule and the DDC, we find
that these metrics are most correlated when the network is not too sparse
and it is not too dense: i.e. when considering non-degenerate networks,
where diffusion is confined within certain areas or it rapidly spreads across
the network because nodes are highly connected with one another. This is
important because it shows that the BE rule can be trusted when considering
most realistic and non-degenerate cases, which are the situations of most
interest to us.

Future research should be dedicated to better understanding the relation
between the BE rule and the DDC ranking in extremely sparse networks
and/or with a small number of nodes, and in other canonical families of net-
works (e.g. scale-free networks). It would also be desirable to dedicate suc-
cessive research to investigate the properties of the BE rule when networks
are directed and/or weighted. Additional research should also be conducted
on higher order delaying mechanisms, in order to develop an iterative version

32



of the DDC allowing to design a strategy of isolation of multiple nodes at
once. Finally, a promising venue of research would be to understand how the
DDC can be applied to stochastic diffusion processes, modeling for instance
the probability of contagion between agents through the weights of the net-
work links, and to complex contagion processes (as in the work by Guilbeault
and Centola, 2021), thus considering how peer reinforcement may act along
the path of contagion to enable diffusion.
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A Topological features of low and high DDC
nodes

In this section, we provide additional insights on the topological features
of low and high DDC nodes. This exercise is conducted using the same
simulated networks used in the Monte Carlo experiment presented in section
3.1 of the paper. Specifically, for each simulated network, we create two
groups: i.e. the nodes featuring the top 10% and bottom 10% of DDC values,
respectively. Then, we compute the average value of degree, betweenness,
closeness, and eigenvector centrality for each group of nodes. Finally, we
use a boxplot to observe the average and standard deviation of each of these
metrics across all simulated networks. We report these values in Figure 11.
For visualization purposes, each measure is rescaled between zero and one.
A number of interesting insights can be gathered by observing this figure.
First, high DDC nodes feature a high degree and betweenness centrality.
Moreover, the small standard deviation of these two metrics, as indicated by
the small scale of the boxplots, suggests that this is true for a large part of
simulated networks. We thus infer that high DDC nodes tend to play the role
of important hubs (i.e. high betweenness) with many connections (i.e. high
degree) in all simulated networks. Second, low DDC nodes do not feature any
recognizable pattern when looking at their degree, betweenness, closeness and
eigenvector centrality values. These metrics greatly vary across networks, as
suggested by the large scale of their associated boxplots, meaning that the
information provided by the bottom ranking of the DDC is substantially
different from that returned by other centrality measures. This is relevant
because it confirms that DDC provides a new and non-redundant information
on the role of nodes. Third, on average, high DDC nodes feature a higher
degree and betweenness centrality value compared to low DDC. This further
confirms that high DDC nodes are a crucial hub vehiculating diffusion across
many nodes.
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Figure 11: Topological features of low and high DDC nodes
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Note: In the left panel, on the y-axis, we report the distribution of degree, between-
ness, closeness, and eigenvector centrality, indicated on the x-axis, for the bottom
10% DDC nodes in the simulated networks. In the right panel, on the y-axis,
we report the distribution of degree, betweenness, closeness, and eigenvector cent-
rality, indicated on the x-axis, for the top 10% of DDC nodes in the simulated
networks.
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