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Abstract

This thesis investigates the qualitative and quantitative dynamics of the Solow-Swan growth
model with di↵erential saving considering di↵erent production functions in order to analyse how
the long run behaviour of the economy is influenced by the elasticity of substitution between
production factors and by di↵erent savings propensity between workers and shareholders. In
the first chapter the economic growth problem of establishing a relation between the elasticity
of substitution, capital and output per-capita levels when dealing with a non constant elastic-
ity of substitution production function is discussed. Starting from a discrete-time setup, some
definitions of elasticity of substitution associated to an attractor are proposed and a method
to measure it is suggested. The main goal is to compare dynamic growth models with VES,
sigmoidal and CES production functions. To this end, the method proposed is applied to the
Kaldors model using a VES production function with constant returns to scale. It is found
that when simple dynamics are exhibited, a country characterized by production functions with
higher elasticity of substitution experiences higher capital and output per-capita equilibrium
levels. On the other hand, when the long term dynamics consist of cycles or more complex fea-
tures, then an ambiguous relation between elasticity of substitution and asymptotic dynamics
is shown. In the second chapter the Kaldor growth model is analysed, assuming the Shifted
Cobb-Douglas (SCD) production function, a technology that - di↵erently from CES and VES
one - allows one to consider the dynamics of non developed and developing countries as well
as that of developed economies. The resulting model is a discontinuous map generating a
poverty trap. Furthermore multistability phenomena may emerge: next to the vicious circle
of poverty, long run behaviours may include boom and bust periods (fluctuations may arise
when the elasticity of substitution is lower than one) and convergence to a positive level of
capital per-capita. In the last chapter the discrete time neoclassical one-sector growth model
with di↵erential savings is studied assuming the Kadiyala production function which shows
a variable elasticity of substitution symmetric with respect to capital and labor. It is shown
that, if workers save more than shareholders, then the growth path is bounded from above and
the boundary is independent from of the savings rate of shareholders. The growth path for
non-developed countries is influenced only by the savings rate of shareholders while level of
capital per capita of developed economies is influenced by the savings rate of workers. More-
over, multistability phenomena may occur so that the model is able to explain co-existence of
under-developed, developing and developed economies. Fluctuations and complex dynamics
may arise when the elasticity of substitution between production factors is lower than one and
shareholders save more than workers.
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1 Introduction

In the classic article A Contribution to the Theory of Economic Growth [67], the Nobel Prize-winning
Robert M. Solow investigated the relationship between the structure of production functions and
income distribution. Solow proposed a model describing the dynamics of the physical capital and the
long-term evolution of the growth process taking into consideration the role of capital, labour and
technology. In his essay he took into consideration how the long-run equilibrium or disequilibrium
of the economy changes considering di↵erent types of production functions: the Harrod-Domar,
the Cobb-Douglas (CD) and a third type of production function that five years later had been
generalized with the two-factor Constant Elasticity of Substitution (CES) production function (see
Solow et al. [4]). He refuted the Harrod-Domar assumption of fixed proportions (see Harrod [32]
and Domar [28]) and supposed the possibility of substituting labour for capital in production (see
Solow [67]). This assumption has led the way to investigations of how the elasticity of substitution
a↵ects capital and output equilibrium levels and hence economic growth. When the Cobb-Douglas
production function is considered, the model monotonically converges to the steady state, since the
elasticity of substitution between production factors is constant and equal to one.

Notice that elasticity of substitution between production factors � measures how quickly the
marginal rate of technical substitution of labour for capital changes as we move along an isoquant.
The greater the ease with which one factor can be substituted for another (for a given level of
output), the greater will be the elasticity of substitution. In linear production functions inputs are
perfectly substitutable for each other, isoquants are straight lines and � = +1. On the contrary,
in fixed-proportions production functions inputs are perfect complements, isoquants are L-shaped
and � = 0. Many papers investigating neoclassical growth model used the CD specification of the
production function in which capital and labour can be substituted for each other and the elasticity
of substitution is equal to one. More recently, several contributions investigated theoretically and
empirically the role played by the CES production functions (see Klump and Preissler [43], Klump
and de La Grandville [42], Miyagiwa and Papageorgiou [53] and Masanjala and Papageorgiou [47])
in which elasticity of substitution between inputs is constant and takes values that are either greater
or lower than one. Although CES production functions widen the range of values of the elasticity
of substitution from 0 to 1, these production functions restrict � to be constant along an isoquant
whereas the elasticity of substitution between inputs should be a variable depending upon output
and factor combinations (see Hicks [33], Allen [2] and Revankar [63]). Moreover, for more than two
factors, di↵erent degrees of substitutability between inputs are not allowed (see the Impossibility
theorem of Uzawa [75] - McFadden [48]). The class of Variable Elasticity of Substitution (VES)
production functions proposed by Lu and Fletcher [45], Revankar [62] and Sato and Ho↵man [66]
fix this criticisms exhibiting an elasticity of substitution between capital and labour that is a↵ected
by changes in the economy’s per-capita capital level. Many studies analyzed the role of a variable
elasticity of substitution within the Solow model (see Karagiannis et al. [40], Papageorgiou and
Saam [55]).

In 1989 de La Grandville considered the Solow model with a normalized CES function (equal to a
in the third case presented in Solow’s work) and showed that an higher elasticity of substitution
implies an higher capital per-capita level and he conjectured that the huge growth in Japan and
East Asian countries could had been due to an higher elasticity of substitution between capital and
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labour instead of a more e�cient technical progress or an higher savings rate. Rainer Klump and
Olivier de La Grandville considered a Solow type growth model and a normalized CES production
function and demonstrated that an economy with higher elasticity of substitution experiences a
higher level of per-capita income, both in transition and in steady state (Klump and La Grandville
[42]). They compared economies characterized by the same growth model and CES production
function, di↵erentiated only by the degree of elasticity of substitution.The same result was found
by Klump and Preissler [43].
In line with these researches Miyagiwa and Papageorgiou used the CES production function in
the Diamond overlapping-generation model (see Diamond [26]) to study economic growth and its
relation with elasticity of substitution between production factors (see Miyagiwa and Papageorgiou
[53]). Di↵erently from the other works, they found that, if capital and labour are relatively substi-
tutable, an higher elasticity of substitution between production factors leads to a lower output per
worker, both in transition and in steady state. They concluded that whether the economic growth
is positively or negatively a↵ected by the elasticity of substitution between production factors it
depends on the used setup, i.e. the Solow or the Diamond framework.

Recently several papers have considered the Solow-Swan model with Constant Elasticity of Sub-
stitution (CES) or the Variable Elasticity of Substitution (VES) production functions, in order
to analyze the long-run dynamics of the system when the elasticity of substitution is lower then
one, greater then one or even non constant (for CES see Brianzoni et al. [14, 18], Masanjala and
Papageorgiou [47] and Papageorgiou and Saam [55] while for VES see Brianzoni et al. [19] and
Karagiannis et al. [40]). Most of the cited works found that fluctuations and even more complex
dynamics may arise if the elasticity of substitution is su�ciently low. Evidently the elasticity
of substitution between production factors plays a crucial role in the theory of economic growth.
Moreover it represents one of the determinants of the long-run equilibrium level (for the correlation
between elasticity of substitution and capital per-capita levels see Klump and La Grandville [42]
and Miyagiwa and Papageorgiou [53]).

It is easy to see that accurate connection between endogenous economic growth and elasticity of
substitution can be determined when a framework with a CES production function is proposed. In
this case it is possible to investigate both long run dynamics and the relationship between elasticity
of substitution and economic growth. Di↵erently, with Variable Elasticity of Substitution produc-
tion functions such as the VES production function or the sigmoidal one, even if the qualitative
and quantitative long term dynamics have been widely studied, no attention has been paid to the
relation between variable elasticity of substitution and growth. This limitation is due to the fact
that with VES or other non-constant elasticity of substitution production functions the elasticity
itself depends on the level of capital per-capita. In fact, once we define the elasticity of substitution
as a variable depending on capital or output, the methodology used with CES production function
to investigate its relationship with economic growth loses e↵ectiveness. More precisely, with CES
production functions one investigates how the elasticity of substitution influences the long term
capital per-capita levels. Di↵erently, with VES or sigmoidal production functions this relation is
altered, since the same elasticity of substitution is a↵ected by the capital per-capita levels. Hence,
we pass from a unilateral a↵ect system (� ! kt) to a bilateral a↵ect system (� $ kt), where � is
the elasticity of substitution between production factors while kt represents the capital per-capita
level at a given time t 2 N.
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The choice to investigate the behaviour of the growth model considering a Variable Elasticity of
Substitution production function is due to the fact that many empirical studies prove that VES
(instead of CES) production functions are a better representation of reality. In 1968, Lovell [44]
rejected both the Cobb-Douglas and the CES specifications in favor of the VES production function
using data for two-digit U.S. manufacturing industries; the same result was obtained by Diwan [27]
for individual U.S. manufacturing firms, by Revankar [63] for the private non-farm sector of the U.S
and by Meyer and Kadiyala [50] using agricultural data. Evidences in favor of the VES production
function are also provided for Japanese (see Bairam [8] and Sato and Ho↵man [66]) and Soviet
(see Bairam [7]) economies, as well as for larger region data (see Karagiannis et al. [40]). All these
contributions uphold that the VES production function is a better representation of the elasticity
of substitution.

As a further step on the economic growth theory Kaldor ([38, 37]) proposed a Solow’s type growth
model in which the two income groups (labor and capital) might have di↵erent savings behaviour.
Consequently the investigation of the influence of di↵erential savings rates between workers and
shareholders arises in literature. Böhm and Kaas [12] studied the Kaldor model assuming a generic
production function satisfying the weak Inada conditions and showed that instability, fluctuations
and complex dynamics may emerge. Recently Brianzoni et al. [14, 15, 18] investigated Kaldor’s
growth model in discrete time with di↵erential savings and endogenous labour force growth rate
while assuming a CES production function. They found that the model can exhibit cycles or even
chaotic dynamic patterns. Moreover, Cheban et al. [22] investigated the neoclassical growth model
with the labour force dynamics described by the Beverton-Holt equation (see [9]) assuming a CES
production function. In both contributions the authors found that if the elasticity of substitution
is positive but su�ciently low, the economic patterns are bounded, and, if the elasticity of sub-
stitution is close to zero, the economic system can converge to a steady state characterized by no
capital accumulation. Tramontana et al. [72] used the Leontief production function and proved
that cycles and fluctuation can be exhibited if shareholders save more than workers. As a further
step in this field, the role of di↵erent VES production functions has been considered: Brianzoni et
al. [19] studied Kaldor model with Revankar [63] production function; they found that unbounded
endogenous growth is possible (di↵erently from CES) and fluctuations may arise if shareholders
save more than workers and the elasticity of substitution between production factors falls below
one. Similar results can be found considering non-concave production functions (see Brianzoni et
al.[16] and Michetti [51]).

As Azariadis and Stachurski [6] showed, concave neoclassical growth models don’t take in consid-
eration the di↵erences production technology between rich and poor countries while non-concave
growth models may generate persistent-poverty aggregate income data. In order to take into ac-
count the existence of poverty trap (the condition for which a country need a critical level of physical
capital before a growth dynamic could be observed), recently Brianzoni et al. [16] considered a non-
concave production function. Also for non developed or developing countries complicated dynamics
emerge if the elasticity of substitution is su�ciently low confirming that the elasticity of substitu-
tion is responsible for the creation and propagation of complexity.

In the first part of this work a way to establish a relation between the elasticity of substitution
between production factors and the long term growth dynamics when dealing with a non-constant
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elasticity of substitution production function is suggested. While with CES production functions,
whatever the attractor, the elasticity between production factors is a constant, with VES or sig-
moidal production functions � depends on the output kt and hence on the long term dynamics
exhibited by the model, fixing a contrast in measuring the output variation depending on the elas-
ticity of substitution. The method introduced will be used to analyze the relation between the
elasticity of substitution and capital per-capita levels considering Kaldor’s growth model [37] and
the Variable Elasticity of Substitution (VES) production function in intensive form with constant
return to scale, as given by Revankar (see Revankar [62] and Karagiannis et al. [40]). The purpose
is also to verify whether the main result obtained by Klump and La Grandville [42] using the CES
function still holds, i.e. if greater elasticity of substitution implies higher equilibrium levels also
with VES, so as to extend the study in Brianzoni et al. [19]. It is demonstrated that, when the long
run dynamics are simple, then there exists a positive correlation between elasticity of substitution,
capital and output per-capita associated to the attractor. On the other hand, when the economic
patterns exhibit cycles or more complex dynamics, an ambiguous relation between elasticity of
substitution and the asymptotic dynamics is shown.

In the second part of this work the discrete time one-sector Solow-Swan growth model with dif-
ferential savings as given by Böhm and Kaas [12] is studied while assuming that the technology is
described by the Shifted Cobb-Douglas (SCD) production function as proposed by Capasso et al.
[20]. As in Brianzoni et al. [16, 17] the use of a non-concave production function states the ex-
istence of a poverty trap. Notice that whereas CES and VES production functions well describe
developed economies but they are not able to explain dynamics related to non developed countries,
the SCD production function implies a minimum level of physical capital essential for production,
a requirement of capital needed in order to observe increasing returns. This kind of production
function is often considered in literature in order to describe the growth dynamics of developing
countries. Indeed, as Azariadis and Stachurski [6] thoroughly explain, poor economies are often
characterized by market failure, ine�cient practices, ”institution failure” and also social norms and
conventions which cause the well know ”vicious circle of poverty”. This considerations make the
model economically significant in order to analyze the growth dynamics of developing countries:
can a poor economy escape from poverty trap? Which is the required initial investment? If a
developing country has passed the poverty trap just now, could it’s economy fall down again into
it? We shall try to answer these questions.
From the mathematical point of view, when the SCD production function is considered the re-
sulting model is described by a discontinuous map, a type of framework recently considered in
several economic models (see, among all, Böhm and Kaas [12] and Tramontana et al. [72, 74, 73])
since recent mathematic tools allow to investigate economic phenomena defined by discontinuous
systems. The main goals are to describe the qualitative and quantitative long run dynamics of the
growth model and to evaluate the relation between elasticity of substitution and capital per-capita
equilibrium levels in not well developed countries. The results of the analysis show that complex
dynamics, multistability phenomena and non-connected basin of attraction may emerge. Moreover,
as in Klump and La Grandville [42], a positive correlation between elasticity of substitution and
long term dynamics is exhibited.

The third part of this work extends previous literature on economic growth by examining the
neoclassical one-sector growth model with di↵erential savings while assuming that technology is
described by the Kadiyala [36] production function: a VES production function whom property
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is to present elasticity of substitution symmetric with respect to input factors, fixing monotony’s
critic moved to main VES functions. The aim of the work is to investigate how the elasticity of
substitution between capital and labour and savings rate of capitalists (shareholders) and workers
influence the speed with which economies grow, the existence of poverty traps and the occurrence
of fluctuating long run behaviours.
It is found that when the elasticity of substitution between labour and capital is lower than one
the growth path for non-developed countries is influenced only from investments made by capitalist
while for developed economies the level of capital increase only for higher values of the savings rate
of workers.
As in Chakraborty [21] poverty traps may result if savings and investment rates are low despite the
absence of ine�cient technology, mainly considered the source of ”vicious circle of poverty” (see
among all Capasso et al. [21] and Azariadis and Stachurski [6]).
In addition qualitative and quantitative dynamics of the model are analyzed: multistability phe-
nomena, fluctuation and complex dynamics can be observed if elasticity of substitution is lower
than one, confirming results obtained with di↵erent technologies.

This work is organized as follow: in the first chapter of this study the definitions of single-value
measures associated to an attractor are proposed and a method to measure the elasticity of substi-
tution associated to an attractor is suggested. It is highlighted how this technique make it possible
to compare models with VES, sigmoidal and CES production functions. The relation between elas-
ticity of substitution and capital per-capita equilibrium levels considering Kaldor’s model with VES
production function [62] is investigated by using both analytical tools and numerical techniques;
to this aim the new measuring method proposed is applied. In the second chapter the Kaldor
model with Shifted Cobb-Douglas is presented and its proprieties are discussed. The existence and
the stability of the steady states are analyzed and the possibility of multiple equilibria, complex
dynamics and also complex basins are demonstrated. In the third chapter the influence of savings
rates on the growth path of the Kaldor model with Kadiyala production function is analyzed. The
dynamical behaviour of the framework is investigated and complex dynamics and multistability
phenomena are discussed. Chapter 5 conclude the work.
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2 Measures of elasticity of substitution and equilibrium lev-

els associated to attractors

2.1 Preliminaries

Consider a discrete time setup in which kt =
K

t

L
t

� 0 is the capital per-capita at time t 2 N, where
Kt is the stock of capital and Lt is the labour force. Let �(kt) : R+ ! R be the elasticity of
substitution between production factors, that is, if f(kt) : R+ ! R is the production function, then
�(kt) represents a measure of the ease with which capital and labour can be substituted in f(kt).
More precisely �(kt) represents the elasticity of output per-capita with respect to the marginal
product of labour (see Hicks [33] and Robinson [65]). Notice that if �(kt) is continuous and twice
di↵erentiable, then �(kt) is calculated as follows (see Sato and Ho↵man [66]):

�(kt) =
�f 0(kt)[f(kt)� f 0(kt)kt]

f(kt)f 00(kt)kt
. (1)

As an example, if f(kt) is of CES type, i.e. f(kt) = (1 + kpt )
1
p , then �(kt) =

1
1�p 8kt � 0, that is

the elasticity of substitution between production factors does not depend on the capital per-capita
level. Di↵erently, if f(kt) has a di↵erent form, then �(kt) could no longer be constant. Consider,
for instance, the following functions.

(i) The VES production function proposed by Revankar is given by:

f(kt) = Akat [1 + bakt]
1�a , A > 0, 0 < a < 1, b � �1,

1

kt
� �b (2)

hence
�(kt) = 1 + bkt (3)

(it has been considered in growth models such as in Brianzoni et al. [19], Cheban et al. [22],
Karagiannis et al. [40] and Grassetti et al. [29]).

(ii) The SIGMOIDAL production function can be formalized as:

f(kt) =
↵kpt

1 + �kpt
, ↵ > 0, � > 0, p � 2

so that

�(kt) = 1 +
�pkpt

p(1� �kpt )� (1 + �kpt )
(4)

(this function has been used in growth models such as in Capasso et al. [20], Brianzoni et al.
[16], Michetti [51] and Brianzoni et al. [17]).

In both cases (i) and (ii), � is a function of kt.
Consider now a discrete time growth model kt+1 = �(kt), kt 2 R+, describing the evolution of
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capital per-capita kt, t 2 N (and consequently of output yt = f(kt)). For instance one can consider
the Solow-Swan growth model given by

kt+1 = �(kt) =
1

1 + n
[(1� �)k + sf(kt)]

where n � 0 is the constant population growth, � 2 (0, 1) is the depreciation rate of capital and
s 2 (0, 1) is the constant saving rate (see [67], [53], [55] and [16]); or the more recent Bhöm and
Kaas Solow-Swan growth model with di↵erential savings given by

kt+1 = �(kt) =
1

1 + n
[(1� �)kt + sw(f(kt)� ktf

0(kt)) + srktf
0(kt)]

(see [38], [37], [56], [12], [18], [19], [51] and [17]) where sw and sr are respectively the savings rate
of workers and shareholders.
In all these cases the one dimensional map kt+1 = f(kt) describing the evolution of capital per-
capita over time depends on both the capital per-capita and the elasticity of substitution between
production factors, i.e. kt+1 = �(kt,�(kt)). Given function f , the main focus of economic growth
studies is to investigate the long term dynamics produced by �(kt) for a given initial state k0 > 0.
By following Medio and Lines [49], we recall the definition of an attractor for a discrete time dynamic
system.

Definition 2.1. Let ⌦ be the state space and define !(x) as the set of all !-limit points of x for a
map. A compact invariant subset of the state space ⇤ ⇢ ⌦ is said to be an attractor if

(i) its basin of attraction, or stable set, B(⇤) = {x 2 ⌦ |!(x) ⇢ ⇤}, has strictly positive Lebesgue
measure;

(ii) there is no strictly smaller closed set ⇤0 ⇢ ⇤ so that B(⇤0) coincides with B(⇤) up to a set of
Lebesgue measure zero.

In particular, if we consider the map kt+1 = �(kt), where the state space is given by R+, then
the attractor ⇤ can be a fixed point (therefore ⇤ = k⇤), or it can be a n-cycle (so that ⇤ = cn =
{k⇤1 , k⇤2 , . . . , k⇤n}), or a more complex set. If limt!1 f t(k0) = +1 8k0 2 I(k0, r) \ R+, then we
state ⇤ = (1).

Consider ⇤ = k⇤ and assume that �(kt) = � 8kt, that is the elasticity of substitution between
production factors is constant. Then if the capital per capital level increases (decreases) when the

elasticity of substitution increases, i.e. @k⇤(�)
@� > 0 (resp. <), we can conclude that the elasticity of

substitution between production factors positively (resp. negatively) a↵ects the capital per-capita
equilibrium value 8k0 2 B(k⇤). However, if ⇤ is not a fixed point, then a first question that arises
is how to measure the attractor of f . Secondly, if di↵erent attractors coexist, each one with its
own basin, a second question that arises is which attractor must be considered in order to establish
the relation between � and ⇤. Finally, the most important question to be considered is how to
inspect the relation between elasticity of substitution and long term growth dynamics when also
� depends on kt. In what follows we will suggest a way to tackle these questions. Recall that the
elasticity of substitution between inputs measure the ease in which capital can be substituted by
labour in production. Therefore, during boom and bust periods, the measures we will define in
the following can be used by governments to evaluate economic policies able to reallocate resource
between inputs with the purpose of reducing costs while avoiding losses in production.
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2.2 Definitions

In this section some definitions are given in order tomeasure the asymptotic states and the elasticity
of substitution associated to an attractor in an economic growth model and explain their relation.

2.2.1 Attractors and equilibrium levels

Recall that the economic growth model is given by kt+1 = �(kt,�(kt)), therefore - whichever the
production function (whether a constant or a non-constant elasticity of substitution production
function) - the capital per-capita at time t+1 is equal to �(kt,�(kt)). The prevailing interest is to
inspect the long term dynamics of the economic growth model, that is to investigate the structure
of the attractor of map f in the long term for an economic meaningful initial capital per-capita
level k0 > 0.
When the attractor is a fixed point ⇤ = k⇤, the measure of the long term capital per-capita level is
basic and exact being, indeed, equal to the fixed point itself. However, when the attractor consists
of a more complex set, as a cycle or a complex attractor, its measure is not so immediate. Therefore,
we propose a method to measure the attractor of the dynamic system using a synthetic one-value
index.

Definition 2.2. Let kt+1 = �(kt,�(kt)), f : A ✓ R+ ! R+ be a discrete time one-dimensional
system describing the evolution of capital per-capita kt, where �(kt) is the elasticity of substitution
depending on kt and t 2 N.

• If the attractor is ⇤⇤ = k⇤, then the measure of capital per-capita level associated to the
attractor is

k⇤⇤ = k⇤.

• If the attractor is ⇤1 = +1, then the measure of capital per-capita level associated to the
attractor is

k⇤1 = +1.

• If the attractor is a periodic cylce ⇤c
n

= cn = {k⇤1 , k⇤2 , . . . , k⇤n}, then three measures of the
capital per-capita level associated to the attractor can be given:

– the maximum capital per-capita level associated to ⇤c
n

kM⇤
c

n

= max {k⇤i : k⇤i 2 ⇤c
n

};

– the minimum capital per-capita level associated to ⇤c
n

km⇤
c

n

= min {k⇤i : k⇤i 2 ⇤c
n

};

– the average capital per-capita level associated to ⇤c
n

k̄⇤
c

n

=
1

n

n
X

i=1

k⇤i , k⇤i 2 ⇤c
n

.
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• If the attractor is a complex set, then it can be described by the following set

⇤c
x

= {ki : ki = f i(k0), N � p  i  N, k0 2 B(⇤c
x

)} .
i.e. ⇤c

x

is given by the last p k�values obtained by iterating the system N times (where
N � p are conveniently chosen, su�ciently high natural numbers) and three measures of
capital per-capita level can be associated to the attractor:

– the maximum capital per-capita level associated to ⇤c
x

kM⇤
c

x

= max {ki : ki 2 ⇤c
x

};
– the minimum capital per-capita level associated to ⇤c

x

km⇤
c

x

= min {ki : ki 2 ⇤c
x

};
– the average capital per-capita level associated to ⇤c

x

k̄⇤
c

x

=
1

p

N
X

i=N�p

ki, ki 2 ⇤c
x

.

With the previous definitions we established a method to measure the long term capital per-capita
equilibrium in the case in which the attractor is a fixed point or a cycle or a more complex set. In
the same line, we now expound how to measure the elasticity of substitution by taking into account
the long term dynamics of the growth model.

2.2.2 Attractors and elasticity of substitution

As for the long term capital per-capita equilibrium, a measurement issue arises when attempting to
measure the non-constant elasticity of substitution associated to an attractor. Also when measuring
the elasticity of substitution between production factors one face a hurdle when the dynamics of the
economic growth model are analyzed and the elasticity of substitution is associated to an attractor
that may be complex. Recalling definition 2.2, the following definition determines a method to
measure the elasticity of substitution associated to an attractor in the case in which function �
depends on the capital per-capita level.

Definition 2.3. Let kt+1 = �(kt,�(kt)) be a discrete time one-dimensional system describing the
evolution of capital per-capita and consider definition 2.2.

• If the attractor is a fixed point k⇤, the elasticity of substitution associated to the attractor is

�⇤⇤ = �(k⇤⇤) (where k⇤⇤ = k⇤) ;

• If the attractor is ⇤1 = +1, the elasticity of substitution associated to the attractor is

�⇤1 = lim
k
t

!+1
�(kt)

if such a limit exists.
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• If the attractor is a n-cycle, three measures of elasticity of substitution can be associated to
the attractor:

– the maximum elasticity of substitution associated to ⇤c
n

�M⇤
c

n

= max {�(k⇤i ) : k⇤i 2 ⇤c
n

};

– the minimum elasticity of substitution associated to ⇤c
n

�m⇤
c

n

= min {�(k⇤i ) : k⇤i 2 ⇤c
n

};

– the average elasticity of substitution associated to ⇤c
n

�̄⇤
c

n

=
1

n

n
X

i=1

�(k⇤i ), k⇤i 2 ⇤c
n

.

• If the attractor is a complex set, three measures of elasticity of substitution can be associated
to the attractor:

– the maximum elasticity of substitution associated to ⇤c
x

�M⇤
c

x

= max {�(ki) : ki 2 ⇤c
x

};

– the minimum elasticity of substitution associated to ⇤c
x

�m⇤
c

x

= min {�(ki) : ki 2 ⇤c
x

};

– the average elasticity of substitution associated to ⇤c
x

�̄⇤
c

x

=
1

p

N
X

i=N�p

�(ki), ki 2 ⇤c
x

.

Since the elasticity of substitution seems to be a determinant of economic growth, we fixed the
fundamentals to compare how the elasticity of substitution a↵ects the growth process when a VES
instead of CES production function is considered.

2.2.3 Measures of elasticity of substitution and capital per-capital level on the at-

tractors

One of the fundamental topics linked to the research on economic growth models is to inspect
how the elasticity of substitution a↵ects the capital per-capita equilibrium level. As seen, the
elasticity of substitution between production factors is given by (12). Consider a CES production
function, then �(kt) = � 8kt � 0 that is the elasticity of substitution does not depend on kt.
Therefore, it is easy to verify what occurs to long term dynamics (and hence to economic growth)
when varying the elasticity of substitution (se [42], [43] and [53]). What is the relation between
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elasticity of substitution and the long term dynamics of economic growth models when a non-
constant production function is considered?
We take as examples the elasticity of substitution as given in (3) and (4):

�(kt) = 1 + bkt and �(kt) = 1 +
�pkpt

p(1� �kpt )� (1 + �kpt )
.

In both cases � depends on k and some parameters of interest (b or p and � respectively). Given an
economic growth model �(kt, �) and an elasticity of substitution function �(kt, �) (where � is the
parameter of interest while the other parameters are fixed), the previous definitions can be used as
follows.

• Once the attractor ⇤ is determined, the capital per-capita level associated to the attractor
k⇤ can be obtained.

• Furthermore, the elasticity of substitution associated to the attractor �(⇤) can be computed
8� 2 I� ✓ R (where I� is the set of values that � can assume, according to the hypothesis of
the model).

• Finally it is possible to verify if - when � is moved - k⇤ and �⇤ move in the same direction,
so that k⇤ and �⇤ are positively correlated, or if k⇤ and �⇤ move in the opposite directions,
so that k⇤ and �⇤ are negatively correlated.

2.3 Application on Kaldor model

Thanks to the definitions given above, we can now analyze the relation between the elasticity of
substitution between production factors, long term dynamics and economic growth when a produc-
tion function with non-constant elasticity of substitution is taken into account. In this section we
present an applied example. In Brianzoni et al. [19] the dynamics of Kaldor’s growth model with
VES production function have been studied. The authors found all the attractors of the model
and demonstrated that complex dynamics may arise if the elasticity of substitution is positive and
lower than 1. However, they did not investigate the correlation between elasticity of substitution
and capital per-capital equilibrium levels nor the implication on economic growth.

2.3.1 Existence and stability of attractors

In this section we briefly recall both the economic setup and outcomes achieved by Brianzoni et al.
[19], in order to better explain how the new procedure herewith proposed can be applied. Consider
Kaldor’s [37] model, where workers and shareholders have di↵erent but constant saving rates. The
one-dimensional map describing the evolution of capital per-capita is given by

kt+1 =
1

1 + n
[(1� �)kt + sww(kt) + srktf

0(kt)]

14



where � 2 (0, 1) is the depreciation rate of capital, sw 2 (0, 1) and sr 2 (0, 1) are respectively
the constant savings rates for workers and shareholder, n > 0 is the constant population growth
rate and t 2 N. Wage rate w(kt) equals the marginal product of labour while the total capital
income per worker of a shareholder is given by ktf

0(kt). Furthermore, consider the Revankar [62]
production function, that is a VES production function, given by (2), where A > 0, 0 < a < 1,
b � �1 and 1

k
t

� �b.
When b > 0 the final growth model describing the capital per-capita evolution is given by

H(kt) =
1

1 + n

⇢

(1� �)kt +A

✓

kt
1 + abkt

◆a

[sw(1� a) + sr(a+ abkt)]

�

(5)

which is strictly increasing with respect to kt. Di↵erently, when �1  b < 0 the final growth model
is given by

�(kt) =

(

H(kt) 8kt 2 [0,� 1
b ]

H(� 1
b ) 8kt > � 1

b

(6)

that is a continuous and piecewise smooth map, nonlinear for kt 2 [0,� 1
b ] and with a flat branch

for kt > � 1
b . Furthermore the elasticity of substitution between production factors is defined in

(3). In what follows we briefly recall the main results reached in Brianzoni et al. [19].

Remark 2.4. Consider the economic growth model be given by H or F defined in (5) and (6).

(1) If b > 0, then:

(i) when n+�
A > (ab)�aasrb, H has one stable fixed point given by kt = k⇤ > 0 and one

unstable fixed point given by kt = 0;

(ii) when 0 < n+�
A < (ab)�aasrb, H has a unique, unstable, fixed point given by kt = 0.

(2) If b 2 [�1, 0), F has a non-di↵erentiable point given by P =
�� 1

b , F (� 1
b )
�

. Given M =
�� s

r

b

�a�1 s2
w

(1�a)+as
r

(s
w

�s
r

)
(s

w

�as
r

)a and N = sw[�b(1� a)]1�a, then:

(a) Consider sr < sw,

(i) if n+�
A 2 [0,M), F has one unstable fixed point given by k = 0 and one superstable

fixed point given by k⇤ = F (� 1
b );

(ii) if n+�
A 2 (M,N), F has two unstable fixed points given by k = 0 and k⇤2 2

⇣

� s
r

bs
w

,� 1
b

⌘

,

one locally stable fixed point given by k⇤1 2
⇣

0,� s
r

bs
w

⌘

and one superstable fixed point

given by k⇤ = F (� 1
b );

(iii) if n+�
A > N , F has one unstable fixed point given by k = 0 and one locally stable

fixed point given by k⇤1 2
⇣

0,� s
r

bs
w

⌘

.

(b) Consider sr � sw

(i) if n+�
A 2 [0, N), F has one unstable fixed point given by k = 0 and one superstable

fixed point given by k⇤ = F (� 1
b );

(ii) if n+�
A > N , F has one unstable fixed point given by k = 0 and one positive fixed

point given by k⇤ 2 �

0,� 1
b

�

. Moreover
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· if � 1
b < F

�� 1
b

�

, k⇤ is superstable;

· if � 1
b > F

�� 1
b

�

, k⇤ may be unstable and complex dynamics may be exhibited.

Now that we have recalled the results obtained by Brianzoni et al. [19] on local and global dynamics,
we can move on to our study to verify how the elasticity of substitution a↵ects Kaldor’s growth
model with VES production function.

2.3.2 Elasticity of substitution associated to the attractors. Measures

In this section we want to establish if, when complex attractors emerge, the capital per-capita equi-
librium level and the elasticity of substitution associated to the attractor are positively correlated,
negatively correlated or not correlated. From Brianzoni et al. [19] we know that, when b 2 [�1, 0)
and sr � sw, if

n+�
A > N and � 1

b > F
�� 1

b

�

, then the positive fixed point may lose stability, so the
economy fluctuates and cycles or more complex dynamics can be exhibited.

In order to analyze the attractors of map F while moving b, we proceed by making use of numerical
experiments. Therefore, we fix all the parameters in F except for parameter b by considering
the values available from international economic databases. For parameters s (saving rate) and
n (exogenous labour growth rate) we consider the values given by OECD1, Eurostat2 and World
Bank3 for the annual saving rate from 1995 to 2014 (excluding negative values, as the growth
model requires). For parameter A (total factor productivity index) we consider the estimate given
by OECD4 from 1993 to 2014. Therefore, the following table of admissible values for the parameters
is assumed.

Parameter Range value

Saving rate s 2 [0.00015, 0.59]
Labor growth rate n 2 [0.00002, 0.27346]
Total factor productivity A 2 [56.8, 106]

We fix A = 57, n = 0.2, sw = 0.01 and sr = 0.05. Moreover we set a = 0.85 and b 2 [�0.6,�0.2) in
order to assure that conditions (b.ii) of Remark 2.4 are satisfied. As it has been proved in Brianzoni
et al. [19], in this case complex dynamics may occur, as we can observe in Figure 1.
We can now use the definitions given in section (2.2.1) to measure the attractors of the dynamic
system. Figure 2 panel (a) shows the maximum capital per-capita level (blue line), the minimum
capital per-capital level (green line) and the average capital per-capita level (red line) associated
to the attractor.

1For saving rate see ”OECD (2016), Saving rate (indicator). doi: 10.1787/↵2e64d4-en”; for labour growth rate
see ”OECD (2016), Labour force (indicator). doi: 10.1787/ef2e7159-en”.

2For saving rate see ”Eurostat, Household saving rate, code: tsdec240”; for labour growth rate see ”Eurostat,
LFS main indicators, code: lfsi-act-a”.

3For saving rate see ”Gross savings, World Bank national accounts data, Catalog Sources: World Development
Indicators”; for labour growth rate see ”Labor force, International Labour Organization using World Bank population
estimates, Catalog Sources: World Development Indicators”

4See ”OECD (2016), Multifactor productivity (indicator). doi: 10.1787/a40c5025-en”.
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Figure 1: Bifurcation diagram w.r.t. b.

Thanks to the graphical analysis we can observe that the minimum capital per-capita level associ-
ated to the attractor increases as parameter b increases. For the maximum capital per-capita level
associated to the attractor, a change in the curve slope can be observed in correspondence with
the border collision bifurcation5, as it can be seen in Figure 2 panel (b). In Figure 2 panel (d),
the behaviour of the average capital per-capita level associated to the attractor can be observed:
an increasing trend is visible in the sequence of the period doubling bifurcation cascade. We can
conclude that, where a trend is visible, the capital per-capita level increases as the parameter asso-
ciated to the elasticity of substitution is increased.
It is of importance to highlight that we are in a simplified state of definition (2.3), being the elasticity
of substitution given by (3) a linear function; indeed the following proposition holds.

Proposition 2.5. Let �(kt) be a linear function of kt and let the elasticity of substitution associated
to an attractor �⇤ be as defined in (2.3). Then:

• �M⇤
c

n

= �(kM⇤
c

n

);

• �m⇤
c

n

= �(km⇤
c

n

);

• �̄⇤
c

n

= �(k̄⇤
c

n

);

• �M⇤
c

x

= �(kM⇤
c

x

);

5About the border collision bifurcation occurring in the present model see Brianzoni et al. [19].
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Figure 2: Bifurcation diagram w.r.t. b and maximum (blue), minimum (green) and average (red)
capital per-capita level associated to the attractor.

• �m⇤
c

x

= �(km⇤
c

x

);

• �̄⇤
c

x

= �(k̄⇤
c

x

).

Proof. Being the elasticity of substitution a linear function, for every set K = {k1, k2, . . . kn} and
S = {�1,�2, . . . ,�n} (with �i = �(ki), ki 2 K),

• max{�i 2 S} = �(kM )|kM 2 K being kM � ki 8ki 2 K;

• min{�i 2 S} = �(km)|km 2 K being km  k 8ki 2 K;

• �̄ = �(k̄), where �̄ = 1
n

Pn
i=1 �i and k̄ = 1

n

Pn
i=1 ki.

In Figure 3 panel (a) the behaviour of the elasticity of substitution associated to the attractor can
be observed.
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Figure 3: Maximum (blue), minimum (green) and average (red) elasticity of substitution and capital
per-capita level (dashed) associated to the attractor.

Following the definitions given in proposition 2.5, we show the maximum elasticity of substitution
associated to the attractor (�M⇤) (blue line), the minimum elasticity of substitution associated
to the attractor (�m⇤) (green line) and the average elasticity of substitution associated to the
attractor (�̄⇤) (red line). We can observe the relation between the capital per-capita level and
the elasticity of substitution associated to the attractor when moving parameter b. As far as the
maximum capital per-capita level and its elasticity of substitution are concerned, in Figure 3 panel
(b) it can be observed that both values increase when moving parameter b. A di↵erent behaviour is
exhibited for the minimum capital per-capita level associated to the attractor and its elasticity of
substitution, as it is shown in Figure 3 panel (d): a negative correlation between the two values is
visible along the path until the border collision bifurcation occurs. Lastly, in Figure 3 panel (d), the
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relation between average capital per-capital level and the associated elasticity of substitution can
be observed. Similarly to the minimum capital per-capita level a negative correlation is exhibited
up to the border collision bifurcation. Notice that when the attractor is a fixed point, maximum,
minimum and average capital per-capita level coincide and a positive correlation is shown.

To summarize, we disclose a numerical simulation in order to analyze the relation between the
capital per-capita level associated to the attractor and the elasticity of substitution, when map F
exhibits cycles and more complex dynamics. We observe that the maximum, minimum and average
capital per-capita level associated to the attractor increase as the parameter b is increased.

Furthermore, we find a positive correlation between maximum capital per-capita level associated
to the attractor and its elasticity of substitution. This result is similar to that obtained by Klump
and La Grandville [42] using a CES production function in the Solow model: if two economies
di↵er only for the level of their elasticity of substitution, the economy with the higher elasticity of
substitution will have the higher capital per-capita level in the steady state. Conversely from Klump
and La Grandville [42], a negative correlation between minimum and average capital per-capita level
associated to the attractor and their elasticity of substitution is shown along the path.
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3 Long run dynamics of Kaldor model with Shifted Cobb-

Douglas technology

3.1 The economic setup

Consider the discrete time neoclassical one-sector growth model as proposed by Böhm and Kaas [12]:
following Kaldor [38, 37] and Pasinetti [56] workers and shareholders have di↵erent but constant
saving rates (respectively sw and sr), the labour force grows at rate n and � is the depreciation
rate of capital. Moreover, shareholders receive the marginal product of capital f 0(k) and the total
capital income per worker is kf 0(k). We assume that the wage rate equals the marginal product of
labor, that is

w(k) = f(k)� kf 0(k). (7)

Following Böhm and Kaas [12], the map describing the capital accumulation over time t 2 N is
given by

kt+1 = �(kt) =
1

1 + n
[(1� �) kt + sww(kt) + srktf

0(kt)] , kt � 0 (8)

where n � 0, � 2 (0, 1], sw 2 (0, 1) and sr 2 (0, 1). Following Capasso et al. [20] we consider
a Shifted Cobb-Douglas (SCD) production function that is a continuous non-concave and non-
di↵erentiable production function stating the existence of a critical level of capital needed before
to get returns. This production function, di↵erently from concave ones, well describes also non-
developed countries since it takes in consideration the realistic need to establish a basic structure
for production (as machineries and infrastructures) in order to obtain output. The SCD production
function in its intensive form is given by

f(kt) =

(

0 0  kt  kc

A(kt � kc)↵ kt > kc
(9)

where A > 0 is the total productivity factor and 0 < ↵ < 1 is the output elasticity of capital. kc � 0
is the critical level of capital per-capita delimiting the poverty trap, that is the minimum capital
per-capita initial level causing increasing returns since, when a country with almost no physical
capital is considered, an initial investment is required before production (see Figure 4 (a)).

Notice that if kc ! 0+, then f(kt) approaches the Cobb-Douglas production function, therefore
f(kt) can be considered as a generalization of the well-known Cobb-Douglas production function.
Moreover

f 0(kt) =

(

0 0 < kt < kc

↵A(kt � kc)↵�1 kt > kc
.

In order to assure non-negative wage and the framework having an economic meaning we assume
that if f(k)� kf 0(k) < 0 then the resulting wage is equal to zero, hence

w(kt) =

(

0 0  kt  kw

A(kt � kc)↵�1[(1� ↵)kt � kc] kt > kw
(10)
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Figure 4: Common parameter values: n = 0.3, � = 0.4, sw = 0.6 and sr = 0.7. (a) SCD
production function. Parameter values: ↵ = 0.3, A = 1.2 and kc = 0.4. (b) The final map for
capital accumulation. Parameter values: ↵ = 0.5, A = 2.122 and kc = 0.4. (c) The elasticity of
substitution. Parameter values: ↵ = 0.3, A = 1.2 and kc = 0.2.

where kw = k
c

1�↵ > kc. Taking into account equations (8), (9) and (10), the final one dimensional
map describing the capital per-capita evolution is given by:

kt+1 = �(kt) =

8

>

>

<

>

>

:

1��
1+nkt 0  kt  kc
1

1+n [(1� �)kt +A↵srkt(kt � kc)↵�1] kc < kt  kw
1

1+n

n

(1� �) kt +A s
w

(k
t

�k
c

)+↵(s
r

�s
w

)k
t

(k
t

�k
c

)1�↵

o

kt > kw

. (11)

We now discuss the main properties of map �(kt), i.e. the Solow-Swan growth model in the
form given by Böhm and Kaas [12] with SCD as proposed by Capasso et al. [20]. Map � is non
negative, defined in R+ and it is discontinuous in kt = kc since limk

t

!k�
c

�(kt) = 1��
1+nkc and

limk
t

!k+
c

�(kt) = +1, while it is continuous in kw being limk
t

!k�
w

�(kt) = limk
t

!k+
w

�(kt) =

1
1+n

h

1��
1�↵kc +A

⇣

↵
1�↵kc

⌘↵i

; furthermore limk
t

!+1 �(kt) = +1 (see Figure 4 (b)). Observe that,
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for any fixed value of kt, the capital per-capita level at time t + 1 is always negatively influenced
by the labour force growth rate (n) and the depreciation rate of capital (�), whereas - passed the
poverty trap i.e. kt < kc - it is positively a↵ected by the total productivity factor (A). Furthermore,
for well developed countries, i.e. kt > kc with k high enough, the higher the di↵erence between
workers and shareholders saving rates, the higher the capital per-capita at time t+ 1.

Recall that the elasticity of substitution between production factors for nonlinear production func-
tion is defined as follows (see Sato and Ho↵man [66]):

�(kt) = �f 0(kt)[f(kt)� f 0(kt)kt]

f(kt)f 00(kt)kt
. (12)

and it is the measure of the ease in which capital and labour can be substituted in production.
Being

f 00(kt) = A↵(↵� 1)(kt � kc)
↵�2 kt > kc

and being � = +1 for linear production functions, the elasticity of substitution between production
factors for the SCD can be easily calculated and it is given by

�(kt) =

(

+1 0 < kt < kc

1� k
c

(1�↵)k
t

kt > kc
.

Observe that f(kt) belongs to the class of Variable Elasticity of Substitution (VES) production
functions, as �(kt) depends on the level of capital per-capita kt. Moreover �(kt) is discontinu-
ous in kt = kc being limk

t

!k�
c

�(kt) = +1 whereas limk
t

!k+
c

�(kt) = �↵
1�↵ < 0. Furthermore

limk
t

!+1 �(kt) = 1. Notice that if kt > kw > kc then �(kt) > 0, whereas if kc < kt < kw then
�(kt) < 0 (the graph of �(kt) is in Figure 4 (c)). Notice also that � is always lower then 1 for
kt > kc. For what it concerns the sign of � we observe that even if a negative elasticity of substitu-
tion between production factors is not conventional, several production functions in literature show
negative elasticity of substitution (see Prywas [59], Andrikopoulos et al. [3], Thompson and Taylor
[71], Nguyen and Streitwieser [54], Stern [68], Hamilton et al. [31] and Jurgen [35]), for instance,
as suggested by Paterson [57], a negative elasticity of substitution can occur if complementary in-
puts are considered. Therefore, a negative elasticity of substitution between production factors for
kc < kt < kw suggests that in the early stages of production, immediately outside the poverty trap,
capital and labour are complementary and not replaceable.
As it has been discussed, map � is defined in R+ and it is discontinuous in kt = kc. Map � = 0 i↵
kt = 0, hence it passes through the origin. This is a trivial condition for economic growth models as
no capital can be produced without capital. Moreover, map � is always not negative. For kt  kc,
map � is a linear function passing through the origin with slope m = 1��

1+n . Note that m is positive
and lower then 1, moreover it increases as � or n decreases. Firstly we compute the derivative for
map � that is given by

�0(kt) =

8

>

>

<

>

>

:

1��
1+n kt < kc
1

1+n

n

1� � + ↵A
h

s
r

(↵k
t

�k
c

)
(k

t

�k
c

)2�↵

io

kc < kt < kw

1
1+n

n

1� � + ↵A
h

s
r

(↵k
t

�k
c

)+(1�↵)s
w

k
t

(k
t

�k
c

)2�↵

io

kt > kw

. (13)
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Notice that � is non-di↵erentiable in kw and hence if an attractor A exists and kw 2 A its stability
must be discussed separately. For what it concerns the behaviours of map � for su�ciently high
levels of capital per capita we observe that 8k > kc function � may be strictly decreasing or it may
present a turning point, i.e. a minimum point, as the following proposition states.

Proposition 3.1. Let � as given by (11). Assume kp = s
r

k
c

↵s
r

+(1�↵)s
w

and v = ��1
A . Then function

� is unimodal for kt > kc with minimum point kmin.

Proof. We define the function

G(k) =

(

sr↵(k � kc)↵�1 kc < k  kw
s
w

(k�k
c

)+↵(s
r

�s
w

)k
k(k�k

c

)1�↵

k > kw
(14)

where

G0(k) =

(

sr↵(↵� 1)(k � kc)↵�2 kc < k < kw
(↵�1)[s

w

+(s
r

�s
w

)↵]k2+(2�↵)s
w

k
c

k�s
w

k2
c

k2(k�k
c

)2�↵

k > kw
(15)

For k > kc function � may be written in terms of function G defined in (14) as follows

�(k) =
1

1 + n
{(1� �)k +AkG(k)} k > kc (16)

hence

�0(k) =
1

1 + n
{1� � +A[G(k) + kG0(k)]} k > kc, k 6= kw (17)

Then �0(k) = 0 i↵ G(k) + kG0(k) = ��1
A . Observe that G(k) + kG0(k) can be written as follows:

H(k) = G(k) + kG0(k) =

(

sr↵(↵k � kc)(k � kc)↵�2 kc < k < kw
↵{[s

w

+(s
r

�s
w

)↵]k�s
r

k
c

}
(k�k

c

)2�↵

k > kw

hence the turning points of � are solutions of

H(k) =
� � 1

A
. (18)

Function H(k) is such that limk!k+
c

H(k) = �1, moreover

H 0(k) =

(

s
r

↵(↵�1)(↵k�2k
c

)
(k�k

c

)3�↵

kc < k < kw
↵(1�↵){(2s

r

�s
w

)k
c

�[(1�↵)s
w

+↵s
r

]k}
(k�k

c

)3�↵

k > kw
.

Assume kp = s
r

k
c

↵s
r

+(1�↵)s
w

and z = sr(2↵� 1)
⇣

↵
1�↵kc

⌘↵�1
.

We first consider solutions of equation (18) for k 2 (kc, kw):
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(i) for ↵ > 1
2 , function H(k) < 0 i↵ kc < k < k

c

↵ , therefore H(k) can intersect the constant and

negative function v = ��1
A only in the interval I1 =

�

kc,
k
c

↵

�

. Moreover H 0(k) > 08k 2 I1 and
lim

k! k

c

↵

� H(k) = 0. So that H(k) = v has always one solution;

(ii) for ↵  1
2 , function H(k) < 08k 2 (kc, kw) = I2, H 0(k) > 08k 2 I2 and limk!k

w

H(k) = z, so
that H(k) = v has one solution in the interval I2 if v  z;

We now consider solutions of equation (18) for k > kw:

(iii) for ↵ < s
r

�s
w

2s
r

�s
w

and sr > sw, functionH(k) < 0 for k 2 (kw, kp) = I3, moreover limk!k+
w

H(k) =

z + (1 � ↵)sw
⇣

↵
1�↵kc

⌘↵�1
, limk!k�

p

H(k) = 0 and H 0(k) > 08k 2 I3 so that H(k) = v has

one solution in the interval I3 if v � z + (1� ↵)sw
⇣

↵
1�↵kc

⌘↵�1
.

Since z < z+(1�↵)sw
⇣

↵
1�↵kc

⌘↵�1
cases (ii) and (iii) can not occur simultaneously, and hence at

most one turning point may exists for ↵ < s
r

�s
w

2s
r

�s
w

. Notice that for z < v < z+(1�↵)sw
⇣

↵
1�↵kc

⌘↵�1

equation (18) has no solution. Nevertheless for these parameter values it has limk!k�
w

H 0(k) < 0
and limk!k+

w

H 0(k) > 0 and hence �(k) is unimodal with minimum point kmin = kw.

Note that if condition (i) holds then kmin < k
c

↵ , if condition (ii) holds then kmin  kw while if
condition (iii) holds then kmin 2 (kw, kp). In all other cases kmin = kw.

3.2 Long run dynamics

In this section we consider the question of the existence of steady states of system (11) and then
we discuss about the local stability.

3.2.1 Existence of equilibrium levels

The problem of finding the number of steady states is not trivial to solve, considering the high
number of parameters. As a general result, the map � always admits one fixed point characterized
by zero capital per capita, i.e. k = 0 is a fixed point for any choice of parameter values. Anyway,
steady states which are economically interesting are those characterized by positive capital per
worker. As previously underlined � is a discontinuous map. Moreover, no positive fixed point exists
for 0 < kt  kc, being 0 < 1��

1+n < 1. In order to determine the positive fixed points of � with kt > kc
we consider function G as given in (14). The positive steady states of map � are the solutions of
equation

G(kt) =
n+ �

A
. (19)

The following proposition concerning the number of steady states of the Solow growth model with
SCD and di↵erential saving can be proved.
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Proposition 3.2. Let � as given by (11).

Define g = n+�
A and kM = kc

(2�↵)s
w

+
p

↵s
w

[(4s
r

�3s
w

)↵�4(s
r

�s
w

)]

2(1�↵)[s
w

+(s
r

�s
w

)↵] .

(i) Assume sr � sw. Then � has two fixed points given by kt = 0 and k⇤ > kc. Moreover

(a) if g � G(kw), k⇤  kw;

(b) if g < G(kw), k⇤ > kw.

(ii) Assume sr < sw. Then

(a) if g > G(kM ) there exist two fixed points given by kt = 0 and k⇤ < kw;

(b) if g = G(kM ) there exist three fixed points given by kt = 0, k1 < kw and k2 = kM ;

(c) if G(kM ) < g < G(kw) there exist four fixed points given by kt = 0, k1 2 (kc, kw),
k2 2 (kw, kM ) and k3 2 (kM ,+1);

(d) if g = G(kw) there exist three fixed points given by kt = 0, k1 = kw and k2 > kM ;

(e) if g < G(kw) there exist two fixed points given by kt = 0 and k⇤ > kM .

Proof. kt = 0 is a solution of equation kt = �(kt) for all parameter values hence it is a fixed point
for all parameter values. Being 1��

1+n < 1, for all 0 < kt  kc map � does not intercept the main
diagonal. Function G is such that G(kt) > 08kt > kc, furthermore limk

t

!k+
c

G(k) = +1 while
limk

t

!1 G(kt) = 0. G(kt) is continuous in kw being limk
t

!k�
w

G(kt) = limk
t

!k+
w

G(kt) = G(kw) =

↵↵sr

⇣

k
c

1�↵

⌘↵�1
. Moreover G0(kt) is given in (15). We distinguish between the following cases.

(i) If sr � sw, G(kt) is strictly decreasing since G0(kt)  0 and G0(kt) = 0 at most in one point.
Hence G(kt) intersects the positive and constant function g = n+�

A in a unique value k⇤ > kc.

(ii) If sr < sw, 9kM > kw such that G0(kt) < 0 for kc < kt < kw _ kt > kM and G0(kt) > 0
for kw < kt < kM . The local minimum and maximum points of function G are given by

kw and kM = kc
(2�↵)s

w

+
p

↵s
w

[(4s
r

�3s
w

)↵�4(s
r

�s
w

)]

2(1�↵)[s
w

+(s
r

�s
w

)↵] respectively. Hence, if n+�
A > G(kM ) or

n+�
A < G(kw), then equation G(kt) intersects the positive and constant function g = n+�

A in
a unique positive value kt = k⇤ > kc. Whereas, if G(kw) < n+�

A < G(kM ) then equation
G(kt) = g admits three positive solutions k1, k2, k3, where k1 2 (kc, kw), k2 2 (kw, kM ),
k3 > kM . For g = G(kw) a border collision bifurcation occurs with the merging of the fixed
point with the kink point of � while for g = G(kM ) a fold bifurcation occurs since the constant
function g is tangent to G in the maximum point and it intersects function G in a second
point k⇤ < kw.

Taking into account Proposition 3.2, the Solow growth model with di↵erential saving and shifted
Cobb-Douglas production function always admits the equilibrium k = 0 moreover multiple equilibria
can exist: up to three positive fixed points are exhibited depending on the parameter values (see
Figure 5). Note that the necessary condition for the existence of more then one positive equilibria is
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sr < sw, moreover more than one positive fixed point can emerge for su�ciently high values of the
output elasticity of capital ↵. Note that these results agree with those obtained by Brianzoni et al.
[19] considering the Revankar ([63]) VES production function: up to three positive fixed points may
emerge if the elasticity of substitution is lower than one and workers save more than shareolders.
Di↵erently, when a CES production function is considered, at most two positive fixed point may
emerge (see Brianzoni et al. [14]).

Figure 5: Map � and its positive fixed points for kt > kc in case of sr < sw for the following
parameter values: � = 0.65, sw = 0.45, sr = 0.25, n = 0.45, A = 100, kc = 44. (a) One positive
fixed point for ↵ = 0.15, (b) two positive fixed points for ↵ = 0.275, (c) three positive fixed points
for ↵ = 0.4.

We want to highlight how the output elasticity of capital ↵ and the di↵erence between saving rates
influence the number of steady states. For this purpose we define �s = sr�sw, �s 2 (�sw, 1�sw).
Taking into account the conditions related to the existence and number of fixed points stated in
Proposition 3.2, it is possible to describe how the number of fixed points varies as the output
elasticity of capital ↵ or the di↵erence between saving rates �s is moved. To the scope we fix all
the parameter values but ↵ and �s and we consider several parameters combinations (�s,↵) taken
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on the set ⌦ = [�sw, 1� sw]⇥ [0, 1]. Define

C1 = {(↵,�s) 2 ⌦ : sr � sw = 0} (20)

C2 =

⇢

(↵,�s) 2 ⌦ :
n+ �

A
�G (kw) = 0

�

(21)

C3 =

⇢

(↵,�s) 2 ⌦ : G (kM )� n+ �

A
= 0, sr < sw

�

(22)

then curves C1, C2 and C3 separates the plane ⌦ into four regions: each region contains parameter
values corresponding to a case stated in Proposition 3.2.

Figure 6: Parameter values: � = 0.05, sw = 0.4, n = 0.05, A = 3, kc = 20. Number of fixed
points according to Proposition 3.2. In blue region 1 positive fixed point (cases (i.b) and (ii.e)), in
green region 1 positive fixed point (cases (i.a) and (ii.a)), in red region 3 positive fixed points (case
(ii.c)). Curves C1, C2 and C3 are defined respectively in equations (20), (21) and (22).

The three regions are depicted in Figure 6: points on the right of C1 curve verify the condition of
the case (i) while the left region contain the parameter values related to the case (ii). The curve C2

verifies the condition (ii.d) while the curve C3 verifies the condition (ii.b). Notice that the existence
of positive fixed points is due to high values of parameter ↵ combined with low values of parameter
�s.

3.2.2 Stability of equilibrium levels

We now discuss about the local stability of the steady states of map �. For what it concerns the
local stability of the steady state k = 0, the following proposition holds.

Proposition 3.3. Let � as given by (11). Then the equilibrium k = 0 is always locally stable.

Proof. Note that limk
t

!0+ �0(kt) =
1��
1+n 2 [0, 1) and consequently the origin is a locally stable fixed

point for map �.
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Notice that for all initial conditions k0  kc, map � behaves as a contraction map and the iterations
monotonically converge to k = 0. Therefore we define the poverty trap as a situation in which, at
the initial time, the capital per capita level is not high enough, i.e. k0  kc and such that in the
long term the economy will not survive. This result diverges from those obtained using a CES or
VES production function (see Brianzoni et al. [14, 18, 19] and Grassetti et al. [29]) since a poverty
trap exists (see also Capasso et al. [20] and Brianzoni et al. [16, 17]). Notice that CES and VES
production functions well describe developed economies but are not able to capture the vicious
circle of poverty that typically characterize non developed countries whereas the SCD production
function allows to consider this phenomenon. Therefore, the presence of a poverty trap threaten
the possibility of economic growth: economies starting from a low level of physical capital may
be captured by the poverty trap and consequently the dynamic of physical capital will converge
to zero. Note that for a small displacement from the stable equilibrium k = 0, the time trend of
the relative displacement is Tr = ( 1��

1+n )
t. Therefore, if an economy lies in the poverty trap, an

higher depreciation rate of capital or an higher labour force growth rate causes a faster return to
the steady state characterized by zero capital per-capita.

As the long term dynamics produced by the model are completely known for all initial capital
per per worker less then the threshold value kc, we now focus on the growth patterns concerning
su�ciently high initial states (i.e. k0 > kc).

For what it concerns the local stability of the positive hyperbolic steady state, the following propo-
sition holds.

Proposition 3.4. Let � as given by (11) and recall Proposition 3.2.

(i) Assume sr � sw. If k⇤ > kmin, the equilibrium k⇤ is locally stable. Otherwise �0(k⇤) < 0.

(ii) Assume sr < sw.

(a) Let g > G(kM ). Then, if k⇤ > kmin the equilibrium k⇤ is locally stable. Otherwise
�0(k⇤) < 0;

(b) Let G(kM ) < g < G(kw) then the fixed point k3 > kM > kmin is always locally stable
while the fixed point kw > k2 > kM is always unstable. Furthermore if k1 > kmin, the
equilibrium k1 is always locally stable, whereas, if k1 < kmin, then �0(k1) < 0;

(c) Let g < G(kw). Then the equilibrium k⇤ is locally stable.

Proof. Observe that �0(k) = 1 + A
1+nkG

0(k). Being G0(k⇤) < 0 for cases (i), (ii.a) and (ii.e) of

Proposition 3.2, then �0(k⇤) = 1+ A
1+nk

⇤G0(k⇤) < 1. Moreover � is unimodal with minimum point
kmin, so that if k⇤ > kmin then �0(k⇤) 2 (0, 1) whereas if k⇤ < kmin, �0(k⇤) < 0. In case (ii.c) k1
is stable if k1 > kmin while �0(k1) < 0 for k1 < kmin. Moreover being G0(k2) > 0 then �0(k2) > 1
and consequently k3 > k2 > kmin is locally stable being �(k) strictly increasing 8k > kmin.

Notice that multiple equilibria coexist and hence multistability phenomena may occur. Therefore
the global analysis of basins is mathematically significant (complex basins may exists) but especially
economically relevant since it allow to answer one of the fundamental answers concerning developing
countries and poverty trap: if an economy has a capital per capita level su�ciently high, i.e. k0 > kc,
could it avoid the poverty trap?
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Further considerations on the nature of the fixed points, their basins and their behaviour are debated
in the following section.

3.3 Complex attractors

In this section we analyze the qualitative asymptotic properties of map � using both numerical
simulations and analytical tools. Note that the map may show complex dynamics if a fixed point
is located on the decreasing branch (see Proposition 3.4). In order to consider the possibility of
complex attractors to emerge we analyze the case in which kmin > �(kmin). Since the analytic
form of function � is complicated, we cannot analytically describe this condition and the dynamic
behaviour has to be analyzed by numerical simulations.

Recall from Proposition 3.4 that, if a fixed point is placed in the interval (kc, kmin) it may be locally
stable or unstable and hence a more complex attractor A may appear. The following proposition
states the existence of a trapping interval for map �.

Proposition 3.5. Let � as given in (11). Assume kmin > �(kmin) and, if three positive fixed
points exists, let k2 > �(kmin). Then the set J = [�(kmin),�2(kmin)] is trapping.

Being � unimodal it admits a trapping set J under the conditions of Proposition 3.5, moreover
as J is trapping then if a complex attractor A exists, it must belong to it. Furthermore A must
attract the trajectory starting from the turning point kmin. Recall that if kmin > �(kmin), then
the eigenvalue of the fixed point placed on the decreasing branch of map � is negative and hence
it may lose stability only via period-doubling bifurcation. Notice that subsequent bifurcations may
be of the border collision type.

In Figure 7 we show three di↵erent staircase diagrams of map � with initial condition k0 = kmin and
hence belonging to the trapping set J . In panel (a) a stable fixed point is presented for ↵ = 0.5. In
panel (b) a stable cycle C2 of period 2 is reached for ↵ = 0.4. Complexity emerges as the parameter
↵ decreases and a complex attractor is visible in panel (c) for ↵ = 0.35. In order to discuss the
bifurcations leading to chaos within the trapping interval J defined in Proposition 3.5, we take in
consideration the role of the di↵erence between saving propensities and the elasticity of substitu-
tion. Figure 8 (a) contains the sequence of bifurcation of map � as the parameter �s is moved
while Figure 8 (b) shows the asymptotic dynamics versus the bifurcation parameter ↵.
In both the diagrams complex dynamics arise. Since f(kt) is a VES production function, we follow
the method presented in Chapter 1 in order to measure both the elasticity of substitution associ-
ated to the attractor and the capital per-capita associated to the attractor in order to analyze the
relation between elasticity of substitution and capital per-capita equilibrium levels. As Figure 9
shows, an higher capital per-capita equilibrium level is linked to an higher elasticity of substitution,
confirm the results obtained by Klump and La Grandville [42] considering the Solow growth model
with a normalized CES production function. Figure 10 presents a cycle cartogram showing a two-
parametric bifurcation diagram qualitatively: each color represents a long-run dynamic behaviour
for a given initial condition in the parameter plane (�s,↵). Cycles of di↵erent order are exhibited.
Notice that if ↵ is su�ciently small, then complex dynamics emerge if the di↵erence between work-
ers and shareholders is large enough. This result is in line with those obtained by Brianzoni et al.
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Figure 7: Staircase diagram of � being n = 0.3, � = 0.6, sw = 0.25, sr = 0.5, A = 5, kc = 5 and
i.c. k0 = kmin for di↵erent values of ↵. (a) ↵ = 0.5, stable fixed point. (b) ↵ = 0.4, stable 2-period
cycle. (c) ↵ = 0.35 complex attractor.

Figure 8: Parameter values n = sw = 0.3, � = 0.2, A = kc = 1 and k0 = kmin. (a) Bifurcation
diagram of � w.r.t. �s being ↵ = 0.2. (b) Bifurcation diagram of � w.r.t. ↵ being sr = 0.47.
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Figure 9: Capital per-capita associated to the attractor in panel (a) and elasticity of substitution
associated to the attractor in panel (b) overlapping the bifurcation diagram of Figure 8 (b).

Figure 10: (a) Cycle cartogram of map � in the plain (�s,↵) for � = 0.2, n = 0.3, A = kc = 1,
sw = 0.1 and i.c. k0 = 1.05. (b) An enlargement.

[14, 18, 19]. Note also that the elasticity of substitution increases as parameter ↵ decreases and
hence fluctuations arise when the elasticity of substitution between production factors is su�ciently
high (but still lower then one).

Di↵erently from previous literature, if the SCD production function is considered the Kaldor model
well describes the long run dynamics of non developed, developing and developed countries. In
particular it describes three di↵erent long run behaviour: convergence to the poverty trap, conver-
gence to cycle or more complex set in which the economy alternates boom and bust periods and
convergence to a positive capita per-capita value. Figure 11 shows a multistability phenomenon for
map � (about multistability see Bischi et al. [10], Brianzoni et al. [16, 17] and Sushko et al. [69]):
given the same parameter values and two di↵erent initial conditions, in panel (a) a stable 2-period
cycle is presented while panel (b) depicts the coexisting attractive fixed point.
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Figure 11: Staircase diagrams of � for two coexisting attractors. Parameter values � = 0.1, sw = 0.9,
sr = 0.05,↵ = 0.75, A = 14, kc = 90. (a) stable 2-period cycle. (b) stable fixed point.

3.4 Further developments

As further step the coexistence of attractors should be analyzed and compared with results obtained
VES production function where if a multistability phenomenon appear, attractors are only positive
fixed points.
Moreover several numerical experiments show that �(kmin) > �(kc) therefore �(kmin) and �(kc)
separate the set R+ in three subset: Z1 = [0, kc] [ (kmin), Z0 = (kc, kmin) and Z2 = (kmin,+1)
whose points have respectively one, zero and two rank-1 pre-images so that � is a Z1�Z0�Z2 map.
In this case complex basins may emerge. Their existence, structure and bifurcations as a parameter
varies should be studied. The implications of a negative elasticity of substitution between inputs
should be analysed.
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4 Long run dynamics of Kaldor model with Kadiyala tech-

nology

4.1 The economic setup

Consider the Kaldor [37] growth model in which the capital intensity k at time t+1 is equal to the
period-t capital intensity after depreciation plus investments made in period t, determined by the
savings behaviours of workers and shareholders. Therefore the accumulation law can be written as

kt+1 =
1

1 + n
((1� �)kt + s(kt)f(kt)), (23)

where s(kt) is the aggregate savings propensity, � 2 [0, 1] is the physical rate of capital depreciation
and n � 0 is the exogenous labour force growth rate.
The total income of shareholders is the marginal product of capital f 0(k) so that the capital income
per worker of a shareholder is ⇡(k) = kf 0(k) while the per-capita wage of a worker equals the
marginal product of labour w(k) = f(k)� kf 0(k).
Since a perfect competition on the capital market is assumed, the two income groups may have
di↵erent savings propensities: respectively sw 2 (0, 1) and sr 2 (0, 1) for workers and shareholders.
Then the total per-capita savings is sww(k) + sr⇡(k). Being f(k) = w(k) + ⇡(k), the aggregate
savings propensity can be written as

s(k) =
sww(k) + sr⇡(k)

f(k)
. (24)

Notice that s(k) is determined endogenously and depends on the income distribution and on the
two savings propensities. Substituting s(k) in equation (23) the time-one map describing capital
accumulation can be written as

kt+1 =
1

1 + n
((1� �)kt + sww(kt) + sr⇡(kt)) kt 2 R+. (25)

Observe that for sr = sw the aggregate savings propensities become constant and map (25) is
reduced to the so called Solow-Swan growth model (see Swan [70] and Solow [67]) that preclude the
possibility of fluctuation and complex dynamics, as previous literature demonstrates (see among all
Dechert [24]).
In this work we consider Kadiyala [36] production function in which elasticity of substitution varies
with the input ratio as one moves along the isoquant and it is symmetric to the end points 0 and 1.
Furthermore, Kadiyala production function is a generalization of CD and CES production functions
and it includes the Lu-Fletcher [45] production function as a special case. Kadiyala [36] production
function is given by

f(kt) = A(ak2⇢t + 2bk⇢t + c)
1
2⇢ kt > 0, (26)

where a, b and c are nonnegative, a+2b+ c = 1, A > 0, ⇢  1
2 , ⇢ 6= 0. Parameters a and c are share

parameters, b is a reaction parameter between capital and labor, A stands for the neutral technical
progress and ⇢ determines the degree of substitutability of the inputs. Notice that for ⇢ < 0, f(k)
is not defined in k = 0, moreover limk!0 f(k) = 0 so that function (26) can be extended to the
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origin in case of ⇢ < 0 by defining f(0) = limk!0 f(k). The extended function is given by

f̄(kt) =

(

0 k = 0

f(kt) k > 0.
(27)

Function (26) includes the CES [4] production function (b = 0) and the Lu-Fletcher [45] production
function (c = 0). Moreover, f̄ is bounded from below therefore capital is not essential in production
as Figure 12 shows: every input combination along the isoquant produces the same output and each
isoquant considers the combination in which K = 0.

Figure 12: Isoquants for Kadiyala production function. Parameter values A = 1, a = 0.1, b = 0.2,
c = 0.5 and ⇢ = 0.4.

Notice that

f 0(kt) = A
k⇢�1
t (ak⇢t + b)

(ak2⇢t + 2bk⇢t + c)1�
1
2⇢

, (28)

and

f 00(kt) = Ak⇢�2
t

(⇢� 1)abk2⇢t + [(2⇢� 1)ac� b2]k⇢t + (⇢� 1)bc

(ak2⇢t + 2bk⇢t + c)2�
1
2⇢

, (29)

hence f̄(kt) is increasing and concave. Moreover, for ⇢ > 0, function (26) does not satisfy the Inada

conditions being limk
t

!1 f 0(kt) = Aa
1
2⇢ .

The elasticity of substitution between production factors is

�(kt) =
1

1� ⇢+R
, (30)

where R = �⇢(ac�b2)

(ak�⇢

t

+b)(b+ck⇢

t

)
and hence � � 1 if and only if ⇢ > 0. Note that � depends on kt, which

is why f belongs to the class of VES production functions. If ⇢ > 0, the maximum elasticity of
substitution is

�U+ =
1

1� ⇢� ⇢ ac�b2

(
p
ac+b)2

, (31)
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and it is reached at kt =
�

a
c

�

1
2⇢ while the minimum elasticity of substitution is

�L+ =
1

1� ⇢
, (32)

and it is reached at kt = 0 and kt = +1. If ⇢ < 0, the maximum elasticity of substitution is

�U+ =
1

1� ⇢
, (33)

and it is reached at kt = 0 and kt = +1 while the minimum elasticity of substitution is

�L+ =
1

1� ⇢� ⇢ ac�b2

(
p
ac+b)2

, (34)

and it is reached at kt =
�

a
c

�

1
2⇢ . Therefore function (26) approaches the Cobb-Douglas production

function as ⇢ ! 0, the Leontief production function as ⇢ ! �1 and the linear production function
as b ! 0 and ⇢ ! 1

2 .
The capital income per worker of a shareholder is

⇡(kt) = A
k⇢t (ak

⇢
t + b)

(ak2⇢t + 2bk⇢t + c)1�
1
2⇢

, (35)

whereas the per-capita wage of a worker is

w(kt) = A
bk⇢t + c

(ak2⇢t + 2bk⇢t + c)1�
1
2⇢

. (36)

The final one-dimensional map describing the capital per capita evolution is given by

F (kt) =
1

1 + n

0

B

@

(1� �)kt +A
srak

2⇢
t + (sw + sr)bk

⇢
t + swc

⇣

ak2⇢t + 2bk⇢t + c
⌘1� 1

2⇢

1

C

A

kt 2 R+. (37)

Notice that for ⇢ < 0, limk!0 F (k) = 0 and F (k) is not defined in 0. We hence assume a continuous
extension F (0) = 0 for ⇢ < 0.

4.2 Boundedness of growth path

This section aims to analyze the quantitative shape of the capital accumulation map (37) taking
into consideration the role of di↵erential savings rates, in order to inspect their influence in the
adjustments of an economy over time. For sake of convenience we denote the term

↵(k) := A
srak

2⇢ + (sw + sr)bk⇢ + swc

(ak2⇢ + 2bk⇢ + c)1�
1
2⇢

, (38)

so that F (k) can be written as F (k) = 1
1+n ((1� �)k + ↵(k)).

We first consider the case in which ⇢ < 0. We introduce the following Lemma to analyze the
quantitative shape of the capital accumulation F if the elasticity of substitution between production
factors is lower than one.
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Lemma 4.1. The function ↵(k)
k is decreasing if 0 < ⇢ < 1

2 or if ⇢ < 0 and min{sr, sw} >
|2⇢(sr � sw)|.

Proof. Since

↵0(k) = A
2⇢srak2⇢ + ⇢(sr + sw)bk⇢ + (1� 2⇢)(ak2⇢ + bk⇢) srak

2⇢+(s
w

+s
r

)bk⇢+s
w

c
ak2⇢+2bk⇢+c

k (ak2⇢ + 2bk⇢ + c)1�
1
2⇢

,

it follows that ↵(k)
k is decreasing if and only if

⇢

2⇢� 1

✓

srbk
⇢ + swc

bk⇢ + c
+ sw

◆

<
srak

2⇢ + (sw + sr)bk⇢ + swc

ak2⇢ + 2bk⇢ + c
. (39)

Let 0 < ⇢ < 1
2 . Then the above inequality holds true for all parameters and all k 2 R+.

Let ⇢ < 0, then the left-hand side of (39) is a decreasing function if and only if sr > sw with

lim
k!0

⇢

2⇢� 1

✓

srbk
⇢ + swc

bk⇢ + c
+ sw

◆

=
⇢

2⇢� 1
(sr + sw)

and

lim
k!1

⇢

2⇢� 1

✓

srbk
⇢ + swc

bk⇢ + c
+ sw

◆

=
2⇢

2⇢� 1
sw .

The right-hand side of (39) is a monotonic function, moreover

lim
k!0

srak
2⇢ + (sw + sr)bk⇢ + swc

ak2⇢ + 2bk⇢ + c
= sr

and

lim
k!1

srak
2⇢ + (sw + sr)bk⇢ + swc

ak2⇢ + 2bk⇢ + c
= sw.

Hence, two cases may occur. First, if sr < sw then the left-hand side of (39) as well as the right-
hand side of (39) are increasing. Thus, inequality (39) is satisfied if sr > 2⇢

2⇢�1sw or equivalently
if

sr > 2⇢(sr � sw).

However, following the standard assumption that shareholders safe more than workers that is sr >
sw, it follows that inequality (39) is satisfied if sw > ⇢

2⇢�1 (sr + sw) or equivalently if

sw > ⇢(sw � sr).

Thus, if min{sr, sw} > |2⇢(sr � sw)|, ↵(k)
k is decreasing.

In the following Lemma it is shown that if the savings rate of the shareholders are su�ciently
close to the savings rate of the workers, then map F is bounded from above by a linear capital
accumulation equation independent from savings propensity of workers.
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Lemma 4.2. Let ⇢ < 0 and min{sr, sw} > |2⇢(sr � sw)|. Then F (k)  Fr(k) 8k 2 R+, where

Fr(k) :=
1

1 + n

⇣

(1� �)k +Asra
1
2⇢ k

⌘

.

Proof. Observe that Fr(k) � F (k) if and only if

Asra
1
2⇢ � ↵(k)

k
. (40)

Lemma 4.1 implies that ↵(k)
k is a decreasing function and moreover limk!0

↵(k)
k = Asra

1
2⇢ .

Notice that previous Lemma holds if the elasticity of substitution between production factor is
lower than one and hence the economy is characterized by a technology in which capital and
labour are not easily substitutable. Then, if the di↵erence between savings rates of the two income
groups is su�ciently small the growth path of the economy is bounded from above by Fr(k) =
1

1+n

⇣

(1� �)k +Asra
1
2⇢ k

⌘

, as Figure 13 shows. Fr describes the growth behaviour of an economy in

which technology is described by the linear production function fr(k) := Aa
1
2⇢ k, so that production

is not possible without capital and all profits are given to shareholders. Map Fr has a unique steady

state k⇤r = 0 if and only if Asra
1
2⇢ 6= n+ �. Moreover, the steady state k⇤r = 0 is stable if and only if

sr < n+�

Aa
1
2⇢
, so that an economy described by the accumulation law Fr(k) would be captured from

poverty trap if the savings rate of shareholders is not su�ciently high.
However, the assumption of savings rates of shareholders and workers which are su�ciently close
to each other is rather strict and under this condition the presented model can be reduced to the
Solow model with constant aggregate savings propensity. In the following Lemma it is shown that
if the elasticity of substitution between inputs is lower than one, then the di↵erence between saving
behaviours plays a crucial role in the growth path.

Lemma 4.3. Let ⇢ < 0. Assume sw > sr or s
1
2⇢
w > sr > sw. Then F (k)  Fw(k) 8k 2 R+, where

Fw(k) =
1

1 + n

⇣

(1� �)k +Aswc
1
2⇢

⌘

.

Proof. Let ⇢ < 0. Observe that map F can be written as

F (kt) =
1

1 + n
((1� �)kt + ↵(k)) (41)

and limk!1 ↵(k) = Aswc
1
2⇢ . Thus, for su�ciently large k 2 R+ the function F (k) tends to the

linear function Fw(k). Moreover, F (k)  Fw(k) if and only if

srak
2⇢
t + (sw + sr)bk

⇢
t + swc

ak2⇢t + 2bk⇢t + c


✓

swc

ak2⇢t + 2bk⇢t + c

◆

1
2⇢

. (42)

The left-hand side of (42) is monotonic, moreover

lim
k!0

srak
2⇢ + (sw + sr)bk⇢ + swc

ak2⇢ + 2bk⇢ + c
= sr
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F (kt)

Fr(kt)
kt = kt+1

kt+1

kt
k⇤2k
⇤

F (kt)

Fw(kt)

kt = kt+1

kt+1

kt
k⇤2k
⇤

Figure 13: Map F and linear functions Fw and Fr. Parameter values n = 0.2, � = 0.1, A = 3,
a = 0.1, b = 0.25, c = 0.4, ⇢ = �2, sw = 0.6, sr = 0.5.

and

lim
k!1

srak
2⇢ + (sw + sr)bk⇢ + swc

ak2⇢ + 2bk⇢ + c
= sw.

The right-hand side of (42) is a decreasing function with

lim
k!0

✓

swc

ak2⇢t + 2bk⇢t + c

◆

1
2⇢

= 1

and

lim
k!1

✓

swc

ak2⇢t + 2bk⇢t + c

◆

1
2⇢

= s
1
2⇢
w .

Since s
1
2⇢
w > sw, it follows that F (k)  Fw(k) if sr  sw. Otherwise if sr > sw, then F (k)  Fw(k)

if s
1
2⇢
w > sr.

As Figure 13 shows, if workers save more than shareholders then the growth path is bounded from
above by the linear function Fw(k). Observe that Fw(k) is independent of sr so that the capital
per-capita levels do not depend on the saving behaviours of shareholders. Notice also that Fw(k)
corresponds to the capital accumulation map in an economy with the constant production function

fw(k) := Aswc
1
2⇢ , so that capital is not necessary for production. It can easily be shown that Fw(k)

has a unique steady state k⇤w = A s
w

c
1
2⇢

n+� , which is stable for all parameter values.

Lemma 4.2 and 4.3 imply that the capital per capita expansion can be bounded from above by the
linear maps Fr(k) and Fw(k). Moreover, following Proposition holds.
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Proposition 4.4. Let ⇢ < 0. Then,

• if F (k)  Fr(k) then F (k)  Fw(k) for all k  ks = s
w

s
r

c
a

1
2⇢ .

• if F (k)  Fw(k) then F (k)  Fr(k) for all k � ks = s
w

s
r

c
a

1
2⇢ .

Proof. Observe that Fr(k)  Fw(k) if and only if k  ks = s
w

s
r

c
a

1
2⇢ . Thus, if F (k)  Fr(k) then

F (k)  Fw(k) for all k  ks. Analogously, if F (k)  Fw(k) then Fw(k)  Fr(k) for all k � ks

leading to F (k)  Fr(k) for all k � ks.

F (kt)
Fr(kt) Fw(kt)

kt = kt+1

kt+1

kt
k⇤2k
⇤k⇤2k

s

F (kt)

Fr(kt)

Fw(kt)

kt = kt+1

kt+1

kt
k⇤2k
⇤k⇤2k

s

Figure 14: Map F and linear functions Fw and Fr. Parameter values n = 0.2, � = 0.1, A = 3,
a = 0.1, b = 0.25, c = 0.4, ⇢ = �2, sw = 0.6, sr = 0.5.

Notice also that limk!0 F
0(k) = limk!0 F

0
r(k) and limk!+1 F 0(k) = limk!+1 F 0

w(k) so that map
F can be approximated by the linear function Fr for su�ciently small values of k and by the linear
function Fw for su�ciently large values of the k, as numerous simulations showed (see Figure 14).

The economic meaning emerging from previous lemmas can be summarized as follows: assume
capital and labour are not easily substitutable. Then the growth path of non-developed countries
is influenced only by investments made by shareholders. In non-developed economies labour is
unskilled and consequently wages are small so that the savings behaviour of workers can not influence
growth path. In the early stage of growth investments of capitalist influence also the existence of
poverty trap: small investment threaten the possibility of economic growth and a critical level of
capital is needed in order to avoid the risk of fall into the ”vicious circle of poverty”. On the contrary,
for developed economies the shape of growth path is influenced only by the savings behaviour of
workers. Notice that results obtained can be used by policy-makers to increase the lower level an
economy can reach during boom and bust periods and reduce fluctuations.
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4.3 Long run dynamics

In this section we consider the question of the existence of steady states and then we discuss about
the local stability.

4.3.1 Existence of equilibrium levels

In this section we consider the question of the existence and number of fixed points followed by
a discussion on their stability. The establishment of the number of steady states is not trivial to
solve, considering the high variety of parameters. We first consider the case in which ⇢ > 0 so that
the elasticity of substitution between capital and labour is greater than one.

Lemma 4.5. Let ⇢ > 0. Then F (k) is an increasing function with F (0) = A
1+nswc

1
2⇢ and limiting

slope limk!1 F 0(k) = 1
1+n

⇣

1� � +Asra
1
2⇢

⌘

.

Proof. Consider the derivative of F , given by

F 0(k) =
1

1 + n
(1� � + ↵0(k)) ,

where

↵0(k) = A
2⇢srak2⇢ + ⇢(sr + sw)bk⇢ + (1� 2⇢)(ak2⇢ + bk⇢) srak

2⇢+(s
w

+s
r

)bk⇢+s
w

c
ak2⇢+2bk⇢+c

k (ak2⇢ + 2bk⇢ + c)1�
1
2⇢

Hence, if 0 < ⇢ < 1
2 , ↵

0(k) > 0 for all k 2 R+ leading to F 0(k) > 0.

Lemma 4.5 implies that due to F (0) = A
1+nswc

1
2⇢ > 0, the economy has at least one steady state

if the limiting slope is smaller than one, that is if sr < n+�
A a�

1
2⇢ . In order to show that the fixed

point is unique observe that the steady states of F are given by the solution of ↵(k)
k = n+ �, where

↵(k) is defined as in (38).

Proposition 4.6. Let ⇢ > 0. Then F has a unique fixed point given by k⇤ > 0 if and only if sr > g

where g := a
�1
2⇢ n+�

A .

Proof. As shown in Lemma 4.1 it follows that ↵(k)
k is decreasing if and only if

⇢

2⇢� 1

✓

srbk
⇢ + swc

bk⇢ + c
+ sw

◆

<
srak

2⇢ + (sw + sr)bk⇢ + swc

ak2⇢ + 2bk⇢ + c
. (43)

If 0 < ⇢ < 1
2 the above inequality holds true for all parameters and all k 2 R+.

Notice that savings behaviour of shareholders influences the long-run dynamics of the economy: a
threshold level sr exists to entail ever-sustained growth. This result is consistent with that obtained
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by Brianzoni et al. [19] considering the Revankar [62] and the CES production functions. Moreover,
as in Karagiannis et al. [40], when the elasticity of substitution is greater than one, then at most one
positive fixed point can exist. Moreover, Proposition 4.6 implies that multistability phenomenon
can not occur if ⇢ > 0. However, if the elasticity of substitution between capital and labour is
smaller than one, multiple steady states may exist as shown in the following proposition.

Proposition 4.7. Let F be given as in (37) and ⇢ < 0 with g = a
�1
2⇢ n+�

A as before. Then,

(i) if sr � g, F has at least two fixed points given by k⇤ = 0 and k⇤1 > 0. Moreover, if
min{sr, sw} > |2⇢(sr � sw)|, the positive steady state is unique;

(ii) if sr < g and min{sr, sw} > |2⇢(sr � sw)|, F has one fixed point given by k⇤ = 0.

Proof. Let ⇢ < 0, then k = 0 is always a solution for F (k) = k. Moreover, limk!0
↵(k)
k = Asra

1
2⇢

whereas limk!+1
↵(k)
k = 0 and hence function ↵(k)

k intersects the positive constant function � =
n + � at least once if sr � g. Moreover, for min{sr, sw} > |2⇢(sr � sw)| Lemma 4.1 implies that
↵(k)
k is decreasing and hence the intersection point is unique.

F (kt)

Fr(kt)

kt = kt+1

kt+1

kt

Figure 15: No positive fixed point for n = 0.2, � = 0.56, A = 2.9, a = 0.1, b = 0.25, c = 0.4,
sw = 0.12, sr = 0.1, ⇢ = �3.

Notice that if the elasticity of substitution between production factors is lower than one and the
propensity to save of shareholders is su�ciently high, then multistability phenomenon may occur.
In the following proposition it is shown that if multiple steady states occur, then the number of
positive steady states is either two or four.

Proposition 4.8. Let ⇢ < 0 and sr < g. Then F has either zero, two or four positive steady states.
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Proof. Proposition 4.7 (ii) shows that if ↵(k)
k is decreasing then F has no steady states. Let ↵(k)

k be

non-decreasing. Since limk!0
↵(k)
k = Asra

1
2⇢ whereas limk!+1

↵(k)
k = 0 it follows that if sr < g the

number of intersection points of the constant line � = n+ � with ↵(k)
k can be only an even number.

Using the Bachmann - Landau notations, it follows that ↵(k)
k 2 O(k4). Hence, the fundamental

theorem of algebra implies that ↵(k)
k � (n + �) can have at most four zeros. This completes the

proof.

Further consideration about multiple steady states will be given in next section, using numerical
simulation.

4.3.2 Stability of equilibrium levels

We now discuss about the stability of the steady states for positive values of ⇢. The following
proposition holds.

Proposition 4.9. Let F be given in (37) and ⇢ > 0. Then the positive fixed point k⇤ is always
globally stable.

Proof. As shown by Lemma 4.5 F 0(k) > 0. Thus, it is su�cient to show that F 0(k⇤) < 1 for the
fixed point k⇤ > 0. This is the case if and only if F 0(k⇤) = 1

1+n (1� � + ↵0(k⇤)) < 1 or equivalently

if ↵0(k⇤) < n+ �. The positive fixed points k⇤ satisfy ↵(k⇤)
k⇤ = n+ �, therefore

F 0(k⇤) < 1 if and only if

✓

↵(k⇤)

k⇤

◆0
< 0.

Hence, the proof of Proposition 4.6 implies that for ⇢ � 0 it must be F 0(k⇤) 2 (0, 1).

From the previous proposition it follows that for ⇢ > 0, the map F is strictly increasing and - if
a positive fixed point exists - it is always globally stable. Recall that if ⇢ > 0 then � > 1 so that,
as in Brianzoni et al. [14, 18], when the elasticity of substitution between production factors is
greater than one only simple dynamics can be produced. Notice that, for ⇢ ! 1

2 , f approaches
the linear production function and hence when inputs are perfect substitutes no fluctuations may
appear. Moreover, only the saving propensity of shareholders influences the existence of the steady
state. This cases are resumed in Figure 16.
Notice that the di↵erence between saving propensities influences the dynamics of the model for ⇢
negative, as the following propositions proves.

Proposition 4.10. Let F be given in (37) and ⇢ < 0. If sr < 1+n

Aa
1
2⇢
, the fixed point k⇤ = 0 is

locally stable.

Proof. F (k) is non-di↵erentiable in k = 0 so that behaviour of map F near the fixed point k⇤ = 0

must be considered. Since limk!0 F
0(k) = As

r

a
1
2⇢

1+n > 0 it follows that limk!0 F
0(k) < 1 if and only

if sr < 1+n

Aa
1
2⇢
.
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F (kt)

kt = kt+1
kt+1

kt
k0 k⇤2k

⇤

F (kt) kt = kt+1

kt+1

kt
k0

Figure 16: Map F for ⇢ > 0. Parameter values n = 0.2, � = 0.1, a = 0.1, b = 0.25, c = 0.4, ⇢ = 0.3,
sw = 0.4, sr = 0.7. (a) for A = 0.9 a positive fixed point exists and it is globally stable. (b) for
A = 10 growth is unbounded.

Notice that, as in Capasso et al. [20] and Brianzoni et al. [16, 17] economies starting from a low
level of physical capital may be captured by the poverty trap (see Figure 15). Moreover, di↵erently
from previous work we found that poverty trap can be avoided if the savings rate of shareholder is
su�ciently large. This result is in line with that obtained by Chakraborty [21]: poverty traps may
result if savings and investment rates are low, despite the absence of ine�cient technology.

Proposition 4.11. Let F be given in (37) and ⇢ < 0. If sw � sr, then for every fixed point k⇤ it
follows that F 0(k⇤) > 0.

Proof. As Böhm and Kaas [12] have shown, that equation (25) implies that F 0(k) � 0 if and only if

1� � + srf
0(k) � (sw � sr)kf

00(k)

and this inequality is satisfied for sw � sr. Hence, for ⇢ < 0 and sw � sr it must be F 0(k⇤) > 0.
This completes the proof.

Proposition 4.12. Let F be given in (37) and ⇢ < 0. If max{sw, sr} < n+�

Aa
1
2⇢
, then for every fixed

point k⇤ it follows that F 0(k⇤) < 1.

Proof. As shown in the proof of Proposition 4.9 F 0(k⇤) < 1 if and only if
⇣

↵(k⇤)
k⇤

⌘0
< 0. Moreover,
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Lemma 4.1 implies that
⇣

↵(k)
k

⌘0
< 0 if and only if

⇢

2⇢� 1

✓

srbk
⇢ + swc

bk⇢ + c
+ sw

◆

<
srak

2⇢ + (sw + sr)bk⇢ + swc

ak2⇢ + 2bk⇢ + c
. (44)

Substituting the right-hand side of (44) with ↵(k) and using the condition for a steady state it
follows that F 0(k⇤) < 1 if and only if

⇢

2⇢� 1

✓

srb(k⇤)⇢ + swc

b(k⇤)⇢ + c
+ sw

◆

<
n+ �

A
k⇤

�

a(k⇤)2⇢ + 2b(k⇤)⇢ + c
�

�1
2⇢ . (45)

The right-hand side of (45) is an increasing function with limk!0 RHS(45) = n+�
A a

�1
2⇢ and limk!1 RHS(45) =

1. Using the same argument as in Lemma 4.1 two cases may occur. First, if sr > sw the in-
equality (45) is satisfied if sw < sr < n+�

Aa
1
2⇢
. Second, if sw > sr the inequality is satisfied if

sr < sw < n+�

Aa
1
2⇢
.

If the elasticity of substitution between inputs is greater than one then independently of the savings
rates no fluctuation occurs, whereas, for � < 1 fluctuations can only occur if the savings rate of
shareholders is larger than the savings rate of workers. For sw � sr dynamics can only converge or
diverge and the growth model can not generate complex dynamics.

4.4 Complex attractors

In this section we analyze the qualitative asymptotic properties of F in the case of elasticity of
substitution between inputs lower than one, by using numerical simulations. Generic trajectories
may converge to a fixed point or to a more complex attractor, that could be periodic or chaotic.
Moreover, we will show that many coexisting attractors may emerge.

In order to assess the possibility of complex dynamics arising, we have to consider the case in
which ⇢ < 0 and shareholders save more than workers. This fact proves that fluctuations and more
complex dynamics in economic growth are influenced by the elasticity of substitution and the saving
propensities of agents. The eigenvalue associated to an attractor Z of map F can be negative if
�(k) < 1 and sr > sw. Given the shape of map F we can not determine conditions for transition
to chaos, however we can describe it with numerical simulations, following the work of Brianzoni
et al. [16] for a bimodal map.

Notice that F can be bimodal so that it admits a trapping interval bounded by the local minimum
of F and his image .

Proposition 4.13. Let F be given in (37), ⇢ < 0 and, sr > sw. Assume F has a local maximum
kM and a local minimum km with kM < km. Then if F (kM ) > kM and F (km) < km the set
R = [F (km), F (F (km))] is trapping.

Being R a close invariant region, the attractor Z must belong to it. Furthermore Z can be a fixed
point kZ or a more complex set. Observe that the fixed point kZ may lose stability only via period-
doubling bifurcation. Notice that if F (kM ) > km and F (km) > kM then kM /2 R while km 2 R, i.e.
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only the local minimum point of F belongs to R and the attractor Z can be a fixed point or a more
complex attractor (see Figure 17). The only route to chaos is via period-doubling bifurcation.

1.4

F (kt)

.9

1.4

kt = kt+1

k0 1.4

F (kt)

.9

1.4

kt = kt+1

k0

Figure 17: Parameter values n = 0.2, � = 0.01, A = 0.9, a = 0.1, b = 0.25, c = 0.4, sw = 0.115,
sr = 0.86. (a) 4-period cycle for ⇢ = �35. (b) Complexity emerges for ⇢ = �60.

As we have discussed, we are interested in the role played by the elasticity of substitution and the
di↵erential savings in order to obtain complex dynamics. Figure 18 shows that the dynamics are
complex if the elasticity of substitution is low enough. As ⇢ decreases, the fixed point lose stability
and a period doubling rout to chaos occurs. Therefore, the economic evolution may fluctuate if
the elasticity of substitution between production factors is lower than one. We also consider the
role of the di↵erence between saving propensities as a determinant for cycle or chaos in the model,
assuming �s = sr � sw with 0  �s  1� sw. The system becomes more complex as the di↵erence
between savings increases (Figure 19) and many period doubling and period halving cascades exist
(see Hommes [34]).
In Figure 20 two cycle cartograms show di↵erent two-parametric bifurcation diagram qualitatively.
In each cartogram, every color represents a long-run dynamic behaviour for a generic initial condi-
tion.

In panel (a) we consider the role of sr and sw. As we proved, complex dynamics may arise only if
shareholders save more than workers. Observe that cycles of di↵erent order and complex dynamics
(red region) arise for low levels of sw, as sr increases. In panel (b) we consider parameter ⇢ related
to the elasticity of substitution and the di↵erence between saving propensities �s.

The bifurcation diagram show that dynamics are increasingly complex as the elasticity of substi-
tution between production factors decreases and the di↵erence between savings rates increases,
confirming that fluctuations in economic growth models are influenced by saving propensities and
production technology.
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Figure 18: Bifurcation diagram w.r.t ⇢. Parameter values n = 0.2, � = 0.01, A = 0.9, a = 0.1,
b = 0.25, c = 0.4, sw = 0.15, sr = 0.7.

Figure 19: Bifurcation diagram w.r.t �s. Parameter values n = 0.2, � = 0.01, A = 0.9, a = 0.1,
b = 0.25, c = 0.4, sw = 0.1, ⇢ = �300.

Proposition 4.7 implies that multiple equilibria may coexist and hence multistability phenomena
may occur when the elasticity of substitution between capital and labour is lower than one (for
multistability see Bischi et al. [10]). In Figure 21 we present two maps showing multistability
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Figure 20: Parameter values: n = 0.2, � = 0.01, A = 0.9, a = 0.1, b = 0.25, c = 0.4. (a) Cycle
cartogram in (sw, sr) plane for ⇢ = �100. (b) Cycle cartogram in (�s, ⇢) plane for sw = 0.11.

Figure 21: Multistability phenomenon for n = .33, � = .56, A = 2.9, a = .02, b = .49, c = .01,
sw = .56, ⇢ = �7.1, sr = .1 (4 positive fixed points) sr = .19 (two positive fixed points)
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phenomena. Notice that in case of coexisting attractors, di↵erent initial conditions will converge
to di↵erent equilibria. Therefore the neoclassical growth model with di↵erential saving that take
into consideration a production function with elasticity of substitution symmetric to input factors
can explain the co-existence of non-developed, developing and developed economies. The existence
of multiple steady states is due to the savings behaviour of workers and shareholders: as Section 3
and Section 4 discussed, low level of the savings rate of shareholders influence the early stage of the
growth path and may generate poverty trap while higher equilibria are influenced by investments
made from workers. When a multistability phenomena exists, an economic policy trying to increase
investment may be able to push the economy to the higher capital per-capita equilibrium level.

4.5 Further developments

As a further step it should be analyzed how the growth path of the Kaldor model is bounded
considering a general production function in order to provide conditions to mark boundaries of
capital per capita levels during boom and bust cycles. Moreover, it should be investigated how
savings rate of workers and shareholders influence growth bounds for non-developed, developing
and developed countries. Conditions for boundedness of the accumulation law considering general
and specific production functions should be given in order to analyze which savings behaviour
influence the capital intensity of non-developed, developing and developed economies.
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5 Conclusions

In this thesis the influence of elasticity of substitution between production factors on economic
growth is investigated.
In the first chapter a method to measure the elasticity of substitution associated to an attractor is
proposed in order to compare models with VES, sigmoidal and CES production functions and the
relation between elasticity of substitution, capital per-capita and output levels. Moreover, the Solow
model with di↵erential savings assuming a VES production function, as proposed in Brianzoni et al.
[19], is considered to verify whether the main result obtained by Miyagiwa and Papageorgiou [53]
still holds also when using a variable elasticity of substitution production function. It is found that
that, when the attractor is a fixed point, a higher elasticity of substitution is linked to a higher
capital per-capital level in the steady state. This result fits with that obtained by Klump and
La Grandville [42] using a CES production function. On the other hand, if more complex dynam-
ics are exhibited, a negative correlation between elasticity of substitution and capital per-capita
levels associated to the attractor may emerge, repeating the behaviour observed in Miyagiwa and
Papageorgiou [53] for a su�ciently high elasticity of substitution. Evidence seems to indicate that,
when the long run dynamics are simple, then there exists a positive correlation between elasticity
of substitution, capital and output per-capita associated to the attractor. Therefore, when simple
dynamics are exhibited, a higher elasticity of substitution causes a better e�ciency of capital and
labor: starting from a fixed level of capital per-capita, a country with a higher elasticity of substitu-
tion will experience a higher output per-capita in the equilibrium level and hence a greater economic
growth. On the other hand, when the map exhibits cycles or more complex dynamics, then an am-
biguous relation between elasticity of substitution and the asymptotic dynamics is shown. As a
further development in this research line, the case in which the elasticity of substitution is not a
linear function of k will be analyzed. In this case, the elasticity of substitution associated to the
attractor cannot be calculated using using the simplification proposed in this work.
In the second chapter the Solow-Swan growth model with di↵erential saving rate between workers
and shareholders (see Böhm and Kaas [12], Kaldor [38, 37] and Pasinetti [56]) is studied using the
Shifted Cobb-Douglas production function (see Capasso et al. [20]), a VES technology that well
describe non developed, developing and developed economies. The results of the analysis shows
that fluctuations or even chaotic patterns can be exhibited by the model confirming those obtained
by Brianzoni et al. [14, 18, 16, 19, 17]: cycles and more complex dynamics may arise if shareholders
save more than workers and the elasticity of substitution between production factors is lower than
one. As in Brianzoni et al. [16] the system may converge to the poverty trap since the origin is
always a locally stable fixed point, furthermore up to three positive fixed point may exists. More-
over, as in Klump and La Grandville [42], a positive correlation between elasticity of substitution
al capital per-capita equilibrium level holds. A further development would be the analysis of multi-
stability phenomena and related existence of complex basins. It is shown that if capital and labour
are not easily replaceable, the growth path is bounded from above, moreover the boundary for low
level of k is independent from the savings rate of workers; on the contrary, for high level of k, the
boundary is independent from the saving behaviour of shareholders. Moreover, since multistability
phenomenon may exist, the model described the coexistence of non-developed, developing and de-
veloped countries. Futhermore, an economy can lie in the poverty trap if investment of shareholders
is not su�ciently high, regardless of the technology implied. As in Brianzoni et al. [19] it is found
that when the elasticity of substitution is greater one only simple dynamics can be exhibited and
unbounded endogenous growth is possible. Moreover, as in Karagiannis et al.[40], at most one
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fixed point can exist. The results of the analysis show that fluctuations and even chaotic patterns
may arise when the elasticity of substitution is lower than one and shareholders save more than
workers, confirming that the elasticity of substitution between production factors plays a crucial
role in economic growth theory (see, among all, Brianzoni et al. [18, 15, 14], Klump and de La
Grandville [42] and Miyagiwa and Papageorgiou [53]).
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