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This paper tackles the issue of local and global analyses of a duopoly game with price competition and market share delegation.
The dynamics of the economy is characterised by a differentiable two-dimensional discrete time system. The paper stresses the
importance of complementarity between products as a source of synchronisation in the long term, in contrast to the case of their
substitutability. This means that when products are complements, players may coordinate their behaviour even if initial conditions
are different. In addition, there exist multiple attractors so that even starting with similar conditions may end up generating very
different dynamic patterns.

1. Introduction

Strategic delegation is a relevant topic in both oligopoly the-
ory and industrial organisation, and several papers have con-
tributed to clarify questions related to the differences between
the behaviour of profit-maximising firms and managerial
firms (e.g., [1–4]). In the former kind of firms, ownership and
management coincide, and consequently the main aim they
pursue is profit maximisation. In the latter, ownership and
management are separate and managers may be driven by
incentive schemes that only partially take into account profit
and the other objectives of the firms, such as output, revenues,
relative performance evaluation, and market share [3, 5–10].
In addition to the above-mentioned theoretical papers, there
also exist some empirical works that stress the importance of
market share delegation contracts in actual economies [11, 12].

The present paper studies a nonlinear duopoly game with
price competition and market share delegation and extends
the study carried out by Fanti et al. [13] to the case of comple-
mentary or independent products. To this end, by following
an established literature led by Bischi et al. [14], we assume
that players have limited information and analyse how

a managerial incentive scheme based on market share affects
the local and global dynamics of a two-dimensional discrete
time system. The paper stresses the differences with the
analysis carried out by Fanti et al. [13] on the substitutability
between products in the case with managerial firms and
market share contracts and compares the results achieved.

The rest of the paper is organised as follows. Section 2
describes the model. Section 3 shows some preliminary
global properties of the two-dimensional dynamic system
(feasible set). Section 4 studies the fixed points of the system,
the invariant sets, and local stability. Section 5 is concerned
with multistability and shows that synchronisation may arise
when managers receive the same bonus. It also stresses the
differences with Fanti et al. [13] and takes into account the
asymmetric case in which bonuses are not equally weighted
in the managers’ objective function. Section 6 outlines the
conclusions.

2. The Model

Consider a duopoly game with price competition, horizon-
tal differentiation, and market share delegation contracts
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(see [13] for details). Market demands of goods 1 and 2 are,
respectively, given by
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(1)

where 𝑑 ∈ (−1, 0] is the degree of differentiation of
(complementary) products, while 𝑞

𝑖
≥ 0 and 𝑝

𝑖
≥ 0 are

quantity and price per unit of good of firm 𝑖 (𝑖 = 1, 2).
Both the firms have the samemarginal cost 0 ≤ 𝑤 < 1 and

hire a manager, who receives a bonus based on market share
𝑞
𝑖
/(𝑞
𝑖
+𝑞
𝑗
) (𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗), where 𝑞

𝑖
+𝑞
𝑗
is total supply.The

objective function of manager 𝑖 is

𝑊
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= Π
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, 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗, (2)

where Π
𝑖
= (𝑝

𝑖
− 𝑤)𝑞

𝑖
are profits and 𝑏

𝑖
> 0 is the

(constant) delegation variable of player 𝑖. Hence, by using (1),
(2) becomes
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𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗,

(3)

from which we get the following marginal bonus:
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𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗.

(4)

We now assume a discrete time (𝑡 ∈ Z
+
) dynamic setting,

where each player 𝑖 has limited information, as in Bischi et al.
[14], and uses the following behavioural rule to set the price
for the subsequent period:

𝑝
𝑖,𝑡+1

= 𝑝
𝑖,𝑡
+ 𝛼𝑝
𝑖,𝑡
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, 𝑝
𝑗,𝑡
)

𝜕𝑝
𝑖,𝑡

, 𝑖 = 1, 2, 𝑡 ∈ Z
+
, (5)

where 𝛼 > 0. We want to describe the qualitative and
quantitative long-term price dynamics when products are
complementary or independent, that is, 𝑑 ∈ (−1, 0], and
underline the similarities and differences with the case of
substitutability investigated in Fanti et al. [13].

Assume 𝑥󸀠 = 𝑝
1,𝑡+1

, 𝑥 = 𝑝
1,𝑡
, 𝑦󸀠 = 𝑝

2,𝑡+1
, and 𝑦 = 𝑝

2,𝑡
. By

using (4) and (5), the two-dimensional discrete time dynamic
system is as follows:

𝑇 :
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(6)

3. The Feasible Set

It is of importance to observe that system (6) is economically
meaningful only whether, at any time 𝑡, the two state variables
𝑥 and 𝑦 are not negative; that is, they belong to𝑄, where𝑄 is
the convex polygon with vertices (0, 0), (0, 1 − 𝑑), (1, 1), and
(1 − 𝑑, 0).

Let 𝑇𝑡(𝑥(0), 𝑦(0)), 𝑡 = 0, 1, 2 . . ., denote the 𝑡th iterate
of system 𝑇 for a given initial condition (𝑥(0), 𝑦(0)) ∈ 𝑄.
Then, the sequence𝜓

𝑡
= {(𝑥(𝑡), 𝑦(𝑡))}

∞

𝑡=0
is called trajectory. A

trajectory 𝜓
𝑡
is said to be feasible for 𝑇 if (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝑄 for

all 𝑡 ∈ N; otherwise, it is unfeasible. The set 𝐷 ⊆ 𝑄 whose
points generate feasible trajectories is called feasible set. A
point belonging to the feasible set is called feasible point.

The feasible set of system𝑇 is depicted in white in Figures
1(a) and 1(b) for two different parameter constellations, while
the unfeasible points belonging to𝑄 are depicted in grey.The
following evidence can be immediately observed: similarly
to the substitutability case, (i) set 𝐷 is nonempty such that
𝐷 ⊂ 𝑄 and (ii) set 𝐷 may have a simple structure (as in
Figure 1(a)) or a complex structure (as in Figure 1(b)). The
first evidence can be easily demonstrated by considering that
the origin is a feasible point and that there exists a 𝜂 > 0 small
enough such that (1 − 𝜂, 1 − 𝜂) is not a feasible point.

With regard to the study of the structure of the feasible set,
a numerical procedure based on the study of the properties
of the critical curves can be used (see, e.g., [15–17]). By taking
into account the results proved in Fanti et al. [13], it is easy to
verify that𝑇 is of𝑍

4
−𝑍
2
−𝑍
0
type since𝑄 can be subdivided

into regions whose points have 4, 2, or 0 preimages, and the
boundaries of such regions are characterised by the existence
of at least two coincident preimages.

We denote the critical curve of rank-1 by LC (it represents
the locus of points that have two or more coincident preim-
ages) and the curve ofmerging preimages by LC

−1
; that is, the

set of points (𝑥, 𝑦) ∈ 𝑄 such that |𝐽(𝑥, 𝑦)| = 0, where
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Figure 1: (a), (b). The feasible set 𝐷 ⊂ 𝑄 is depicted in white; the gray points are initial conditions producing unfeasible trajectories. (a)
𝛼 = 1.5, 𝑑 = −0.1, 𝑤 = 0.5, and 𝑏

1
= 𝑏
2
= 0.2. (b) 𝛼 = 1.5, 𝑑 = −0.2, 𝑤 = 0.5, and 𝑏

1
= 𝑏
2
= 0.2. (c) Critical curves of rank-0, LC

−1
, for system

𝑇 and the parameter values as in (b). (d) Critical curves of rank-1, LC = 𝑇(LC
−1
), for the same parameter values as in panel (c). These curves

separate the plane into the regions 𝑍
4
, 𝑍
2
, and 𝑍

0
, whose points have a different number of preimages.
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(7)

is the Jacobian matrix of system 𝑇 (see Figures 1(c) and 1(d)).
The study of the structure of set 𝐷 is of interest from

both economic and mathematical perspectives, since the
long-term evolution of the economic system becomes path-
dependent, and a thorough knowledge of the properties of𝐷
becomes crucial in order to predict the system’s feasibility.

We now fix all parameter values but 𝑑. Then, as is shown
in Figures 2(a) and 2(b), if 𝑑 = −0.15, set 𝐷 has a simple
structure (connected set), whilewhen𝑑 = −0.2, set𝐷 consists
of infinitely many nonconnected sets. This is due to the fact
that the LC𝑏 curve moves upwards as parameter 𝑑 decreases

and consequently a threshold value 𝑑 ≃ −0.1551 does exist
such that a contact between a critical curve and the boundary
of the feasible set occurs. This contact bifurcation causes
the change of 𝐷 from a connected set to a nonconnected
set. In fact, a portion of the unfeasible set enters in a
region characterised by a high number of preimages so
that new components of the unfeasible set suddenly appear
after the contact (in Figure 2(c), the feasible set is depicted
immediately after the contact bifurcation creating grey holes
inside the white region). The complexity of the structure of
the feasible set increases if 𝑑 decreases and the grey area



4 Discrete Dynamics in Nature and Society

1 − d

1 − d

1

1

y

0
0

x

(a)

1 − d

1 − d

1

1

y

0
0

x

(b)
1 − d

1

1 − d1

y

0
0

x

(c)

1 − d

1

y

0

x

1 − d10

(d)
Figure 2: Parameter values: 𝛼 = 1.5, 𝑤 = 0.5, 𝑏

1
= 0.4, and 𝑏

2
= 0.2. (a) 𝐷 has a simple structure (𝑑 = −0.15). (b) 𝐷 has a complex

structure (𝑑 = −0.2). (c) Set𝐷 after the contact bifurcation (𝑑 = −0.16): gray holes are depicted. (d) Immediately before the final bifurcation
(𝑑 = −0.216) almost all trajectories are unfeasible.

increases too (i.e., the set of initial conditions generating
unfeasible trajectories); however, it can be also observed that
if 𝑑 decreases further, a final bifurcation occurs. In fact, as
𝑑 crosses a value 𝑑 ≃ −0.218, almost all trajectories become
unfeasible (see Figure 2(d)).

Notice that in the simulations presented in Figure 2 we
have assumed 𝑏

1
̸= 𝑏
2
. However, a similar behaviour holds

also when 𝑏
1
= 𝑏
2
: in this case, the contact bifurcation

between the critical set and the boundary of the feasible set
occurs at two points that are symmetric with respect to the
main diagonal, so that the resulting feasible set is symmetric
too (see Figures 1(a) and 1(b)). The previous arguments show
that the bifurcations concerning the structure of the feasible
set is strictly related to the value of the two key parameters
𝑑 and 𝑏

𝑖
, which represent the degree of horizontal product

differentiation and the level of market share bonuses. The
following results can be proved.

Proposition 1. Let 𝑇 be the dynamic system given by (6).

(i) If 𝑑 → −1
+, then𝐷 = {(0, 0)}.

(ii) If 𝑏
𝑖
→ +∞, 𝑖 = 1, 2, then𝐷 = {(0, 0)}.

Proof. (i) If 𝑑 → −1
+, then 𝑄 → 𝐼 = {(𝑥, 𝑦) ∈ R2

+
: 𝑥 + 𝑦 ≤

2, 𝑥 ≥ 0, 𝑦 ≥ 0}. Observe first that it must be 𝑥 + 𝑦 < 2

for 𝑇 being well defined and that (0, 0) ∈ 𝐷, and hence we
consider initial conditions such that 𝑥(0) + 𝑦(0) < 2 and at
least one component of (𝑥(0), 𝑦(0)) is strictly positive. Taking
into account system (6), it can be observed that

𝑥 (1) + 𝑦 (1) = 𝑥 (0) + 𝑦 (0) + 𝜔 (𝑑, 𝑥 (0) , 𝑦 (0)) (8)

and that ∀(𝑥(0), 𝑦(0)) ∈ 𝑄 : 𝑥(0) + 𝑦(0) < 2 and 𝑥(0) +
𝑦(0) ̸= 0; if 𝑑 → −1

+, then 𝜔(𝑑, 𝑥(0), 𝑦(0)) diverges; that is,
(𝑥(0), 𝑦(0)) produces an unfeasible trajectory.

(ii) This statement can be proved simply considering the
limits lim

𝑏
1
→+∞

𝑥(1) and lim
𝑏
2
→+∞

𝑦(1) for any given initial
point (𝑥(0), 𝑦(0)) ∈ 𝑄, 𝑥(0) + 𝑦(0) ̸= 0.

According to Proposition 1, if 𝑏
𝑖
is high enough or

products tend to be complements (𝑑 is low enough), the
feasible set is consists of only the origin. This result confirms
the one obtained in Fanti et al. [13] for the substitutability
case; that is, economic meaningful dynamics are produced
only when the degree of complementarity or substitutability



Discrete Dynamics in Nature and Society 5

between products is not too high. More precisely, in the
case under investigation, economically meaningful long-
term dynamics can be produced only for 𝑑 ∈ 𝐼

−
(0) and 𝑏

𝑖
∈

𝐼
+
(0) (𝑖 = 1, 2), thus confirming the numerical experiments

previously presented.
By taking into account the above-mentioned arguments,

in what follows we will focus on the study of the dynamics
produced by 𝑇 by assuming that 𝑏

𝑖
is sufficiently small and 𝑑

is sufficiently high.

4. Fixed Points, Invariant Sets, and
Local Stability

Let 𝑇 be the dynamic system given by (6) and consider a
feasible initial condition. We now recall the results proved in
Fanti et al. [13] concerning fixed points and other invariant
sets of 𝑇 for 𝑑 ∈ (0, 1). It can be verified that they still hold
also when 𝑑 ∈ (−1, 0]. We here present a sketch of the proof
and we refer to Fanti et al. [13] for a further discussion.

Remark 2. Let 𝑇 be given by (6).Then, one has the following.
(i) 𝐼
𝑥
= {(𝑥, 𝑦) : 0 ≤ 𝑥 ≤ 1 − 𝑑, 𝑦 = 0} and 𝐼

𝑦
= {(𝑥, 𝑦) :

0 ≤ 𝑦 ≤ 1− 𝑑, 𝑥 = 0} are invariant sets. The dynamics
of 𝑇 on such sets are governed by 𝜙

𝑥
= 𝑥𝐹(𝑥, 0) and

𝜙
𝑦
= 𝑦𝐺(0, 𝑦) and they can be complex; in any case,

𝐼
𝑥
and 𝐼
𝑦
are repellor.

(ii) If 𝑏
1
= 𝑏
2
= 𝑏, then also Δ = {(𝑥, 𝑦) ∈ R2

+
: 𝑥 =

𝑦, 𝑥 ∈ [0, 1)} is an invariant set.The dynamics of 𝑇 on
such a set are governed by 𝜙(𝑥) = 𝑥[1 + (𝛼/(1 − 𝑑))

(((1−𝑑)(1−𝑥)−𝑥+𝑤)/(1+𝑑)− 𝑏((1+𝑑)/4(1−𝑥)))]
and they can be complex; furthermore, Δ can be an
attracting set.

(iii) The origin𝐸
0
= (0, 0) is a fixed point for all parameter

values; it can be a stable node, an unstable node, or
a saddle point. Up to two more fixed points on 𝐼

𝑦

and 𝐼
𝑥
may be owned. They are given by 𝐸

1
= (0, 𝑦

0
)

and 𝐸
2
= (𝑥
0
, 0) and can be unstable nodes or saddle

points.
(iv) If 𝑏

1
= 𝑏
2
= 𝑏, then 𝑇 admits a unique interior fixed

point 𝐸∗
𝑏

= (𝑥
∗

𝑏
, 𝑥
∗

𝑏
) for all 𝑏 < 4(1 − 𝑑 + 𝑤)/

(1 + 𝑑)
2

= 𝑏, where 𝑥
∗

𝑏
= 1 − ((1 − 𝑤) +

√(1 − 𝑤)
2
+ 𝑏(2 − 𝑑)(1 + 𝑑)

2
)/2(2 − 𝑑). 𝐸∗

𝑏
can be a

stable node, an unstable node, or a saddle point.

Proof. Consider the system 𝑇 given by (6).
(i) 𝑇(𝑥, 0) = (𝑥󸀠, 0) and𝑇(0, 𝑦) = (0, 𝑦󸀠); that is, 𝐼

𝑥
and 𝐼
𝑦

are invariant, and consequently the dynamics of 𝑇 on
such lines are governed by the two one-dimensional
maps 𝜙

𝑥
= 𝑥𝐹(𝑥, 0) and 𝜙

𝑦
= 𝑦𝐺(0, 𝑦). As both 𝜙

𝑥

and 𝜙
𝑦
are unimodal for suitable parameter values (as

proved in [13]), complex dynamics can be produced.
𝐼
𝑥
and 𝐼
𝑦
are repellor as the eigenvalue of 𝐽(𝑥, 0) and

𝐽(0, 𝑦) associated with the direction orthogonal to
each semiaxis is greater than one for all parameter
values.

(ii) Assume 𝑏
1
= 𝑏
2
= 𝑏; then, 𝑇(𝑥, 𝑥) = (𝑥

󸀠
, 𝑥
󸀠
), and

hence Δ is invariant and the dynamics of system 𝑇 on
Δ are governed by 𝜙(𝑥) = 𝑥𝐹(𝑥, 𝑥). Given the proper-
ties of 𝜙(𝑥) studied in Fanti et al. [13], nonmonoton-
icity can occur for suitable parameter values and
complex dynamics may emerge. Finally, Δ can be an
attracting set as the eigenvalue of 𝐽(𝑥, 𝑥) associated
with the eigenvector orthogonal to the diagonal may
be less than one in modulus (see again Fanti et al.
[13]).

(iii) Since𝑇(0, 0) = (0, 0), 𝐸
0
is a fixed point; furthermore,

while considering 𝐽(0, 0), it can be observed that 𝐸
0

can be a stable node, an unstable node, or a saddle
point. By solving 𝜙

𝑥
= 𝑥 and 𝜙

𝑦
= 𝑦 and following

Fanti et al. [13], it can be easily verified that up to two
positive solutions exist, namely, 𝐸

1
and 𝐸

2
; such fixed

points cannot be stable nodes as 𝐼
𝑥
and 𝐼
𝑦
are repellor.

(iv) Assume 𝑏
1
= 𝑏
2
= 𝑏; then, by solving equation 𝜙(𝑥) =

𝑥 it can be verified that it admits a unique positive
feasible solution 𝑥∗

𝑏
iff 𝑏 < 𝑏 (see Fanti et al. [13] for

more details); as each eigenvalue of 𝐽(𝑥∗
𝑏
, 𝑥
∗

𝑏
) can be

greater or less than one in modulus, then 𝐸∗
𝑏
can be a

stable node, an unstable node, or a saddle point.

The question of the existence of an interior fixed point
in the general case 𝑏

1
̸= 𝑏
2
(i.e., with different market share

bonuses) cannot be addressed analytically. However, it will be
discussed later in the paper by using numerical techniques.
By taking into account parts (i) and (iii) in Remark 2, in what
follows we will focus on the study of the dynamics produced
by 𝑇 for a feasible initial condition belonging to the interior
of𝑄, thus focusing on economically meaningful initial states.

5. Synchronisation and Multistability

In order to study the evolution of system𝑇when products are
independent or complementary and compare this case with
that of substitutable goods, we concentrate on the particular
case of identical market share bonuses; that is, 𝑏

1
= 𝑏
2
= 𝑏. As

a consequence, system 𝑇 in (6) takes the symmetric form 𝑇
𝑏

given by

𝑇
𝑏
:

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑥
󸀠
= 𝑥𝑓 (𝑥, 𝑦)

= 𝑥[1 + 𝛼(
1 − 2𝑥 − 𝑑 (1 − 𝑦) + 𝑤

1 − 𝑑
2

− 𝑏
(1 + 𝑑) (1 − 𝑦)

(1 − 𝑑) (2 − 𝑥 − 𝑦)
2
)]

𝑦
󸀠
= 𝑦𝑔 (𝑥, 𝑦)

= 𝑦[1 + 𝛼(
1 − 2𝑦 − 𝑑 (1 − 𝑥) + 𝑤

1 − 𝑑
2

− 𝑏
(1 + 𝑑) (1 − 𝑥)

(1 − 𝑑) (2 − 𝑥 − 𝑦)
2
)] .

(9)
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Since map 𝑇
𝑏
is symmetric, that is, it remains the same

when the players are exchanged, then either an invariant set
of themap is symmetric with respect toΔ or its symmetric set
is invariant. By considering part (iv) in Remark 2, the local

stability analysis of the unique interior fixed point 𝐸∗
𝑏
can

be carried out by considering the Jacobian matrix associated
with system 𝑇

𝑏
given by

𝐽
𝑏
(𝑥, 𝑦) = (

1 + 𝛼(
1 − 4𝑥 − 𝑑 (1 − 𝑦) + 𝑤

1 − 𝑑
2

−
𝑏 (1 + 𝑑) (1 − 𝑦) (2 + 𝑥 − 𝑦)

(1 − 𝑑) (2 − 𝑥 − 𝑦)
3
) 𝛼𝑥(

𝑑

1 − 𝑑
2
− 𝑏
(1 + 𝑑) (𝑥 − 𝑦)

(1 − 𝑑) (2 − 𝑥 − 𝑦)
3
)

𝛼𝑦(
𝑑

1 − 𝑑
2
− 𝑏
(1 + 𝑑) (𝑦 − 𝑥)

(1 − 𝑑) (2 − 𝑥 − 𝑦)
3
) 1 + 𝛼(

1 − 4𝑦 − 𝑑 (1 − 𝑥) + 𝑤

1 − 𝑑
2

−
𝑏 (1 + 𝑑) (1 − 𝑥) (2 − 𝑥 + 𝑦)

(1 − 𝑑) (2 − 𝑥 − 𝑦)
3
)

).

(10)

Let

𝐽
1
(𝑥) = 1 +

𝛼

1 − 𝑑
2

⋅
4 (4 − 𝑑) (1 − 𝑥)

3
+ 4 (𝑤 − 3) (1 − 𝑥)

2
− 𝑏 (1 + 𝑑)

2

4 (1 − 𝑥)
2

,

𝐽
2
(𝑥) =

𝛼𝑑

1 − 𝑑
2
𝑥.

(11)

Then, the Jacobianmatrix evaluated at a point on the diagonal
Δ is of the kind

𝐽
𝑏
(𝑥, 𝑥) = (

𝐽
1
(𝑥) 𝐽
2
(𝑥)

𝐽
2
(𝑥) 𝐽
1
(𝑥)

) , (12)

so that the eigenvalues of 𝐽
𝑏
(𝑥, 𝑥) are both real and given by

𝜆
𝑏‖
(𝑥) = 𝐽

1
(𝑥) + 𝐽

2
(𝑥) ,

𝜆
𝑏⊥
(𝑥) = 𝐽

1
(𝑥) − 𝐽

2
(𝑥) ,

(13)

while the corresponding eigenvectors are, respectively, given
by V
𝑏‖
= (1, 1) and V

𝑏⊥
= (1, −1).

The eigenvalues evaluated at the fixed point 𝐸∗
𝑏
are,

respectively,

𝜆
𝑏‖
(𝐸
∗

𝑏
) = 𝐽
1
(𝐸
∗

𝑏
) + 𝐽
2
(𝐸
∗

𝑏
) ,

𝜆
𝑏⊥
(𝐸
∗

𝑏
) = 𝐽
1
(𝐸
∗

𝑏
) − 𝐽
2
(𝐸
∗

𝑏
) .

(14)

Thus, 𝐸∗
𝑏
can be attracting for suitable values of parameters

such that both 𝜆
‖
(𝐸
∗

𝑏
) and 𝜆

⊥
(𝐸
∗

𝑏
) belong to the set (−1, 1).

Different from the case in which products are substitutes,
the following Proposition can easily be verified.

Proposition 3. If 𝑑 = 0, then 𝜆
𝑏‖
(𝐸
∗

𝑏
) = 𝜆

𝑏⊥
(𝐸
∗

𝑏
); if 𝑑 ∈

(−1, 0), then 𝜆
𝑏‖
(𝐸
∗

𝑏
) < 𝜆
𝑏⊥
(𝐸
∗

𝑏
).

Proof. If 𝑑 = 0, then 𝐽
2
(𝑥) = 0 ∀𝑥, and consequently

𝜆
𝑏‖
(𝐸
∗

𝑏
) = 𝜆

𝑏⊥
(𝐸
∗

𝑏
); if 𝑑 ∈ (−1, 0), then 𝐽

2
(𝑥) < 0 ∀𝑥 > 0,

and hence 𝜆
𝑏‖
(𝐸
∗

𝑏
) < 𝜆
𝑏⊥
(𝐸
∗

𝑏
).

From Proposition 3 it follows that if 𝑑 = 0, then
the interior fixed point is a stable or an unstable node.
Furthermore, conditions 𝜆

𝑏‖
(𝐸
∗

𝑏
) > 1 or 𝜆

𝑏⊥
(𝐸
∗

𝑏
) < −1 are

sufficient for 𝐸∗
𝑏
to be an unstable node.

The following condition for the local stability of 𝐸∗
𝑏

(which holds if products are substitutes) applies also to the
case 𝑑 ∈ (−1, 0] and it can be recalled below (see Fanti et al.
[13] for the proof).

Proposition4. Let system𝑇
𝑏
be given by (9).Then a 𝜖 > 0 does

exist such that𝐸∗
𝑏
is locally asymptotically stable ∀𝑏 ∈ (𝑏−𝜖, 𝑏),

given the other parameter values.

By taking into account Propositions 3 and 4, a suffi-
cient condition for 𝐸∗

𝑏
to be locally stable for 𝑑 = 0 is

𝑏 → 4(1 + 𝑤)
−. In this case, given the geometric properties

ofmap𝜙(𝑥) described in Fanti et al. [13], the initial conditions
belonging to Δ converge to 𝑥∗

𝑏
with independent products.

In addition, the trajectories starting from initial conditions
close to it, that is, (𝑥(0), 𝑦(0)) ∈ 𝐼(𝐸

∗

𝑏
, 𝑟), with 𝑥(0) ̸=

𝑦(0), also converge to 𝐸
∗

𝑏
. This behaviour occurs as long

as 𝑑 ∈ 𝐼
−
(0), while, as 𝑑 decreases, the fixed point loses

its stability firstly along the diagonal, thus giving rise to a
different scenario compared to that presented in Fanti et al.
[13] for the substitutability case.

Definition 5. A feasible trajectory 𝜓
𝑡

= {𝑥(𝑡), 𝑥(𝑡)}
∞

𝑡=0
,

(𝑥(0), 𝑥(0)) ∈ Δ, is called synchronised trajectory. A feasible
trajectory starting from (𝑥(0), 𝑦(0)) ∈ 𝐷 − Δ, that is, with
𝑥(0) ̸= 𝑦(0), is synchronised if |𝑥(𝑡)−𝑦(𝑡)| → 0 as 𝑡 → +∞.

With regards to the dynamics of synchronised trajecto-
ries, we first recall the result proved in Proposition 1.

An attractor 𝐴 located on the invariant set Δ exists for
𝑇
𝑏
if products are not too complementary (𝑑 is not too

low) and the market share bonus 𝑏 is not too large (see
Figures 3(a) and 3(c)). This fact can also be confirmed by
considering the following properties of map 𝜙(𝑥): 𝜙(0) = 0,
lim
𝑥→1

−𝜙(𝑥) = −∞, 𝜙󸀠(0) > 1 ∀𝑏 ∈ (0, 𝑏), 𝜙󸀠󸀠(𝑥) < 0 ∀𝑥 ∈

[0, 1). As a consequence, there exists a unique𝑥
−
∈ (0, 1) such

that 𝜙(𝑥
−
) = 0 and a unique maximum point 𝑥

𝑀
∈ (0, 𝑥

−
)

such that 𝜙(𝑥
𝑀
) is the maximum value of 𝜙 in [0, 1). This

implies that 𝜙 is unimodal in [0, 𝑥
−
]. By considering that

𝜙(𝑥
𝑀
) increases when 𝑑 decreases and 𝜙(𝑥

𝑀
) → +∞ if 𝑑 →

−1, then a 𝑑 does exist such that 𝜙(𝑥
𝑀
) > 𝑥
−
if −1 < 𝑑 < 𝑑

(see Figure 3(b)). On the other hand, by considering the role
of parameter 𝑏, a cascade of period doubling bifurcations is
observed when 𝑏 decreases (see Figure 3(c)).
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Figure 3: Parameter values: 𝑤 = 0.5, 𝛼 = 1.5. (a) One-dimensional bifurcation diagrams with respect to 𝑑 for two fixed 𝑏 values. (b) Map 𝜙
is plotted for different 𝑑 values and 𝑏 = 1. (c) One-dimensional bifurcation diagrams with respect to 𝑏 (0 < 𝑏 < 𝑏) for two fixed 𝑑 values.

By taking into account the previous results and looking
at the one-dimensional bifurcation diagrams in Figures 3(a)
and 3(c), it can be observed that synchronised trajectories
converge to the unique interior fixed point if 𝑏 is close to 𝑏 (the
manager bonus is close to its upper limit). In addition, similar
to what occurs with the logistic map, cycles can emerge due
to period doubling bifurcation of 𝜙when 𝑑 decreases (i.e., the
degree of complementarity between products increases).This
evidence is also confirmed when products are substitutes,
thus proving that complexity in synchronised trajectories
ariseswhenmoving away from the hypothesis of independent
products.

Let us consider now a duopoly with identical players that
start fromdifferent feasible initial conditions and let𝐴 ⊆ Δ be
an attracting set of 𝜙. If𝐴 = 𝐸

∗

𝑏
for 𝑑 = 0, then by considering

(13) and Proposition 3 the following proposition holds.

Proposition 6. Let 𝑥∗
𝑏
be an attracting fixed point of 𝜙 for 𝑑 =

0. Then, 𝐸∗
𝑏
is an attracting fixed point of 𝑇

𝑏
and ∃𝑑

−
< 0 such

that 𝐸∗
𝑏
is an attracting fixed point of 𝑇

𝑏
∀𝑑 ∈ (𝑑

−
, 0)∩(−1, 0).

At 𝑑 = 𝑑
−
, the fixed point 𝐸∗

𝑏
loses stability along the diagonal.

Proof. Let 𝑑 = 0 and assume that 𝑥∗
𝑏
is an attracting fixed

point of𝜙; that is,𝜙󸀠(𝑥∗
𝑏
) = 𝜆
𝑏‖
(𝐸
∗

𝑏
) ∈ (−1, 1). Since𝜆

𝑏‖
(𝐸
∗

𝑏
) =

𝜆
𝑏⊥
(𝐸
∗

𝑏
), then 𝐸∗

𝑏
is an attracting fixed point of 𝑇

𝑏
. As both

𝜆
𝑏‖
(𝐸
∗

𝑏
) and 𝜆

𝑏⊥
(𝐸
∗

𝑏
) are continuous with respect to 𝑥∗

𝑏
and

𝑑, then ∃𝐼
−
(0) such that |𝜆

𝑏‖
(𝐸
∗

𝑏
)| < 1 and |𝜆

𝑏⊥
(𝐸
∗

𝑏
)| < 1

∀𝑑 ∈ (𝑑
−
, 0)∩(−1, 0), and𝐸∗

𝑏
is an attracting fixed point of 𝑇

𝑏
.

Finally, since 𝜆
𝑏‖
(𝐸
∗

𝑏
) < 𝜆

𝑏⊥
(𝐸
∗

𝑏
) ∀𝑑 ∈ (−1, 0) and they are

both increasing with respect to 𝑑, then as 𝑑 crosses 𝑑
−
the

eigenvalue 𝜆
𝑏‖
(𝐸
∗

𝑏
)must cross −1; that is, 𝐸∗

𝑏
loses its stability

along the diagonal.

According to Proposition 6, if synchronised trajectories
converge to 𝑥

∗

𝑏
for 𝑑 = 0, then trajectories starting from

feasible initial conditions close to it, with 𝑥(0) ̸= 𝑦(0),
are synchronised in the long term as long as 𝑑 ∈ 𝐼

−
(0).

If 𝑑 decreases further, the fixed point loses stability firstly
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along the diagonal. This contrasts with the result obtained
in Fanti et al. [13] where products are substitutes. In fact, if
𝑑 passes from zero to positive values, the fixed point first
loses transverse stability and consequently the trajectories are
not synchronised. Therefore, synchronisation in this model
is strictly related to the assumption of complementarity
between products.

If𝐴 consists of a𝑚-cycle, then, similarly to what happens
for the fixed point, several numerical computations show
that if 𝐴 is a 𝑚-cycle for 𝑑 = 0, then the 𝑚-cycle loses
stability firstly along the diagonal when 𝑑 decreases, so
that synchronisation may occur. Different from the case of
substitutability, this evidence confirms that when products
are complements, players may coordinate their behaviour
towards a situation in which prices are equal (and the market
is equally shared). In our analysis it is also stressed that the
emergence of synchronisation with negative values of 𝑑 also
confirms the result obtained in Fanti et al. [18] with profit-
maximising firms.

Consider now a more complex situation; that is, 𝐴 is a
chaotic attractor onΔ. In order to study its transverse stability,
it is possible to use the procedure proposed inBischi et al. [14],
Bischi and Gardini [19], and Bignami and Agliari [20]. Recall
that the transverse Lyapunov exponent is defined as follows:

Λ
𝑏⊥
= lim
𝑁→∞

1

𝑁

𝑁

∑

𝑛=0

ln 󵄨󵄨󵄨󵄨𝜆𝑏⊥ (𝑥𝑛)
󵄨󵄨󵄨󵄨 ,

(15)

where 𝑥
0
∈ 𝐴 and 𝑥

𝑛
is a generic trajectory generated by 𝜙.

If 𝑥
0
belongs to a generic aperiodic trajectory embedded

within the chaotic set 𝐴, then Λ
𝑏⊥

is the natural transverse
Lyapunov exponent Λ𝑛

𝑏⊥
, where natural indicates that the

exponent is computed for a typical trajectory taken in
the chaotic attractor 𝐴. Since infinitely many cycles (all
unstable along the diagonal) are embedded inside the chaotic
attractor 𝐴, a spectrum of transverse Lyapunov exponents
can be defined and the natural transverse Lyapunov exponent
represents a sort ofweighted balance between the transversely
repelling and transversely attracting cycles. If all cycles
embedded in 𝐴 are transversely stable, that is Λmax

𝑏⊥
< 0, then

𝐴 is asymptotically stable in the Lyapunov sense for the two-
dimensional map 𝑇

𝑏
. Nevertheless, it may occur that some

cycles embedded in the chaotic set 𝐴 become transversely
unstable; that is, Λmax

𝑏⊥
> 0, while Λ𝑛

𝑏⊥
< 0. In such a

case, 𝐴 is not stable in the Lyapunov sense but it is a stable
attractor in the Milnor sense. If a Milnor attractor of 𝑇

𝑏

exists, then some transversely repelling trajectories can be
embedded in a chaotic set which is attracting only on average.
In addition, such transversely repelling trajectories can be
reinjected toward Δ so that their behaviour is characterised
by some bursts far from the diagonal, before synchronization
or convergence towards a different attractor. This situation is
called on-off intermittency.

In order to investigate the existence of a Milnor attractor
𝐴, we numerically estimate the natural transverse Lyapunov
exponent Λ𝑛

𝑏⊥
, represented with respect to 𝑏 in Figure 4(a)

for a fixed negative value of 𝑑. It is possible to observe that it
can take negative values. As an example, we consider 𝑏 = 2.07
at which Λ𝑛

𝑏⊥
< 0 while Λmax

𝑏⊥
> 0 and the one-dimensional

map 𝜙 exhibits a 4-piece chaotic attractor. 𝐴 is an attractor
of system 𝑇

𝑏
belonging to the diagonal (see Figure 4(b)), but

a trajectory starting from an initial condition that does not
belong to the diagonal has a long transient before converging
to 𝐴 (see Figure 4(c)). In fact, by considering the difference
𝑥(𝑡) − 𝑦(𝑡) for any 𝑡 we can observe that the transient part
of the trajectory is characterised by several bursts away from
Δ. The typical on-off intermittency phenomenon occurs. The
whole trajectory starting from 𝑥(0) = 0.1 and 𝑦(0) = 0.2 is
shown in Figure 4(d).

The study of the geometrical properties of the critical
lines may be used to estimate the maximum amplitude of
the bursts by obtaining the boundary of a compact trapping
region of the phase plane in which the on-off intermittency
phenomena are confined. FollowingMira et al. [21], we obtain
the boundary of the absorbing area in Figure 4(e) for the case
presented in Figure 4(d). Observe that such a region contains
the whole trajectory presented in Figure 4(d). However, not
all trajectories are synchronised as𝑇

𝑏
also admits a coexisting

attractor, that is, a 2-period cycle whose basin is depicted in
orange in Figure 4(f).

If 𝑇
𝑏
admits an attractor 𝐴 ⊂ Δ and there exist

feasible trajectories starting from interior points that are not
synchronised, then the question of multistability has to be
considered. In fact, several attractors may coexist (each of
which with its own basin of attraction) so that the selected
long-term state becomes path dependent, as in the situation
shown in Figure 4(f). In this case, the structure of the basins
of different attractors becomes crucial to predict the long-
term outcome of the economic system. In Figure 5(a), the
unique Nash equilibrium is locally stable, as the market share
bonus is close to its upper limit. It is also globally stable, in
the sense that it attracts all feasible trajectories taken into
the interior of the feasible set 𝐷 (that represents economic
meaningful initial conditions).

If we compute 𝜕𝑏/𝜕𝑑, then it is possible to observe that
𝑏 increases as 𝑑 decreases, and 𝑏 → +∞ as 𝑑 → −1

+.
As a consequence, in order to obtain the convergence to the
unique Nash equilibrium, 𝑏must be set at higher levels as the
degree of horizontal product differentiation 𝑑 decreases (i.e.,
products tend to be more complementary). Furthermore, if
products are complements, then 𝜆

𝑏‖
crosses −1 as 𝑏 decreases

and a flip bifurcation occurs along the invariant set Δ; that is,
a 2-period cycle appears close to the fixed point and it is stable
along the diagonal. By taking into account the result proved
in Proposition 3, when this bifurcation occurs, 𝜆

𝑏⊥
is still

smaller than 1 in modulus and consequently (immediately
after the first flip bifurcation) the 2-period cycle attracts all
interior feasible trajectories. However, if 𝑏 is still decreased,
a period doubling bifurcation cascade occurs along the
diagonal, so that more complex bounded attractors (such as
periodic cycles) may exist on Δ around the unstable Nash
equilibrium. As a consequence, the long-term synchronised
dynamics may be characterised by bounded periodic (or
even aperiodic) oscillations around the Nash equilibrium.
If the attractor 𝐴 is transversely unstable, the situation may
become very complicated, as it is shown in Figure 5(b) where
a 2-period cycle attracts all synchronised trajectories, while
two attractors coexist out of the diagonal: a 2-period cycle
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Figure 4: Parameter values: 𝛼 = 1.5, 𝑑 = −0.2, and 𝑤 = 0.5. (a) The natural transverse Lyapunov exponent with respect to parameter 𝑏. (b)
Four-piece chaotic attractor 𝐴 of system 𝑇

𝑏
belonging to the diagonal for 𝑏 = 2.07. (c) Bursts away from the diagonal before synchronization

for 𝑏 = 2.07, 𝑥(0) = 0.1, and 𝑦(0) = 0.2. (d) The whole trajectory starting from initial condition as in (c) and converging to the attractor in
(b). (e) The minimal absorbing area in which on-off intermittency phenomenon occurs for the same parameters as in (c). (f) The attractor 𝐴
coexists with an attracting 2-period cycle for 𝑏 = 2.07.
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Figure 5: Parameter values: 𝛼 = 1.5 and 𝑤 = 0.5. (a) The white region represents the basin of 𝐸∗
𝑏
for 𝑏 = 5.1 and 𝑑 = −0.2. (b) A 4-period

cycle together with a 2-period cycle coexists with the attractor 𝐴 belonging to the diagonal (a two-period cycle) for 𝑏 = 2.4 and 𝑑 = −0.2.
(c) For 𝑏 = 2.3, a 4-piece quasi-periodic attractor has been created, 𝑑 = −0.2. (d) A particular scenario is presented for 𝑏 = 0.2 in the case of
independent products 𝑑 = 0.

whose basin is depicted in orange and a 4-period cycle whose
basin is depicted in yellow; note that the periodic points are
in symmetric position with respect to the diagonal. As the
parameter 𝑏 decreases, a further flip bifurcation occurs and
a 4-period cycle is created on the diagonal (see Figure 5(c));
furthermore, the 4-period cycle existing out of the diagonal
becomes a stable focus and then undergoes aNeimark-Sacker
bifurcation at which it becomes a 4-cyclic attractor formed
by a 4-piece quasi-periodic attractor (green basin) coexisting
with a 2-period cycle (orange basin), while synchronisation
is avoided. This is how the situation presented in Figure 4(f)
is approached: a final bifurcation that causes the transition to
more complex basin boundaries occurs. Consequently to the
final state sensitivity it is impossible to predict the long-term
outcomes of the economy.

Finally, we consider the case in which products are
independent from each other and each manager behaves as
a monopolist (𝑑 = 0). When a flip bifurcation along the
diagonal creates a 𝑘-period cycle, it can be observed that

a 𝑘-period cycle is simultaneously created out of the diagonal
as the eigenvalues of cycles embedded into the diagonal are
identical. As a consequence, any period doubling bifurcation
along Δ is associated with a period doubling bifurcation
orthogonal to Δ. A similar phenomenon of multistability
is presented in Bischi and Kopel [22]. This case is shown
in Figure 5(d): the green points represent initial conditions
converging to a 4-period cycle on the diagonal while the
yellow points represent initial conditions converging to a
4-period cycle out of the diagonal. This scenario occurs
when the 2-period cycle along the diagonal undergoes the
second period doubling bifurcation: two stable 4-period
cycles are created, one along the diagonal (red points) and
one with periodic points symmetric to it (black points); these
two stable cycles coexist with the 2-period cycle previously
created out of the diagonal (white points). Observe that an
economy starting far away from the diagonal may become
synchronised, as the basin of attraction 𝐴 on the diagonal
is comprised of several nonconnected sets. This result is
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Figure 6: (a) Parameter values: 𝛼 = 1.5, 𝑤 = 0.5, 𝑏 = 5.1, and 𝑑 = −0.2. The Nash equilibrium for positive and negative values of Δ𝑏. (b) If
Δ𝑏 = −0.3, the Nash equilibrium is unstable and a 2-period cycle is globally stable. (c) A complex attractor 𝐴 (black points) coexists with a
2-period cycle (white points) if 𝛼 = 1.5,𝑤 = 0.5, 𝑏 = 2.07, 𝑑 = −0.2, andΔ𝑏 = 0.15. (d) Coexisting attractors if 𝑏 = 0.2, 𝑑 = 0whileΔ𝑏 = 0.01.
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relevant from an economic point of view. In fact, it implies
coordination even though the manager hired in each firm
behaves as a monopolist in his own market.

5.1.TheAsymmetric Case. Wenow consider the case inwhich
managers’ bonuses are evaluated differently; that is, 𝑏

1
̸= 𝑏
2
.

Obviously, in this caseΔ is no longer invariant (i.e., if the firms
start from the same initial feasible condition (𝑥(0), 𝑥(0)) ∈
𝐷, they will behave differently in the long term), so that
synchronisation cannot occur. However, similar to the case
in which products are substitutes, multistability still emerges.
Assume 𝑏

1
= 𝑏 and 𝑏

2
= 𝑏 + Δ𝑏, where Δ𝑏 ∈ (−𝑏, +∞).

With regard to the existence of the Nash equilibrium, we
recall that Proposition 1 states a necessary condition; that is,
parameter 𝑑 should not be too close to its extreme value −1
and, in addition, 𝑏 and Δ𝑏 should not be too high. A Nash
equilibrium, if it exists, is given by a point (𝑥∗, 𝑦∗) ∈ 𝑄 such
that𝐹(𝑥∗, 𝑦∗) = 𝐺(𝑥∗, 𝑦∗) = 0. As a consequence, an interior
fixed point can be obtained by considering the intersection
points of the two curves 𝐹(𝑥, 𝑦) = 0 and 𝐺(𝑥, 𝑦) = 0 in
the phase plane. Of course, if these curves intersect in a point
𝐸
∗
= (𝑥
∗
, 𝑦
∗
) ∈ 𝑄, then it is a Nash equilibrium for 𝑇.

By considering the analytical properties of 𝐹 and 𝐺,
numerical simulations allow us to conclude that the main
results of Fanti et al. [13] are confirmed also when products
are complements or independent. These results are collected
in the following list.

(i) If the Nash equilibrium exists, then it is unique such
that the equilibrium price is higher for the variety
associated with a lower market share bonus (see
Figure 6(a)).

(ii) If the Nash equilibrium is locally stable in the
symmetric case, then it is also locally stable in the
asymmetric case if and only if the perturbation on 𝑏
is small enough (i.e., Δ𝑏 is close to zero).

(iii) In the case of heterogeneity, the Nash equilibrium
loses stability via a flip bifurcation at which it becomes
a saddle point and a stable 2-period cycle appears
close to 𝐸∗ (see Figure 6(b)).

(iv) Synchronised trajectories do not emerge and syn-
chronisation cannot occur, while multistability still
emerges (compare Figures 6(c) to 4(f)).

To better describe point (iv) above, we recall that a
situation in which synchronisation may occur is depicted
in Figure 4(f): the symmetric system 𝑇

𝑏
admits a complex

attractor on the diagonal that coexists with a 2-period cycle
out of the diagonal. If we consider a slight difference between
weights attached to market share bonuses, that is, Δ𝑏 is small
enough, we obtain the situation depicted in Figure 6(c): the
attractor on the diagonal disappearswhile a complex attractor
coexists with the 2-period cycle previously found.

Similarly, observe that, with independent products and
homogeneous managers, three coexisting attractors are
owned (see Figure 5(d)). This situation drastically changes
if Δ𝑏 = 0.01. In fact, as shown in Figure 6(d), a small
perturbation on 𝑏 causes the disappearance of the attracting
4-period cycle symmetric to the diagonal, while a 4-period

cycle close to the diagonal persists together with the 2-period
cycle existing out of the diagonal. Obviously, due to the het-
erogeneity between the weights 𝑏

𝑖
, the shape of the bound-

aries of the coexisting attractors is no longer symmetric with
respect to the diagonal.

Although the managers’ behaviours are no longer coor-
dinated, it is interesting to stress that, different from the
case of substitutability between products, the structure of
the basin of attraction seems to become simpler than under
homogeneous delegation contracts.

6. Conclusions

This paper has studied the mathematical properties of a non-
linear duopoly gamewith price competition andmarket share
delegation contracts.Themain aimwas to extend the analysis
carried out by Fanti et al. [13] to the case inwhich products are
complementary or independent. The most important result
is that the interaction between the degree of complemen-
tarity and the delegation variable (which affects managerial
bonuses) may produce synchronisation in the long term.This
result does not emerge when products are substitutes.

From an economic point of view, synchronisation is
relevant because it implies coordination between players.
Then, in a model with managerial firms and market share
delegation contracts, coordination can (resp., cannot) hold
when products are complements (resp., substitutes). In addi-
tion, we have also shown that multiple attractors may exist so
that initial conditions matter.
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