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Abstract

We introduce a simple financially constrained production frame-
work in which heterogeneous firms and banks maintain multiple credit
connections. The parameters of credit market interaction are esti-
mated from real data in order to reproduce a set of empirical regulari-
ties of the Japanese credit market. We then pursue the metamodeling
approach, i. e. we derive a reduced form for a set of simulated mo-
ments h(θ, s) through the following steps: 1. we run agent-based
simulations using an efficient sampling design of the parameter space
Θ; 2. we employ the simulated data to estimate and then compare
a number of alternative statistical metamodels. Then, using the best
fitting metamodels, we study through sensitivity analysis the effects
on h of variations in the components of θ ∈ Θ. Finally, we employ
the same approach to calibrate our agent-based model (ABM) with
Japanese data. Notwithstanding the fact that our simple model is
rejected by the evidence, we show th at metamodels can provide a
methodologically robust answer to the question “does the ABM repli-
cate empirical data?”.

1 Introduction

The relationship between Agent Based Models (ABMs) and empirical evi-
dence is a widely discussed topic among scholars in the field. On the one
hand, ABMs provide a more faithful representation of economic reality, in-
troducing more realistic behavioral assumptions than mainstream models.

1



Thus, they should potentially provide a better agreement with empirical
data. Indeed numerous contributions have underlined the success of ABM in
replicating “stylized facts” thanks to the introduction of agent heterogeneity,
bounded rationality and learning, and decentralized out-of-equilibrium inter-
actions1. On the other hand, there is still little consensus in the field on how
to evaluate the agreement between models and facts. Some ABM scholars
claim that calibration or validation, not to speak of estimation or forecasting,
are neither possible nor desirable (Valente, 2005). Most researchers under-
line instead that empirical evidence imposes a much needed discipline on
model building, and that ABMs should accept the challenge of a stringent
comparison with this evidence (Fagiolo et al., 2007).

In particular, a growing number of contributions tackle the issue of econo-
metric estimation of agent-based models, although these exercises are con-
fined at the moment to relatively simple models of financial markets (Alfarano
et al., 2005; Manzan and Westerhoff, 2007).

One key characteristic of ABMs is that the mathematical form of the
relationship between endogenous and exogenous variables is unknown. Gen-
erally speaking, if y is a time series generated from the ABM, h is a vector
function defined over y, whose components are usually called moments, and
θ is the vector of parameters of the model, y and h(y) are typically unknown,
possibly non-linear, random functions of θ with unknown likelihood. Thus
maximum-likelihood estimators, or standard approximations of the likelihood
function, are of no use. Instead, we can employ a class of methods defined
as “simulated minimum distance” (Grazzini and Richiardi, 2015), which can
be stated as follows

θ∗ = arg min
θ∈Θ

F (h(x), h(y(θ, s))) (1)

where F is a criterion function, s is a label for a fixed generator of pseudo-
random numbers, Θ is the domain of variation of parameters and x is a
real time series. If the model is overidentified, a frequent choice for F is
a quadratic loss function with an optimal weighting matrix, i.e. one that
minimizes the uncertainty of estimation. If h results from the estimation
of the same “auxiliary” statistical model over real and simulated data, this
approach is usually termed “indirect inference”; if h stands for a set of mo-
ments computed over x and y, we obtain the method of simulated moments

1For a review see Chen et al. (2012)
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(MSM) (Gouriéroux C. and Monfort, 1996).
In general we cannot exclude that ABMs are unidentifiable. Indeed, even

linear or linearized DSGE models exhibit a number of pathologies in esti-
mation due to the flatness of the objective function or to the existence of
multiple maxima (Canova and Sala, 2009). ABMs entail additional difficul-
ties due to the possible non linearity of moments in the parameters. On
the other hand, the existence of non linearities in the model is usually as-
sumed but not proved, so we cannot exclude either that the ABM might be
characterized by linear relationships between variables.

In order to address the identification issue, the parameter space should be
explored systematically before any estimation exercise. In this context, it’s
useful to estimate the influence of θ on h(y(θ, s)) by means of a metamodel,
i.e. a statistical auxiliary model of the following form:

h(y(θ, s)) = β
′
f(θ) + us (2)

where f(θ) is a deterministic, possibly non linear, vector function of θ,
β is a vector of coefficients, and us is a second-order stationary, zero mean,
potentially heteroskedastic, random term with given covariance matrix. This
approach is widely used for ABM metamodeling in various fields (see e.g.
Salle and Yildizoglu (2014), Dancik et al. (2010) and references therein).
The metamodel is estimated from a sample of points in the parameter space,
which still represents a computationally costly exercise for ABMs that can
be made more efficient by an appropriate choice of evaluation points, e.g.
with latin hypercubes or other parsimonious sampling designs (see Appendix
A). Furthermore, the parameter space may be eventually restricted through
the calibration of at least some of them, following the suggestion of Brenner
and Werker (2007).

The result obtained from the estimation of a metamodel represents the
analogue, for a simulated model, of the reduced form of an analytically solv-
able model. We can employ this reduced form, if its fitness compared to
the original ABM is good enough, for a variety of purposes, like sensitivity
analysis (Campolongo et al., 2000), calibration and estimation.

Given the general framework outlined above, in this paper we proceed as
follows:

� we introduce a model of financially constrained production with a credit
network composed of heterogeneous firms and banks;
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� we calibrate some parameters of the model before simulations (input
calibration), in particular we calibrate the network of the model with
Japanese real credit network data;

� we simulate the ABM using an efficient sampling scheme of Θ;

� we estimate different specifications of eq. (2), i.e. different metamodels,
on simulated data;

� we choose the best metamodel performing some goodness-of-fit analysis
on its predictions ĥ;

� we employ ĥ for sensitivity analysis, quantifying the effect of each pa-
rameter on the components of h(θ, s);

� we identify the parameters of the ABM matching ĥ with a set of em-
pirical moments h̄;

� we verify that at the optimal parameter values θ∗ the response of the
ABM is consistent with the predictions of the metamodels

� we check if at the optimal parameter values θ∗ the ABM is able to
replicate the empirical moments h

The model we introduce is parsimonious in terms of parameters if com-
pared to others of a similar vein (Riccetti et al., 2013), since we wish to focus
on the methodological novelty of the metamodelling approach. Indeed, the
simplifications we have introduced limit the scope of the economic analysis
and a more complicated model should lead to more realistic results. However,
we underline that the proposed metamodeling methodology can be extended
to more complex frameworks with no additional qualifications, since no a
priori restrictions are imposed on ABMs for its application. In particular,
this methodology is especially fit for large scale models with a large num-
ber of parameters since, especially when combined with optimal sampling
schemes, it allows to reduce dramatically the number of simulations required
for calibration or estimation (Barde and van der Hoog, 2017).

The main novelty of our model is that we allow firms to have multiple
credit suppliers (see e.g. Bargigli et al. (2014)). In particular we opt for a
representation of credit market interactions by means of a random network
model where both firms and banks can have multiple connections. We make
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this choice mainly because it is less expensive in terms of computational time.
In order to allow for multiple credit connections, standard AB simulations
should go through all the potential links, i.e. cycle over n×m steps, where
n and m are the number of firms and banks respectively, but this is a slow,
inefficient, solution. Using a random network model, we perform, instead,
two faster operations: firstly we compute the parameters of a set of n ×m
probability distributions; secondly, we draw n × m random variables from
these distributions.

The additional advantage of this choice is that we can easily calibrate the
parameters of credit market interactions with real data. The main motivation
for pursuing calibration is that credit markets represent a typical example of
a sparse network2. If a network is sparse, its topological properties3 become
non trivial. For instance, the size of the neighborhood of a node, i.e. her
degree, becomes very important. Nodes with a high number of neighbors,
called hubs, are typically conducive of large systemic effects, in particular
they can potentially trigger bankruptcy avalanches, if affected by external
shocks, through balance-sheet effects on many other agents (Shin, 2008).

Since real credit markets display a high fraction of hubs, their degree
distributions are typically right-skewed. We wish to replicate this property
in our model. A well known solution for this task is to build a statistical
ensemble of random networks for which the average degree of each node is
equal to the degree of the same node in the real network (Park and New-
man, 2004). Random networks drawn from this ensemble trivially replicate
the degree distribution of the original network. Here we follow a different
route, because we wish to connect the degree distribution with the economic
variables of the model, net worth in particular. At the same time, we wish to
replicate the debt and loan size distributions of the real market. In order to
control for topological properties and assign loan amounts at the same time,
we need to follow an approach in two stages: firstly, a couple of firms and

2A network involving n firms and m banks connected by l links is said to be sparse
when l � n × m, otherwise it is said to be dense. The Japanese credit market studied
in Bargigli and Gallegati (2011), whose most recent data are employed in this paper, had
l = 21, 811 connections over a maximum of n×m = 2, 674× 182 = 486, 668 in 2005.

3By topological property we mean any observable which is defined on a binary network
or on the binary representation of a weighted network. The latter is obtained from the
binary representation of its weighted links, which is defined, for each couple of nodes (i, j),
as aij = 1(wij > 0), where 1(· ) is the Indicator function and wij is the strength of the
relationship between i and j.
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banks activate a credit relationship with a given probability; secondly, if the
link is activated, the loan amount is determined.

The paper is organized as follows. In Sec. 2 we introduce our model. In
Sec. 3 we calibrate the parameters required for credit market interactions
using Japanese data. In Sec. 4, after having specified a suitable sampling
design for the remaining parameters of the model and after having defined
the components of h, we turn to agent-based simulations. Then, using sim-
ulated data, we compare a number of alternative metamodels which could
serve as reduced form of h(θ, s) and, after having selected the most fitting
metamodels, we quantify the effect of each parameter on the components of
h using the corresponding predictions ĥ. Finally, in Sec. 5 we employ the
same approach to identify the parameter values of the ABM compared to a
set of moment conditions. Section 6 provides some conclusions along with
considerations regarding the long standing issue of aggregation.

2 Model Description

Our economy is populated by firms and banks which interact in the credit
market. Firms are indexed by f = 1, 2, ..., F , and banks are indexed by
b = 1, 2, ..., B. The initial conditions of the model are the equity of firms
(Ef ) and banks (Eb). Firms produce a single homogeneous good according
to a linear production function:

Yf = αNf (3)

where Yf is the quantity of good produced by firm f , α is a fixed productivity
parameter, which we set to be equal across firms, and Nf is the number of
employed workers. We assume that firms are equity constrained, so that
they need to borrow in order to fund their production. The total disposable
financial resources of each firm, which are given by equity Ef and debt Df ,
cover the wage bill WBf = wNf , where w is a fixed parameter representing
the wage rate.

Firms set their production at the maximum level allowed by their liabil-
ities. Using the balance sheet constraint Df + Ef = WBf = wNf and the
production function, this level is determined as follows

Yf =
α

w
(Df + Ef ) =

α

w
(1 + λf ) Ef (4)
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where λf =
Df

Ef
is the firm leverage. We see that Yf depends on two fixed

parameters (α,w), and on Ef and Df which are endogenous and time varying.
In order to determine the latter variable, we set Df =

∑
b Lfb, where Lfb is

the amount of loan extended from bank b to firm f . This quantity is defined
as follows:

Lfb = afb ×Wfb (5)

where for simplicity of estimation we assume that afb and Wfb are mu-
tually independent random variables. In particular, afb is a random binary
variable which is equal to one if the link between firm f and bank b is ac-
tivated, and Wfb is a random variable providing the amount of loan condi-
tioned to the activation of the same link. The probability distribution of Wfb

is specified below (see Sec. 3.2). In other terms we set:

Lfb =

{
0 if afb = 0
Wfb if afb = 1

(6)

where Lfb and afb, contrary to Wfb and afb, are not independent. Thus
we can observe a positive amount of loans between the couple (f, b) only if
a link between the same couple has been previously established. We further
suppose that the expectations of afb and Wfb are distinct functions of the
net worth of the couple (f, b):

E [afb] = F (Ef , Eb) (7)

E [Wfb] = G(Ef , Eb) (8)

The exact form of these expectations, together with the distribution of
Wfb, will be determined by means of the network calibration of Sec. 3. In-
deed, we introduce the two stages of interaction (firstly, activate a connection
between firm f and bank b; secondly, determine the amount of the loan) in
order to control for a set of empirical properties of the real credit markets.

Summarizing, firms and banks are connected based on their respective
net worth, and the amount of debt Df is a consequence of this matching.
For example, a big firm and a big bank have a high probability of being
matched and for a high amount. Starting from this matching, each firm
ends up with a certain debt and, consequently, this gives rise to a given
leverage ratio. The interest rate paid by firms to banks, as we will see in a
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while, is an increasing function of the leverage ratio according to the financial
accelerator mechanism. So, the leverage ratio is the connecting part between
the empirical calibration of the network and the economic model.
We assume that firms sell all the produced output on the goods market at a
stochastic price (Greenwald and Stiglitz , 1993):

pf =
w

α
(1 + εf ) (9)

where εf is a shock assumed to be normally distributed with mean µ and
variance σ, that is εf ∼ N(µ, σ). In general, we may view the distribution
of price shocks as reflecting demand conditions, within a framework of price
adjustments to market imbalances. Thus, when a firm picks a higher εf , it
represents a stronger final demand and vice versa.

The interest rate charged from banks to firm f is set in the following
manner:

rf = rcb (1 + δ λf ) (10)

where rcb is the benchmark policy rate and δ > 0 is a parameter which reflects
the sensitivity of lenders to the creditworthiness of borrowers. When leverage
increases, the firm is riskier and the banks charge a higher risk premium. This
leads to a financial accelerator mechanism as in Riccetti et al. (2013). The
profit of firms πf is given by the following equation:

πf = pf Yf −WBf − rf Df (11)

The net worth of firms is updated according to profits, assuming that no
dividends are distributed:

Et+1
f = Et

f + πf (12)

When the net worth of a firm becomes negative, it goes bankrupt and is
replaced by a new entrant with the median net worth of survived firms 4.
As a consequence, banks’ profits πb are given by the sum of interest on loans
received from survived firms, minus the losses due to non performing loans.

4Admittedly, with this choice we introduce potentially a small survivor bias in the
model, since surviving firms are typically larger. However, the number of firm defaults is
very limited over the parameter space we use for simulations and we choose the median
(instead of the mean) in order to minimize the bias.
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The net worth of banks is updated according to profits, assuming that no
dividends are distributed:

Et+1
b = Et

b + πb (13)

When the bank’s net worth becomes negative, it defaults and is replaced
by a new entrant with the median net worth of survived banks (see footnote
4 above). To summarize, in each time period the following steps are taken
in the model:

1. Lfb is determined for each couple (f, b) using eqs. (6)-(8) and the
distribution of Wfb specified in sec. 3.2

2. Yf is determined for each firm using eq. (4)

3. Nf is determined for each firm using the labour demand function Nf =
α−1Yf

4. pf is determined for each firm using eq. (9)

5. rf is determined for each firm using eq. (10)

6. firms’ profits are computed using eq. (11)

7. the net worth of firms is updated according to eq. (12)

8. bankrupt firms are replaced

9. banks’ profits are computed taking into account loan losses on bankrupt
firms

10. the net worth of banks is updated according to eq. (13)

11. bankrupt banks are replaced

It’s possible to show that firms profits do not depend on the productivity
parameter α and the wage rate w. In fact, using eq. (4) we can write
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πf =

(
pf −

w

α
− rf

Df

Yf

)
Yf =

=

(
εf
w

α
− rf

w

α

λf
1 + λf

)
α

w
(1 + λf )Ef =

=

(
εf − rf

λf
1 + λf

)
(1 + λf )Ef =

= [εf + λf (εf − rf )]Ef
= (εf − rf )(1 + rf + λf )Ef (14)

We see that λf has the effect of magnifying either earnings or losses de-
pending on the sign of the difference between εf and rf , also recalling that
the latter is increasing in λf . Provided that the dynamics of the model, ac-
cording to eq. (14), depends on price shocks and the consequent fluctuations
of firm profits, in sections 4 and 5 we focus only on the parameters which
influence profits through εf (µ,σ) and rf (δ,rcb).

3 Network calibration

The aim of this Section is to calibrate the credit network before proceeding
with simulations. The purpose of the estimations is to align our simulated
credit market with real data taking as reference a set of properties of choice,
namely the credit network degree and debt distributions. For this exercise
we employ the dataset for the banks-firms lending-borrowing relationships in
Japan, maintained by the Econophysics Group at the University of Kyoto.
The dataset includes balance sheet data on commercial banks and other
credit institutions, as well as on listed companies, from 1980 to 20125. In
subsection 3.1 we calibrate the credit network degree, that is the activation
of credit relationships between firms and banks. In subsection 3.2, given the
presence of a credit relationship, we calibrate the amount of bank loans.

3.1 Links

In the model we presume that connections between banks and firms on the
credit market are binary random variables whose expectation depend on

5For more details see http://www.econophysics.jp/foc_kyoto/.
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respective equity, see eq. (7). From network theory (Park and Newman,
2004) we know that the maximum entropy distribution of the value of the
link between nodes (f, b), in a statistical ensemble of binary networks G, is
associated with an expectation of the following form:

E [afb] =
1

1 + exp(−Hfb)
(15)

where Hfb embodies a set of constraints imposed on G. Then the most
natural candidate for calibration is logistic regression. In practice, we make
the following specification of (15):

Hfb = αA + βA logEf + γA logEb (16)

where f, b stand for firms and banks indexes respectively.
From the Japanese dataset we see that the two regressors behave differ-

ently over time. Fig. 1 highlights that there is a strong and stable linear
relationship between the degree of banks kb and their equity Eb. The re-
lationship between companies’ equity Ef and degree kf is significant but
weaker, less stable. This suggests that our specification does not include
some relevant variables on the firms’ side, like sector classification, which are
not available in the Japanese dataset. Since we expect the logistic model to
be misspecified, at least on the firms’ side, we try to improve its fitness by
means of random effects.

We estimate three models using the most recent data available in the
dataset (2011): model A1 is given by eqs. (15) - (16); model A2 adds firm-
specific random effects; model A3 includes both firm and bank-specific ran-
dom effects 6. We opted for random effects instead of fixed effects because the
conditional log-likelihood estimation method of Chamberlain (1980) for lo-
gistic models with fixed effects does not provide the coefficients of the latter,
which are needed for simulations. From Tab. 1 we see that the coefficients
of the three models are always significant and their magnitude is similar.
From the goodness-of-fit measures in the table we see that the introduction
of random effects improves the estimation.

Fig. 2 compares the distribution of degrees in actual data with the one
obtained from a sample of 1,000 random networks simulated using the esti-
mated parameters. We see that model A1 provides a poor fit for the degree

6In detail, we employ random intercepts in a generalized linear mixed model estimated
with the R (2015) package lme4.
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Figure 1: Correlations between degree and equity, Japanese dataset (Shaded
areas are recessions)
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distribution of firms, while model A3 provides the best fit for the degree dis-
tribution of banks. In order to test this similarity, we perform the two-sample
KS test comparing the actual and simulated degree distributions. From Tab.
2 we see that the null hypothesis of equal distributions cannot be rejected
for models 2 and 3, and that the latter provides the best approximation for
both distributions. For this reason we select model A3 for our simulations.
This means that eq.(7) is specified as follows:

E [afb] = E [afb|uf , ub] =
1

1 + exp(4.35155 + uf + ub) E
−1.60026
f E−0.18615

b

(7bis)
where uf and ub are respectively firm and bank specific random terms

which are fixed as initial conditions of the simulations.

3.2 Loans

We want to employ the same regressors of the previous Section in order to
explain the value of loans conditioned to the existence of a link between a
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Table 1: Logistic estimation on the Japanese credit market data (2011), ∗∗∗(p <
0.01)

A1 A2 A3
(Intercept) -3.95951*** -4.20761*** -4.35155***

logEf 1.53145*** 1.62358*** 1.60026***
logEb 0.19733*** 0.17885*** 0.18615***

Firms RE No Yes Yes
Banks RE No No Yes

Null Dev. 75,004
Resid. Dev. 53,576 51,686 49,750

AIC 53,582 51,694 49,760
Pseudo R2 0.286 0.312 0.337

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

firm f and a bank b, see eqs. (6) and (8). From Fig. 3 we see that Ef and Eb
are correlated in the Japanese dataset respectively with corporate bank debt
D and the loan assets of banks S, i.e. the sum of loans extended to firms.
In particular, the correlation between Eb and S is very high and stable over
time.

We estimate the following model firstly with OLS (W1):

logWfb = αW + βW log Ef + γW log Eb + vfb (17)

where vfb is a zero mean random term with finite variance. With standard
tests we detect both firm and bank specific effects in the data. In order to
take these into account, we estimate distinct models with clustered errors at
the firm and bank level (W2, W3, W4).

From Tab. 3 we see that the coefficients are always significant and with

Table 2: Kolmogorov-Smirnov 2-sample test for real and simulated degree distri-
butions

A1 A2 A3

kf
KS stat. 0.111 0.021 0.016
p-value 0.000 0.460 0.804

kb
KS stat. 0.081 0.067 0.035
p-value 0.410 0.643 0.998

13



Figure 2: Simulated vs. real degree distribution (artificial network sample size
R = 1, 000)
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the expected sign. The inclusion of random effects improves the fitness of
the estimation, as shown by the decrease of the AIC measure, and by the
increase of the conditional R2 proposed by Nakagawa and Schielzeth (2013),
which is equal to the proportion of variance explained by both the fixed and
random factors, while the marginal R2 accounts for the variance explained
by fixed factors alone.

In Fig. 4 we compare real data with simulated values obtained from
models by randomly drawing from the residuals. We see that all models
provide at first sight a good approximation to the distributions of D and S
across firms and banks respectively. From Tab. 4 we see that the hypothesis
of equal distribution (empirical vs. simulated) of credit demand D cannot
be rejected for models W3 and W4, showing that the inclusion of random
effects at the firm level is essential to reproduce the distribution of D.

Overall, we opt for model W4 in our AB simulations. This means that
eq.(8) is specified as follows:
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Table 3: Results

W1 W2 W3 W4

logEb 0.280∗∗∗ 0.288∗∗∗ 0.268∗∗∗ 0.271∗∗∗

logEf 0.617∗∗∗ 0.612∗∗∗ 0.642∗∗∗ 0.646∗∗∗

Const. −3.336∗∗∗ −3.380∗∗∗ −3.402∗∗∗ −3.485∗∗∗

Firm RE N N Y Y
Banks RE N Y N Y

marg. R2 0.374 0.372 0.381 0.383
cond. R2 0.374 0.391 0.655 0.670
AIC 32,817 32,689 30,118 29,935

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 4: Kolmogorov-Smirnov 2-sample test for real and simulated distribu-
tions

W1 W2 W3 W4

S
KS stat. 0.114 0.103 0.079 0.077
p-value 0.091 0.164 0.455 0.487

D
KS stat. 0.105 0.101 0.016 0.017
p-value 0.000 0.000 0.810 0.748
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Figure 3: Correlations between firms’ debt and equity, Japanese dataset
(Shaded areas are recessions)
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E [Wfb] = E [Wfb| vf , vb] = (8bis)

= exp (−3.485 + 0.646 log Ef + 0.271 log Eb + vf + vb)

where vf and vb are respectively firm and bank specific random terms
which are fixed as initial conditions of the simulations. From this expectation
we obtain Wfb as follows:

Wfb = E [Wfb]× exp(v) (18)

where E [Wfb] is given by eq. (8bis) and v is a random term which is
drawn, for each period of the simulation, from the residuals of model W4.
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Figure 4: Loan estimation: models versus real data, 2011 sample size R =
1, 000)
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4 Metamodels: estimation, selection and sen-

sitivity analysis

In this section we proceed as follows: 1. we run simulations for a sample
of points in the space of parameters Θ; 2. we estimate a set of alternative
metamodels from simulated data, with the purpose of selecting the most
fitting ones; 3. we employ the selected metamodels for sensitivity analysis.

Regarding simulation setup, the initial conditions of the model, that is
the equity of firms and banks, come from the observed values of the Japanese
dataset in March 2011, which includes F = 1572 firms and B = 117 banks.
The expectation of eq. (7) is specified according to eq. (7bis), while the
expectation of eq. (8) is specified according to eq. (8bis). The random terms
uf , ub, vf , vb are fixed once and for all at the beginning of simulations using,
for each firm and bank, the corresponding values obtained from models A3
and W4. Wfb is simulated using eq.(18): at each simulation step, the random
terms v are drawn with replacement from the residuals of model W4.

The range of the free parameters of the model is presented in Tab. 5. In
general, the dynamics of the model is determined by the earnings or losses of
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firms and the resulting bankruptcies. For each firm the probability of facing
losses depends on the one hand on the endogenous, firm specific, threshold
rf , which is dependent on rcb, δ and λf , and on the other hand on the param-
eters of the distribution of price shocks (eq. 14). Indeed, the probability of
losses increases if the probability mass of εf that falls below the endogenous
threshold rf increases. So if, for example, we decrease µ, the distribution
of price shocks moves leftwards and losses / bankruptcies increase ceteris
paribus. Otherwise, if we increase σ, the probability mass in the tails in-
creases and the effect is the same. However, the interpretation is different,
since in the former case the increase of bankruptcies is associated with a
decrease of the expected profit at constant uncertainty, which we may call
a “first order” effect of price shocks, while in the latter case uncertainty in-
creases with expected profit unchanged, which we may call a “second order”
effect of price shocks. Mixing the two effects would make the results more
difficult to interpret. Thus, for sake of simplicity, we confine ourselves to
first order effects of price shocks by varying µ while keeping σ = 0.001, and
leaving the analysis of second order effects for the future.

Table 5: Range of parameters

rcb [0.0001, 0.05]
δ [2, 5]
µ [−0.001, 0.1]

We sample the range of Tab. 5 with the optimal design described in
Appendix A. For each of the 33 points of the Nearly Orthogonal Latin Hy-
percubes (NOLH) scheme of Table A.1, we replicate 10 simulations over
T = 500 periods, after an initial run of 200 periods.7

In order to proceed with the estimation of metamodels (step 2), we choose
the following moments:

7The first 200 periods are discarded to get rid of transient dynamics that could introduce
a bias in model statistics. Moreover, the long period of simulation does not represent a
long-run analysis but a repeated business cycle analysis. In other words, we do not consider
the presence of a trend in time-series by construction.
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m(y) =
1

T − 1

T−1∑
t=1

[
log

(
N∑
f=1

Y t+1
f

)
− log

(
N∑
f=1

Y t
f

)]
(19)

v(y) =

√√√√ 1

T − 1

T−1∑
t=1

[
log

(
N∑
f=1

Y t+1
f

)
− log

(
N∑
f=1

Y t
f

)]2

−m(y)2 (20)

fb(y) =
1

TN

T∑
t=1

[
N∑
f=1

1
(
Et
f < 0

)]
(21)

where y is a vector of simulated data containing aggregate production
values and the number of firm bankruptcies per period, and 1(· ) is the in-
dicator function which is used to count the number of bankrupt firms at t.
Then the vector h of eq.(2) is specified as follows:

h(y) = (m(y), v(y), fb(y)) (22)

The components of h are chosen among model outputs that are of interest
from an economic viewpoint and at the same time are not highly correlated,
in order to obtain independent equations. We exclude bank bankruptcies
because, according to the available data, there were no events of this kind in
Japan during the period under consideration (see Sec. 5) and the model is
able to replicate this feature over all the parameter space of Tab. 5.

Since y depends on (θ, s), the same holds true for the components of h.
Taking this fact into account, we specify the right hand side of eq. (2) as
follows:

m(θ, s) = β
′

mf(θ) + ums (23)

log (v(θ, s)) = β
′

vf(θ) + uvs (24)

fb(θ, s) = max
(

0, β
′

fbf(θ) + ufbs

)
(25)

θ = (rcb, δ, µ) (26)

f(θ) = (1, rcb, δ, µ, r
2
cb, δ

2, µ2, rcb × δ, rcb × µ, δ × µ) (27)

where β = (βfb, βm, βv) is the matrix of coefficients which can be esti-
mated equation by equation since we assume independence of errors across
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(25)-(24). We use a logarithmic transformation of v in order to enforce the
non-negativity constraint for this quantity. The higher order terms are in-
troduced because we expect the ABM to display non linear behavior. In
particular, we wish to capture the combined effect of parameters regulating
credit cost (rcb, δ) and demand conditions (µ) as explained in Sec. 2.

In a preliminary exercise, we compute a simple OLS regression with the
specifications (23)-(24) for m and log(v), and we observe that the hypothesis
of constant variance is rejected by the Breusch-Pagan test. Then we decide
to estimate the same specifications with the following alternative assump-
tions: i) heteroskedasticity of errors, measured by the interquartile distance
of simulated moments at fixed values of the parameters and accounted for by
weighted least square regression (WLS); ii) heteroskedasticity and correlated-
ness of errors, represented by a set of Kriging correlation kernels as specified
in Appendix B (K1-K5). Finally, fb is estimated by means of a Tobit regres-
sion in order to enforce the non-negativity constraint of this quantity.

The fitness of the alternative estimations of m and log(v) is computed
by means of k-fold cross validation, i.e. the models are used to predict
the response variables on k random sections of the experiment design after
being estimated on the rest of it. In particular, we set k = 5. Fitness is
compared through RMSE, MAE and Q2, which is a R2 statistics computed
out of sample (thus it can take negative values). The values of Tab. 6 are
means over 100 replications of the procedure. We see that the weighted OLS
regression always performs better than the alternative Kriging models.

With sensitivity analysis we can identify which parameters affect the com-
ponents of h most. The general idea is that the variance of each of the latter
is decomposed into additive terms which can be attributed to the variation
of the parameter i in isolation (“main effect”) and to combined variations of
parameters which include variations of i (“interactions”). Further details are
provided in Appendix C.

From eqs. (C.1)-(C.3) we see that in order to compute Si (main effect)
and SIi (interaction) we need to know the conditional expectation of the
components of h. We employ for this purpose the predictions obtained from

the estimation of metamodels, which we denote generically as ĥ =
(
m̂, v̂, f̂ b

)
. In this way we obtain the results of Fig. 5, from which we see that the
variance of m and v is almost entirely dependent on the value of µ, i.e. on
price shocks, although in the latter case there is a small role for credit costs
which, as we see from panel (c), significantly affect the default rate of firms,
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Table 6: Cross k−validation of Metamodels, k = 5

(a) m

WLS K1 K2 K3 K4 K5

Q2 0.9990 0.9989 0.9989 0.9989 0.9988 0.9989
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

RMSE 0.0008 0.0009 0.0009 0.0009 0.0010 0.0009
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000 (0.0000)

MAE 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(b) log(v)

WLS K1 K2 K3 K4 K5

Q2 0.9540 0.8815 0.8801 0.8766 0.8827 0.8852
(0.0001) (0.0022) (0.0023) (0.0022) (0.0022) (0.0020)

RMSE 0.2416 0.3795 0.3816 0.3878 0.3776 0.3746
(0.0003) (0.0034) (0.0035) (0.0034) (0.0034) (0.0031)

MAE 0.1721 0.2727 0.2705 0.2755 0.2687 0.2660
(0.0001) (0.0021) (0.0022) (0.0020) (0.0021) (0.0020)

WLS = Weighted Least Squares; K1 = Kriging est., Matern(5/2); K2 = Kriging est.,
Matern(3/2); K3 = Kriging est., Gaussian; K4 = Kriging est., power-exponential; K5 =
Kriging est., exponential. Standard errors in parentheses. For more details on Kriging
regression see Appendix B.
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mostly through the policy rate rcb. This result is consistent with the fact that
the replacement of bankrupt firms determines a discontinuity of the level of
firm equity which affects the level of production through eq. (4). We see also
that for fb the role of interaction effects is larger since a combination of low
margins (i.e. low µ) and high cost of credit is required in order to push firms
into loss according to eq. (14).

We are also interested to determine the sign of the effects of parameters
on the components of h. In order to do so, we sample Θ again with a
Latin Hypercube (LH) design of 1,000 data points and compute ĥ for each
of them. The results that are shown in Fig. 6 vindicate those of sensitivity
analysis, since the effect on both the conditional average (continuous line)
and conditional variance (dashed line) of the components of h, estimated
with a non parametric regression, are more pronounced when the weight of
the same factors in Fig. 5 is larger. The direction of effects is consistent
with expectations: the policy rate has a (weak) stabilizing effect at the cost
of increasing firm bankruptcies; strong demand conditions (high µ) lead to
strong aggregate growth and decreased volatility of production.

5 Model calibration

In this section we employ the metamodeling approach for the purpose of
model calibration. The general approach we follow falls into the class of
minimum distance techniques as defined by Grazzini and Richiardi (2015),
although using metamodels in this context is relatively new to the ABM
literature. In particular, we take the following steps: 1. compute a set of
empirical moments h from data which refer to the Japanese economy; 2.
compute, within a given range, the value of a chosen loss function using the
predictions derived from the metamodels ĥ and the empirical moments h; 3.
identify the optimal values of the parameters θ∗, i.e. those that minimize the
loss function; 4. compare the components of the simulated moment vectors
h(θ∗, s) with the predictions of the metamodels ĥ(θ∗) and with the empirical
moments h. The purpose of step 2 is to verify that the parameters of the
ABM are identified, i.e. that the loss func tion displays a single minimum
in the chosen parameter range. The purpose of step 4 is twofold: i) to check
if ABM simulations are able to replicate the empirical moments; ii) to check
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Figure 5: Sensitivity Analysis
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Figure 6: Global effect of parameters
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that ABM simulations and metamodel predictions align in such a way that
the latter can be used as a substitute for the former.

Regarding step 1, we look firstly at the index of monthly industrial pro-
duction in Japan, provided by the Ministry of Economy, Trade and Industry
8. In particular, we compute the average and standard deviation of the time
log-difference for the index in the period 01/2011 - 08/2016, which are re-
spectively equal to m = 0.0015243 and v = 0.0084397. We choose this time
span since we employ data referred to the first quarter of 2011 as initial con-
ditions for the ABM simulations (see sec. 2). Secondly, we look at default
rates. For this purpose we employ the information provided by Moody’s
concerning rated Japanese debt issuers in the period 1990-2013 9. In this pe-
riod the yearly default rates averaged at 0.2 % in the overall, while no bank
defaults were recorded among this subset of companies. This reflects the
general policy orientation of dealing with the ongoing banking crisis, which
tried to avoid large bank failures. We opt to set the firm default rates at the
observed monthly average of fb = 0.00166. The set of empirical moments is
thus given by the vector h = (m, v, fb).

We fix the policy rate at the average observed value in the period 01/2011
- 08/2016, which is equal to rcb = 0.0006 10. We sample the remaining sub-
space of parameters θ = (µ, δ) by means of the efficient design of Tab. A.2
and simulate the ABM with the otherwise identical specifications of Sec.
4. We collect the simulated vector h(θ, s) = {m(θ, s), v(θ, s), fb(θ, s)} and
compute the metamodels following the same procedure of Sec. 4: fb(θ, s) is
computed with a Tobit model which enforces the non negativity of the depen-
dent variable; log(v(θ, s)) and m(θ, s) are computed through weighted least
squares (WLS). All metamodels are specified as full second order polynomials

8See www.meti.go.jp/english/statistics/tyo/zenkatu/result-2.html
9https://www.moodys.com/research/Moodys-Japanese-corporate-default-rates-

remain-low–PR 310204
10See http://www.stat-search.boj.or.jp/ssi/html/nme R031.27424.20161122195432.01.csv
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in the parameters µ, δ. To summarize:

m(θ, s) = β
′

mf(θ) + ums (28)

log (v(θ, s)) = β
′

vf(θ) + uvs (29)

fb(θ, s) = max
(

0, β
′

fbf(θ) + ufbs

)
(30)

θ = (δ, µ) (31)

f(θ) = (1, δ, µ, δ2, µ2, δ × µ) (32)

From Fig. 7 we see that the correlation between simulated and predicted
values is very high for m and fb.

Regarding Step 2, we choose a simple loss function in which we sum the
Mean Absolute Percentage Error (MAPE) for each analyzed variable:

g(θ, h,N) =

∣∣∣∣∣(1/N)
N∑
s=1

m(θ, s)

m
− 1

∣∣∣∣∣+

∣∣∣∣∣(1/N)
N∑
s=1

fb(θ, s)

fb
− 1

∣∣∣∣∣+
+

∣∣∣∣∣(1/N)
N∑
s=1

v(θ, s)

v
− 1

∣∣∣∣∣
(33)

where N is the number of replications for each point of the design, which
we set at N = 10 in our simulations. We take advantage of the metamodel
estimation replacing g with a deterministic counterpart ĝ defined as follows

ĝ(θ, ĥ) =

∣∣∣∣m̂(θ)

m
− 1

∣∣∣∣+

∣∣∣∣∣ f̂ b(θ)fb
− 1

∣∣∣∣∣+

∣∣∣∣ v̂(θ)

v
− 1

∣∣∣∣ (34)

where ĥ =
(
m̂, f̂ b, v̂

)
are predictions obtained from the respective meta-

models. From Fig. 8 we see that both parameters are well identified since
ĝ has a single minimum in the chosen range, which is obtained for θ∗ =
(µ∗, δ∗) = (0.001655539, 4.75743086). In particular we obtain that ĥ(θ∗) =
(0.00152310, 0.00166010, 0.01131811).

Finally, we compare the components of h(θ∗, s) with s = 1, . . . , N and
N = 1, 000 with those of ĥ(θ∗) and of h̄. From Fig. 9 we see that in all cases
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Figure 7: Correlation between simulated (ABM) and predicted moments
(metamodel). The red line is a non parametric kernel regression (colors
online).
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Figure 8: Minimization of ĝ and ĝ(θ∗, h) = 0.06263874 (red asterisk) with
θ∗ = (µ∗, δ∗) = (0.001655539, 4.75743086). Colors online.
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the predictions of the metamodels match the behavior of the ABM quite
closely. Regarding the comparison with empirical moments, instead, we see
that the ABM is able to replicate the value of two moments (m(θ, s),fb(θ, s))
out of three. Indeed, the ABM produces an excess of volatility compared to
empirical data. Since the system (30)-(29) is overdetermined, this means
that the restrictions over coefficients implied by the ABM are rejected from
the empirical evidence. Given the simplicity of the model, a rejection is not
unexpected. On the other hand, we prove that the methodology is indeed
valuable since it provides a methodologically sound answer to the question
“does the ABM replicate empirical data?”.

6 Conclusions

In this paper we extended the ABM of Riccetti et al. (2013) by allowing firms
and banks to entertain multiple connections in a stylized credit market model.
For this purpose we resorted to a random network model whose parameters
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Figure 9: Comparison of the components of h(θ∗, s), ĥ(θ∗) and h̄, with s =
1, . . . , N and N = 1, 000.
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are calibrated with real data. The calibration of the credit network is set in
order to reproduce the degree and strength (debt and loan) distributions of
the Japanese credit market in 2011. At the same time, it allows to reduce the
number of free parameters of the ABM, making it easier to systematically
sample the parameter space with the efficient design proposed by Cioppa and
Lucas (2007). Using simulated data we estimate and then compare a number
of alternative statistical metamodels in order to select the best specification
for the relationship between the ABM parameters θ and a set of simulated
moments h. The selected metamodels, one for each component of h, allow
to identify the effect of each parameter on the components of h, taking into
account n on linearities and interaction effects.

Then we employ the metamodeling approach for the purpose of model
calibration. In particular, we identify the optimal values of the parameters
θ∗, i.e. those that minimize a loss function of choice ĝ which depends on
the predictions of metamodels ĥ and on a set of empirical moments h̄ which
refer to the Japanese economy. We compare the components of the simulated
moment vectors h(θ∗, s) with the predictions of the metamodels ĥ(θ∗) and
with the empirical moments h. From this exercise we obtain on the one hand
that the empirical evidence rejects the overidentifying restrictions implied by
the ABM, on the other hand that the predictions of the metamodels match
quite closely the behavior of the ABM. This shows that ABM simulations
and metamodel predictions align in such a way that the latter can be used as
a substitute for the former, which is the key point required for the application
of the proposed calibration approach. Indeed, we prove that the methodology
is valuable since it provides a clear-cut answer (although a negative one in
this case) to the question “does the ABM replicate empirical data?”. Thus we
believe that this approach, which does not impose restrictions on ABMs and
is especially suited for large models with a high number of parameters thanks
to the saving of computational time it allows, is of wide applicability in this
field and makes it possible to obtain a strong insight into the characteristics
of ABMs and their ability to replicate empirical data.

Some final considerations are necessary at this point. Aggregation is a
long standing issue in economic theory. In the case of mainstream macro
models, the gap between micro and macro is bridged by imposing ex ante
strong theoretical restrictions, such as doing away with agent heterogeneity,
which allow to derive a mathematical representation of the macro variables
directly from the micro model. ABMs instead generally lack analytical solu-
tions, and most ABM modelers are not in favor of selecting their assumptions
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on the basis of analytical tractability.
As soon as heterogeneity is allowed for, the relationship between micro

and macro variables becomes complex to handle, as underlined in many con-
tributions (e.g. Kirman (1992), Stocker (1993) and Gallegati et al. (2006)).Our
results show that we can bridge the gap between micro and macro variables
through a rigorous statistical analysis of ABM simulations. Since we don’t
need to impose any a priori restrictions on ABMs apart from those required
for the application of econometric techniques in general (like stationarity),
the methodologies employed in this paper have a great flexibility and an ex-
tremely broad scope of application. This paper is a contribution aimed at
explaining the potentiality of this approach, which is open to future applica-
tions in more complicated frameworks.
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Appendices

A Efficient sampling of Θ

In order to simulate the ABM, we have to specify the value of its parameter
vector θ. In general, some parameters can be set at a value which comes from
the literature, experimental studies and empirical data. For other parame-
ters, we can define an appropriate range of variation and study the behavior
of the model within that range using Montecarlo simulations.

Random sampling from a uniform distribution, which is a common choice
in Montecarlo exercises, is inefficient because it generates a high number of
redundant sampling points (points very close to each other), while leaving
some parts of the parameter space unexplored. A common alternative is
importance sampling, which however requires prior information. A proper
“design of experiment” (DOE) delivers instead a parsimonious sample which
is nevertheless representative of the parameter space. In particular, repre-
sentative samples are said to be “space filling”, since they cover as uniformly
as possible the domain of variation.

The sampling scheme we adopt for the subspace of free parameters θ =
(rcb, δ, µ), specified in Tab. 5, is the one suggested by Cioppa and Lucas
(2007) and employed by Salle and Yildizoglu (2014). This scheme is based
on Nearly Orthogonal Latin Hypercubes (NOLH). In the context of sampling
theory, a square grid representing the location of sample points for a couple
of parameters is a Latin square if there is only one sample point in each row
and each column. A Latin hypercube is the generalization of this concept to
an arbitrary number of dimensions, whereby each sample point is the only
one in each axis-aligned hyperplane containing it. This property ensures that
sample points are non collapsing, i.e. that the 1-dimensional projections of
sample points along each axis are space filling. In fact, with this scheme, the
sampled values of each parameter appear once and only once.

Basic Latin Hypercube schemes may display correlations between the
columns of the k× n design matrix X, where k is the number of parameters
and n is the sample size for each parameter, especially when k is lower but
close to n. Instead, an orthogonal design is convenient because it gives uncor-
related estimates of the coefficients in linear regression models and improves
the performance of statistical estimation in general. In practice, in orthogonal
sampling, the sample space is divided into equally probable subspaces. All
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sample points in the orthogonal LH scheme are then chosen simultaneously
making sure that the total ensemble of sample points is a Latin Hypercube
and that each subspace is sampled with the same density.

The NOLH scheme of Cioppa and Lucas (2007) improves the space filling
properties of the resulting sample when k / n at the cost of introducing a
small maximal correlation of 0.03 between the columns of X. Furthermore,
no assumptions regarding the homoskedasticity of errors or the shape of the
response surface (like linearity) are required to obtain this scheme. The
values of θ = (rcb, δ, µ) obtained from this scheme and used for simulations
of Sec. 4 are reported in Tab. A.1, while those employed for simulations of
Sec. 5 are reported in Tab. A.2.

B Kriging regression

In the metamodeling selection exercise of Sec. 4, we estimate various Krig-
ing models. These are generalized regression models, potentially allowing
for heteroskedastic and correlated errors. The approach is widely used for
ABM metamodeling in various fields (see e.g. Salle and Yildizoglu (2014),
Dancik et al. (2010) and references therein). Using generalized regression is
convenient since some of the parameters of our model are related to random
distributions which naturally affect the variability of model output. The
Kriging approach (Roustant et al., 2012) resorts to feasible generalized least
squares by assuming a stationary correlation kernel K(h) = K(θi−θj), where
θi, θj are distinct points in the parameter space Θ. K(h) takes the following
general form:

K(h) =
d∏
j=1

g(hj, λj) (B.1)

where d is the dimension of Θ, and λ = (λ1, . . . , λd) is a vector of param-
eters to be determined. In particular, we employ for g the specifications of
Tab. B.1.

Since we work with noisy, potentially heteroskedastic observations, in our
estimation the covariance matrix of residuals is determined as follows:

C = σ2R + diag(τ) (B.2)
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Table A.1: Design of Experiment (DOE) for simulations of Sec. 4.

δ rcb µ

3.0000 0.0406 0.0116
3.0625 0.0360 0.0558
3.1250 0.0391 0.0306
3.1875 0.0313 0.0527
3.2500 0.0422 0.0968
3.3125 0.0063 0.0842
3.3750 0.0001 0.0179
3.4375 0.0032 0.0243
3.5000 0.0157 0.0779
3.5625 0.0017 0.0653
3.6250 0.0375 0.1000
3.6875 0.0235 0.0274
3.7500 0.0048 0.0621
3.8125 0.0219 0.0400
3.8750 0.0297 0.0053
3.9375 0.0328 0.0085
4.0000 0.0251 0.0495
4.0625 0.0173 0.0905
4.1250 0.0204 0.0937
4.1875 0.0282 0.0590
4.2500 0.0453 0.0369
4.3125 0.0266 0.0716
4.3750 0.0126 -0.0010
4.4375 0.0484 0.0337
4.5000 0.0344 0.0211
4.5625 0.0469 0.0748
4.6250 0.0500 0.0811
4.6875 0.0438 0.0148
4.7500 0.0079 0.0022
4.8125 0.0188 0.0463
4.8750 0.0110 0.0684
4.9375 0.0141 0.0432
5.0000 0.0095 0.0874
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Table A.2: Design of Experiment (DOE) for simulations of Sec. 5.

δ µ

3.0000 0.0003
3.0625 0.0012
3.1250 0.0007
3.1875 0.0011
3.2500 0.0019
3.3125 0.0017
3.3750 0.0005
3.4375 0.0006
3.5000 0.0016
3.5625 0.0013
3.6250 0.0020
3.6875 0.0006
3.7500 0.0013
3.8125 0.0009
3.8750 0.0002
3.9375 0.0003
4.0000 0.0011
4.0625 0.0018
4.1250 0.0019
4.1875 0.0012
4.2500 0.0008
4.3125 0.0015
4.3750 0.0001
4.4375 0.0008
4.5000 0.0005
4.5625 0.0015
4.6250 0.0016
4.6875 0.0004
4.7500 0.0002
4.8125 0.0010
4.8750 0.0014
4.9375 0.0009
5.0000 0.0018
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Table B.1: Correlation kernels (Roustant et al., 2012)

K1 Matérn (ν = 5/2) g(h) =
(

1 +
√

5|h|
λ

+ 5h2

3λ2

)
exp

(
−
√

5|h|
λ

)
K2 Matérn (ν = 3/2) g(h) =

(
1 +

√
3|h|
λ

)
exp

(
−
√

3|h|
λ

)
K3 Gaussian g(h) = exp

(
− h2

2λ2

)
K4 Power-Exponential g(h) = exp

(
−
(
|h|
λ

)t)
K5 Exponential g(h) = exp

(
− |h|

λ

)

where R is the correlation matrix with elements Rij = K(θi−θj) and τ =
(τ 2

1 , . . . , τ
2
n) is the vector containing the observed variance of model output

at fixed points of the parameter space and n is the size of the NOLH design.
ML estimation is performed on the “concentrated” multivariate Gaussian log-
likelihood, obtained by substituting the vector of regression coefficients with
their generalized least square estimator. The “concentrated” log-likelihood is
a function of σ and λ, which are the optimization variables of the estimation.
The solution is obtained numerically through the quasi-Newton algorithm
provided by the DiceKriging R (2015) package (Roustant et al., 2012).

C Sensitivity analysis

Campolongo et al. (2000) define sensitivity analysis (SA) as the study of
how uncertainty in the output of a model can be apportioned to different
sources of uncertainty in the model input. In this respect, SA techniques
should satisfy the two main requirements of being global and model free.
By global, one means that SA must take into consideration the entire joint
distribution of parameters. Global methods are opposed to local methods,
which take into consideration the variation of one parameter at a time, e.g.
by computing marginal effects of each parameter. By model independent,
one means that no assumptions on the model functional relationship with its
inputs, such as linearity, are required.

Campolongo et al. (2000) propose a global approach based on the decom-
position of variance:

38



V (h) =
k∑
i

Vi +
∑
i<j

Vij +
∑
i<j<m

Vijm + · · ·+ V12...k

Vi = Vθi

[
Eθ−i

(h|θi = x)
]

Vij = Vθ(i,j)

[
Eθ−(i,j)

(h|θi = x, θj = y)
]
− Vi − Vj

. . .

where h is a generic vector of moments. We see that Vi represents the
variance of the main effect of parameter i, while all the other terms are
related to interaction effects. From this general formula we can obtain the
contribution of interaction effects SIi involving the parameter θi as follows:

SIi = ST i − Si (C.1)

Si =
Vi
V

(C.2)

ST i =
Eθ−i

[Vθi(h|θ−i)]
V

= 1−
Vθ−i

[Eθi(h|θ−i)]
V

= 1− V−i
V

(C.3)

The multidimensional integral of the last line can be evaluated numer-
ically using the extended FAST method described in Campolongo et al.
(2000). The results of Fig. 5 show, for each parameter in θ, the main effect
(C.2) and the interaction effect (C.1) on the components of h = (m, v, fb).
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