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a b s t r a c t 

In economic theory the majority of macroeconomic models describing economic growth employ differen- 

tial equations or sets of differential equations (see, among all, Solow, 1956 and Haavelmo, 1954). Never- 

theless, economic data are usually available in discrete time. Therefore, when attempting to apply these 

models it is often necessary to use their discrete form, i.e. difference equations. To this aim, more and 

more often authors propose and analyse discrete versions of the models originally built with the as- 

sumption of time continuity. Despite many standard numeric techniques and ready-made software, ob- 

tained discrete models do not always maintain model characteristics in continuous time and the long 

run behaviours of the discretized model could differ from the original one. In this work, we present 

a modification of non-standard discretization method related to the methodology proposed by Mickens 

(20 0 0), (20 03) and its revisions (see Kwessi et al., 2018) for converting economic models from continu- 

ous time to discrete time. Such a discretization method preserves the original dynamic properties of the 

continuous model, in the sense of equilibria, their stability and bifurcation characteristics. Furthermore, 

the discretization produces solution trajectories in qualitative and quantitative agreement with those of 

the continuous model. An example of economic model described by a system of nonlinear differential 

equations is studied: we applied the discretization method to the Goodwin model (Goodwin, 1967) and 

provided a comparative analysis for qualitative and quantitative long run behaviour of the continuous and 

discrete version of the system. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The choice between continuous and discrete time to be used

n the construction of dynamic models is a moot question (see

andolfo [7] ). In literature, the majority of macroeconomic models

escribe the economic growth by means of differential equations

ODE) or systems of such equations (see, for example, Solow [27] ,

wan [29] , Haavelmo [11] and Ramsey [22] ). Nevertheless, since

ost of the economic data are available in discrete time, in or-

er to use these models in practice, it is often necessary to con-

ert them to their discrete-time form (difference equations (DE)).

espite many standard numerical techniques and available soft-

are, the obtained discrete-time models do not always retain the

roperties of the original models in continuous time: different dis-

retizations may produce complex dynamics, and even chaos, in a

odel system that originally lacked such dynamics. A dynamically

onsistent discretization scheme should produce the same type of

ifurcations. For example, models originated by first-order differ-

ntial equations should only produce saddle node, pitchfork, or
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ranscritical bifurcations and should not perform period doubling

ifurcation or chaos. Nevertheless, the Euler method (see Roger

24] ) as well as other standard discretization schemes may produce

uch complex dynamics. The logistic ODE, for example, does not

roduce oscillations or chaotic dynamics, yet discretization meth-

ds commonly used by economists produce DE versions having

amped cycles, limit cycles, or chaotic behaviour (see, among all,

ay [3] ). Numerous examples of discretized models with different

ong run behaviour exist in literature: Stutzer [30] proposed a dis-

rete version of the Haavelmo model, Pohjola [21] discretized the

oodwin’s growth cycle model while Nusse and Hommes [20] pro-

osed a new discrete version of the Samuelson [25] model. 

After the period of fascination with chaotic behaviour occur-

ing in discrete-time models, in research fields such as biology or

echnical sciences the scientists started searching for methods and

pproaches which could be used for the discretization of mod-

ls while still maintaining their dynamic properties (Mickens [19] ).

hey developed new non-standard discretization methods such as

he Kahan [13] or Mickens [18] methods. Particularly, Ronald Mick-

ns in [18,19] proposed a method for converting ordinary dif-

erential equations into discrete-time models (discretization) that

ave potentially important applications in applied sciences such as

https://doi.org/10.1016/j.chaos.2019.109420
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2019.109420&domain=pdf
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1 Parameters α and β are growth rates respectively of labour productivity and 

labour supply, σ is the capital/output ratio while γ and ρ are related to the varia- 

tion of real wage rate under assumption of linear approximation. 
economy, population, ecology and engineering. The discretization

method of Mickens in literature is referred to as the non-standard

discretization formulation (NSFD). NSFD has been often used in ap-

plied mathematics to minimize the substantial distorting effects

that discretization can create for ODE. For example Al-Kahby et al.

[1] and Liu and Elaydi [16] applied NSFD respectively to biological

and cooperative models, Roger [23] used NSFD for first order differ-

ential equations having three fixed-points, Letellier et al. [15] com-

pared the Rössler ODE system with difference equation versions

while Guzowska [10] applied NSFD methods for Goodwin model. 

Here, we make discretization of the Goodwin model using the

nearly exact discretization scheme (NEDS) as proposed by Kwessi

et al. [14] . The main advantage of this method is its simplicity

when compared to other schemes. In order to verify the efficacy

of such a method, we use both topological and statistical analy-

sis. More in detail, we show that the qualitative dynamics do not

change when moving from continuous to discrete time. In addition,

as regards quantitative dynamics, by considering elliptical regres-

sions of the invariant curve as well as by performing a Wavelet-

Based semblance analysis we concluded that the discretization is

successful when the step-size, parametrized by h , is sufficiently

low. The Wilcoxon Rank Sum test confirmed the goodness of the

discretization method. 

The paper is organised as follows. In Section 2 we intro-

duce the NEDS methodology while Section 3 presents the dis-

crete version of the Goodwin model and its qualitative dynamics.

Section 4 shows the quantitative comparison between the two sys-

tems. Section 5 concludes the paper. 

2. NEDS - nearly exact discretization scheme 

In this section we introduce the Nearly Exact Discretization

Scheme as proposed by Kwessi et al. [14] . NEDS method is a more

general version of the NSFD method proposed by Mickens. In addi-

tion NEDS is more schematic, hence the application is easier then

NSFD which is sometimes more experimental method. 

Let x be a quantity that changes over time. The ODE notation of

x is x ( t ) whereas the DE notation for x is x t . Consider also an ODE

of the form 

dx 

dt 
= f (x (t)) (2.1)

where f ( x ) is a real-valued function of x . Then, the discrete version

of (2.1) is said dynamically consistent if the conditions listed in the

following definition hold. 

Definition 2.1 (Kwesi et al. [14] ) . A discretization scheme will be

called dynamically consistent if the following holds: 

A1: The stability of the ODE and DE is the same. 

A2: The bifurcations of the ODE and DE are the same. 

A3: If two ODEs are equivalent through change of parametriza-

tion, then the resulting DEs must be equivalent through the

same parametrization. 

According to the previous definition, a discretization scheme is

dynamically consistent when the long run behaviour of the dis-

crete model (meant as its attractors and bifurcations) replies that

of the continuous one. Note that a discretization scheme may be

dynamically consistent but does not still perform equal dynamics

in transition states. A discretization methodology that takes in con-

sideration also the behaviour in transition states is introduced in

the definition below. 

Definition 2.2 (Kwesi et al. [14] ) . A discretization scheme is called

a Nearly Exact Discretization Scheme if it is dynamically consis-

tent and the trajectories of the resulting DE are the same or nearly

the same as those of ODE. 
A NEDS of the ODE in (2.1) can be obtained using the following

lgorithm: 

P 1) The derivative dx 
dt 

can be discretized as 

x t+1 − x t 

φ(h ) 
(2.2)

where φ depends on a step size h and other parameters, and

is given as 

φ(h ) = h 

2 + O (h 

2 ) as h → 0 

+ . 

P 2) If the right hand side of (2.1) is of the form f (x ) = rx ±
g(x ) x, where r is a non-zero real constant, it is assumed 

φ(h ) = 

e rh − 1 

r 

from which 

x t+1 − x t 

φ(h ) 
= 

{
rx t + g(x t ) x t+1 

rx t − g(x t ) x t+1 

and the resulting DE is given by 

x t+1 = f 0 (x t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

e rh x t 

1 − φ(h ) g(x t ) 

e rh x t 

1 + φ(h ) g(x t ) 

P 3) If the right hand side of (2.1) is of the form f (x ) = rx ±
g(x ) x + b, then 

x t+1 = f 0 (x t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

e rh x t + φ(h ) b 

1 − φ(h ) g(x t ) 

e rh x t + φ(h ) b 

1 + φ(h ) g(x t ) 

. 

Notice that, due to its simplicity, NEDS can be used for other

conomic models. This non standard discretization scheme can be

sed in many types of difference equations and also in systems of

ifference equations (see Kwessi [14] ). 

In the next section, the introduced algorithm will be applied

o the Goodwin model. We underline that our application leads

o a system behaving in a way which has not been considered in

wessi [14] . Our aim is to provide a dynamically consistent dis-

retization of the continuous system and to compare their dynam-

cs both from a qualitative and quantitative point of view. 

. From continuous to discrete dynamics - the model 

Goodwin growth cycle model [8] was a milestone in working on

on-linear dynamic systems in economics. Since then, many im-

rovements and discussion have been introduced (see Desai [4] ,

andolfo [7] , Goodwin [9] and Wolfstetter [31] ). The Goodwin

odel can be represented as follows (Desai et al. [5] ; Sordi and Ver-

elli [28] ) 
 

 

 

dv 
dt 

= [1 /σ − (α + β) − (1 /σ ) u ] v 

du 

dt 
= [ −(α + γ ) + ρv ] u 

(3.1)

here numerical constants α, β , γ , σ and ρ are considered to be

ositive 1 , v is the employment rate and u is the wage share. As-

uming that a = 

1 
σ − (α + β) , b = 

1 
σ , c = α + γ , d = ρ the contin-

ous form of the model (3.1) can be written as 

G : 

{
˙ v (t) = a v (t) − bu (t ) v (t ) 
˙ u (t) = −cu (t) + du (t ) v (t ) 

. (3.2)
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Fig. 3.1. Fixed point E ∗ and three closed invariant curves for the CG (left panel) and DG (right panel) model obtained from the following initial conditions (0.4,0.4), (0.6,0.6) 

and (0.65,0.65) showing that E ∗ is a stable centre for both models. 
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Fig. 4.1. Comparison between continuous (red) and discrete (blue) models for a = . 1 , b = . 2 , c = . 5 and d = 1 for different values of h and the same initial condition. 
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Fig. 4.2. Points belonging to Z (in blue) and estimated ellipse (in magenta) for a = . 1 , b = . 2 , c = . 5 and d = 1 . 
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Fixed points and local stability of the continuous time Good-

win model have been widely studied (see Gandolfo [7] for a com-

plete description of the continuous time two-dimensional Goodwin

model). We briefly recall such results. System (CG) has two equi-

librium points: the origin E 0 = (0 , 0) and an interior fixed point

E ∗ = (v ∗, u ∗) = ( c 
d 
, a 

b 
) . 

The dynamic properties of the model (CG) can be easily demon-

strated. The Jacobian matrix of the model is: 

J 0 (v , u ) = 

[
a − bu −bv 

du −c + dv 

]
. 

When evaluated at the steady state E 0 = (0 , 0) the Jacobian ma-

trix becomes: 

J 0 (0 , 0) = 

[
a 0 

0 −c 

]
. 

Point E 0 = (0 , 0) is a hyperbolic saddle point, because

Det(J 0 (0 , 0)) = −ac < 0 . For the point E ∗ = (v ∗, u ∗) = ( c 
d 
, a 

b 
) the Ja-

cobian matrix is: 

J 0 (v ∗, u 

∗) = 

[ 

0 − bc 
d 

ad 
b 

0 

] 

. 
a

s the eigenvalues are both purely imaginary ( λ1 = −i 
√ 

ac , λ2 =
 

√ 

ac ) this fixed point is not hyperbolic, so no conclusions can be

rawn from the linear analysis. However, the continuous model

G behaves as the Lotka–Volterra two-dimensional predator-pray

odel, where it is shown that E ∗ is a centre (see Liu and Elaydi

16] ). After recalling the qualitative properties of the continuous

odel, we now apply the NEDS method to system CG as given by

3.2) in order to provide a discrete version of the Goodwin model

hat preserves the behaviour of the original one. By applying the

lgorithm proposed in previous section, we obtain the difference

quation system: 

G : 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

v t+1 = 

v t + a 	v t 
1 + b	u t 

u t+1 = 

(
1 − c
 + d


v t + a 	v t 
1 + b	u t 

)
u t 

, (3.3)

here 	(a, h ) = 

e ah −1 
a and 
(c, h ) = 

1 −e −ch 

c . 

In the following Proposition fixed points and their local stability

or the continuous time (CG) and the discrete time (DG) systems

re compared. 
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Fig. 4.3. Wavelet-based semblance analysis for a = . 1 , b = . 2 , c = . 5 , d = 1 and different values of h . 
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(i) The discrete time model given in (3.3) has the same fixed points

as the continuous time model given in (3.1). 

(ii) The local stability properties of the fixed point E 0 = (0 , 0) of

system CG is preserved for the discrete system DG. 

(iii) Necessary conditions for E ∗ to be a centre for system DG as for

system CG hold. 

roof. 

(i) Trivially, system (DG) has two equilibrium points: the origin

E 0 = (0 , 0) and an interior fixed point E ∗ = (v ∗, u ∗) = ( c 
d 
, a 

b 
) .

(ii) The Jacobian matrix associated to DG is: 

J 1 (v , u ) = 

⎡ 

⎣ 

1 + a 	

1 + bu 	

−b	(v + a v 	) 

(1 + bu 	) 2 

j 21 j 22 

⎤ 

⎦ 

where j 21 = 

du (1+ a 	)

1+ bu 	

and j 22 = 1 − c
 − bdu 	(v + a v 	)


(1+ bu 	) 2 
+

d(v + a v 	)

1+ bu 	

. 

For the point E 0 = (0 , 0) the Jacobian matrix becomes: 

J 1 (0 , 0) = 

[
1 + a 	 0 

0 1 − c


]
and its eigenvalues are λ1 = 1 − c
 and λ2 = 1 + a 	. Since

0 < λ1 < 1 < λ2 it follows that E 0 = (0 , 0) is a saddle point. 

(iii) For the point E ∗ = (v ∗, u ∗) = ( c 
d 
, a 

b 
) the Jacobian matrix

takes the form: 

J 1 (v ∗, u 

∗) = 

⎡ 

⎢ ⎣ 

1 − bc	

d + ad	

ad


b 

1 + a 	 − ac	


1 + a 	

⎤ 

⎥ ⎦ 
m  
and J 1 ( v 
∗, u ∗) has two complex conjugate eigenvalues λ1 and

λ2 , being 

λ1 = 

2 + 2 a 	 − ac	
 − √ 

a 
√ 

c 
√ 

	
√ 



√ −4 − 4 a 	 + ac	


2(1 + a 	) 

and 

λ2 = 

2 + 2 a 	 − ac	
 + 

√ 

a 
√ 

c 
√ 

	
√ 



√ −4 − 4 a 	 + ac	


2(1 + a 	) 
, 

whose modulus equal one, i.e. E ∗ is a not hyperbolic fixed

point. Being E ∗ not hyperbolic, we observe that, for all pa-

rameter values, 

(i) 1 + T r(J 1 (u ∗, v ∗)) + Det(J 1 (u ∗, v ∗)) > 0 , 

(ii) 1 − T r(J 1 (u ∗, v ∗)) + Det(J 1 (u ∗, v ∗)) > 0 , 

(iii) Det(J 1 (u ∗, v ∗)) = 1 , 

thus implying that no bifurcation occurs since the local sta-

bility of E ∗ does not change when one or more parameters

are moved. As the third condition for the local stability of E ∗

is always violated, then E ∗ can be a centre (see Medio and

Lines [17] for a more in deep discussion). 

�

Since we deal with a non-hyperbolic case, stability cannot be

tated by looking only at the linear part. Due to the complex ana-

ytical form, a proof based on higher order terms cannot be ob-

ained. Anyway, by means of numerical simulations, we verified

hat E ∗ is a stable centre (in Fig. 3.1 three different invariant curves

or CG and DG models are presented). 

Our results aim at showing that the economic meaningful in-

erior fixed point E ∗ maintains its local stability properties when

oving from continuous time to discrete time: in both cases E ∗ is
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Fig. 4.4. Time series of the discrete (black) and continuous (red) model for a = . 1 , b = . 2 , c = . 5 , d = 1 and different values of h . Fixed point in blue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a stable centre and any initial condition produces a trajectory be-

longing to a closed invariant curve around E ∗. 

Although the qualitative behaviour of the two systems coin-

cides, a quantitative analysis has to be done in order to verify the

numerical correspondence between the two systems. 

4. Quantitative comparisons between dynamics 

The discretization method previously introduced bases its sig-

nificance on the property of letting unchanged the qualitative and

quantitative dynamics of the model so that it can be applied when

only discrete observations are available for a continuous process. In

previous section the qualitative correspondence between the con-

tinuous and discrete version of the model has been discussed. A

quantitative correspondence is easily traceable when comparing

the behaviour of the two systems for different values of the pa-

rameter that describes the step-size of the discretization method.

We start our numerical analysis by considering the long term dy-

namics produced by the two systems, for given initial conditions.

Fig. 4.1 shows the high resemblance on the shape of the two cen-

tres It is worthwhile to highlight that the correspondence between

centres is negatively correlated with the amplitude of the step-size

h 2 . 

In the following, we compare the topology of the discrete sys-

tem’s dynamical regimes to the one of the original system. Our
2 The invariant curve in continuous time has been computed with MATLAB by 

using the ode45 algorithm that solves non-stiff differential equations with medium 

order method (for details see Shampine and Reichelt [26] ). 

 

 

 

 

aim is to verify in which measure the discrete system provides

the same quantitative dynamics when compared to the continuous

counterpart. To this purpose, we use statistical tools and topologi-

cal analysis. 

4.1. Elliptic regression 

Firstly, we use the Last-Squares criterion in order to estimate

the best fit to an ellipse of the set of points ( u, v ) which belongs to

the centre of the continuous time model, then we compare the es-

timated parameters with those obtained by using the set of points

belonging to the invariant curve of the discrete time system, for

different values of the step-size parameter h and the same initial

condition. 

Assume Z = { (u t , v t ) ∈ R 

+ 
0 

2 
: ∃ t ≥ t 0 , t ∈ N and (u t 0 , v t 0 ) ∈ Z

so that (u t , v t ) = DG 

t (u t 0 , v t 0 ) } is a closed invariant curve of the

DG model given by (3.3) , for given parameter values and let u c and

v c be the vectors respectively of all the values u t and v t belonging

to Z , both with length n . In order to fit the best ellipse given

the points ( u, v ) ∈ Z we use the fit-estimation method of Least

Squares without weights as proposed by Gal [6] : to estimate the

conic equation of the ellipse, i.e. Au 2 + Bu v + Cv 2 + Du + Ev = F ,

we extract the estimator from 

g(u, v , ˜ A ) := Au 

2 + Bu v + Cv 2 + Du + Ev = F u, v ∈ Z (4.1)

where ˜ A = (A, B, C, D, E) is a R 

5 vector of parameters to be esti-

mated (notice that parameters are normalised by −F ). Let g c be

the vector function of all the measurement, i.e. the vector obtained

applying function g to each point belonging to Z , then the Squared
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Fig. 4.5. Time series of the discrete (black) and continuous (red) model when the CG model consider a = . 1 , b = . 2 , c = . 5 , d = 1 and for each parameter j of the CG model, 

the DG model follows j / h . 

Table 1 

Sub-axis and coordinates of the centres for estimated ellipses for 

a = . 1 , b = . 2 , c = . 5 and d = 1 . 

Model h value ν η u O v O 

CG _ 0.1208 0.2664 0.5095 0.5318 

DG h = 0.1000 0.1195 0.2624 0.5032 0.5382 

DG h = 0.2000 0.1190 0.2605 0.5014 0.5397 

DG h = 0.3000 0.1188 0.2582 0.4977 0.5430 

DG h = 0.4000 0.1188 0.2555 0.4946 0.5458 

DG h = 0.5000 0.1187 0.2531 0.4915 0.5485 

DG h = 0.6000 0.1186 0.2508 0.4885 0.5511 

DG h = 0.7000 0.1185 0.2486 0.4856 0.5536 

DG h = 0.8000 0.1184 0.2464 0.4825 0.5562 

DG h = 0.9000 0.1183 0.2442 0.4796 0.5586 

DG h = 1.0000 0.1182 0.2420 0.4762 0.5614 

E

S

w  

(  

X  

A

A

w

i  

m  

t  

c

a

 

c  

Table 2 

Success of the discretization method for μ = 0 . 05 , a = . 1 , b = 

. 2 , c = . 5 , d = 1 and initial condition (.4, .4). 

h value C 1 C 2 SD h value C 1 C 2 SD 

0.1 ∗ ∗ ∗ 0.6 _ ∗ _ 

0.2 ∗ ∗ ∗ 0.7 _ ∗ _ 

0.3 ∗ ∗ ∗ 0.8 _ ∗ _ 

0.4 _ ∗ _ 0.9 _ _ _ 

0.5 _ ∗ _ 1.0 _ _ _ 

∗= fulfilled. 

- = not fulfilled. 

e  

i  

a  

m  

u  

(

w  
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μ  

w  

r

 

s
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t  
rror Function is defined as 

EF ( ̃  A ) := (g c − f c ) 
� (g c − f c ) = (X ̃

 A + f c ) 
� (X ̃

 A + f c ) 

here f c is the vector of values F obtained by applying function

4.1) to each couple ( u, v ) ∈ Z while X = (x i j ) ∈ R 

n, 5 is defined as

 := 

(
u 2 c u c · v c v 2 c u c v c 

)
. Derivation of SEF ( ̃  A ) with respect to

˜ 
 yields the estimator 

˜ 
 SE = 

X s 

X 

� X 

(4.2) 

here X s = 

(∑ n 
i =1 x i, 1 

∑ n 
i =1 x i, 2 

∑ n 
i =1 x i, 3 

∑ n 
i =1 x i, 4 

∑ n 
i =1 x i, 5 

)
s a R 

5 vector. The same algorithm has been applied to esti-

ate the equation of the ellipse fitting the continuous version of

he model, after selecting points belonging to the closed invariant

urve obtained from the same initial condition. Sub axis ν and η
nd centre O ( u O , v O ) of each ellipse are listed in Table 1 . 

A graphical comparison between the points belonging to the

entre and the estimated ellipse is given in Fig. 4.2 . Given the
quations of the ellipse fitting the points of the set Z when vary-

ng h , we now compare the centres obtained with the continuous

nd discrete version of the model. We assume the discretization

ethod successfully preserves the invariant curve of the contin-

ous model (and we label this case as Successful Discretization

SD)) when the following conditions hold: 

(i) O d ∈ I ( O c , μηc ) 

(ii) | νd − νc | ≤ μ2 

here the subscripts c and d refer to the ellipse estimated respec-

ively form the continuous and discrete version of the model while

may be considered as a degree of tolerance. In the following we

ill refer to conditions ( i ) and ( ii ) respectively as C 1 and C 2. The

esults of our analysis for μ = 0 . 05 are listed in Table 2 . 

Numerous simulations show that the discretization method is

uccessful for sufficiently low values of parameter h . 

.2. Wavelet-Based semblance analysis 

To complete our analysis we also compare the final outcome of

he continuous model with the one obtained when considering the
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Table 3 

Wilcoxon Rank Sum test. Results: 0 = failure to reject the null hypothesis at 

the 5% significance level, 1 = rejection of the null hypothesis. Parameter values: 

a = . 1 , b = . 2 , c = . 5 , d = 1 . 

Variable v Variable u 

h value p-value Result p-value Result 

.2 0.914638512670177 0 0.688223062677938 0 

.4 0.721938152129168 0 0.655845171494252 0 

.6 0.791341257630410 0 0.791341257630410 0 

.8 0.838323269321723 0 0.838323269321723 0 

.9 0.926251986419469 0 0.926251986419469 0 
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discrete system, for different values of the parameter h . Following

Cooper and Cowan [2] , wavelets are used to perform semblance

analysis in order to display correlations as a function of wavelength

and time-shift. 

Fig. 4.3 shows semblance analysis for values of u belonging

to the invariant curve of the continuous and discrete model. The

points in the plot represent the correlation values between dataset

depending on the scale and time shift. Anti-correlation is dis-

played in blue, zero correlation in green, and positive correlation

in red. The semblance is calculated using the continuous wavelet

transform. This approach takes into account the temporal variabil-

ity in the spectral character of the time-series. Once again, nu-

merous tests prove that the discrete invariant curve quantitatively

matches the continuous one when the step-size h is small enough.

It is worthwhile to highlight that, as h increases, a positive cross-

correlation holds for sufficiently high values of the wavelength.

This phenomenon may be easily verified by observing the time se-

ries generated from the two systems. 

Fig. 4.4 shows the wavelength of the time series generated by

the discrete model, for different values of the step-size. Particu-

larly, the phase of the dataset approaches the one of the continu-

ous model as h increases. Conversely, for smaller values of h , the

wavelet analysis shows similarities between the two curves when

a longer wave is considered for the discrete model. 

Notice that, as far as prediction is concerned, the discrete model

does not follow the original one when h is sufficiently small. This

is due to the calibration of parameters: moving the step size h , the

temporal meaning of parameters a, b, c and d have to be adjusted

in order to predict the exact evolution over time. Although the im-

portance of this issue would need the attention of a new work,

numerous simulations show that, for each parameter j of the CG

model, by assuming for the DG model that each parameter is de-

fined j / h , the step size of the two models coincide (see Fig. 4.5 ). To

conclude our analysis we perform the Wilcoxon Rank Sum test (see

Hettmansperger and McKean [12] ), a non parametric test with null

hypothesis that the two datasets have equal medians. In Table 3

the results are listed: for all values of the step-size the test failed

to reject the null hypothesis at the 5% significance level. Although

this test only concerns the medians of the datasets for the two

variables, it gives indications about the quantitative differences be-

tween the quantitative dynamics of the two systems, confirming

the goodness of the discretization method. 

5. Conclusion 

In this paper, we present the modification of the Mickens

[18,19] non standard discretization method proposed by Kwesi

et al. [14] and their application to the Goodwin model. The

discretization algorithm preserves the qualitative and quantitative

dynamics of the continuous system and may be used to convert

economic models from continuous time to discrete time, when

measured data are discrete. We applied the discretization method
o the Goodwin model [9] . The resulting discrete system guar-

ntees the same qualitative dynamics of the original models of

ny choice of the parameter values. A quantitative study carried

ut by means of Elliptical Regression, Wilcoxon Rank Sum test

nd Wavelet-Based Semblance Analysis show that the two systems

ave a similar quantitative behaviours and that the discretization

ethod can be considered quantitative successful. 
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