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Introduction and literature review

Assessing the failure time of systems with interconnected components is a signifi-

cant problem in reliability theory and leads to important questions in mathematical

statistics and probability modelling.

This PhD thesis aims to develop research in this field by proposing a stochas-

tic model for evaluating the expected time of failure of a system from a rational

expectations perspective.

In particular, our aim is to address a reliability problem by exploiting the char-

acteristics of k-out-of-n systems (with homogeneous and heterogeneous components)

through rational expectations. Accordingly, the proposed approach consists of two

indispensable frameworks: the framework for reliability theory with special focus on

k-out-of-n systems and the framework for rational expectations.

We investigate this line of research from two perspectives which have similar char-

acteristics, but will be explored in two different contexts.

Our main interest is the analysis of reliability systems, an area in which many

investigations have been carried out, and in particular, studies have focused on the

prediction of failure times under various assumptions. There are two different ap-

proaches to dealing with the study of reliability systems: a probabilistic approach by

analyzing the probability distribution of a system’s failure time and a Bayesian com-

putational approach by estimating the average failure time of a system, conditioned

by the description of a scenario in which the evolution of the given reliability system

is observed.

Regarding the first approach, many contributions have appeared in the literature

over the years, applying different methods in various fields. These research papers
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have focused on the reliability function. This function is used in lifetime data models.

It indicates the probability over the duration of a system and it is a function of time.

Navarro et al. [1] further developed coherent systems with dependent compo-

nents. Their aim was to compare systems by considering properties of their com-

ponents. They developed theorems and proofs showing that properties of coherent

systems could be selected on the basis of properties of k-out-of-n systems and mix-

tures. Khaledi and Shaked [2] considered the residual life of systems with equal or

different types of component using a stochastic comparison. They considered systems

of n components such that, if r components (with r < n) have failed, the systems

are still active. They found upper and lower bounds on the expected residual life

of the systems described above by considering some applications. Navarro et al. [3]

extended the classical signature-based mixture representation to the systems with

exchangeable components.

Navarro and Spizzichino [4] analysed a stochastic comparison of systems with

component lifetimes sharing the same copula. They investigated different vectors of

marginal distributions of series systems without redundancy whose reliability function

is given by the product of the reliability functions of its component lifetime. They

also obtained theoretical results concerning parallel systems and for general coherent

systems with independent or dependent components. The same type of research was

carried out by Di Crescenzo and Pellerey [5], although they considered systems with

components linked via suitable mixtures. These authors provided results for systems

of two components in series and for systems of two components in parallel, showing

that their lifetimes can be improved by replacing these systems with certain mixtures

of duplicated (dependent) components.

Navarro et al. [6] determined ordering properties for coherent systems by taking

into account the system reliability function as a distorted function of the common

component reliability function. They provided many examples to validate the pro-

cedure. This type of study can be extended to the rank-dependent expected utility

model.

Navarro et al., continued their research on coherent systems with dependent or
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independent components in [7]. They demonstrated sufficient conditions on the com-

ponents and lifetimes and on the number of components, to improve the reliability

of the whole system according to different stochastic orders. The examples included

support their study applied to the optimal random allocation of components in series

and parallel systems.

Still using the stochastic order-based approach, Gupta et al. [8], compared the

residual lifetime and the inactivity time of failed components of coherent systems

with the lifetime of a system that had the same structure and the same dependence.

Among the results they found those for the likelihood ratio order, reversed failure

rate order, failure rate order, and the usual stochastic order.

Azaron et al. [9] introduced a new approach to determine the reliability function

of time-dependent systems with standby redundancy, assuming that not all elements

of the system are set to function from time zero. At the beginning the reliability

graph works because the input and output elements are connected to the first path

(main elements) whose components are functioning. There is a switch from one path

to the next when components fail. When all connections between input and output

are broken, the system fails.

Recently, in the context of modern digital systems, Borgonovo et al. [10] exploited

the importance of system components in a computationally efficient way in system

design, proposing a measure for time-independent reliability analysis. Through exam-

ples of coherent and non-coherent systems and a realistic digital system application,

they introduced a new measure, that has probabilistic and geometric interpretations,

and the concept of time consistency.

Note also Parsa et al. [11], which described a new stochastic order based on the

Gini-type index (GT index), useful as a tool to gain information on the ageing prop-

erties of reliability systems, and thereby demonstrating the different characteristics

of active or already failed components. The GT index has been applied to series

systems, parallel systems and parallel-series systems with shared components.

A contribution about the mean time to failure and availability of semi-Markov

missions, has been published by Çekyay and Özekici [12]. They studied generaliza-
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tions and extensions of this research, building a model with two characteristics: (i)

durations and sequence of the phases are random; (ii) the lifetimes of the components

have general distributions.

Other recent studies, such as Zarezadeh et al. [13], investigated the joint reliability

of two coherent systems with shared components, obtaining a pseudo-mixture repre-

sentation for the joint distribution of the systems failure time. A coherent system is

a system without irrelevant components and with a structure function that increases

in each of the n components. They provided many cases of coherent systems with

shared components and an application in which two groups of these systems were

compared stochastically.

Oe et al. [14] used autoregressive models to predict the failure of a stochastic

system through four types of performance index of the variations. They detected the

failure of a cutting tool for a lathe and predicted the width of flank wear by using

time series analysis. For this purpose, they considered four types of performance

index used in the prediction methods: quadratic distance of AR parameter differ-

ences, variance of the residuals, Kullback information and distance of the Kullback

information (divergence measure).

Regarding Bayesian approaches to the reliability problem, many researchers in-

vestigated system reliability in the operational research field and developed a variety

of methods.

Some of them have focused on estimating the mean failure time and reliability

function of a system through asymmetric loss functions. Bhattacharya [15] dealt

with a priori information on the values that the parameters can assume in the con-

text of life testing techniques. Basu and Ebrahimi [20] on the research line of life

testing problems, calculated some reliability Bayesian estimators of the mean lifetime

using asymmetric loss functions. El-Sayyad [16] discussed a comparison between new

unbiased estimators for the parameter in the exponential distribution and the cor-

responding Bayesian estimators derived. In his paper Canfield [17] approached a

reliability estimation problem by providing a solution that contains the prior infor-

mation in the Bayesian theory and the loss function through the exponential model
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of reliability. Considering that in some estimation and prediction problems the use of

symmetric loss functions may be inappropriate, Varian [18] considered the properties

of optimal forecasts under asymmetric loss from a theoretical perspective introducing

a Linex loss function in the context of real estate assessment. Zellner [19] discussed

properties of estimation and prediction procedures based on Varian’s asymmetric

Linex loss function. He delved into examples on normal n-mean problem, on least

squares estimator of a multiple regression coefficient, on linear combination of regres-

sion coefficients.

Among the Bayesian approaches, we find papers in several fields.

Van Noortwijk et al. [21] determined a Bayesian failure model for hydraulic struc-

tures based on observable deterioration characteristics. They exploited an indepen-

dent probability density function that is a mixture of exponentials through the non-

negative increments of deterioration. The knowledge available in this model is about

the average amount of deterioration per unit time.

Gunawan and Papalambros [22] used Bayesian statistics to develop a reliability-

based optimization method for problems with incomplete information in engineering

design. Considering a Bayesian binomial inference technique, they estimated a Beta

distribution through a uniform prior with a precision proportional to the number of

samples.

Mastran [23], Mastran and Singpurwalla [24], Barlow [25], Martz et al. [26], Martz

and Waller [27] and Peng et al. [28] proposed a Bayesian approach in reliability

analysis with multilevel heterogeneous data sets (binomial data, lifetime data and

degradation data). Specifically, Mastran presented a procedure that adopt a squared-

error loss function for two cases: (i) procedure for attribute (pass-fail) test data

whose results are valid for any systems; (ii) procedure for variables (time-to-fail)

data whose results are valid for non-exponential data. Mastran and Singpurwalla

illustrated a method for coherent structure of independent components about prior

data. They proposed examples on series system of independent components and

on paralle system with component interdependence. Barlow studied a procedure

about lifetime data reliability for evaluating moments of the system distribution. He
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proposed a combination of information between components and systems. Martz et al.

assumed a Beta prior distribution for the development of a Bayesian reliability method

for series system of independent binomial subsystems and components.They presented

a very detailed procedure and explanatory examples about either test or prior data

at three or more configuration levels in the system. Martz and Waller extended this

procedure to arbitrary system configurations of series/parallel subsystems of other

subsystems or components. Peng et al. integrated multilevel pass-fail, lifetime, and

degradation data in the context of reliability analysis.

Kim et al. [29] developed a method for predicting failures of a partially observable

failing system that can be applied to a wide range of deteriorating stochastic systems

with multivariate condition monitoring data. They assumed system with 3-state

continuous time homogeneous Markov process.

Aktekin and Caglar [30] studied a software reliability model, with modeling of a

multiplicative failure rate whose components evolve stochastically over testing stages.

They discussed its Bayesian estimation and modeled parameters via Markov chain

Monte Carlo methods.

Jiang and Skorupski [90] adopted a Bayesian approach to estimate variance com-

ponents in a multivariate generalizability theory. They described a BUGS code for

the implementation of several examples.

In our study we also dealt with systems with dependent components as in the

papers of Navarro et al. [1, 6, 7], Khaledi and Shaked [2], Navarro and Spizzichino

[4], Gupta et al. [8], Azaron et al. [9] and Oe et al. [14].

However, our research belongs to the second group of publications. We are not

concerned with studying the reliability function, but we use a Bayesian approach to

estimate the average failure time of stochastic systems, where the failures depend on

the number and importance of the components.

Since the reliability of a system depends on the reliability of its components, within

this very extensive research field we focus our attention on k-out-of-n systems. The

k-out-of-n systems are those in which a system of n components requires at least k

components to operate. The stochastic systems we simulate in our study fit exactly
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into this type of approach. In the literature many researchers have studied k-out-of-n

systems in which the failure process of each component depends on the conditions in

its operating environment.

Da Costa et al. [32] used in reliability theory a martingale approach to apply

active redundancy or minimal standby redundancy depending on the type of systems

treated.

Eryilmaz [44] carried out an in-depth analysis of the concept of mean residual

life as a fundamental characteristic that has been widely used in dynamic reliability

analysis.

Wang et al. [34] considered the reliability estimation problem of weighted k-out-

of-n multi-state systems. They derived the unbiased system reliability estimator and

the corresponding unbiased covariance estimator applying the universal generating

function method and giving three practical examples.

Zhang et al. [46] proposed a model to incorporate the information from environ-

mental observation in the evaluation of system performances. They used Monte-Carlo

simulations in numerical examples to confirm the accuracy and the efficiency of the

model.

Some researchers, such as Barlow and Heidtmann [36], Jain and Gopal [37] and

Rai et al. [38], evaluated the reliability of k-out-of-n systems by creating and applying

different methods. Others, such as Pham and Upadhyaya [39] and Hecht and Hecht

[40], measured the efficiency of k-out-of-n systems for more accurately predicting

failure rates of very high reliability systems.

The type of component distribution is fundamental and is typically assumed to be

negative-exponential, with consequent very consistent prediction errors when different

distributions are used. In this direction, Li and Zuo [41], Sarhan [42], Asadi and

Bayramoglu [43] and Eryilmaz [44] used Markov models to analyze of failure rates

in the case of components with negative-exponential distributions. On the other

hand, Van Gemund and Reijns [45] calculated the average failure time of k-out-of-n

systems with a single cold standby for arbitrary distributions, trying to minimize

the prediction errors in cases where the distribution shapes differ from the negative-
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exponential one. The latter distribution seems to be the best for predicting the

average failure times of a system with interconnected components, because the greater

the weight of the component within the system, the faster its reliability decreases.

There are also reliability studies of k-out-of-n systems with heterogeneous compo-

nents and random weights, in which each component may make a different contribu-

tion to the system reliability. Those by Xie and Pham [47], Li and Zuo [48], Eryilmaz

and Bozbulut [49], Eryilmaz [50, 51] and Zhang [52, 53] are particularly interesting.

Applications of reliability analysis to k-out-of-n systems with homogeneous com-

ponents (see Milczek [54] and Ge and Wang [55]) are less frequent.

It is also worth mentioning some papers, such as Boland and El-Neweihi [56],

Taghipour and Kassaei [57] and Sheu et al. [58], in which the components fail ran-

domly somesubsequent to shocks. In fact, the distribution of these failure times at

time t follows a Poisson process. In the first case homogeneous components are stud-

ied, and in the other two cases, non-homogeneous components.

Here we deal with both kinds of system, composed of homogeneous or heteroge-

neous components with the intention of understanding, through an extensive simula-

tion approach, which type of initial distribution is better in the process of predicting

the mean failure time of stochastic systems with interconnected components. In our

case there is an aspect of randomness that concerns the selection of the components

and the process of determining their failure. However, this is not a Poisson process,

as the failure time of the components is deterministic and depends on the increasingly

assumed importance of the components, as will be explained in more details in the

following.

Throughout the literature we see how the reliability of a system is linked to its

ability not to fail within a certain time. There is therefore a relationship with the

time, evaluated on the basis of the information the system provides us with. This

allows us to estimate the behavior and the impact on system reliability.

Depending on the information stored by the system, we have the possibility to

evaluate its reliability by following and predicting its failure over time. The investi-

gation of ways to exploit available information and the discipline of forecasting direct
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us towards the second framework that concerns us here: rational expectations.

In this thesis we address the problem posed above by developing it in the context

of rational expectations.

In the modern economic theory, agents are assumed to adjust their expectations

to anticipate future decisions. Over the years in the study of economic behavior,

two main hypotheses have been put forward: adaptive expectations and rational

expectations.

Adaptive expectations assumes that people form their expectations by giving im-

portance to past events when predicting future outcomes. They played a key role in

the 1960s and 1970s (see Friedman [59] and Chow [60]).

Instead, with rational expectations, people make their decisions (which on average

will be correct) based on all the best information available (see for example Muth [61],

Lucas [62], Sargent et al. [63], Sargent and Wallace [64] and Barro [65]). Rational

expectations are a fundamental assumption in many theoretical models with impli-

cations for economic analysis, and thanks to the increasing accessibility of big data

in recent years, studies have been carried out on the use of rational expectations to

identify prediction errors in large samples. So, rational expectations are important

in any situation in which behavior is influenced by expectations (see Maddock and

Carter [66]).

They can be applied in macroeconomic models, in microeconomic situations and

in a wide selection of other models.

Starting from the general equilibrium, the insights of rational expectations can be

deduced analytically. From the equation of supply and demand and the assumptions

of rational expectation, we obtain:

p?t = E[pt|It−1] (1)

where p?t is the price expectation, E is the expected value operator, pt is the price

at time t, and It−1 is all the information available at time t− 1.

Many authors have studied rational expectations over the years in several fields.

For example, Hansen and Singleton [67] estimated and tested parameters of eco-
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nomic agents dynamic objective functions within nonlinear rational expectations mod-

els.Their model did not require a priori assumptions but only the specification of the

economic context in which to apply it.

In the economic and financial field, Blanchard and Watson [68] examined rational

expectations in the financial markets through the study of speculative bubbles, while

Delcey and Serge [69] studied the relationship between the efficient market hypothesis

and rational expectations.

In the field of operations research, there is a paper by Atıcı et al. [71] on discrete

time domains. They generalized the Cagan’s model of hyperinflation. They changed

the idea of the time horizon of the original model without considering only the time

intervals represented by the integers. The time domain of their generalized model

therefore includes all the real numbers of the considered time horizon.

Research by Becker et al. [70] campared the rational expectations hypotheses with

the bounds and likelihood heuristic to explain the average forecasting behavior.

In our study, we apply rational expectations to reliability systems. Through ratio-

nal expectations, we can predict failure times on the basis of the knowledge about the

past experience of our stochastic systems and condition the results on the information

provided by the system – with interacting elements with unknown random lifetimes

– thus obtaining a continuous gain on prediction performance.

To the best of our knowledge, there are no similar contributions in the exist-

ing literature that address reliability problems with rational expectations through

stochastic systems.

We aim to demonstrate how the prediction of failure times improves with the

enhancement of the information collected, causing the failure of stochastic systems

through the failure of the interconnected components. The intention is to use all

available information efficiently in order to process it and make forecasts.

Generally, in the literature (see for example Sanyal et al. [72], Krishnamurthy

and Mathur [73], Gokhale et al. [74], and Yacoub et al. [75]), reliability problems are

addressed using scenario analysis on real systems that we will call ”in-vivo” systems.

After the failure of a system, scenario analysis is performed to understand what
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happened to that specific system. Here, we propose a new methodology for forecasting

using rational expectations in the field of reliability theory. In fact, for the predictions

we use all the information contained in an “information set”, and specifically, all the

different realizations of the weights of the nodes. In our approach we record the failure

data of a very large number of systems and provide the results of different scenarios

on our information set.

We assess the reliability of our stochastic systems on the basis of several statistical

indicators calculated on the realizations of the weights, and we also take into con-

sideration some initial weight distributions to obtain comparisons both between the

various cases studied and with respect to what is contained in the existing literature.

In our research we compare different types of initial weight distribution to investigate

whether the results are consistent with the literature and identify the distribution

with the highest predictive power among the cases treated. Rational expectations are

given, in this context, by the expected value of the failure time under the constraint

of the realization of a given configuration.

The method is inspired by the one proposed by Andersen and Sornette [76, 77] for

the prediction of failure time of the overall system, conditioned on the information

revealed by the damage occurring up until the time at which the system is being

evaluated (the configurations of the theoretical setting). Their idea was influenced

by the method known as “reverse tracing of precursors” (RTP) (see Keilis-Borol et

al. [78], Shebalin et al. [79]) for earthquake prediction based on seismicity patterns.

However, unlike them, we insert an interaction into our systems in such a way that

the failure of a component affects the rest of the still active system. The reallocation

rule works according to preference relations among the components. Once one of the

components fails, its relevance is reallocated to the remaining active components. We

seek to provide the most reliable estimate of the failure time of a stochastic system,

whose components are interconnected through rational expectations.

The question we want to answer is: which kind of information available can be

used to understand what is the optimal prediction?

To do this we have developed two different approaches that will be explained in
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detail in the following and which will be explored from two perspectives, characterized

by peculiar aspects that will allow us to study two separate contexts. In both cases

the failure time is the variable of interest to be predicted.

In the first context, our intention is to analyze how much the functioning of the

system and its probability of failure depend on the level of the statistical value under

study. We link the information set (the levels of the statistical indicators of the

weight components of stochastic systems) with the residual failure times. An average

residual failure time is assigned to each observed value. We then calculate the errors

with respect to the residual failure times of the statistical indicator values of the

in-vivo systems. A comparative analysis of the error distributions will allow us to

understand how to obtain the best prediction. Time remains implicit in this approach.

We use rational expectations by conditioning them to all available information and

we represent errors by taking away the time from the final visualization of the results

and focusing on the values of the statistical indicators and the errors associated with

each value. It will be useful to understand how the statistical indicators behave

individually and how the levels of errors vary according to the size class they belong

to.

In the second context we exploit rational expectations to find the average predic-

tion error conditioned on the percentiles of the information set (the levels of the sta-

tistical indicators of the weight components of stochastic systems). As time evolves,

the likelihood of the failure of the systems increases and we can see from the results

of this model how we gain predictive power. In this model the time dependence is

direct. We issue an optimal prediction of the failure time at a specific time t and we

see how the model performs as time advances. In this application, after studying the

trends of the individual indicators, a comparative analysis will be presented for the

different forms of conditioning proposed. An important comparative study between

the different methods concludes this second line of research.

We closely follow the method od prediction studied by Andersen and Sornette

[76, 77].

The evolution dynamics leading to the failure of the system is explored from a
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theoretical point of view, as well as through these two extensive simulation contexts.

A large number of analyses are then built up to simulate the failure of the system

and we are able to identify the connections among the configurations and the lifetime

of the system. In so doing, we derive a probability distribution for the random time

of failure of the system conditioned on the configurations.

Set against this background, we seek improvement along five important statistical

dimensions, valid for both models: variance, kurtosis, skewness, Gini coefficient, and

Shannon entropy.

In Chapter 1 we propose a theoretical framework for the evolution of the system

lifetime which is valid for both contexts of research presented above. The theoretical

setting connects the two macro frameworks underlying this thesis: rational expecta-

tions and reliability of stochastic systems.

From here, we continue towards the two computational models, both depending

on time and on the statistical indicators being analysed, to obtain a complete view

of what is proposed in the theoretical model.

In Chapter 2 the statistical measure predictor role model with aggregated time is

implemented with an extensive simulation analysis to validate the effectiveness of the

theoretical setting. The results will be presented by emphasizing the role of statistical

measures through a cross-sectional analysis over time. We aggregate over time in the

display of the final graphs.

Chapter 3 is devoted to the time predictor role model with conditioning on sta-

tistical measure percentiles. We present a new algorithm with high computational

complexity as we focus on time by proposing three levels of prediction linked to three

percentiles of the distributions of statistical indicators. This allows us to present

both individual and aggregated results with a final comparison between the various

statistical methods proposed.

For both contexts we started from the difficulty of the methods for predicting the

failure of reliability systems based on proper monitoring of the system that fails over

time. The general goal is the implementation of a procedure that can be useful for

any system with interactive components.
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These models are two complementary studies that show two different approaches,

focusing first on statistical indicators and then on time.

This gives us an overview of this combination of the two research areas we wanted

to bring together to contribute to the proposed literature in an innovative way.

This could have real practical relevance in economics and finance, for example for

banking networks, but also for assessing the systemic risk of a country, the Eurozone,

or sovereign credit, among other things.

We draw our conclusions at the end of the thesis.
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Chapter 1

The theoretical framework

1.1 The model

We consider a probability space (Ω,F ,P) containing all the random quantities used

throughout the paper. We denote the expected value operator related to the proba-

bility measure P by E.

We denote the reliability system – or, simply, system – by S, and assume that it is

composed by n components denoted by C1, . . . , Cn and collected in a set C.

As we will see, in our framework the system can be considered of k-out-of-n type in

that it fails when some of its components fail.

The state of S is a binary quantity. If the system is active and works, then its state

is 1. Otherwise, the state of S is 0, and the system is said to be failed. The state of

S evolves in time, and we denote by Y (t) the state of the system at time t ≥ 0. At

the beginning of the analysis (time t = 0) the system is naturally assumed to be in

state 1.

Analogously, the state of the j-th component Cj at time t is denoted by Yj(t), and

it takes value 1 when Cj is active and 0 when Cj is failed. At time t = 0 we have

Yj(0) = 1, for each j = 1, . . . , n.
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1.2 Main assumptions on the system

We now point out three natural assumptions of our model, which are tailored on

standard reliability theory: first, the different components of the system are assumed

to be not homogeneous in terms of their relevance; second, the components of the

system are interconnected and exhibit different levels of interconnection; third, rel-

evance and interconnection levels change over time, according to the change of the

status of the components of the system.

We enter the details.

For each j = 1, . . . , n and t ≥ 0, the relative importance of the component Cj over

the entire system at time t is measured through αj(t), where αj : [0,+∞) → [0, 1]

and
∑n

j=1 αj(t) = 1, for each t.

For each t ≥ 0, we collect the α(t)’s in a time-varying vector a(t) = (αj(t))j,

where

a : [0,+∞)→ [0, 1]n such that t 7→ a(t). (1.1)

If a component is not active at time t, then its relevance for the system is null.

Moreover, each active component has positive relative relevance, i.e. the system does

not contain irrelevant active components. Formally,

αj(t) = 0⇔ Yj(t) = 0. (1.2)

Condition (1.2) is useful, in that it allows to describe the status of the components

of the system directly through the α’s.

For each j = 1, . . . , n, the relative relevance of Cj changes in correspondence of the

variation of the state of one the components of the system. Once a component fails,

then it disappears from the reliability system – i.e., its relative relevance becomes

null – and the relative relevances of the components of the remaining active ones are

modified on the basis of a suitably defined reallocation rule.
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Below we illustrate a blob graph containing the operation of the proportional

reallocation rule:

Figure 1.1: A blob graph representing the proportional reallocation rule: [Top] A

component has failed and is deleted from the system. [Bottom] The relevance of the

failed component is reallocated over the remaining active components proportionally

to their α’s (bubble size) before the failure.
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Next example proposes a way to build a reallocation rule.

Example 1. Consider a system S whose components set is C = {C1, C2, C3, C4, C5}.

Assume that, at time t = 0, we have α1(0) = 0.1, α2(0) = 0.15, α3(0) = 0.3,

α4(0) = 0.2, α5(0) = 0.25.

Now, suppose that the first failure of one of the components of the system occurs

at time t = 7, when C3 fails. Of course, αj(t) = αj(0), for each t ∈ [0, 7) and

j = 1, 2, 3, 4, 5. Moreover, α3(7) = 0.

We consider a specific reallocation rule, which states that the relevance is real-

located over the remaining active components proportionally to their α’s before the

failure. This means that

α1(7) =
0.1

0.1 + 0.15 + 0.2 + 0.25
, α2(7) =

0.15

0.1 + 0.15 + 0.2 + 0.25
,

α3(7) = 0, α4(7) =
0.2

0.1 + 0.15 + 0.2 + 0.25
, α5(7) =

0.25

0.1 + 0.15 + 0.2 + 0.25
.

In general, if τ1, τ2 are the dates of two consecutive failures, with τ1 < τ2, we have

αj(τ2) =
αj(τ1)1{Yj(τ2)=1}∑5
i=1 αi(τ1)1{Yi(τ2)=1}

, j = 1, 2, 3, 4, 5.

The α’s are step functions, whose jumps occur in correspondence to the failure of

one of the components.

For what concerns the interconnections among the components, we define their

time varying relative levels through functions of type wij : [0,+∞)→ [0, 1], for each

i, j = 1, . . . , n, so that wij(t) is the relative level of the interconnection between Ci and

Cj at time t ≥ 0. We assume that arcs are oriented, so that in general wij(t) 6= wji(t),

for each t. Moreover, by construction,
∑n

i,j=1wij(t) = 1, for each t. We also assume

that self-connections do not exist in our framework, i.e. wii(t) = 0, for each i and t.

For each t ≥ 0, the w(t)’s are collected in a time-varying vector w(t) = (wij(t))i,j,

with

w : [0,+∞)→ [0, 1]n×n such that t 7→ w(t). (1.3)

If Ci is a not active component at time t, then wij(t) = wji(t) = 0, for each

j = 1, . . . , n. This condition simply formalizes that a failed component is disconnected
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from the system. Such a statement suggests that the failure of a component might

generate disconnections among the components of the system.

The behavior of the w’s is analogous to that of the α’s. Also in this case, the

relative levels of interconnections change when one of the components of S change its

state, and there is a reallocation rule for the remaining levels of interconnections.

We synthesize the reallocation rules of the weights on nodes and arcs broadly by

R.

Therefore, a natural rewriting of the system S with components in C and reallo-

cation rule R at time t is then

S(t) = {a(t),w(t)}. (1.4)

Notice that (1.4) highlights the observable features of the system with a given set

of components and a specific reallocation rule, i.e. the weights on the nodes and on

the arcs. Thus, according to (1.4), we can say that the {ā, w̄} is an observation of

the system at a given time, where ā ∈ [0, 1]n and w̄ ∈ [0, 1]n×n.

When needed, we will conveniently remove the dependence on t from the quantities

in formula (1.4).

1.3 The structure of the system

To capture the dependence of the state of S on the ones of its components, we simply

introduce a function φ : {0, 1}n → {0, 1}

Y (t) = φ(Y1(t), . . . , Yn(t)). (1.5)

In reliability theory, φ is usually denoted as the structure function of the system.

We denote the elements of {0, 1}n as configurations of the states of the components

of the system or, briefly, configurations.

Function φ in (1.5) has the role of clustering the set of configurations in two

subsets: the ones leading to the failure (F) of the system and those associated to

the not failed (NF) system. Thus, we say that KF ⊆ {0, 1}n is the collection of
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configurations such that φ(xF ) = 0, for each xF ∈ KF while KNF ⊆ {0, 1}n is the

collection of configurations such that φ(xNF ) = 1, for each xNF ∈ KNF . By definition,

{KF , KNF} is a partition of {0, 1}n.

In order to describe a systemic risk problem, some requirements on φ are needed.

First, (0, . . . , 0) ∈ KF and (1, . . . , 1) ∈ KNF . This condition means that when all

the components of the system are active (not active), then the system is active (not

active) as well.

Second, φ is non-decreasing with respect to its components. This has an intuitive

explanation: the failure of one of the components of the system might worsen the

state of the system and cannot improve it.

Third, each component is able to determine the failure of the system. Formally,

this condition states that for each j = 1, . . . , n there exists
(
y1, . . . , yj−1, yj+1, . . . , yn

)
∈

{0, 1}n−1 such that (y1, . . . , yj−1, 1, yj+1, . . . , yn) ∈ KNF and (y1, . . . , yj−1, 0, yj+1, . . . , yn) ∈

KF .

1.4 Failure of the system and rational expectations

As said above, time t = 0 represents today – the starting point of the observation of

the evolution of the system –. At time t = 0 all the components are active and the

system works.

The failure of the system is then a random event, which occurs when the system

achieves one of the configurations belonging to KF .

We define the system lifetime as:

T := inf{t ≥ 0|φ(Y1(t), . . . , Yn(t)) = 0}. (1.6)

Analogously, the n-dimensional vector of components lifetimes is X = (X1, . . . , Xn),

where

Xj = inf{t > 0 |Yj(t) = 0}. (1.7)

To be as general as possible, we assume that the failure lifetimes of the components of

the system {X1, . . . , Xn} are not independent random variable and do not share the
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same distribution. In fact, at each components’ failure, the α’s and the w’s modify

in accord to the reallocation rule R; this modify also the probability of subsequent

failures of the system components in the very natural case of failures dependent on

the weights.

Moreover, we can reasonably assume that the failure of the system coincides with the

failure of one its components.

To fix ideas, we provide an example.

Example 2. Assume that C = {C1, C2, C3, C4, C5} and

a(0) = (0.1, 0.5, 0.2, 0.1, 0.1), w(0) =



0 0 0.1 0.1 0

0 0 0.1 0 0

0.1 0.1 0 0.1 0.05

0.1 0 0.1 0 0.05

0 0 0.05 0.05 0


Suppose that the reallocation rules R for relative relevance and interconnection

levels are of proportional type, as in Example 1. Such reallocations are implemented

if the system is not failed.

Furthermore, assume that the failure of a component has a twofold nature: by

one side, it can be due by an idiosyncratic shock; by the other side, it can be driven

by the failure of the other components. Specifically, we hypothesize that if a given

component fails, then the components connected only to it fail as well, independently

from their level of interconnections. Differently, the idiosyncratic shocks are assumed

to be captured by a Poisson Process with parameter λ – giving the timing of the failures

– jointly with a uniform process over C, independent on the Poisson Process – which

identifies the failed component.

Moreover, suppose that the system fails at the first time in which components with

aggregated relative relevance greater than 0.4 fail.

Now, suppose that the first failure is observed at time t = 8, when C2 fails. Then,

automatically, C3 fails as well, since it is connected only to C2. The aggregate relative

relevance before the failures is α2(8−)+α3(8−) = 0.5+0.2 > 0.4, and the system fails.
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A rational expectations approach is used for the computation of the expectation of

the random time in which the system fails. Specifically, we will compute the expected

value of T conditioned to the specific values of the weights a(t) and w(t) measured

at time t.

We denote by RE the rational expectations of the time T given all the possible

observations of the system. Specifically, for t ≥ 0, we set

REt =
{
E
[
T | {ā(t), w̄(t)}

]
: ā(t) ∈ [0, 1]n, w̄(t) ∈ [0, 1]n×n

}
. (1.8)

Formula (1.8) provides the expected value of the lifetime of S(t) in correspondence

of any observation of the system.

1.5 Preliminaries for the numerical validation of

the theoretical setting

In this section we provide the specifications and the main definitions for implementing

extensive simulations, with the aim of reproducing synthetically a large number of

systems. In doing so, we offer the basis of a concrete validation of the theoretical

model, which will be carried out in the next chapters.

The synthetic systems form a set, called hereafter “information set” (and the

systems will be denoted by SI ’s). The systems in the information set will be observed

till their failure, and the failure times will be properly store.

As we will see, we will cluster the systems on the basis of the observations {ā, w̄},

and any observation will be associated to the residual failure time of the corresponding

system. Implicitly, time plays a key role in this context. Indeed, systems evolve and

a generic {ā, w̄} is linked to the specific time t in which it is observed.

According to formula (1.8), rational expectations at time t are therefore computed

as the expected values – statistical means, in this case – of the residual lifetimes of

the information set systems at time t conditioned by all the possible observations

available at time t− 1.
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We set E
[
T | {ā, w̄}

]
= +∞ when the observation {ā, w̄} does not appear in the

set of the simulated observations.

The efficiency of the rational expectations is tested by means of a new set of

systems – the “in vivo” systems (and such systems will be denoted by SV ’s) – whose

observations and residual failure times are compared with the ones obtained in the

information set.

1.6 Specifications of the reliability system

We here describe the reliability system framework on the ground of the experiments

we deal with. Some requirements go in the precise direction of reducing the compu-

tational complexity of the problem.

First of all, we assume that wij(t) = 1
n(t)(n(t)−1)

when i 6= j and wij(t) = 0 for

i = j, for each i, j, t ≥ 0 and where n(t) = 1, . . . , n is the number of components not

failed at time t. This condition means that all the active components of the system

are mutually connected, and connections are equivalent in terms of their entities. As

already stated in the theoretical modeling, loops are not allowed.

The assumption on w allows to think at the observations of the system by con-

sidering only a. Thus, we will refer hereafter only to the weights α’s in order to deal

with the rational expectations. In this respect, we rewrite formula (1.8) for time t as

follows

REt =
{
E
[
T | ā(t)

]
: ā(t) ∈ [0, 1]n

}
. (1.9)

The procedure for the failure of the components works in a stepwise form. We

present it at a generic time t = 1, 2, . . . . At the beginning, a random extraction of

one active component is implemented, for identifying the candidate failed component.

Say that Cj is the extracted component. Then, we sample a random number r. If

αj(t) > r, then the component Cj fails at time t, and αj(s) = 0, for each s > t.

Conversely, when αj(t) ≤ r, then the component Cj does not fail. Then, the procedure

is reiterated at time t+ 1 and so on, till the failure of the system.
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The reallocation rule is of proportional type, as in Example 1, so that the rele-

vance of the failed component is reallocated over the remaining active components

proportionally to their α’s before the failure. Such a reallocation rule, together with

the condition for the failure described above, give a clear intuition on the presence of

stochastic dependence among the lifetimes of the system components.

The system is assumed to fail the first time in which the number of failed compo-

nents becomes higher than the one of the active components.
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Chapter 2

The role of statistical measure in

predicting the failure with

aggregated time

In the context of reliability systems, our goal is to demonstrate an improvement in

prediction performance using rational expectations by conditioning the residual failure

times of simulated stochastic systems to the memory of past events. The key to our

approach is the information stored over time through rational expectations with a

particul focus on the effect of different levels of statistical indicators on prediction

results.

We use two sets of systems for our analysis: one (information set) to record the

information and calculate rational expectations, and another (in-vivo) to compare the

failure times of real systems with those predicted. The prediction errors are obtained

by comparing the information set systems and the in-vivo systems.

In this first context, our attention is focused on all the values of the statistical

indicators that represent the synthetic measures of our systems.

Time remains implicit and, in the final representations of the errors committed

in the prediction of failure times, we will directly relate the errors to the values of

the statistical indicators. In order to deeply investigate our predictions we take into

account three different quantiles of the error distribution: 10%, 50% and 90% of the
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distribution. We thus have a comparison between small, medium and large errors.

It will be interesting to understand how results change depending on the the

characteristic considered for the analysis and on the initial distribution of the weights

of the configurations.

2.1 Proposal and presentation of the simulation

procedure

2.1.1 Overview of the simulation procedure

To pursue our target, the observations of the systems will be opportunely synthesized

by means of statistical indicators, pointing to central tendency, variability, shape and

concentration information content of the distribution of the weights of the compo-

nents.

Specifically we will deal with: (i) the variance of the α’s, to evaluate the variability

of the observations and therefore the dispersion of the weights; (ii) the kurtosis of the

α’s, to study if the weights are heavy-tailed or light-tailed with respect to a normal

distribution; (iii) the skewness of the α’s, to provide a measure if the symmetry of the

observations; (iv) the Gini coefficient of the weights α’s, to evaluate the inequality

within the observations; (v) the Shannon entropy of the α’s, to estimate the degree

of complexity of information and the mutability of the observations.

The simulation procedure will be divided for convenience into five parts.

1. We build the information set. We denote by K simulations the number of sim-

ulated systems that will be recorded in the information set, so that the generic

information set system will be denoted by SIk, with k = 1, . . . , K simulations.

Each system is created from the beginning – where all the components are

active – to its failure. Components fail according to the procedure described in

Subsection 1.6. For each system SIk we collect the information by one of the five

statistical indicators (i)-(v) presented above related to the specific observation
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ā(t) = (α1(t), . . . , αn(t)) – where the reference to t indicates that the observation

is considered at time t. Here, we introduce the failure time FT k of the related

system – where the index k points to the k-th system SIk of the information set ;

the residual failure time Tk(t) of each observation ā(t) and depends on k and

t; the number of active components nk(t). We will follow the systems from the

initial time until their failure with the time t = 0, 1, 2, . . . ,FT k.

By introducing opportune notation, we will collect for each k-th system:

• All the times until the failure FT k with t = 0, 1, 2, . . . ,FT k.

• For each time t:

– We record a set of α’s of the observations ā that depends on k, t and

nk(t) (all the weights of the SI ’s);

– Each set of α’s is associated with one value ?̄I of the statistical in-

dicator represented by ?, with ? =variance, kurtosis, skewness, Gini

coefficient and Shannon entropy. Any observed value ?̄I depends on k

and t, while nk(t) intervenes directly in the computation of the con-

sidered statistical indicator at time t and for system k. The values are

rounded to 3 decimal places.

• All the failure times FT ’s of systems SI ’s in a vector that depends on the

k-th system SIk and indicated with FT k.

• From the FT ’s we derive all the residual failure times T ’s in a matrix TI ,

that depends on the k-th system SIk and the observed value ?̄I (Tk(?̄I)).

The residual failure time measures the time until the failure of each ?̄I .

Specifically:

Tk(?̄I) = FT k − t, ∀t = 0, . . . ,FT , (2.1)

2. Now, we are in the position of constructing the rational expectations in (1.9)

on the basis of the SI ’s.

At this aim, we build an application that links each observed value ?̄I of the

statistical indicator represented by ?, with ? =variance, kurtosis, skewness, Gini
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coefficient and Shannon entropy, with a set of residual failure times contained

in TI . We do it for all the information set systems SI ’s.

We compute the arithmetic mean of eah set of residual failure times in corre-

spondence of the ?̄I ’s, namely E[TRE(?̄I)]. In so doing, we obtain the rational

expectations of formula (1.9) associated to each ?̄I .

3. The in-vivo systems are built according to the same procedure of the informa-

tion set systems. We denote by X simulations the number of simulated in-vivo

systems, and the generic in-vivo system is SVx , with x = 1, . . . , X simulations.

In this case, by introducing opportune notation, we will record for each x-th

system:

• All the times until the failure FT x with t = 0, 1, 2, . . . ,FT x, where FT x
is the failure time of the related system – the index x points to the x-th

system SVk of the in-vivo.

• For each time t:

– We record a set of α’s of the observations ā that depends on x, t and

nx(t) (all the weights of the SV ’s), where nx(t) is the number of active

components.

– Each set of α’s is associated with one value ?̄V of the statistical in-

dicator represented by ?, with ? =variance, kurtosis, skewness, Gini

coefficient and Shannon entropy. Any observed value ?̄V depends on

x and t. The values are rounded to 3 decimal places.

• All the failure times FT ’s of systems SV ’s, for each x, in a vector that

depends on the x-th system SVx (indicated with FT x).

• From the FT ’s, all the residual failure times T ’s in a matrix TV , that

depends on the x-th system SVx and the observed value ?̄V (Tx(?̄V )). Every

value ?̄V is related to a residual failure time Tx(?̄V ).

Here, we consider all the values ?̄V ’s. These values are different a priori from

the ?̄C ’s found in the first part of the simulation procedure.
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4. Now we compare the observed values of the in-vivo systems ?̄V ’s with the ob-

served values of the information set systems ?̄I ’s when in-vivo and information

set systems show the “same observation”.

We therefore need to replace every ?̄V that has never been observed in the

information set with the value ?̄I which represents the “same observation”.

The “same observation” in the information set is the observed value ?̄I which

is closest to the value ?̄V we are replacing.

Specifically, we compute the minimum distance between each ?̄V and the values

?̄I ’s.

Once we find the closest observation of ?̄V among the ?̄I ’s, we build a function

that assigns to each ?̄I – considered the ”same observation” – the residual failure

times contained in TV , namely Tx(?̄I), linked to the ?̄V ’s that have been replaced.

Then, we consider, for each ?̄I , the error between the rational expectations and

all the residual failure times of the in vivo systems assigned to the specific ?̄I .

Specifically,

E?̄RE
(?̄I) = |E[TRE(?̄I)]− Tx(?̄I)|, (2.2)

where Tx(?̄I) is the residual failure time of the in vivo systems assigned to the

?̄I ’s to replace rational expectations.

We create, for each ?̄I , a distribution of errors between the expected residual

times calculated with the rational expectations and the residual failure times of

the in-vivo systems.

5. For comparison purposes, we use the distribution of the errors in rational ex-

pectations prediction for the computation of the quantiles q = 10%, q = 50%

and q = 90% of the error distribution.

In this way, we quantify the impact of the error prediction comparing E?̄RE 10
,

E?̄RE 50
and E?̄RE 90

with the benchmark EB for the different analysis carried
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out in this work (variance, kurtosis, skewness, Gini coefficient and Shannon

entropy).

The fifth part consists of the following steps:

1. Create the distribution of the quantiles q = 10%, q = 50% and q = 90% of the

errors distribution in rational expectations prediction (E?̄RE
) for the ?̄I ’s. We

need to construct statistics over predictions in order to assess their quality. We

decide to focus our attention on fixed quantiles at level q of the distributions

of the errors: q = 10%, q = 50% and q = 90%, i.e. the 10th, 50th and the 90th

quantile. Let us consider errors in ascending order, so that the 10th quantile

represents the smallest errors in our forecast of residual failure times. Instead,

the 90th quantile identifies the biggest errors made in predicting the residual

failure times of stochastic systems. The 50th quantile gives us the median of

errors, so the central errors of the distribution. ERE 10, ERE 50 and ERE 90 are,

respectively, the 10th (Error 1), 50th (Error 2) and the 90th (Error 3) of the

distribution of the errors.

These quantiles take into account all the information recorded in the informa-

tion set over time.

2. To obtain greater comprehensibility in the interpretation of the results, proceed

with the clustering of the ?̄I ’s (in ascending order) in equal class intervals. The

class width is 50, except for the last class that includes the values excluded from

previous classes.

Compute for each class the average of the errors distribution created in the

previous steps (errors distribution, average of the errors distribution and per-

centiles).

3. Create the benchmark errors given by the errors made without the use of ratio-

nal expectations: EB.

4. To understand how rational expectations allow us to obtain the optimal pre-

diction of residual failure times using the information stored in the past, it is
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necessary to examine the comparison between E?̄RE 10
, E?̄RE 50

, E?̄RE 90
and EB

of the several indicators considered in the analysis (variance, kurtosis, skewness,

Gini coefficient and Shannon entropy).

2.1.2 Parameter set

The parameters are set as follow:

Table 2.1: Parameter set

Parameter Value

number of components 10

K simulations 10.000

X simulations 10.000

The α’s and r are generated from different types of distributions which provide five

possible cases for each analysed characteristic of the configurations (see Subsection

2.1.1).

Consider:

• Uniform distribution in (0,1) type;

• Beta distribution type, which has support in (0,1), composed of two positive

shape parameters, denoted by α and β that represent the exponents of the

random variable and control the shape of the distribution. Depending on the

value assigned to the two parameters, we will get several distributions from

which we can randomly extract our weights. We consider four combinations of

shape parameters (see Fig. 2.1):

– α = 1 and β = 3 that is an asymmetric distribution more concentrated

over the values close to zero;

– α = β = 0.5 that is a symmetric distribution bimodal over the extremes 0

and 1;
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– α = β = 2 that corresponds to a platykurtic symmetric distribution cen-

tered in 0.5;

– α = 1 and β = 0.5 that is an asymmetric distribution on the right with a

high concentration of values close to 1.

– α = β = 1 is a specific distribution that corresponds to the uniform

distribution defined in (0,1).

Figure 2.1: Beta distribution with four different combinations of shape parameters

and uniform distribution.

We therefore carried out five different analysis according to the five characteristics

of the α’s distribution: variance, kurtosis, skewness, Gini coefficient and Shannon

entropy.

The following paragraph will show the graphs related to the study of the several

indicators in combination with the initial weights distributions.
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2.2 Results and discussion

In this section we present the results of the study and the related discussion. The

paragraph will be divided into two blocks: in the first part of the discussion we will

investigate the relationship between the values of the statistical indicators and levels

of error; in the second part we will go into the composition of errors by studying their

frequency.

We now focus our attention on the various statistical measures under analysis.

We start from the variance. Fig. 2.2 shows the prediction errors (in absolute

value) for the analysis of the variance considering all the different five types of initial

weight distribution. Magenta fixed line is the EB. Red line, blue line and light blue

line, blue line and red line are respectively E?̄RE 10
(Errors 1), E?̄RE 50

(Errors 2) and

E?̄RE 90
(Errors 3).

Variance is a good estimator of the dispersion and the volatility of the weights of

each system around the mean.

As the subgraphs of Fig. 2.2 show, we can note a decreasing trend of errors

towards zero in all the different cases taken into consideration. High volatility of the

system components is linked to the reduction of errors made in the prediction and it

is due to the decrease of the uncertainty about the systems failure time. Data are

very spread out from the mean and we are able to capture a wider range of values.

Variance is very performing and the errors stabilize around zero for all initial

weights distributions except for the 50th and the 90th percentile of the Beta distribu-

tion with α = 1 and β = 3. In this case from a certain threshold of variance onwards

we observe a small increase in errors which emphasizes the fact that excessive fluctu-

ations affect the predictability of the variance for medium or very large errors. When

we detect a high variance we pay close attention to data without generalizing the

values never seen before. So, for the negative exponential distribution, too high val-

ues and an excessive turbulence within the observations, however, are overfitting and

that can highlight distortions that lead the model to become less good at predicting

new data.
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Figure 2.2: Prediction errors (in absolute value) for the E?̄RE 10
, the E?̄RE 50

and the

E?̄RE 90
of the variance considering all the initial weight distributions. [Top] (Left)

Uniform distribution; (Right) Beta distribution with α = 1 and β = 3. [Center]

(Left) Beta distribution with α = β = 0.5; (Right) Beta distribution with α = β = 2.

[Bottom] (Left) Beta distribution with α = 1 and β = 0.5.

38



With low variance values, the model is underfitting the residual failure times and

it is unable to identify the real moment of system failure.

From Fig. 2.2 in the initial parts of the various curves we observe a very scattered

trend characterized by many spikes with errors that stabilize at a certain level of

variance. From these levels of variance, the prediction of the systems failure times is

almost perfect. In these windows of the paths the components are very dependent on

each other; this allows us to predict how long it will take for the system to fail.

Moreover, we can note a different trend of the ERE 90 compared to the ERE 10.

The line of the biggest errors decreases faster toward zero, while in the line of the

smallest errors there is a slight flat behavior. This flat behavior depends on the fact

that when we have a very low variance (close to zero), in a big error the gain in the

prediction is more evident than what we will see in a small error.

The different subgraphs also display the change in the initial distribution of com-

ponents.

According to the existing literature the ideal shape of the weights distribution

that minimizes prediction errors is the negative exponential one (see Li and Zuo

[41], Sarhan [42], Asadi and Bayramoglu [43] and Eryilmaz [44]). In our study it

corresponds to the Beta distribution with α = 1 and β = 3.

In fact, the best predictive efficacy belongs to the asymmetric case with α = 1 and

β = 3 and to the symmetric one with α = β = 0.5. In the first case the predictive

gain is very high, although there is a worsening in the final trend which corresponds

to very high levels of variance.

However, in other cases, we always obtain excellent results through the use of

rational expectations with increasing levels of variance. In fact, we appreciate a

constant decrease to near zero. The simmetric Beta with α = β = 2 together with

the asymmetric Beta with α = 1 and β = 0.5 are the cases that perform worse

as regards to the errors in absolute value, but in correspondence with appropriate

variance values they reach errors close to zero with trends flattening out due to ever

increasing values of the indicator.

We can therefore deduce from this analysis the levels of variance that provide an
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optimal balance without overfitting or underfitting the residual failure times. This

specific application suggests that the study of the variance can be a powerful tool

to predict the residual failure times of a stochastic system in case of high values of

variance, which are crucial to understanding the behavior of prediction models.

Jiang et al. [80] dealt with software fault prediction models by establishing that

the lower the variance, the more reliable the system is. Also Twomey and Smith [81],

who dealt with error estimator methods for evaluating prediction models, confirmed

with their studies that good performance is linked to low variance.

On the contrary, however, in our study, high variance values are more informa-

tive and allow a better prediction, performing better than lower values and fewer

fluctuations.

We now analyse the kurtosis. Kurtosis is a measure of the ”tailedness” of the

distribution through the description of the tails and the identification of the outliers.

In Fig. 2.3 we see the prediction errors concerning kurtosis. Error 1 E?̄RE 10
, Errors

2 represents E?̄RE 50
and Error 3 represents E?̄RE 90

.

The situation is scattered.

As in the study of variance, the two distributions that perform better and pro-

vide lower and decreasing errors are Beta distribution with α = β = 0.5 and Beta

distribution with α = 1 and β = 3. At a glance, the latter analysis is the best

performing.

In the first three sub-charts we can observe a different error trend between ERE 90

line and ERE 10 line. The trend of the smallest errors is almost linear with constant

errors for all the kurtosis values recorded in the simulations. Instead, the biggest

errors follow a path that reaches maximum errors in correspondence of low kurtosis

values and therefore in presence of a platykurtic distribution of the weights. Kurtosis

loses predictive power when distribution has a lower likelihood of extreme weights as

compared to a normal distribution. When the weights are distributed around their

average and we observe thinner tails, the use of rational expectations proves to be

ineffective.

Our model, instead, becomes successful when there is a positive excess of kurtosis
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Figure 2.3: Here we present the study of kurtosis. See for the details Fig 2.2.
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and the data are fat-tailed distributed. If we take into account even the most extreme

values, we obtain an increasingly inclusive range of cataloged wights. The application

of rational expectations attests to be an excellent method of forecasting the residual

failure times considering even the values with greater distance from the mean.

The situation is completely reversed if we start from a symmetric weight distri-

bution centered in 0.5 (Beta distribution with α = β = 2). In correspondence with

distributions with non-fat tails, kurtosis does not work well. This case represents an

exception showing anomalous behavior. It provides very high error levels. It does not

work because the initial values assigned to the weights extracted from this distribu-

tion are concentrated in 0.5 and it underestimates the extreme values close to 0 and

1, which are considered in the other distributions. The minimum errors committed

in predicting failure times through rational expectations are those at kurtosis levels

around 8. It can only be used if we have distributions with extreme values.

If, on the other hand, the weights are distributed with an asymmetry to the right

(Beta distribution with α = 1 and β = 0.5), kurtosis is a good predictor of thin tail

distributions with continuously rising curves as the values increase.

Switch now to the skewness.

In Fig. 2.4 we can see the different trends of skewness errors.

Through the skewness of the components weights, we investigate the nature and

dynamics of the shape of the distribution. Skewness measures how close the data are

to the symmetry or the lack of symmetry in data distribution.

The skewness has been used in the prediction of future market returns with ex-

cellent results (see Jondeau et al. [82]). Also in our study it is a good predictor

depending on the values assumed by the distribution.

Compared to the previous indicators, skewness fluctuates more in the central part

of the curves and exhibits large spikes, especially at values close to zero when the

data are fairly symmetric. The highest errors are achieved in conditions of symmetry,

negative asymmetry or slight positive asymmetry of the distribution. Regardless of

the initial distribution considered, a forecast bias is evident around a skewness range

that goes from -1.5 to +2.5.
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Figure 2.4: Prediction errors for the skewness. The five sub-graphs contain the five

initial weight distributions. Refer to the caption of Fig. 2.2.
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Overall, the trend of average errors and percentiles is very scattered and we do

not notice big differences between the various curves. The best accuracy is obtained

by applying our predictive model in cases of Beta distribution with α = β = 0.5 and

Beta distribution with α = 1 and β = 3. The least predictive gain and very high

maximum error levels are reached in the case of Beta distribution with α = β = 2 (as

in the study of the two previous indicators).

While generally highly skewed data affect the accuracy of the predictive model

(see Larasati et al. [83]), the results shown in Fig. 2.4 provide evidence that extremely

positively skewed weights pick up the best information with good predictive gain.

As part of the use of statistical moments in forecasting models, Reijns and Gemund

[84], Amari et al. [85], Ramberg et al. [86] and Kinateder and Papavassiliou [87],

state that the lowest moments of the distributions (second moment in our case, i.e.

the variance) are more efficient than the highest moments which are attested to be

less stable and reliable (third, skewness and fourth, kurtosis). With our analysis we

confirm what these researchers concluded.

In fact, the variance is the one that comes closest to zero errors, with some features

of uncertainty in the case of very low variability (components very similar to each

other). The situation worsens for skewness and kurtosis. The third statistical moment

is characterized by less regularity and mixed trends, but with the achievement of very

low error values. The fourth statistical moment has a more flattered shape but it is

less efficient overall.

Fig. 2.5 displays the prediction errors (in absolute value) for the Gini coefficient

considering all the different five types of initial weights distribution.

We can consider the Gini coefficient as a measure of accuracy to assess the per-

formance of our prediction model of residual failure times. In fact, the increase in

the coefficient corresponds to an increase in inequality among the values taken into

consideration in the analysis. Values close to 1 indicate that the range of possible

weights cataloged and on which the study is based is very wide.

Not many researchers have used the Gini coefficient as a prediction tool. Ooghe

and Spaenjers [88] have argued that it is very useful to use the Gini when dealing
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Figure 2.5: Case of the Gini coefficient. Magenta line of errors is the EB. Red

line, blue line and light blue line are E?̄RE 10
(Errors 1), E?̄RE 50

(Errors 2) and E?̄RE 90

(Errors 3), respectively (see 2.2).
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with failure prediction models.

The behavior of errors is similar to that of kurtosis in some scenarios, but there

are differences to note. The comments previously left for kurtosis about the different

trends of the three curves can however also be extended for the study of this indicator.

First of all, the 10th percentile has a linear trend but for values of the Gini coef-

ficient near zero (the initial trend) we observe a peak that decreases rapidly settling

at error levels close to zero.

Secondly, the symmetric Beta distribution with α = β = 2 and the asymmetric

Beta with α = 1 and β = 0.5 behave in the opposite way to that of kurtosis. In fact,

although the level of initial errors is very high, we can visualize a predictive gain that

grows exponentially as the values of Gini coefficient increase.

We can appreciate visually through error analysis the improvement in the accuracy

of the predictions for increasing values of the coefficient up to the attainment of

prediction errors tending to zero. Near the maximum polarization of the components

we reach excellent levels of prediction.

For very small Gini values, we can deduce that we are in the initial time of the

simulations, when no node or few nodes have failed. In fact, the values of the weights

will be more equidistributed and the equidistribution will decrease as the compo-

nents fail and the weights of the failed nodes are proportionally redistributed among

the components still active. Low values of the coefficient correspond to less cata-

loged information and greater uncertainty associated with forecasts through rational

expectations.

We end this first part of analysis by focusing on the Shannon entropy illustrated

in Fig. 2.6.

There are no contributions in literature on the use of entropy as a prediction tool.

Thus our analysis fills this gap.

The results obtained show a very irregular error trend characterized by many

spikes that alternate touching a very wide range of values. Any improvement is very

random and the use of rational expectations is not effective as a prediction tool.

For each type of initial distribution – by comparing the values with the previous
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Figure 2.6: Shannon entropy analysis. As in the previous charts: [Top] (Left)

Uniform distribution; (Right) Beta distribution with α = 1 and β = 3. [Center]

(Left) Beta distribution with α = β = 0.5; (Right) Beta distribution with α = β = 2.

[Bottom] (Left) Beta distribution with α = 1 and β = 0.5.
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analysis – the errors are the worst ever obtained and the possibility of distortions

occurring by applying our model on entropy is evident.

In this forecasting model the Shannon entropy is the least informative and least

useful statistical indicator. There is no regularity in the trends and we fail to capture

information on which entropy values are best suited for better predicting failure times.

Comments relating to previous charts need to be corroborated by further analysis.

We proceed with a second part in which we can add investigations performed by

the illustration of a series of histograms containing the absolute frequencies of the

prediction errors.

The aim is to understand the extent of the errors committed during our study

according to the statistical indicator and the initial distribution of the weights entered

as input.

In each graph there are two sub-graphs, one in which the error values are divided

into classes of width 10, with the residual values included in the last class whose size

is variable; and another where we eliminate the zero value (no errors made in the

prediction) from the figure, so that we can provide a representation of the frequencies

for each error value. The analysis of the variance is reported in Fig. 2.7.

In Figs. 2.8 and 2.9 we show the error frequencies for kurtosis and skewness,

respectively.

We can observe the analysis of the distribution concentration in Fig. 2.10 where

we find the histograms for the five different initial distributions of the Gini coefficient.

Ultimately, we find Shannon entropy (see Fig. 2.11).

The comments for this second analysis can be quite generalized for all statistical

indicators. In fact, the trend of the error frequencies is very similar in the vari-

ous cases, with variance, kurtosis and Gini coefficient which are the best prediction

tools, with more linear and regular trends, while skewness and Shannon entropy show

deviations that invalidate the study.

And this confirms the first part of the analysis.

In general, observing the frequency of the prediction errors, these reach a very high

level for errors located in the lower classes, and then decrease in a strictly monotonous
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Figure 2.7: Histograms of the frequency of the variance prediction errors. In the

first sub-graph we show the frequency for error classes of width 10 (each bar contains

10 error values in ascending order, except the last class where the final error values

are inserted). In the second sub-graph, instead, we have the error frequency of each

single value excluding zero from the representation. These are the errors related to

the analysis of variance considering all the initial weight distributions. [Top] (Left)

Uniform distribution; (Right) Beta distribution with α = 1 and β = 3. [Center]

(Left) Beta distribution with α = β = 0.5; (Right) Beta distribution with α = β = 2.

[Bottom] (Left) Beta distribution with α = 1 and β = 0.5.
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Figure 2.8: Histograms related to the frequency of the kurtosis prediction errors.

See caption of Fig. 2.7 for a complete description of the sub-graphs.

50



Figure 2.9: Here the analysis of the frequency error of skewness. More details in

Fig. 2.7.
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Figure 2.10: Frequency errors related to the study of Gini coefficient considering

five initial weight distributions. [Top] (Left) Uniform distribution; (Right) Beta dis-

tribution with α = 1 and β = 3. [Center] (Left) Beta distribution with α = β = 0.5;

(Right) Beta distribution with α = β = 2. [Bottom] (Left) Beta distribution with

α = 1 and β = 0.5.
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Figure 2.11: Histograms of the frequency of the prediction errors. Refer to the

caption of Fig. 2.7 for a comprehensive explanation of Shannon entropy graphs.
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manner as the error values increase (higher classes).

The predictive ability is not trivial because the error values with higher frequency

are found when the error is close to zero and the trend of the curve falls very quickly.

It is evident that the errors corresponding to 0 and 1 (zero or almost zero errors)

are the most frequent. This confirms the effectiveness of our analysis which provides

a very consistent reliability rate with many correct predictions. The frequencies

decrease dramatically in correspondence with high prediction errors.

From these graphs we can get an overview of the order of magnitude of these

curves. In fact, there is an inversely proportional relationship between the frequency

of errors (ordinate axis) and the error classes (abscissa axis).

The most dense and excessive errors are those concerning the symmetric Beta

distributions with α = β = 2 and the asymmetric one with α = 1 and β = 0.5. In

these cases the frequency of the lowest errors is much higher than other scenarios.

Very often our predictions are correct. The high number of error classes, however,

give us the perception of the high probability of making very large errors when the

predictions are wrong.

Best predictive gain ever for Beta distribution with α = 1 and β = 3. This

confirms that the exponential negative distribution is the one that is most suitable in

a context of forecasting failure times. And also with this aspect of the analysis we are

consistent with the study of the first part which deals with each individual indicator

in relation to errors in absolute value.
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Chapter 3

The role of time in predicting the

failure with conditioning on

statistical measure percentiles

Also in this second model the aim is to verify the reliability of systems. We exploit

rational expectations to carry out a study for the failure time prediction of stochastic

systems that is directly dependent on time.

We consider two different sets of systems, information set systems and in-vivo

systems, in order to exploit the information available to understand which real systems

are very close to the cataloged one.

Here, we focus both on time and on the levels of the statistical tools that synthesize

our systems.

The reliability of systems involves the passing of time and the increase in infor-

mation provided up to the time we carry out the analysis.

In order to obtain the optimal prediction of the failure time of a system, we

implement a comparative study between statistical measures and how they minimize

the errors made in the predictions as a function of time.

We are witnessing an increase in the computational complexity of the procedure

by turning the analysis as a function of time. This direct time dependence affects

the forecasts of failure times of stochastic systems. We take into account the levels of
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statistical indicators through three studies each conditioned to different percentiles

of our data set.

The question we want to answer is: is the information we have about specific

in-vivo systems useful for predicting when the system will fail?

And again: which error prediction conditioned on specific quantiles of the distri-

bution of statistical indicators are closest to zero?

To provide an answer, we compare the errors made in the predictions through

rational expectations, conditioning them to three percentiles of the distribution of the

statistical indicator considered: 10th percentile (low value), 50th percentile (average

value) and 90th percentile (high value).

The 10th percentile selects those realizations so that their largest cluster is smaller

than 90% of the distribution values which have a bigger largest cluster. On the

contrary, the 90th percentile represents those values which have a big cluster to the

point that only 10% of the realizations have a larger cluster. The 50th percentile is

instead placed at the center of this distribution.

These curves are compared with the benchmark (errors between the failure times

of the information set and the failure times of the in-vivo systems).

The aim is to investigate which is the best combination (indicator-initial weights

distribution) to achieve the optimal prediction. In this model we are therefore able

to carry out an overall comparative analysis.

3.1 Highlights of the simulation algorithm steps

Also in this second application we want to examine the predictive power of the five

summary measures used in the previous context, and specifically: (i) the variance

of the α’s; (ii) the kurtosis of the α’s; (iii) the skewness of the α’s; (iv) the Gini

coefficient of the weights α’s; (v) the Shannon entropy of the α’s.

The simulation procedure will consist of seven phases:

1. We build the information set of systems. We denote by K simulations the

number of simulated systems that will be recorded in the information set,
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so that the generic information set system will be denoted by SIk, with k =

1, . . . , K simulations.

Each system is created from the beginning – where all the components are

active – to its failure. Components fail according to the procedure described in

Subsection 1.6. For each system SIk we collect the information by one of the five

statistical indicators (i)-(v) presented above related to the specific observation

ā(t) = (α1(t), . . . , αn(t)) – where the reference to t indicates that the observation

is considered at time t. Here, we introduce the failure time FT k of the related

system – where the index k points to the k-th system SIk of the information set ;

the number of active components nk(t). We will follow the systems from the

initial time until their failure with the time t = 0, 1, 2, . . . ,FT k.

Keeping the notation introduced in the previous application, we will collect for

each k-th system:

• All the times until the failure FT k with t = 0, 1, 2, . . . ,FT k.

• For each time t:

– We record a set of α’s of the observations ā that depends on k, t and

nk(t) (all the weights of the SI ’s);

– Each set of α’s is associated with one value ?̄I of the statistical in-

dicator represented by ?, with ? =variance, kurtosis, skewness, Gini

coefficient and Shannon entropy. Any observed value ?̄I depends on k

and t, while nk(t) intervenes directly in the computation of the con-

sidered statistical indicator at time t and for system k. We collect all

values ?̄I ’s in a matrix (I?).

• All the failure times FT ’s of systems SI ’s in a vector FT I that depends

on the k-th system SIk and indicated with FT k.

2. At this point we follow the same procedure and we simulate a new series of

systems which we will call in-vivo systems (namely SV ’s). These new systems

will be necessary for the calculation of rational expectations. We denote by
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X simulations the number of simulated in-vivo systems, and the generic in-

vivo system is SVx , with x = 1, . . . , X simulations.

In this case, by using opportune notation, introduced in the previous context,

we will record for each x-th system:

• All the times until the failure FT x with t = 0, 1, 2, . . . ,FT x, where FT x
is the failure time of the related system – the index x points to the x-th

system SVk of the in-vivo.

• For each time t:

– We record a set of α’s of the observations ā that depends on x, t and

nx(t) (all the weights of the SV ’s), where nx(t) is the number of active

components.

– Each set of α’s is associated with one value ?̄V of the statistical in-

dicator represented by ?, with ? =variance, kurtosis, skewness, Gini

coefficient and Shannon entropy. Any observed value ?̄V depends on

x and t. We collect all values ?̄V ’s in a matrix (V?).

• All the failure times FT ’s of systems SV ’s, for each x, in a vector FT V

that depends on the x-th system SVx (indicated with FT x).

Here, we consider all the values ?̄V ’s. These values are different a priori from

the ?̄I ’s found in the first part of the simulation procedure.

3. Now, we compute the rational expectations in (1.9) on the basis of the SI ’s.

• Check the tolerance threshold condition (Condition).

We use the SI ’s for the prediction of failure times of the SV ’s, applying

a condition considering a tolerance threshold for rational expectations.

Specifically, we look at the generic statistical indicator level ∗̄I ∈ I? at

time t̄ such that the following Condition holds

|I?(t̄)− ∗̄V (t̄)| < T (3.1)
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where T is the tolerance level entered in the initial setup.

We check the Condition for each observed value ∗̄V with respect to all the

∗̄I ’s ∈ I? at the specific time t̄.

• We store all the FT I ’s of the systems associated to I?, i.e. satisfying

Condition depending on time t̄, disregarding the other systems.

• We compute the arithmetic mean of each set of FT I ’s in correspondence

of any time t̄, namely E[FT RE(?̄V )]. In so doing, we obtain the rational

expectations of formula (1.9) associated to each ?̄V .

4. In order to assess the quality of such predictions, we focus our attention on fixed

percentiles p? of the distribution of I? maintaining the dependence on time with

t = 0, 1, 2, . . . ,FT x.

Specifically, the percentiles are: p? = 10%, p? = 50% and p? = 90%.

For the prediction, we identify all the SV ’s that, at each time t̄, belong to the

observed p?.

To do this, we look for all the ?̄V (t̄) which are considered the “same observation”

with respect to the specific p? (time dependent).

The “same observation” is each observed value ?̄V (t̄) which is closest to the

value p?(t̄) considering a tolerance distance which is linked to the statistical

measure analysed. In particular, 80% of the standard deviation of the V?.

Specifically, we compute the distance between each ∗̄V (t̄) and the fixed p?(t̄):

|∗̄V (t̄)− p?(t̄)| < 0.8 ∗ std(V?) (3.2)

Once we find the closest observations of p?(t̄) among the ?̄V ’s, we assign them

in a matrix namely ?̄V |p? that depends on x and t which contains the set of

SV ’s belonging to the reference percentile p?.

5. We compute the average prediction error conditioned on the p? between the

rational expectations E[FT RE(?̄V )] and the FT V ’s connected to the ?̄V |p?.
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Specifically,

ERE|p? = E[|E[FT RE(?̄V )]−FT x|?̄V |p?|] (3.3)

Each ERE|p? depends on time t.

Finally, we obtain three different distributions of errors conditioned to the per-

centiles:

• ERE|10%

• ERE|50%

• ERE|90%

We create, for each ?̄I , a distribution of errors between the expected failure

times calculated with the rational expectations and the failure times of the

in-vivo systems.

6. To have the possibility of quantifying the impact of the rational expectation

predictions, we now assess a naive benchmark error given by the errors made

without the use of rational expectations, as follows

EB = E[|E[FT I ]−FT x|] (3.4)

For comparison purposes, we normalize all the times t with t = 0, 1, 2, . . . ,FT x.

In this way, we quantify the impact of the error prediction comparing EB,

ERE|10%, ERE|50% and ERE|90% for the several indicators considered in the

analysis (variance, kurtosis, skewness, Gini coefficient and Shannon entropy).

7. To obtain greater comprehensibility in the interpretation of the results, proceed

with the graphic representation to check which conditioning on the three per-

centiles is the optimal prediction of failure times using the information stored

in the past.
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It is necessary to examine the comparison between ERE|10%, ERE|50%, ERE|90%

and EB.

3.2 Setting of the simulation algorithm

Given the increasing complexity of the simulation algorithm compared to the previous

model, the number of simulations is reduced for both the information set and in-vivo

systems.

The parameters are those indicated in the following table:

Table 3.1: Parameter set

Parameter Value

number of components 10

K simulations 5.000

X simulations 5.000

As already stated above in Subsection 2.1.2 , we extract the α’s and r from different

types of distributions which provide five possible cases for each analysed characteristic

of the configurations (see Fig. 2.1).

Specifically:

• Uniform distribution in (0,1) type;

• Four Beta distribution type:

– α = 1 and β = 3;

– α = β = 0.5;

– α = β = 2

– α = 1 and β = 0.5;

The value assigned to the tolerance level will depend on the specific case we want

to simulate. We evaluated three different tolerance level :

61



1. tol1 = 0.005;

2. tol2 = 0.05;

3. tol3 = 0.5.

In the following results not all tolerance level will be shown but only the case

tol2 = 0.05 because it is the case in which the statistics seem more stable.

However, they are available upon request.

We therefore carried out five types of analysis according to five different char-

acteristics of the α’s distribution: variance, kurtosis, skewness, Gini coefficient and

Shannon entropy.

Results and discussion are presented in the next section.

3.3 Results and discussion

The graphs for each single statistical predictor will be initially discussed according

to the different conditioning, to conclude with a comparative analysis on which one

represents the best prediction tool for stochastic systems in a context of rational

expectations.

For each statistical indicator we design five different scenarios based on five initial

distributions of component weights in order to understand which distribution is best

suited to this analysis.

In this model we also evaluate which of the initial weight distributions proposed

is the best performing one.

The exponential negative distribution is the best when dealing with problems re-

lated to the evaluation of the failure time of systems with interconnected components.

As we will see in the following results, also for this second framework the consistency

with literature is confirmed (see Li and Zuo [41], Sarhan [42], Asadi and Bayramoglu

[43] and Eryilmaz [44]).

Now we move on to the individual analysis of variance, kurtosis, skewness, Gini

coefficient and Shannon entropy.
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A general comment regarding almost all the results linked to this model, concerns

time. In fact, in the time horizon that goes from the starting time to the normalized

failure time of the systems, we see an evident predictive gain depending on the case

examined. We appreciate an improvement in percentile-conditioned error curves as

available information increases.

The first analysis is through the study of the behavior of variance. Variance is a

measure of statistical dispersion of the realizations depending on time.

We then go on to capture the variability of the component weights, and how much

they fluctuate with respect to the average values of the time-to-time distribution.

Figs. 3.1, 3.2, 3.3, 3.4 and 3.5 show the prediction errors (in absolute value) for p =

10%, p = 50% and p = 90% about the analysis of the variance, considering all different

five types of initial weight distribution (Uniform distribution, Beta distribution with

α = 1 and β = 3, Beta distribution with α = β = 0.5, Beta distribution with

α = β = 0.5 and Beta distribution with α = 1 and β = 0.5, respectively) and

tol2 = 0.05. Green triangles correspond to to the 90th percentile of the information set.

Blue crosses represent the errors conditioned to the 10th percentile of the information

set and red dots are the errors conditioned to the 50th percentile of the information

set. The fixed magenta line is the benchmark.

Through the different tolerances we want to discover the predictive gain or loss

depending on the cluster on which we calculate the rational expectations: small

tolerance means that we compare very similar values, while the increase in tolerance

leads us to an analysis between an ever wider range of values.

Looking at the graphs as a whole (and this remark can be extended to subsequent

results with some exceptions included), the first thing that stands out is that the

four curves coincide for small t. Therefore, both the benchmark and the various

conditional error curves have an equal or very similar starting level.

The reason is that in the initial trends no system has yet failed and we still have

no information. So, there are no substantial differences in the absence of information

in the prediction of failure time of stochastic systems and the errors converge to the

same point.
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Figure 3.1: Time evolution of prediction errors: case of variance and uniform dis-

tribution.

For larger t the information stored increased and we can appreciate a deviation

between the benchmark and errors conditioned by the percentiles which showcase

predictive gain linked to the use of information.

In general, these graphs confirm the predictive power of variance and the gain in

prediction accuracy, both when we condition the forecast on the p = 10%, p = 50%

and p = 90% of the variance distribution.

The value assumed by the variance has a great influence on the errors made in

our failure time forecast and is in turn related to the tolerance level used in the initial

setup.

By focusing on the initial distribution of weights (on which the failure of the system

depends) we can assert that the results are in line with what has been stated by various

researchers over time (see Li and Zuo [41], Sarhan [42], Asadi and Bayramoglu [43]

and Eryilmaz [44]).
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Figure 3.2: Time evolution of prediction errors: case of variance and Beta distri-

bution with α = 1 and β = 3.

The asymmetric Beta distribution with α = 1 and β = 3 (trend similar to the

negative exponential one) is the ideal distribution that allows us to minimize errors

in terms of absolute value and the errors are much more delayed in time. We also get

good results with the symmetric distribution with α = β = 0.5 and the Uniform one.

The situation gets worse in the asymmetric case with α = 1 and β = 0.5 and is

even more drastic in the symmetric one with α = β = 0.5. The errors in absolute value

increase exponentially compared to the previous cases and the curves are much more

irregular and scattered. Although in these outcomes there seems to be a predictive

improvement linked to time, we must nevertheless prefer the previous distributions

both in terms of levels of error and of regularity in the conditioned paths.

So, after the initial part of the trends, where the information we have is very

random so there is no gain in the use of rational expectations, the variance proves to

be a good prediction tool. Accuracy in performance depends on various factors that
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Figure 3.3: Time evolution of prediction errors: case of variance and Beta distri-

bution with α = β = 0.5.

we include as inputs into the analysis, such as tolerance level or initial distribution.

In the context of prediction models, especially when the data sets being analyzed are

not very large (see Parzen ([89]) and Jiang et al. ([90])), a low variance is considered

more stable and reliable while a high variance is a sign of instability.

In our analysis, however, the results are mixed and there is no uniqueness between

the various cases. And what information to take into account when predicting failure

times depends on the tolerance level applied.

Here, we show the results of the second indicator used as a predictive tool: kurtosis.

With kurtosis we want to investigate the existence of extreme values between the

weights of the components of the systems, determining the heaviness of the distribu-

tion tails.

As already seen in the case of variance, Figs. 3.6, 3.7, 3.8, 3.9 and 3.10 show the

prediction errors of kurtosis conditioned to the same percentiles for p = 10%, p = 50%
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Figure 3.4: Time evolution of prediction errors: case of variance and Beta distri-

bution with α = β = 2.

and p = 90%. Refer to the same details as the variance figures.

Generally, high values of kurtosis perform worse than low values.

It is intuitive that, since kurtosis is a risk index, if we obtain very high values (as in

the case of conditioning with respect to p = 90% of the distribution), they are joint to

the increasing probability of obtaining components that are very different from each

other and with an importance (in terms of probable system failure) polarized towards

extreme values (few components with very high weights and with a high probability

of failure). We therefore suffer in terms of predictive gain.

Observing the evolution of our systems from time t = 0 to their failure in the case

ok kurtosis, there is an initial flat behavior that depends on the fact that when we

have little information available, the initial trend is dominated by the case.

As in the analysis of variance, the initial distribution that performs best in terms

of forecasting is the Beta distribution with α = 1 and β = 3, just as stated by other
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Figure 3.5: Time evolution of prediction errors: case of variance and Beta distri-

bution with α = 1 and β = 0.5.

studies. Even the uniform distribution and the Beta one with α = β = 0.5 are very

robust in this context, while the two remaining distributions are not reliable, reach-

ing very high error values and fluctuating and irregular trends throughout the path

(especially for the line of errors conditioned on the 90th percentile of the information

set).

In view of the statement above, the kurtosis results are noticeable for medium

and low values therefore in correspondence with mesokurtic and platykurtic weight

distributions, while our model loses efficacy for leptokurtic weight distributions.

We now move on to the third moment of our weight distributions: skewness. How

does skewness affect prediction modeling of stochastic systems?

The graphs relating to skewness analysis are illustrated below. Fig. 3.11 shows the

Uniform distribution. Fig 3.12 instead contains the results about Beta distribution

with α = 1 and β = 3. In Figs. 3.13, 3.14 we can see the two symmetric Beta
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Figure 3.6: Time evolution of prediction errors: case of kurtosis and uniform dis-

tribution.

distribution with α = β = 0.5 and α = β = 2, respectively. Fig. 3.15 displays Beta

distribution with α = 1 and β = 0.5. We condition the prediction errors to to three

percentiles of the statistical indicators p = 10%, p = 50% and p = 90%. The tolerance

level correponds to tol2 = 0.05. The fixed magenta line represents the benchmark.

Green triangles, Blue crosses and red dots ere the 90th, 10th and 50th percentiles of

the information set, respectively.

In literature, several studies have been carried out in the field of reliability theory

– specifically, k-out-of-n systems – which exploit the various statistical moments to

validate their models. We refer for example to Reijns and Gemund ([84]) or Amari

et al. ([85]).

According to these authors, lower moments are more robust than higher moments.

We have already seen how kurtosis (fourth statistical moment) is however a good

predictor indicator. We will find out later which of all indicators is the best.
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Figure 3.7: Time evolution of prediction errors: case of kurtosis and Beta distribu-

tion with α = 1 and β = 3.

The values of skewness are sensitive to fluctuations (we should appreciate a loss

of precision that affects our predictive model).

For some distributions (particularly for Beta with α = 1 and β = 3 and the

symmetric one with α = β = 0.5 and Uniform distributions), skewness enables us to

improve our predictions over time. There is no obvious difference between the various

conditionings, so having large (positive) skewness, low (negative) or medium values

does not affect the accuracy of the analysis.

Therefore, for the purposes of this application and in the three scenarios mentioned

above, we are not interested in knowing whether the weight distribution of stochastic

systems is symmetric or asymmetric towards the right or left tail. The behaviors of

the three curves are in fact quite regular and constantly decreasing.

If instead we move to the Figs. 3.14 and 3.15 (Beta distribution with α = β = 2

and with α = 1 and β = 0.5), the analysis immediately appears much more imprecise
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Figure 3.8: Time evolution of prediction errors: case of kurtosis and Beta distribu-

tion with α = β = 0.5.

and not very useful.

For symmetric or low asymmetric datasets the trend remains good, while when

the distributions move towards the tails and the values become abnormal upwards

or downwards, the predictive capacity of skewness is lost and these values are not

within the valid range for the reliability values. The results are penalized in term of

tendency and errors.

We now pass to a concentration coefficient which is the Gini coefficient.

The use of the Gini coefficient as a performance measure is not usually used in

failure prediction models. However, according to the research of Ooghe and Spaenjers

([88]) it is a very powerful and attractive tool in our field of study.

In fact, it is able to capture the total power of the model considering all weights

without overestimating or underestimating any of them.

Refer to the details of the graphs stated above for the previous statistical indicators
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Figure 3.9: Time evolution of prediction errors: case of kurtosis and Beta distribu-

tion with α = β = 2.

for Figs. 3.16, 3.17, 3.18, 3.19 and 3.20. In these five figures are exhibited the

prediction errors of Gini coefficient.

The result obtained is truly consistent.

This indicator provides the predictive ability of rational expectations that impoves

with the reaching of the time of failure.

Regarding the several perspectives linked to the initial weight distributions, the

situation is very similar to the previous analysis. We are always in line with the

existing literature, which confirms the predominance of the exponential negative dis-

tribution (Beta distribution with α = 1 and β = 3).

It is surprising how the best result is linked to very polarized distributions with

high weights more concentrated on a few components. And this makes sense because,

since the failure of the system is linked to the number of components that stop

working, the probability of extracting a component with a very high weight (therefore
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Figure 3.10: Time evolution of prediction errors: case of kurtosis and Beta distri-

bution with α = 1 and β = 0.5.

more sensitive to possible failure) is much lower. This supports the reliability of the

system. It must also be said, however, that components with very high weights are

more vulnerable and contribute to our uncertainty prediction process that does not

seem to affect the results of errors conditioning on the 90th percentile.

While the error curve relating to the high values (and medium values) of the Gini

coefficient decreases monotonically, when the weights are equally distributed (low

values of the coefficient), the trends are in any case decreasing but more scattered

and characterized by less linear regularity.

Gini coefficient stands out as an excellent predictor.

The last indicator to be analyzed is Shannon entropy.

Also in this case the prediction errors are presented in the Figs. 3.21, 3.22, 3.23,

3.24 and 3.25. We always consider all the different initial weight distribution type

(Uniform distribution, Beta distribution with α = 1 and β = 3, Beta distribution with
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Figure 3.11: Time evolution of prediction errors: case of skewness and uniform

distribution.

α = β = 0.5, Beta distribution with α = β = 0.5 and Beta distribution with α = 1

and β = 0.5, respectively). As already seen for the previous statistical measures we

represent three conditionings depicted in the graphs by the three curves: blue crosses

indicate the 10th percentile, red dots indicate the 50th percentile and green triangles

indicate the 90th percentile. The fixed magenta line is the benchmark.

Shannon entropy is a quantitative measurement of information which captures the

amount of information related to the reference random processes.

There is a lack of papers in literature using Shannon entropy in predictive models.

It is exploited in computational mechanics, materials science, and physics to inves-

tigate the fatigue lifetime problem (see Zhang et al. [91]) and in the field of business

failure prediction (see Bal et al. [92]).

We try to place it in this context and subsequently to compare it with the other

statistical indicators. The amount of information gained taking into account the
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Figure 3.12: Time evolution of prediction errors: case of skewness and Beta distri-

bution with α = 1 and β = 3.

Shannon entropy is very useful.

According to the passage of time, the results shown in the five scenarios are the

outcomes of a good prediction. In fact, we notice an initial phase of the curves that is

flat and very close to the benchmark. Indeed, if we are very far from the reasonable

level of information, then the path is quite random (the use of rational expectations

still does not come out).

The predictive gain grows exponentially as well as the knowledge gained through

the information stored with the use of rational expectations increases. The increase

in information is linked to the passage of time.

We can assert that the results are solid for high values of Shannon entropy and

the probability of predicting more efficiently increases. In fact, the curve of the errors

conditioning on the p = 90% of the information set distribution, is the one that

performs better and decreases faster than the low values trend that show a less steep
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Figure 3.13: Time evolution of prediction errors: case of skewness and Beta distri-

bution with α = β = 0.5.

and less predictive path.

Overall, entropy is a very important factor in understanding stochastic systems

prediction model.

To better understand which statistical indicator provides the best prediction and

which the trend that minimizes errors depending on the percentiles is, a comparison

between the statistical indicator and the percentiles p = 10%, p = 50% and p = 90%

is now necessary. In this analysis we take into account the different distributions of

the initial weights.

Over time, many studies have been collected on the large number of different

prediction accuracy statistics. To review what the literature says, in measurements

and in predictive models, lower moments are more robust and consistent than higher

moments (see Reijns and Gemund [84], Amari et al. [85], Ramberg et al. [86],

Kinateder and Papavassiliou [87]). These researchers validate the use of moments of
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Figure 3.14: Time evolution of prediction errors: case of skewness and Beta distri-

bution with α = β = 2.

distributions for quantitative analysis.

Here we want to investigate the relationship between our measures of interest in

order to strengthen the results obtained.

Therefore, in addition to the second, third and fourth statistical moments (vari-

ance, skewness and kurtosis), we have also added the Gini coefficient (little used in

these research fields) and Shannon entropy (never used in this type of applications).

Studied individually, each indicator is imperfect and incomplete because we do not

have access to all the information available, while with this comparison we can get

an idea of which the best prediction tool is, depending on the distribution assumed

by the weights of the components.

The curves show, as a function of time t, the behavior of the statistical measures

considered according to the conditioning.

In principle, the results of the several scenarios in terms of the initial errors match
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Figure 3.15: Time evolution of prediction errors: case of skewness and Beta distri-

bution with α = 1 and β = 0.5.

with each other. We do not detect significant differences in the analysis from this

point of view.

For what concerns the different initial distributions, we are consistent with the

literature (as we have already seen in the single previous analysis) and the best is

the one corresponding to the negative-exponential: the Beta distribution with α = 1

and β = 3. It is the one with the most predictive power regardless of the statistical

indicator.

Good results obtained with the symmetric Beta with α = β = 0.5 distribution

but also the Uniform one. Both minimize errors and allow us to predict failure times

with an acceptable predictive gain.

Errors in absolute value grow dramatically, and the damage in the predictive pro-

cess for all statistical tools is truly evident both for the asymmetric Beta distribution

with α = 1 and β = 0.5, but even more so for the symmetric one with α = β = 2
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Figure 3.16: Time evolution of prediction errors: case of Gini coefficient and uni-

form distribution.

which reaches very high error levels. The latter is the absolute worst and the one

that produces the poorest performances.

Figs. 3.26, 3.27 and 3.28 show the results conditioned on the uniform distribution.

79



Figure 3.17: Time evolution of prediction errors: case of Gini coefficient and Beta

distribution with α = 1 and β = 3.

We proceed with the results of the Beta distribution with α = 1 and β = 3 shown

in Figs. 3.29, 3.30 and 3.31.

From an asymmetric Beta distribution, we continue with a symmetric Beta dis-

tribution with α = β = 0.5 (see Figs. 3.32, 3.33 and 3.34).

In Figs. 3.35, 3.36 and 3.37 you can see the results of another symmetric Beta

distribution (with α = β = 2).

The last graphs relate to the asymmetric Beta distribution with with α = 1 and

β = 0.5 (see Figs. 3.38, 3.39 and 3.40).

In cases where the indicators show their ability to reach high values, usually

abnormal (all conditioning at the 90th percentile), Gini coefficient is the indicator that

picks up the best information and allows an excellent improvement in the accuracy

of the predictions.

Shannon entropy also proves to be a good predictive tool when we compare very
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Figure 3.18: Time evolution of prediction errors: case of Gini coefficient and Beta

distribution with α = β = 0.5.

high levels of indicators.

On the other hand, when the analysis shifts towards low or average values of

the distributions (10th and 50th percentiles conditioning), the Shannon entropy is the

indicator that allows us to obtain the best result with a much faster and clear drop in

the errors and earlier over time than the others. It is an excellent forecast tool with

a very high predictive gain.

The Gini coefficient also gives us a satisfactory prediction capacity, in order to

evaluate the correct use of rational expectations in the prediction of failure times of

our stochastic systems.

For variance and kurtosis, the results are mixed.

Compared to what is stated in the literature, kurtosis performs better than vari-

ance (some exceptions excluded) despite the greater sensitivity of the fourth statistical

moment to the fluctuations of our variables. Therefore, these two indicators do not
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Figure 3.19: Time evolution of prediction errors: case of Gini coefficient and Beta

distribution with α = β = 2.

optimize the information available with a slightly decreasing error trend, any im-

provement is very random and the use of rational expectations is not as effective as

a prediction tool.

The less efficient and less suitable indicator in the use of rational expectations

is the skewness. It is the predictor which exploits the recorded information worse

causing us to lose predictive accuracy.

In conclusion, we can say that our application consistently demonstrates a very

high accuracy in the field of failure time prediction through rational expectations.
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Figure 3.20: Time evolution of prediction errors: case of Gini coefficient and Beta

distribution with α = 1 and β = 0.5.
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Figure 3.21: Time evolution of prediction errors: case of Shannon entropy and

uniform distribution.
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Figure 3.22: Time evolution of prediction errors: case of Shannon entropy and Beta

distribution with α = 1 and β = 3.
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Figure 3.23: Time evolution of prediction errors: case of Shannon entropy and Beta

distribution with α = β = 0.5.
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Figure 3.24: Time evolution of prediction errors: case of Shannon entropy and Beta

distribution with α = β = 2.
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Figure 3.25: Time evolution of prediction errors: case of Shannon entropy and Beta

distribution with α = 1 and β = 0.5.
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Figure 3.26: Comparison between variance (purple line), kurtosis (blue line), skew-

ness (green line), Gini coefficient (red line) and Shannon entropy (light blue line)

considering the conditioning of the errors on the 10th percentile of the distribution.

Case of uniform distribution.
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Figure 3.27: Case of the 50th percentile with the uniform distribution.
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Figure 3.28: Prediction errors in the case of uniform distribution conditioned on

the 90th percentile.
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Figure 3.29: Prediction errors (in absolute value) for Beta distribution with α = 1

and β = 3 conditioned on the 10th percentile of the distribution.
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Figure 3.30: Beta distribution with α = 1 and β = 3 with errors conditioned on

the 50th percentile of the statistical measure distributions.
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Figure 3.31: Beta distribution with α = 1 and β = 3 in the case of the errors

conditioned on the 90th percentile of the distributions.
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Figure 3.32: Errors (in absolute value) for Beta distribution with α = β = 0.5

conditioned on the 10th percentile.
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Figure 3.33: Prediction errors as in the previous graph but with conditioning on

50th percentile.
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Figure 3.34: Beta with α = β = 0.5 and conditional distribution on the 90th

percentile.
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Figure 3.35: Overall graph with the analysis of variance, kurtosis, skewness, Gini

coefficient and Shannon entropy. Beta distribution with α = β = 2 conditioned on

the 10th percentile.
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Figure 3.36: Here the case of Beta distribution with α = β = 2 and the 50th

percentile.
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Figure 3.37: Prediction errors (in absolute value) considering Beta with α = β = 2

and the conditioning on the 90th percentile of the distribution.
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Figure 3.38: Prediction errors for Beta distribution with α = 1 and β = 0.5

conditioned on the 10th percentile of the statistical indicator distributions.
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Figure 3.39: Final comparison between variance (purple line), kurtosis (blue line),

skewness (green line), Gini coefficient (red line) and Shannon entropy (light blue line)

considering Beta distribution with α = 1 and β = 0.5 and a conditioning on the 50th

percentile.
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Figure 3.40: Prediction errors as above, but in this figure we take into account the

90th percentile.
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Conclusions and future research

Our goal is to provide the most accurate prediction of the failure times of simulated

stochastic systems in a context of rational expectations. We therefore focus on the

reliability of this framework, investigating the optimal statistical measure to obtain

successful predictions depending on the initial conditions of the systems considered.

We have presented a theoretical setting followed by two different frameworks of

application that both exploit rational expectations in the context of the reliability

of systems with interconnected components. The main elements of this research are

therefore the time and the statistical measures on which the analysis is based. We

explore two perspectives on this problem with results focused on different aspects:

in the first, the focus is on errors that depend directly on the values of the given

descriptive statistics; in the second, we relate directly to the temporal evolution.

In the first model we make a transversal analysis over time: we emphasize the

contribution of the statistical indicator, showing how the error varies as a function of

the measure considered aggregated over time.

Instead, in the second model, we emphasize the importance of the time factor on

different scenarios of the statistical indicators, based on the percentiles we condition

them on.

Unless otherwise stated, all the results presented in this thesis are new and original,

and encourage the application of rational expectations to our simulated data.

In both models we compare our research field with the existing literature and can

thus evaluate the robustness of our results, the proposed methods, and the computa-

tional efficiency of our algorithms.

We examine how the paths of the errors are influenced by several indicators, the
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different levels of these indicators, and initial weight distributions used in the study.

In both presented models we have successfully demonstrated that it is possible to

obtain a prediction of failure times of stochastic systems which improves for certain

combinations of indicators and initial distributions and with the passage of time.

The graphs show five characteristics of the α distribution (variance, kurtosis, skew-

ness, Gini coefficient and Shannon entropy) considering five different initial weight

distributions. They confirm the significant gain in prediction accuracy, taking into

account indicators that synthetize the systems.

Depending on the initial distribution, Beta distribution with α = β = 0.5 and

the one with α = 1 and β = 3 provide the best results and the lowest errors for

all indicators studied. Notably, the symmetric case with α = β = 2 is the worst,

returning very high errors. This suggests that we are able to identify and capture

the characteristics of the distributions with the most predictive power. We are also

able to understand for which values of the indicators we obtain the greatest gain in

the use of rational expectations by recording more information and providing high

precision in predicting the residual failure times.

Applying this new method in reliability theory, we have managed to implement

many strategies and the best one, depending on the distribution examined and the

type of errors taken into consideration, is the one that allows us to minimize the

prediction errors and obtain a greater gain. To our knowledge, this has not been

done before.

In conclusion, we have proposed a model for describing rational expectations in

the context of reliability theory, and we have validated the effectiveness of our model

through two different extensive simulation procedures.

In future research further implementations of the model will have to be devel-

oped by increasing the complexity of the simulation procedure. The problem can be

addressed in other rational expectations models and should certainly be attempted.

For example, we can modify the reallocation rule by proposing instead of the

proportional one, a uniform reallocation rule, a reallocation rule threshold based or

a rule that depends on the trajectories of previous failures. We can do the same with
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the failure rule by changing the conditions under which systems fail in our theoretical

model.

We will be able to extend the analysis by comparing additional statistical in-

dicators: the Frosini index for a comparison with the Gini coefficient, the Bien-

aymé–Chebyshev inequality, the Pearson index to capture the dependence between

the components, and Goodman and Kruskal’s index, also for the correlation between

the components. We can also use other distances belonging to the Shannon family

of entropies such as the Kullback-Leibler divergence, the Jeffreys distance, the K

divergence or the Jensen difference.

We can also consider a distance measure to check which combination of parameters

will allow us to get the lowest error.

The discipline of predicting failure times is still very active and useful. There are

therefore several areas whre future research could seek improvement.

One intention there is to study specifically how the evolution of the distribution

of the components can affect our results. We would like to investigate a possible

regularity in the random path of the components and the way it changes for different

exogenously assigned distribution. The finite Markov chain imbedding technique

could be useful here, as it would allow us to imbed the pattern of our components

into the framework of a finite Markov chain in order to carry out further research

in this area. In this way, in fact, we could reduce the computational complexity

associated with the various methods usually used to find the probability distribution

of lifetimes of systems and understand whether there is a regularity that binds the

components of our systems.

We will be able to analyse in-depth the importance of components within a system,

assuming that the structure of the systems is known. There are many measures that

can be used, such as the Barlow-Proschan importance, the Hwang index, the Fussell-

Vesely importance, or the B-importance.

Again, with regard to this field, a network could be built on the connection ex-

isting between the components by considering of the probability with which they

subsequently fail.
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We can also integrate cluster analysis by clustering our predictors over different

time windows using a dendrogram to show in which periods the prediction was most

effective.

It is also our intention to apply the simulation procedure to real data to model

systems with interconnected components. Numerical experiments in the economic

and financial field will follow.
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