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Chapter 1

Introduction

Sharing images is an essential experience. Be it a drawing carved in rock,

a painting exposed in a museum, or a photo capturing a special moment,

it is the sharing that relives the experience stored in the image. Several

technological developments have spurred the sharing of images in unprece-

dented volumes. The first is the ease with which images can be captured in

a digital format by cameras, cellphones and other wearable sensory devices.

The second is the Internet that allows transfer of digital image content to

anyone, anywhere in the world. Finally, and most recently, the sharing of

digital imagery has reached new heights by the massive adoption of social

network platforms. All of a sudden images came with tags, and tagging,

commenting, and rating of any digital image has become a common habit.

The sharing paradigm is lead by users interactions with each other, like form-

ing groups of shared interests, sharing messages that convey sentiments, and

by commenting the photos that have been shared. And consequently, in the

huge quantity of available media, some of these images are going to become

very popular, while others are going to be totally unnoticed and end up in

oblivion.

1.1 The goal

Our ultimate goal is to extract information from image collections in social

networks. In particular, we aim at obtaining tags, i.e. human interpretable

labels associated to the content at a global level. These can be related to

objective aspects such as the presence of things, properties and activities, or

1



2 Introduction

subjective ones such as the sentiments aroused in a viewer or the attractive-

ness of an image.

Being able to extract this information can have a great impact in several

applications. First, the retrieval of images from collections can be improved.

Current image search engines (such as Google or Yahoo), that traditionally

rely on the associated text data, have recently exploited the visual content

to improve performance. Similarly, in social networks, they mostly rely on

user provided metadata in form of tags or textual description. Second, it

can ease the browsing of large collections. For instance, through selection or

summarization of the most attractive and significative photos. In particular,

sentiments aroused in the viewer can play a role in producing significative

output. Third, the distribution and enjoyment of contents can be improved.

Advertising and distribution of content can be more efficient when matching

content to user preferences. Moreover, to the aim of minimizing storage

costs, images may be replicated according to popularity and still maintaining

a low latency for unpopular content. For these reasons, image retrieval and

understanding receive a lot of attention from both the scientific community

and industry.

Machine understanding of media is still very poor. While their data

processing capabilities are continuously improving (e.g. Moore’s law [148]),

stemming information from unannotated multimedia is a challenging task.

The main hindrance is that machines are able to compute only low level fea-

tures of the data, hardly correlated to the semantics. Tasks such as recogniz-

ing things, understanding the sentiment induced in the viewer or predicting

the expected attractiveness of an image, require high level features. This is a

well-known problem in the literature, formalized as the semantic gap [177]:

“The semantic gap is the lack of coincidence between the information that

machines can extract from the visual data and the interpretations the user

may give to the data.”. Hence the ensuing question is:

How can we fill the semantic gap for multimedia understanding?

We believe that Social Networks are promising frameworks that

can fill the gap. Comparing to the classic multimedia databases, social net-

works provide a dilated context where the user is king. Users can contribute

by providing photos with attached metadata (such as tags, description, lo-

cation) or by expressing interest in others content (e.g. likes, comments).

In Figures 1.1 and 1.2 we show two examples of such contributions in two

different social networks.
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Figure 1.1: Example of a user generated content on social network Insta-

gram. An image of a cat is associated with a little description and several

tags. Several users have commented the content.

Social network contributions are provided by common users. They often

cannot meet high quality standards related to content association, in particu-

lar for accurately describing objective aspects of the visual content according

to some expert’s opinion [42]. Moreover, when subjective components are

considered (e.g. sentiments), different users may read images differently.

The most historically exploited pieces of metadata are the social tags as-

sociated to the images. These tags tend to follow context, trends and events

in the real world. They are often used to describe both the situation and

the entity represented in the visual content. So tagging deviations due to

spatial and temporal correlation to external factors, including user influence,

semantics of activity and relationships between tags, are common phenom-

ena. Social tags tend to be imprecise, ambiguous, incomplete and biased

towards personal perspectives [61, 91,172,174].

Quite a few researchers have proposed solutions for image annotation and

retrieval in social frameworks [117], although the peculiarities of this domain

have been only partially addressed.
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Figure 1.2: Example of a user generated content on social network Flickr.

Tags are associated to an image of a newly married couple.

1.2 Contributions and Organization

In this thesis we show that the tagged images shared in social media plat-

forms are promising to resolve the semantic gap. In particular, we focus

on image annotation and provide a structured survey of methods in social

networks with a thorough empirical evaluation of several key methods. Then

we describe four novel state-of-the-art methods for extracting information,

that explicitly take into account the social context.

Two themes can be highlighted. The first one is related to the task of

objective analysis of images (i.e. recognize things), while the second one re-

lates to the tasks of subjective analysis (i.e. recognize the sentiment induced

in viewers, predict the expected popularity of images). In spite of the two

themes, the underlying idea of our work is the exploitation of social images

through the design of features that comprises both the visual observation and

their tags. Learned or handcrafted, these features provide a robust global

representation of the content and context.
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Figure 1.3: A machine processed image where an algorithm of tag refinement

has been applied. Not relevant tags are removed and additional relevant tags

are added.

The thesis is organized as follows1. Considering the absence of a com-

prehensive review of annotation and retrieval in social networks, we start in

Chapter 2 with a structured survey of related work. Although image an-

notation and retrieval in social networks are a relatively recent direction of

research, several tasks have been addressed by the multimedia community.

We survey three linked semantic tasks (i.e. tag assignment, tag refinement

and tag-based image retrieval) that have seen the most contributions to date.

Figure 1.3 shows an example of tag refinement of an image and its associ-

ated user tags. Recognizing a lack of a structured survey in the literature, we

aimed at giving a reference contribution for future researchers in this field.

We organize the rich literature of tagging and retrieval in a taxonomy to

highlight the ingredients of the main works and recognize their advantages

and limitations. In particular, we structure our survey along the line of un-

derstanding how a specific method constructs the underlying tag relevance

function.

Witnessing the absence of a thorough empirical comparison in the lit-

erature for the three semantic tasks, in Chapter 3 we establish a common

1Note that each chapter is written in a self-contained fashion and can be read on its

own.
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experimental protocol and successively exert it in the evaluation of key meth-

ods. Our proposed protocol contains training data of varied scales extracted

from social frameworks. This permits to evaluate the methods under analy-

sis with data that reflect the specificity of the social domain. We made the

data and source code public so that new proposals for tag assignment, tag

refinement, and tag retrieval can be evaluated rigorously and easily. Taken

together with Chapter 2, these efforts should provide an overview of the

field’s past and foster progress for the near future.

Chapters 4 and 5 builds on ideas from the previous Chapters to propose

two novel approaches for tag assignment.

In Chapter 4, by considering visual content and the tags associated with

an image, novel features are automatically learned. A cross-model method

is proposed to capture the intricate dependencies between image content

and annotations. We propose a learning procedure based on Kernel Canon-

ical Correlation Analysis which finds a mapping between visual and textual

words by projecting them into a latent meaning space. The learned map-

ping is then used to annotate new images using advanced nearest neighbor

voting methods. We evaluate our approach on three popular datasets, and

show clear improvements over several approaches relying on more standard

representations.

In Chapter 5 we present an efficient and powerful method to aggregate

a set of Deep Convolutional Neural Network responses, extracted from a set

of image windows. We show how to use Fisher Vectors and PCA to obtain

a short and highly descriptive signature that can be used for effective image

retrieval. We show also how the very good performance in retrieval can be

exploited for tag assignment. State-of-the art results are reported for both

tasks of image retrieval and tag assignment on standard datasets.

Chapter 6 gives an evaluation of the temporal information in web images.

The idea is to use the temporal gist of annotations to improve tasks such as

annotation, indexing and retrieval. While visual content, text and metadata,

are typically used to improve these tasks, here we look at the temporal

aspect of social media production and tagging. The correlation of the time

series of the tags with Google searches shows that, for certain concepts, web

information sources may be beneficial to the annotation of social media.

Chapters 7 and 8 deal with the non semantic problems of image sentiment

analysis and popularity prediction. In particular, Chapter 7 investigate the

use of a multimodal feature learning approach using neural network based
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models such as Skip-gram and Denoising Autoencoders. The task is to per-

form sentiment analysis of micro-blogging content, such as Twitter short

messages, that are composed by a short text and, possibly, an image. A

novel architecture that incorporates these models is proposed and tested on

several standard Twitter datasets. We show that the approach is efficient

and obtains good classification results.

By considering that attractiveness of images is related to popularity, in

Chapter 8 we propose to use visual sentiment features together with three

novel context features to predict a concise popularity score of social images.

Experiments on large scale datasets show the benefits of proposed features

on the performance of image popularity prediction. Moreover, exploiting

state-of-the-art sentiment features, we report a qualitative analysis of which

sentiments seem to be related to good or poor popularity.

Finally, Chapter 9 summarizes the contribution of the thesis and discusses

avenues for future research. Notice also that the full-list of published papers

from this thesis is provided in Appendix A.
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Chapter 2

Literature review of

Assignment, Refinement and

Retrieval

This chapter gives an unified survey of related work on the three

closely linked problems of Tag Assignment, Tag Refinement and

Tag-based Image Retrieval. While existing works vary in terms

of their targeted tasks and methodology, they rely on the key func-

tionality of tag relevance, i.e., estimating the relevance of a spe-

cific tag with respect to the visual content of a given image and its

social context. A taxonomy is introduced to structure the growing

literature, understand the ingredients of the main works, clarify

their connections and difference, and recognize their merits and

limitations. 1

Excellent surveys on content-based image retrieval have been published

in the past. In their seminal work, Smeulders et al. review the early years

up to the year 2000 by focusing on what can be seen in an image and in-

troducing the main scientific problem of the field: the semantic gap as “the

lack of coincidence between the information that one can extract from the

visual data and the interpretation that the same data have for a user in

a given situation” [177]. Datta et al. continue along this line and describe

1Part of this chapter was submitted as “Socializing the Semantic Gap: A Comparative

Survey on Image Tag Assignment, Refinement and Retrieval” to ACM Computing Surveys.

9



10 Literature review of Assignment, Refinement and Retrieval

the coming-of-age of the field, highlighting the key theoretical and empirical

contributions of recent years [37]. These reviews completely ignore social

platforms and socially generated images, which is not surprising as the phe-

nomenon only became apparent after these reviews were published.

In this chapter, we survey the state-of-the-art of content-based image

retrieval in the context of social image platforms and tagging, with a com-

prehensive treatise of the closely linked problems of image tag assignment,

image tag refinement and tag-based image retrieval. Similar to [177] and [37],

the focus of this survey is on visual information, but we explicitly take into

account and quantify the value of social tagging.

2.1 Problems and Tasks

Social tags are provided by common users. They often cannot meet high

quality standards related to content association, in particular for accurately

describing objective aspects of the visual content according to some expert’s

opinion [42]. Social tags tend to follow context, trends and events in the real

world. They are often used to describe both the situation and the entity

represented in the visual content. So tagging deviations due to spatial and

temporal correlation to external factors, including user influence, semantics

of activity and relationships between tags, are common phenomena. Social

tags tend to be imprecise, ambiguous, incomplete and biased towards per-

sonal perspectives [61, 91, 172, 174]. Quite a few researchers have proposed

solutions for image annotation and retrieval in social frameworks, although

the peculiarities of this domain have been only partially addressed. We cate-

gorize existing works into three different main tasks and structure our survey

along these tasks:

• Tag Assignment. Given an unlabeled image, tag assignment strives

to assign a (fixed) number of tags related to the image content [68,134,

181,194].

• Tag Refinement. Given an image associated with some initial tags,

tag refinement aims to remove irrelevant tags from the initial tag list

and enrich it with novel, yet relevant, tags [50,121,122,211,233].

• Tag Retrieval. Given a tag and a collection of images labeled with

the tag (and possibly other tags), the goal of tag retrieval is to retrieve
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images relevant with respect to the tag of interest [44,55,113,179,211].

Other related tasks such as tag filtering [125,228,229] and tag suggestion

[113,174,212] have also been studied. As these tasks focus on either cleaning

existing tags or expanding them, we view them as variants of tag refinement.

2.2 Scope and Aims

Existing works in tag assignment, refinement, and retrieval vary in terms

of their targeted tasks and methodology, making it non-trivial to interpret

them within a unified framework. Nonetheless, we reckon that all works

rely on the key functionality of tag relevance, i.e., estimating the relevance

of a specific tag with respect to the visual content of a given image and its

social context. In general terms, relevance should be evaluated considering

the complementarity of tags. They may be of low interest alone but become

interesting if in conjunction with others. However in the literature, only

few methods consider multi-tag relevance evaluation and only for the task of

multi-tag retrieval [19,116,150]. Hence, we focus on methods that implement

the unique-tag relevance model.

We survey papers that learn from images tagged in social contexts. We do

not cover traditional image classification that is grounded on carefully labeled

data. For a state-of-the-art overview in that direction, we refer the interested

reader to [46, 164]. Nonetheless, one may question the necessity of using

socially tagged examples as training data, given that a number of labeled

resources are already publicly accessible. An exemplar of such resources

is ImageNet [40], providing crowd-sourced positive examples for over 20k

classes. Since ImageNet employs several web image search engines to obtain

candidate images, its positive examples tend to be biased by the search

results. As observed by [199], the positive set of vehicles mainly consists

of car and buses, although vehicles can be tracks, watercraft and aircraft.

Moreover, controversial images are discarded upon vote disagreement during

the crowd sourcing. All this reduces diversity in visual appearance. We

empirically show in Chapter 3 the advantage of socially tagged examples

against ImageNet for tag relevance learning.

Reviews on social tagging exist. The work by Gupta et al. discusses

papers on why people tag, what influences the choice of tags, and how to
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model the tagging process, but its discussion on content-based image tagging

is limited [69]. The focus of [77] is on papers about adding semantics to tags

by exploiting varied knowledge sources such as Wikipedia, DBpedia, and

WordNet. Again, it leaves the visual information untouched.

Several reviews that consider socially tagged images have appeared re-

cently. In [124], technical achievements in content-based tag processing for

social images are briefly surveyed. Sawant et al. [171], Wang et al. [205] and

Mei et al. [140] present extended reviews of particular aspects, i.e., collabo-

rative media annotation, assistive tagging, and visual search re-ranking, re-

spectively. In [171], papers that propose collaborative image labeling games

and tagging in social media networks are reviewed. In [205] the authors sur-

vey papers where computers assist humans in tagging either by organizing

data for manual labelling, improving quality of human-provided tags or rec-

ommending tags for manual selection, instead of applying purely automatic

tagging. In [140] the authors review techniques that aim for improving ini-

tial search results, typically returned by a text based visual search engine,

by visual search re-ranking. These reviews offer resumes of the methods and

interesting insights on particular aspects of the domain, without giving an

experimental comparison between the varied methods.

We notice efforts in empirical evaluations of social media annotation and

retrieval [9, 179, 192]. In [179], the authors analyze different dimensions to

compute the relevance score between a tagged image and a tag. They evalu-

ate varied combinations of these dimensions for tag-based image retrieval on

NUS-WIDE, a leading benchmark set for social image retrieval [32]. How-

ever, their evaluation focuses only on tag-based image ranking features, with-

out comparing content-based methods. Moreover, tag assignment and refine-

ment are not covered. In [9,192], the authors compared three algorithms for

tag refinement on the NUS-WIDE and MIRFlickr, a popular benchmark

set for tag assignment and refinement [75]. However, the two reviews lack

a thorough comparison between different methods under the umbrella of a

common experimental protocol. Moreover, they fail to assess the high-level

connection between image tag assignment, refinement, and retrieval.

2.3 Foundations

Our key observation is that the essential component, which measures the

relevance between a given image and a specific tag, stands at the heart of
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the three tasks. In order to describe this component in a more formal way,

we first introduce some notation.

We use x, t, and u to represent the three basic elements in social images,

namely image, tag, and user. An image x is shared on social media by

its user u. A user u can choose a specific tag t to label x. By sharing

and tagging images, a set of users U contribute a set of n socially tagged

images X , wherein Xt denotes the set of images tagged with t. Tags used

to describe the image set form a vocabulary of m tags V. The relationship

between images and tags can be represented by an image-tag association

matrix D ∈ {0, 1}n×m, where Dij = 1 means the i-th image is labeled with

the j-th tag, and 0 otherwise.

Given an image and a tag, we introduce a real-valued function that com-

putes the relevance between x and t based on the visual content and an

optional set of user information Θ associated with the image:

fΦ(x, t;Θ)

We use Θ in a broad sense, making it refer to any type of social context

provided by or referring to the user like associated tags, where and when the

image was taken, personal profile, and contacts. The subscript Φ specifies

how the tag relevance function is constructed. We can easily interpret each

of the three tasks: assignment and refinement can be done by sorting V in

descending order by fΦ(x, t;Θ), while retrieval can be achieved by sorting the

labeled image set Xt in descending order in terms of fΦ(x, t;Θ). Note that

this formalization does not necessarily imply that the same implementation

of tag relevance is applied for all the three tasks. For example, for retrieval

relevance is intended to obtain image ranking [109] while tag ranking for

each single image is the goal of assignment [212] and refinement [157].

Fig. 2.1 presents a unified framework, illustrating the main data flow

of varied approaches to tag relevance learning. Compared to traditional

methods that rely on expert-labeled examples, a novel characteristic of a

social media based method is its capability to learn from socially tagged

examples with unreliable annotations. Such a training media is marked as S

in the framework. Optionally, in order to obtain a refined training media Ŝ,

one might consider designing a filter to remove unwanted tags and images.

In addition, prior information such as tag statistics, tag correlations, and

image affinities in the training media are independent of a specific image-

tag pair. They can be precomputed for the sake of efficiency. As the filter
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Figure 2.1: Dataflow to structure the literature on tag relevance

learning for image tag assignment, refinement and retrieval. We

follow the input data as it flows through the process of the tag relevance

function fΦ(x, t;Θ) to higher level tasks, complete with common internal

activities and surrounding auxiliary components. Dashed lines indicate op-

tional processes such as the auxiliary components and transduction-based

algorithms.

and the precomputation appear to be a choice of implementation, they are

positioned as auxiliary components in Fig. 2.1.

A number of implementations of the relevance function are described and

compared in Chapter 3, with regard to their use for tag assignment, refine-

ment and retrieval. Depending on how fΦ(x, t;Θ) is composed internally, we

propose a taxonomy which organizes existing works along two dimensions,

namely media and learning. As shown in Table 2.1, the media dimension

characterizes what essential information fΦ(x, t;Θ) exploits, while the learn-

ing dimension depicts how such information is exploited. We explore the

taxonomy along the media dimension in Section 2.4 and the learning dimen-

sion in Section 2.5, followed by a discussion on the two auxiliary components

in Section 2.6.

2.4 Media for tag relevance

Different sources of information may play a role in determining the relevance

between an image and a social tag. For instance, the position of a tag
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appearing in the tag list might reflect a user’s tagging priority to some extent

[179]. Knowing what other tags are assigned to the image [229] or what other

users label about similar images [92, 113] can also be helpful for judging

whether the tag under examination is appropriate or not. Depending on

what modalities in S are utilized, we divide existing works into the following

three groups: 1) tag based, 2) tag + image based and 3) tag + image +

user information based, ordered in light of the amount of information they

utilize. Table 2.1 shows this classification for several papers that appeared

in the literature on the subject.

2.4.1 Tag based

These methods build fΦ(x, t;Θ) purely based on tag information. Tag po-

sition is considered in [179], where a tag appearing top in the tag list is

regarded as more relevant. To find tags that are semantically close to the

majority of the tags assigned to the test image, tag co-occurrence is con-

sidered in [174, 229], while topic modeling is employed in [215]. As the tag

based methods presume that the test image has been labeled with some ini-

tial tags, i.e. the initial tags are taken as the user information Θ, they are

inapplicable for tag assignment.

2.4.2 Tag + Image based

Works in this group develop fΦ(x, t;Θ) on the base of visual information

and associated tags. The main rationale behind them is visual consistency,

i.e. visually similar images shall be labeled with similar tags. Implementa-

tions of this intuition can be grouped in three conducts. One, leverage images

visually close to the test image [48, 113, 114, 131, 194, 213]. Two, exploit re-

lationships between images labeled with the same tag [55, 98, 123, 125, 163].

Three, learn visual classifiers from socially tagged examples [26,111,201,219].

By propagating tags based on the visual evidence, the above works exploit

the image modality and the tag modality in a sequential way. By contrast,

there are works that concurrently exploit the two modalities. This can be

approached by generating a common latent space upon the image-tag as-

sociation [43, 151, 178], so that a cross media similarity can be computed

between images and tags [128, 156, 231]. In [152], the latent space is con-

structed by Canonical Correlation Analysis, finding two matrices which sep-

arately project feature vectors of image and tag into the same subspace.
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In [131], a random walk model is used on a unified graph composed from

the fusion of an image similarity graph with an image-tag connection graph.

In [211, 216, 228], predefined image similarity and tag similarity are used

as two constraint terms to enforce that similarities induced from the recov-

ered image-tag association matrix will be consistent with the two predefined

similarities.

Although late fusion has been actively studied for multimedia data anal-

ysis [4], improving tag relevance estimation by late fusion is not much ex-

plored. There are some efforts in that direction, among which interesting

performance has been reported in [157] and more recently in [109].

2.4.3 Tag + Image + User information based

In addition to tags and images, this group of works exploit user information,

motivated from varied perspectives. With the hypothesis that a specific tag

chosen by many users to label visually similar images is more likely to be

relevant with respect to the visual content, [113] utilizes user identities to

ensure that learning examples come from distinct users. A similar idea is

reported in [92], finding visually similar image pairs with matching tags from

different users. [58] improves image retrieval by favoring images uploaded by

users with good credibility estimates. In [110, 170], personal tagging prefer-

ence is considered in the form of tag statistics computed from images a user

has uploaded in the past. These past images are used in [127] to learn a

user-specific embedding space. In [168], user affinities, measured in terms of

the number of common groups users are sharing, is considered in a tensor

analysis framework. Similarly, tensor based low-rank data reconstruction is

employed in [158] to discover latent associations between users, images, and

tags. Photo timestamps are exploited for time-sensitive image retrieval [94],

where the connection between image occurrence and various temporal fac-

tors is modeled. In [136], time-constrained tag co-occurrence statistics are

considered to refine the output of visual classifiers for tag assignment. In

their follow-up work [137], location-constrained tag co-occurrence computed

from images taken in a specific continent is further included. User interac-

tions in social networks are exploited in [170], computing local interaction

networks from the comments left by other users. Social-network metadata

such as group memberships of images and contacts of users is employed

in [87, 135,202] for image classification.

Comparing the three groups, tag + image appears to be the mainstream,
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as evidenced by the imbalanced distribution in Table 2.1. Intuitively, using

more media from S would typically increase the reliability of tag relevance

estimation. We attribute the imbalance among the groups, in particular the

relatively few works in the third group, to the following two reasons. First,

no publicly available dataset with expert annotations was built to gather

representative and adequate user information, e.g. MIRFlickr has nearly 10k

users for 25k images, while in NUS-WIDE only 6% of the users have at least

15 images. As a consequence, current works that leverage user information

are forced to use a minimal subset to alleviate sample insufficiency [168,

169] or homemade collections with social tags as ground truth instead of

benchmark sets [110, 170]. Second, adding more media often results in a

substantial increase in terms of both computation and memory, e.g. the

cubic complexity for tensor factorization in [168]. As a trade-off, one has to

use S of a much smaller scale. The dilemma is whether one should use large

data with less media or more media but less data.

It is worth noting that the above groups are not exclusive. The output

of some methods can be used as a refined input of some other methods. In

particular, we observe a frequent usage of tag-based methods by others for

their computational efficiency. For instance, tag relevance measured in terms

of tag similarity is used in [55,111,231] before applying more advanced anal-

ysis, while nearest neighbor tag propagation is a pre-process used in [228].

The number of tags per image is embedded into image retrieval functions

in [26,123,215,231].

Given the varied sources of information one could leverage, the subse-

quent question is how the information is exactly utilized, which will be made

clear next.

2.5 Learning for tag relevance

This section presents the second dimension of the taxonomy, elaborating on

various algorithms for tag relevance learning. Depending on whether the

tag relevance learning process is transductive, i.e., producing tag relevance

scores without distinction as training and testing, we divide existing works

into transduction-based and induction-based. Since the latter produces rules

or models that are directly applicable to a novel instance [142], it has a better

scalability for large-scale data compared to its transductive counterpart. De-

pending on whether an explicit model, let it be discriminative or generative,
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Table 2.1: The taxonomy of methods for tag relevance learning, organized

along the Media and Learning dimensions of Fig. 2.1. Methods for which

we provide an experimental evaluation in the next chapter are indicated in

bold font.

Learning

Media Instance-based Model-based Transduction-based

tag

Sigurbjörnsson et al. [174]

Sun et al. [179]

Zhu et al. [229]

Xu et al. [215] –

tag + image

Liu et al. [123]

Makadia et al. [134]

Tang et al. [181]

Wu et al. [213]

Yang et al. [218]

Truong et al. [187]

Qi et al. [156]

Lin et al. [121]

Lee et al. [104]

Uricchio et al. [192]

Zhu et al. [230]

Ballan et al. [8]

Pereira et al. [152]

Wu et al. [212]

Guillaumin et al. [68]

Verbeek et al. [194]

Liu et al. [122]

Ma et al. [131]

Liu et al. [125]

Duan et al. [44]

Feng et al. [48]

Srivastava et al. [178]

Chen et al. [26]

Lan et al. [99]

Li et al. [111]

Li et al. [118]

Wang et al. [203]

Niu et al. [151]

Zhu et al. [228]

Wang et al. [204]

Li et al. [119]

Zhuang et al. [231]

Richter et al. [163]

Kuo et al. [98]

Liu et al. [128]

Gao et al. [55]

Wu et al. [211]

Yang et al. [219]

Feng et al. [50]

Xu et al. [216]

tag + image + user

Li et al. [113]

Kennedy et al. [92]

Li et al. [114]

Znaidia et al. [233]

Liu et al. [127]

Sawant et al. [170]

Li et al. [110]

McAuley et al. [135]

Kim et al. [94]

McParlane et al. [137]

Ginsca et al. [58]

Ballan et al. [87]

Sang et al. [168]

Sang et al. [169]

Qian et al. [158]
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is built, a further division for the induction-based methods can be made:

instance-based algorithms and model-based algorithms. Consequently, we

divide existing works into the following three exclusive groups: 1) instance-

based, 2) model-based, and 3) transduction-based.

2.5.1 Instance-based

This class of methods does not perform explicit generalization but, instead,

compares new test images with training instances. It is called instance-based

because it constructs hypotheses directly from the training instances them-

selves. These methods are non parametric and the complexity of the learned

hypotheses grows as the amount of training data increases. The neighbor

voting algorithm [113] and its variants [92, 104, 114, 187, 230] estimate the

relevance of a tag t with respect to an image x by counting the occurrence

of t in annotations of the visual neighbors of x. The visual neighborhood

is created using features obtained from early-fusion of global features [113],

distance metric learning to combine local and global features [194,213], cross

modal learning of tags and image features [8, 152, 156], and fusion of multi-

ple single-feature learners [114]. While the standard neighbor voting algo-

rithm [113] simply let the neighbors vote equally, efforts have been made to

(heuristically) weight neighbors in terms of their importance. For instance,

in [104, 187] the visual similarity is used as the weights. As an alternative

to such a heuristic strategy, [230] models the relationships among the neigh-

bors by constructing a directed voting graph, wherein there is a directed

edge from image xi to image xj if xi is in the k nearest neighbors of xj .

Subsequently an adaptive random walk is conducted over the voting graph

to estimate the tag relevance. However, the performance gain obtained by

these weighting strategies appears to be limited [230]. The kernel density

estimation technique used in [123] can be viewed as another form of weighted

voting, but the votes come from images labeled with t instead of the visual

neighbors. [218] further considers the distance of the test image to images not

labeled with t. In order to eliminate semantically unrelated samples in the

neighborhood, sparse reconstruction from a k-nearest neighborhood is used

in [181, 182]. In [121], with intention of recovering missing tags by matrix

reconstruction, the image and tag modalities are separately exploited in par-

allel to produce a new candidate image-tag association matrix each. Then,

the two resultant tag relevance scores are linearly combined to produce the

final tag relevance scores. To address the incompleteness of tags associated
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with the visual neighbors, [233] proposes to enrich these tags by exploiting

tag co-occurrence in advance to neighbor voting.

2.5.2 Model-based

This class of tag relevance learning algorithms puts their foundations on pa-

rameterized models learned from the training media. Notice that the models

can be tag-specific or holistic for all tags. As an example of holistic model-

ing, a topic model approach is presented in [203] for tag refinement, where a

hidden topic layer is introduced between images and tags. Consequently, the

tag relevance function is implemented as the dot product between the topic

vector of the image and the topic vector of the tag. In particular, the au-

thors extend the Latent Dirichlet Allocation model [18] to force images with

similar visual content to have similar topic distribution. According to their

experiments [203], however, the gain of such a regularization appears to be

marginal compared to the standard Latent Dirichlet Allocation model. [118]

first finds embedding vectors of training images and tags using the image-tag

association matrix of S. The embedding vector of a test image is obtained by

a convex combination of the embedding vectors of its neighbors retrieved in

the original visual feature space. Consequently, the relevance score is com-

puted in terms of the Euclidean distance between the embedding vectors of

the test image and the tag.

For tag-specific modeling, linear SVM classifiers trained on features aug-

mented by pre-trained classifiers of popular tags are used in [26] for tag

retrieval. Fast intersection kernel SVMs trained on selected relevant posi-

tive and negative examples are used in [111]. A bag-based image reranking

framework is introduced in [44], where pseudo relevant images retrieved by

tag matching are partitioned into clusters by using visual and textual fea-

tures. Then, by treating each cluster as a bag and images within the cluster

as its instances, multiple instance learning [2] is employed to learn multiple-

instance SVMs per tag. Viewing the social tags of a test image as ground

truth, a multi-modal tag suggestion method based on both tags and visual

correlation is introduced in [212]. Each modality is used to generate a rank-

ing feature, and the tag relevance function is a combination of these ranking

features, with the combination weights learned online by the RankBoost al-

gorithm [53]. In [68, 194], logistic regression models are built per tag to

promote rare tags. In a similar spirit to [111], [226] learns an ensemble of

SVMs by treating tagged images as positive training examples and untagged
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images as candidate negative training examples. Using the ensemble to clas-

sify image regions generated by automated image segmentation, the authors

assign tags at the image level and the region level simultaneously.

2.5.3 Transduction-based

This class of methods consists in procedures that evaluate tag relevance for

a given image-tag pair of a set of images by minimizing some specific cost

function. Given an initial image-tag association matrix D, the output of the

procedure is a new matrix D̂ the elements of which are taken as tag relevance

scores. Due to this formulation, no explicit form of the tag relevance function

exists nor any distinction between training and test sets [86]. If novel images

are added to the initial set, minimization of the cost function needs to be

re-computed.

The majority of transduction-based approaches are founded on matrix

factorization [50,89,128,168,211,216,228]. In [231] the objective function is

a linear combination of the difference between D̂ and the matrix of image

similarity, the distortion between D̂ and the matrix of tag similarity, and the

difference between D̂ and D. A stochastic coordinate descent optimization is

applied to a randomly chosen row of D̂ per iteration. In [228], considering the

fact that D is corrupted with noise derived by missing or over-personalized

tags, robust principal component analysis with laplacian regularization is

applied to recover D̂ as a low-rank matrix. In [211], D̂ is regularized such that

the image similarity induced from D̂ is consistent with the image similarity

computed in terms of low-level visual features, and the tag similarity induced

from D̂ is consistent with the tag correlation score computed in terms of tag

co-occurrence. In [216], it is proposed to re-weight the penalty term of each

image-tag pair by their relevance score, which is estimated by a linear fusion

of tag-based and content-based relevance scores. To incorporate the user

element, [168] extends D to a three-way tensor with tag, image, and user as

each of the ways. A core tensor and three matrices representing the three

media, obtained by Tucker decomposition [188], are multiplied to construct

D̂.

As an alternative approach, in [50] it is assumed that the tags of an image

are drawn independently from a fixed but unknown multinomial distribution.

Estimation of this distribution is implemented by maximum likelihood with

low-rank matrix recovery and laplacian regularization like [228].

Graph-based label propagation is another type of transduction-based



22 Literature review of Assignment, Refinement and Retrieval

methods. In [98,163,204], the image-tag pairs are represented as a graph in

which each node corresponds to a specific image and the edges are weighted

according to a multi-modal similarity measure. Viewing the top ranked ex-

amples in the initial search results as positive instances, tag refinement is im-

plemented as a semi-supervised labeling process by propagating labels from

the positive instances to the remaining examples using random walk. While

the edge weights are fixed in the above works, [55] argues that fixing the

weights could be problematic, because tags found to be discriminative in the

learning process should adaptively contribute more to the edge weights. In

that regard, the hypergraph learning algorithm [227] is exploited and weights

are optimized by minimizing a joint loss function which considers both the

graph structure and the divergence between the initial labels and the learned

labels. In [130], the hypergraph is embedded into a lower-dimension space

by hypergraph Laplacian.

Comparing the three groups of methods for learning tag relevance, an

advantage of instance-based methods against the other two groups is their

flexibility to adapt to previously unseen images and tags. They may simply

add new training images into S or remove outdated ones. The advantage

however comes with a price that S has to be maintained, a non-trivial task

given the increasing amount of training data available. Also, the computa-

tional complexity and memory footprint grow linearly with respect to the

size of S. In contrast, model-based methods could be more swift, especially

when linear classifiers are used, as the training data is compactly represented

by a fixed number of models. As the imagery of a given tag may evolve, re-

training is required to keep the models up-to-date.

Different from instance-based and model-based learning where individual

tags are considered independently, transduction-based learning methods via

matrix factorization can favorably exploit inter-tag and inter-image relation-

ships. However, their ability to deal with the extremely large number of so-

cial images is a concern. For instance, the use of Laplacian graphs results in a

memory complexity of O(|S|2). The accelerated proximal gradient algorithm

used in [228] requires Singular Value Decomposition, which is known to be

an expensive operation. The Tucker decomposition used in [168] has a cubic

computational complexity with respect to the number of training samples.

We notice that some engineering tricks have been considered in these works,

which alleviate the scalability issue to some extent. In [231], for instance,

clustering is conducted in advance to divide S into much smaller subsets,
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and the algorithm is applied to these subsets, separately. By making the

Laplacian more sparse by retaining only the k nearest neighbors [168, 228],

the memory footprint can be reduced to O(k · |S|), with the cost of perfor-

mance degeneration. Perhaps due to the scalability concern, works resorting

to matrix factorization tend to experiment with a dataset of relatively small

scale.

2.6 Auxiliary components

The Filter and the Precompute component are auxiliary components that

may sustain and improve tag relevance learning.

Filter. As social tags are known to be subjective and overly personal-

ized, removing personalized tags appears to be a natural and simple way

to improve the tagging quality. This is usually the first step performed in

the framework for tag relevance learning. Although there is a lack of golden

criteria to determine which tags are personalized, a popular strategy is to ex-

clude tags which cannot be found in the WordNet ontology [26,110,228,229]

or a Wikipedia thesaurus [123]. Tags with rare occurrence, say appearing less

than 50 times, are discarded in [194,228]. For methods that directly work on

the image-tag association matrix [121,168,211,228], reducing the size of the

vocabulary in terms of tag occurrence is an important prerequisite to keep

the matrix in a manageable scale. Observing that images tagged in a batch

manner are often nearly duplicate and of low tagging quality, batch-tagged

images are excluded in [116]. Since relevant tags may be missing from user

annotations, the negative tags that are semantically similar or co-occurring

with positive ones are discarded in [168]. As the above strategies do not

take the visual content into account, they cannot handle situations where an

image is incorrectly labeled with a valid and frequently used tag, say ‘dog’.

In [112], tag relevance scores are assigned to each image in S by running

the neighbor voting algorithm [113], while in [111], the semantic field algo-

rithm [229] is further added to select relevant training examples. In [158],

the annotation of the training media is enriched by a random walk.

Precompute. The precompute component is responsible for the genera-

tion of the prior information that is jointly used with the refined training

media Ŝ in learning. For instance, global statistics and external resources

can be used to synthesize new prior knowledge useful in learning. The prior

information commonly used is tag statistics in S, including tag occurrence



24 Literature review of Assignment, Refinement and Retrieval

and tag co-occurrence. Tag occurrence is used in [113] as a penalty to sup-

press overly frequent tags. Measuring the semantic similarity between two

tags is important for tag relevance learning algorithms that exploit tag cor-

relations. While linguistic metrics as those derived from WordNet were used

before the proliferation of social media [85,200], they do not directly reflect

how people tag images. For instance, tag ‘sunset’ and tag ‘sea’ are weakly

related according to the WordNet ontology, but they often appear together

in social tagging as many of the sunset photos are shot around seasides.

Therefore, similarity measures that are based on tag statistics computed

from many socially tagged images are in dominant use. Sigurbjörnsson and

van Zwol utilized the Jaccard coefficient and a conditional tag probability

in their tag suggestion system [174], while Liu et al. used normalized tag

co-occurrence [128]. To better capture the visual relationship between two

tags, Wu et al. proposed the Flickr distance [210]. The authors represent

each tag by a visual language model, trained on bag of visual words fea-

tures of images labeled with this tag. The Flickr distance between two tags

is computed as the Jensen-Shannon divergence between the corresponding

models. Later, Jiang et al. introduced the Flickr context similarity, which

also captures the visual relationship between two tags, but without the need

of the expensive visual modeling [83]. The trick is to compute the Normal-

ized Google Distance [33] between two tags, but with tag statistics acquired

from Flickr image collections instead of Google indexed web pages. For its

simplicity and effectiveness, we observe a prevalent use of the Flickr context

similarity in the literature [55, 111,123,157,204,228,229,231].

2.7 Conclusions

We presented a survey on image tag assignment, refinement and retrieval,

with the hope of illustrating connections and difference between the many

methods and their applicabilities, and consequently helping the interested

audience to either pick up an existing method or devise a method of their

own given the data at hand. As the topics are being actively studied, in-

evitably this survey will miss some papers. Nevertheless, it provides a unified

view of many existing works, and consequently eases the effort of placing fu-

ture works in a proper context, both theoretically and experimentally. Based

on the key observation that all works rely on tag relevance learning as the

common ingredient, exiting works, which vary in terms of their methodolo-
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gies and target tasks, are interpreted in a unified framework. Consequently,

a two-dimensional taxonomy has been developed, allowing us to structure

the growing literature in light of what information a specific method exploits

and how the information is leveraged in order to produce their tag relevance

scores.
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Chapter 3

A new Experimental Protocol

In this chapter we propose an evaluation test-bed for the three

linked tasks of Assignment, Refinement and Retrieval. Train-

ing sets of varying sizes and three test datasets are considered

to evaluate methods of varied learning complexity. A selected set

of eleven representative works have been implemented and eval-

uated. Several overall patterns are recognized. To highlight the

advantages of socially tagged training sets, an empirical evalu-

ation between ImageNet and the proposed Flickr-based training

sets is reported. 1

3.1 Introduction

In spite of the expanding literature, there is a lack of consensus on the

performance of the individual methods. This is largely due to the fact that

existing works either use homemade data, see [26, 55, 123, 204], which are

not publicly accessible, or use selected subsets of benchmark data, e.g. as

in [50, 168, 228]. As a consequence, the performance scores reported in the

literature are not comparable across the papers.

Benchmark data with manually verified labels is crucial for an objective

evaluation. As Flickr has been well recognized as a profound manifestation of

social image tagging, Flickr images act as a main source for benchmark con-

struction. MIRFlickr from the Leiden University [75] and NUS-WIDE from

1Part of this chapter is submitted as “Socializing the Semantic Gap: A Comparative

Survey on Image Tag Assignment, Refinement and Retrieval” to ACM Computing Surveys.

27
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the National University of Singapore [32] are the two most popular Flickr-

based benchmark sets for social image tagging and retrieval, as demonstrated

by the number of citations. On the use of the benchmarks, one typically

follows a single-set protocol, that is, learning the underlying tag relevance

function from the training part of a chosen benchmark set, and evaluating it

on the test part. Such a protocol is inadequate given the dynamic nature of

social media, which could easily make an existing benchmark set outdated.

For any method targeting at social images, a cross-set evaluation is neces-

sary to test its generalization ability, which is however overlooked in the

literature.

Another desirable property is the capability to learn from the increasing

amounts of socially tagged images. While existing works mostly use training

data of a fixed scale, this property has not been well evaluated.

Following these considerations, we present a new experimental protocol,

wherein training and test data from distinct research groups are chosen for

evaluating a number of representative works in the cross-set scenario. Train-

ing sets with their size ranging from 10k to one million images are constructed

to evaluate methods of varied complexity. To the best of our knowledge, such

a comparison between many methods on varied scale datasets with a com-

mon experimental setup has not been conducted before. For the sake of

experimental reproducibility, all data and code is made available online at

www.micc.unifi.it/tagsurvey/.

3.2 Datasets

We describe the training media S and the test media X as follows, with basic

data characteristics and their usage summarized in Table 3.1.

Training media S. We use a set of 1.2 million Flickr images collected by

the University of Amsterdam [116], by using over 25,000 nouns in WordNet as

queries to uniformly sample images uploaded between 2006 and 2010. Based

on our observation that batch-tagged images, namely those labeled with the

same tags by the same user, tend to be near duplicate, we have excluded

these images beforehand. Other than this, we do not perform near-duplicate

image removal. To meet with methods that cannot handle large data, we

created two random subsets from the entire training sets, resulting in three

training sets of varied sizes, termed as Train10k, Train100k, and Train1m,

respectively.



3.2 Datasets 29

Table 3.1: Our proposed experimental protocol instantiates the Media and

Tasks dimensions of Fig. 2.1 with three training sets and three test sets

for tag assignment, refinement and retrieval. Note that the training sets are

socially tagged, they have no ground truth available for any tag.

Media characteristics Tasks

Media # images # tags # users # test tags assignment refinement retrieval

Training media S:

Train10k 10,000 41,253 9,249 – ! ! !

Train100k 100,000 214,666 68,215 – ! ! !

Train1m [116] 1,198,818 1,127,139 347,369 – ! ! !

Test media X :

MIRFlickr [75] 25,000 67,389 9,862 14 ! ! –

Flickr51 [204] 81,541 66,900 20,886 51 – – !

NUS-WIDE [32] 259,233 355,913 51,645 81 ! ! !

Test media X . We use MIRFlickr [75] and NUS-WIDE [32] for tag assign-

ment and refinement, as in [192,194,228] and [135,181,192,228] respectively.

We use NUS-WIDE for evaluating tag retrieval as in [108,179]. In addition,

for retrieval we collected another test set namely Flickr51 contributed by Mi-

crosoft Research Asia [55, 204]. The MIRFlickr set contains 25,000 images

with ground truth available for 14 tags. The NUS-WIDE set contains 259,233

images, with ground truth available for 81 tags. The Flickr51 set consists

of 81,541 Flickr images with partial ground truth provided for 55 test tags.

Among the 55 tags, there are 4 tags which either have zero occurrence in our

training data or have no correspondence in WordNet, so we ignore them. Dif-

ferently from the binary judgments in NUS-WIDE, Flickr51 provides graded

relevance, with 0, 1, and 2 to indicate irrelevant, relevant, and very relevant,

respectively. Moreover, the set contains several ambiguous tags such as ‘ap-

ple’ and ‘jaguar’, where relevant instances could exhibit completely different

imagery, e.g., Apple computers versus fruit apples. Following the original

intention of the datasets, we use MIRFlickr and NUS-WIDE for evaluating

tag assignment and tag refinement, and Flickr51 and NUS-WIDE for tag

retrieval. For all the three test sets, we use the full dataset for testing.

Although the training and test media are all from Flickr, they were col-

lected independently, and consequently they have a relatively small amount

of images overlapped with each other, as shown in Table 3.2.
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Table 3.2: Data overlap between Train1M and the three test sets, measured

in terms of the number of shared images, tags, and users, respectively. Tag

overlap is counted on the top 1,000 most frequent tags. As the original photo

ids of MIRFlickr have been anonymized, we cannot check image overlap

between this dataset and Train1M.

Overlap with Train1M

Test media # images # tags # users

MIRFlickr − 693 6,515

Flickr51 730 538 14,211

NUS-WIDE 7,975 718 38,481

3.3 Implementation and Evaluation

This section describes common implementations applicable to all the three

tasks, including the choice of visual features and tag preprocessing. Imple-

mentations that are applied uniquely to single tasks will be described in the

coming sections.

Visual features. Two types of features are extracted to provide insights

of the performance improvement achievable by appropriate feature selec-

tion: the classical bag of visual words (BoVW) and the current state of

the art deep learning based features extracted from Convolutional Neural

Networks (CNN). The BoVW feature is extracted by the color descriptor

software [193]. SIFT descriptors are computed at dense sampled points, at

every 6 pixels for two scales. A codebook of size 1,024 is created by K-means

clustering. The SIFTs are quantized by the codebook using hard assign-

ment, and aggregated by sum pooling. In addition, we extract a compact

64-d global feature [106], combining a 44-d color correlogram, a 14-d texture

moment, and a 6-d RGB color moment, to compensate the BoVW feature.

The CNN feature is extracted by the pre-trained VGGNet [175]. In particu-

lar, we adopt the 16-layer VGGNet, and take as feature vectors the last fully

connected layer of ReLU activation, resulting in a feature vector of 4,096

dimensions per image. The BoVW feature is used with the l1 distance and

the CNN feature is used with the cosine distance for their good performance.

Vocabulary V . As what tags a person may use is meant to be open, the

need of specifying a tag vocabulary is merely an engineering convenience.
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For a tag to be meaningfully modeled, there has to be a reasonable amount

of training images with respect to that tag. For methods where tags are

processed independently from the others, the size of the vocabulary has no

impact on the performance. In the other cases, in particular for transduc-

tive methods that rely on the image-tag association matrix, the tag dimen-

sion has to be constrained to make the methods runnable. In our case, for

these methods a three-step automatic cleaning procedure is performed on

the training datasets. First, all the tags are lemmatized to their base forms

by the NLTK software [17]. Second, tags not defined in WordNet are re-

moved. Finally, in order to avoid insufficient sampling, we remove tags that

cannot meet a threshold on tag occurrence. The thresholds are empirically

set as 50, 250, and 750 for Train10k, Train100k, and Train1m, respectively,

in order to have a linear increase in vocabulary size versus a logarithmic in-

crease in the number of labeled images. This results in a final vocabulary of

237, 419, and 1,549 tags, respectively, with all the test tags included. Note

that these numbers of tags are larger than the number of tags that can be

actually evaluated. This allows to build a unified learning method that is

more handy for cross-dataset evaluation and exploit inter-tag relationships.

3.3.1 Evaluating tag assignment

Evaluation criteria. A good method for tag assignment shall rank relevant

tags before irrelevant tags for a given test image. Moreover, with the assigned

tags, relevant images shall be ranked before irrelevant images for a given

test tag. We therefore use the image-centric Mean image Average Precision

(MiAP) to measure the quality of tag ranking, and the tag-centric Mean

Average Precision (MAP) to measure the quality of image ranking. Let mgt

be the number of ground-truthed test tags, which is 14 for MIRFlickr and 81

for NUS-WIDE. The image-centric Average Precision of a given test image

x is computed as

iAP (x) :=
1

R

mgt∑

j=1

rj
j
δ(x, tj), (3.1)

where R is the number of relevant tags of the given image, rj is the number

of relevant tags in the top j ranked tags, and δ(xi, tj) = 1 if tag tj is relevant

and 0 otherwise. MiAP is obtained by averaging iAP (x) over the test images.
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The tag-centric Average Precision of a given test tag t is computed as

AP (t) :=
1

R

n∑

i=1

ri
i
δ(xi, t), (3.2)

where R is the number of relevant images for the given tag, and ri is the

number of relevant images in the top i ranked images. MAP is obtained by

averaging AP (t) over the test tags.

The two metrics are complementary to some extent. Since MiAP is aver-

aged over images, each test image contributes equally to MiAP, as opposed

to MAP where each tag contributes equally. Consequently, MiAP is biased

towards frequent tags, while MAP can be easily affected by the performance

of rare tags, especially when mgt is relatively small.

Baseline. Any method targeting at tag assignment shall be better than a

random guess, which simply returns a random set of tags. The RandomGuess

baseline is obtained by computing MiAP and MAP given the random pre-

diction, which is run 100 times with the resulting scores averaged.

3.3.2 Evaluating tag refinement

Evaluation criteria. As tag refinement is also meant for improving tag rank-

ing and image ranking, it is evaluated by the same criteria, i.e., MiAP and

MAP, as used for tag assignment.

Baseline. A natural baseline for tag refinement is the original user tags

assigned to an image, which we term as UserTags.

3.3.3 Evaluating tag retrieval

Evaluation criteria. To compare methods for tag retrieval, for each test

tag we first conduct tag-based image search to retrieve images labeled with

that tag, and then sort the images by the tag relevance scores. We use

MAP to measure the quality of the entire image ranking. As users often

look at the top ranked results and hardly go through the entire list, we also

report Normalized Discounted Cumulative Gain (NDCG), commonly used

to evaluate the top few ranked results of an information retrieval system [78].

Given a test tag t, its NDCG at a particular rank position h is defined as:

NDCGh(t) :=
DCGh(t)

IDCGh(t)
, (3.3)
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DCGh(t) =
h∑

i=1

2reli − 1

log2(i+ 1)
, (3.4)

where reli is the graded relevance of the result at position i, and IDCGh

is the maximum possible DCG till position h. We set h to be 20, which

corresponds to a typical number of search results presented on the first two

pages of a web search engine. Similar to MAP, NDCG20 of a specific method

on a specific test set is averaged over the test tags of that test set.

Baselines. When searching for relevant images for a given tag, it is natu-

ral to ask how much a specific method gains compared to a baseline system

which simply returns a random subset of images labeled with that tag. Sim-

ilar to the refinement baseline, we also denote this baseline as UserTags, as

both of them purely use the original user tags. For each test tag, the test im-

ages labeled with this tag are sorted at random, and MAP and NDCG20 are

computed accordingly. The process is executed 100 times, and the average

score over the 100 runs is reported.

The number of tags per image is often included for image ranking in

previous works [123,215]. Hence, we build another baseline system, denoted

as TagNum, which sort images in ascending order by the number of tags

per image. The third baseline, denoted as TagPosition, is from [179], where

the relevance score of a tag is determined by its position in the original

tag list uploaded by the user. More precisely, the score is computed as

1− position(t)/l, where l is the tag number.

3.4 Methods under analysis

Despite the rich literature, most works do not provide code. An exhaustive

evaluation covering all published methods is impractical. We have to leave

out methods that do not show significant improvements or novelties w.r.t.

the seminal papers in the field, and methods that are difficult to replicate

with the same mathematical preciseness as intended by their developers.

We drive our choice by the intention to cover methods that aim for each

of the three tasks, exploiting varied modalities by distinct learning mecha-

nisms. Eventually we evaluate 11 representative methods. For each method

we analyze its scalability in terms of both computation and memory. Our

analysis leaves out operations that are independent of specific tags and thus

only need to be executed once in an offline manner, such as visual feature
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extraction, tag preprocessing, prior information precomputing, and filtering.

Main properties of the methods are summarized in table 3.3. Concerning

the choices of parameters, we adopt what the original papers recommend.

When no recommendation is given for a specific method, we try a range of

values to our best understanding, and choose the parameters that yield the

best overall performance.

3.4.1 SemanticField

SemanticField [229] measures tag relevance in terms of an averaged semantic

similarity between the tag and the other tags assigned to the image:

fSemField(x, t) :=
1

lx

lx∑

i=1

sim(t, ti), (3.5)

where {t1, . . . , tlx} is a list of lx social tags assigned to the image x, and

sim(t, ti) denotes a semantic similarity between two tags. SemanticField

explicitly assumes that several tags are associated to visual data and their

coexistence is accounted in the evaluation of tag relevance. Following [229],

the similarity is computed by combining the Flickr context similarity and the

WordNet Wu-Palmer similarity [214]. The WordNet based similarity exploits

path length in the WordNet hierarchy to infer tag relatedness. We make a

small revision of [229], i.e. combining the two similarities by averaging in-

stead of multiplication, because the former strategy produces slightly better

results. SemanticField requires no training except for computing tag-wise

similarity, which can be computed offline and is thus omitted. Having all

tag-wise similarities in memory, applying Eq. (3.5) requires lx table lookups

per tag. Hence, the computational complexity is O(m · lx), and O(m2) for

memory.

3.4.2 TagRanking

The tag ranking algorithm [123] consists of two steps. Given an image x

and its tags, the first step produces an initial tag relevance score for each

of the tags, obtained by (Gaussian) kernel density estimation on a set of

n̄ = 1, 000 images labeled with each tag, separately. Secondly, a random

walk is performed on a tag graph where the edges are weighted by a tag-wise

similarity. We use the same similarity as in SemanticField. Notice that when
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applied for tag retrieval, the algorithm uses the rank of t instead of its score,

i.e.,

fTagRanking(x, t) = −rank(t) +
1

lx
, (3.6)

where rank(t) returns the rank of t produced by the tag ranking algorithm.

The term 1
lx

is a tie-breaker when two images have the same tag rank. Hence,

for a given tag t, TagRanking cannot distinguish relevant images from irrel-

evant images if t is the sole tag assigned to them. It explicitly exploits the

coexistence of several tags per image. TagRanking has no learning stage. To

derive tag ranks for Eq. 3.6, the main computation is the kernel density esti-

mation on n̄ socially-tagged examples for each tag, followed by an L iteration

random walk on the tag graph of m nodes. All this results in a computation

cost of O(m·d ·n̄+L ·m2) per test image. Because the two steps are executed

sequentially, the corresponding memory cost is O(max(dn̄,m2)).

3.4.3 KNN

This algorithm [134] estimates the relevance of a given tag with respect to

an image by first retrieving k nearest neighbors from S based on a visual

distance d, and then counting the tag occurrence in associated tags of the

neighborhood. In particular, KNN builds fΦ(x, t;Θ) as:

fKNN (x, t) := kt, (3.7)

where kt is the number of images with t in the visual neighborhood of x. The

instance-based KNN requires no training. The main computation of fKNN

is to find k nearest neighbors from S, which has a complexity of O(d · |S|+

k · log |S|) per test image, and a memory footprint of O(d · |S|) to store all

the d-dimensional feature vectors. It is worth noting that these complexities

are drawn from a straightforward implementation of k-nn search, and can be

substantially reduced by employing more efficient search techniques, c.f. [79].

Accelerating KNN by the product quantization technique [79] imposes an

extra training step, where one has to construct multiple vector quantizers by

K-means clustering, and further use the quantizers to compress the original

feature vector into a few codes.

3.4.4 TagVote

The TagVote [113] algorithm estimates the relevance of a tag t w.r.t. an

image x by counting the occurrence frequency of t in social annotations of
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the visual neighbors of x. Differently from KNN, TagVote exploits the user

element in the social framework and introduces a unique-user constraint on

the neighbor set to make the voting result more objective. Each user has

at most one image in the neighbor set. Moreover, TagVote also takes into

account tag prior frequency to suppress over frequent tags. In particular,

the TagVote algorithm builds fΦ(x, t;Θ) as

fTagV ote(x, t) := kt − k
nt

|S|
, (3.8)

where nt is the number of images labeled with t in S. Following [113], we

set k to be 1,000 for both KNN and TagVote. TagVote has the same order

of complexity as KNN.

3.4.5 TagProp

TagProp [68, 194] employs neighbor voting plus distance metric learning. A

probabilistic framework is proposed where the probability of using images

in the neighborhood is defined based on rank or distance-based weights.

TagProp builds fΦ(x, t;Θ) as:

fTagProp(x, t) :=
k∑

j

πj · I(xj , t), (3.9)

where πj is a non-negative weight indicating the importance of the j-th

neighbor xj , and I(xj , t) returns 1 if xj is labeled with t, and 0 other-

wise. Following [194], we use k = 1, 000 and the rank-based weights, which

showed similar performance to the distance-based weights. Differently from

TagVote that uses tag prior to penalize frequent tags, TagProp promotes

rare tags and penalizes frequent ones by training a logistic model per tag

upon fTagProp(x, t). The use of the logistic model makes TagProp a model-

based method. In contrast to KNN and TagVote wherein visual neighbors

are treated equally, TagProp employs distance metric learning to re-weight

the neighbors, yielding a learning complexity of O(l · m · k) where l is the

number of gradient descent iterations it needs (typically less than 10). Tag-

Prop maintains 2m extra parameters for the logistic models, though their

storage cost is ignorable compared to the visual features. Therefore, running

Eq. (3.9) has the same order of complexity as KNN and TagVote.
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3.4.6 TagCooccur

While both SemanticField and TagCooccur are tag-based, the main differ-

ence lies in how they compute the contribution of a specific tag to the test

tag’s relevance score. Different from SemanticField which uses tag similari-

ties, TagCooccur [174] uses the test tag’s rank in the tag ranking list created

by sorting all tags in terms of their co-occurrence frequency with the tag in

a social framework. In addition, TagCooccur takes into account the stability

of the tag, measured by its frequency. The method is implemented as

ftagcooccur(x, t) = descript(t)

lx∑

i=1

vote(ti, t) · rank-promo(ti, t) · stability(ti),

(3.10)

where descript(t) is to damp the contribution of tags with a very high-

frequency, rank-promo(ti, t) measures the rank-based contribution of ti to t,

stability(ti) for promoting tags for which the statistics are more stable, and

vote(ti, t) is 1 if t is among the top 25 ranked tags of ti, and 0 otherwise.

TagCooccur has the same order of complexity as SemanticField.

3.4.7 TagCooccur+

TagCooccur+ [113] is proposed to improve TagCooccur by adding the visual

content. This is achieved by multiplying ftagcooccur(x, t) with a content-

based term, i.e.,

ftagcooccur+(x, t) = ftagcooccur(x, t) ·
kc

kc + rc(t)− 1
, (3.11)

where rc(t) is the rank of t when sorting the vocabulary by fTagV ote(x, t) in

descending order, and kc is a positive weighting parameter, which is empiri-

cally set to 1. While TagCooccur+ is grounded on TagCooccur and TagVote,

the complexity of the former is ignorable compared to the latter, so the com-

plexity of TagCooccurs+ is the same as KNN.

3.4.8 TagFeature

The basic idea of TagFeature [26] is to enrich image features by adding an

extra tag feature. It thus relies on the possible presence of several tags per

image in the training set. In particular, a tag vocabulary that consists of
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d′ most frequent tags in S is constructed first. Then, for each tag a two-

class linear SVM classifier is trained using LIBLINEAR [47]. The positive

training set consists of p images labeled with the tag in S, and the same

amount of negative training examples are randomly sampled from images

not labeled with the tag. The probabilistic output of the classifier, obtained

by the Platt’s scaling [120], corresponds to a specific dimension in the tag

feature. By concatenating the tag and visual features, an augmented feature

of d + d′ dimension is obtained. For a test tag t, its tag relevance function

fTagFeature(x, t) is obtained by re-training an SVM classifier using the aug-

mented feature. The linear property of the classifier allows us to first sum

up all the support vectors into a single vector and consequently to classify a

test image by the inner product with this vector. That is,

fTagFeature(x, t) := b+ < xt, x >, (3.12)

where xt is the weighted sum of all support vectors and b the intercept.

To build meaningful classifiers, we use tags that have at least 100 positive

examples. While d′ is chosen to be 400 in [26], the two smaller training sets,

namely Train10k and Train100k, have 76 and 396 tags satisfying the above

requirement. We empirically set p to 500, and do a random down-sampling if

the amount of images for a tag exceeds this number. For TagFeature, learning

a linear classifier for each tag from p positive and p negative examples requires

O((d+ d′)p) in computation and O((d+ d′)p) in memory [47]. Running Eq.

(3.12) for all the m tags and n images needs O(nm(d+ d′)) in computation

and O(m(d+ d′)) in memory.

3.4.9 RelExample

Different from TagFeature [26] that learns from tagged images, RelExam-

ple [111] exploits positive and negative training examples which are deemed

to be more relevant with respect to the test tag t. In particular, relevant pos-

itive examples are selected from S by combining SemanticField and TagVote

in a late fusion manner. For negative training example acquisition, they

leverage Negative Bootstrap [115], a negative sampling algorithm which it-

eratively selects negative examples deemed most relevant for improving clas-

sification. A T -iteration Negative Bootstrap will produce T meta classifiers.
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The corresponding tag relevance function is written as

fRelExample(x, t) :=
1

T

T∑

l=1

(bl +

nl∑

j=1

αl,j · yl,j · K(x, xl,j)), (3.13)

where αl,j is a positive coefficient of support vector xl,j , yl,j ∈ {−1, 1} is class

label, and nl the number of support vectors in the l-th classifier. For the sake

of efficiency, the kernel function K is instantiated with the fast intersection

kernel [132]. RelExample uses the same amount of positive training examples

as TagFeature. The number of iterations T is empirically set to 10. For

the SVM classifiers used in TagFeature and RelExample, the Platt’s scaling

[120] is employed to convert prediction scores into probabilistic output. In

RelExample, for each tag learning a histogram intersection kernel SVM has a

computation cost of O(dp2) per iteration, and O(Tdp2) for T iterations. By

jointly using the fast intersection kernel with a quantization factor of q [132]

and model compression [115], an order of O(dq) is needed to keep all learned

meta classifiers in memory. Since learning a new classifier needs a memory of

O(dp), the overall memory cost for training RelExample is O(dp+ dq). For

each tag, model compression is applied to its learned ensemble in advance

to running Eq. (3.13). As a consequence, the compressed classifier can be

cached in an order of O(dq) and executed in an order of O(d).

3.4.10 RobustPCA

RobustPCA [228] has been explicitly modeled to deal with a social frame-

work, including noisy tags and several tags per image. On the base of robust

principal component analysis [21], it factorizes the image-tag matrix D by a

low rank decomposition with error sparsity. That is,

D = D̂ + E, (3.14)

where the reconstructed D̂ has a low rank constraint based on the nuclear

norm, and E is an error matrix with a ℓ1-norm sparsity constraint. Notice

that the decomposition is not unique. So for a better solution, the decompo-

sition process takes into account image affinities and tag affinities, by adding

two extra penalties with respect to a Laplacian matrix Li from the image

affinity graph and another Laplacian matrix Lt from the tag affinity graph.

Consequently, two hyper-parameters λ1 and λ2 are introduced to balance the

error sparsity and the two Laplacian strengths. We follow the original paper
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and set the two parameters by performing a grid search on the very same

proposed range. As user tags are usually missing, the authors proposed a

pre-processing step where D is reinitialized by a weighted KNN propagation

based on the visual similarity. RobustPCA requires an iterative procedure

based on the accelerated proximal gradient method with a quadratic con-

vergence rate [228]. Each iteration spends the majority of the required time

performing Singular Value Decomposition that, according to [62], has a well

known complexity of O(cm2n + c′n3) where c, c′ are constants. Regarding

memory, it has a requirement of O(cn · m + c′ · (n2 + m2)) as it needs to

process a full copy of D and Laplacians of images and labels.

3.4.11 TensorAnalysis

This method [168] has been explicitly designed for social frameworks. It ex-

plicitly considers ternary relationships between images, tags and user. User

relationships are exploited by extending the image-tag association matrix to

a binary user-image-tag tensor F ∈ {0, 1}|X |×|V|×|U|. The tensor is factorized

by Tucker decomposition into a dense core C and three low rank matrices U ,

I, T , which correspond to the user, image, and tag modalities, respectively:

F = C ×u U ×i I ×t T, (3.15)

Here ×k is the tensor product between a tensor and a matrix along dimension

k. The idea is that C contains the interactions between modalities, while

each low rank matrix represent the main components of each modality. Every

modality has to be sized manually or by energy retention, adding three

needed parameters R = (rI , rT , rU ). The eventual tag relevance function is

obtained after the optimization process by computing D̂ = C×iI×tT×u1ru .

Similar to RobustPCA, the decomposition in Eq. (3.15) is not unique and

a better solution may be found regularizing the problem with a Laplacian

built on a similarity graph for each modality, i.e., Li, Lt, and Lu, and a

ℓ2 regularizer on each factor i.e. C, U , I and T . For TensorAnalysis, the

complexity is O(|P1| · (rT ·m2 + rU · rI · rT )), proportional to the number P1

of tags asserted in D and the dimension of low rank rU , rI , rT factors. The

memory required is O(n2 +m2 + u2) because of Laplacians of images, tags

and users.
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Table 3.3: Main properties of the eleven methods evaluated in this survey

following the dimensions of Fig. 2.1. The computational and memory com-

plexity of each method is based on processing n test images and m test tags

by exploiting the training set S.

Learning

Methods Test Media Task Train Computation Test Computation Train Memory Test Memory

Instance-based:

SemanticField tag Retrieval – O(nmlx) – O(m2)

TagCooccur tag
Refinement

Retrieval
– O(nmlx) – O(m2)

TagRanking tag + image Retrieval – O(n(mdn̄+ Lm2)) – O(max(dn̄,m2))

KNN tag + image
Assignment

Retrieval
– O(n(d|S|+ k log |S|)) – O(d|S|)

TagVote tag + image
Assignment

Retrieval
– O(n(d|S|+ k log |S|)) – O(d|S|)

TagCooccur+ tag + image
Refinement

Retrieval
– O(n(d|S|+ k log |S|)) – O(d|S|)

Model-based:

TagProp tag + image
Assignment

Retrieval
O(l ·m · k) O(n(d|S|+ k log |S|)) O(d|S|+ 2m) O(d|S|+ 2m)

TagFeature tag + image
Assignment

Retrieval
O(m(d+ d′)p) O(nm(d+ d′)) O((d+ d′)p) O(m(d+ d′))

RelExample tag + image
Assignment

Retrieval
O(mTdp2) O(dp+ dq) O(nmd) O(mdq)

Transduction-based:

RobustPCA tag + image
Refinement

Retrieval
O(cm2n+ c′n3) O(cnm+ c′ · (n2 +m2))

TensorAnalysis
tag + image

+ user
Refinement O(|P1| · (rT ·m2 + rU · rI · rT )) O(n2 +m2 + u2)
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3.4.12 Considerations

An overview of the methods analyzed is given Table 3.3. Among them,

SemanticField, counting solely on the tag modality, has the best scalability

with respect to both computation and memory. Among the instance-based

methods, TagRanking, which works on selected subsets of S rather than the

entire collection, has the lowest memory request. When the number of tags

to be modeled m is substantially smaller than the size of S, the model-based

methods require less memory and run faster in the test stage, but at the

expense of SVM model learning in the training stage. The two transduction-

based methods have limited scalability, and can operate only on small sized

S.

3.5 Evaluation

This section presents our evaluation of the 11 methods according to their ap-

plicability to the three tasks using the proposed experimental protocol, that

is, KNN, TagVote, TagProp, TagFeature and RelExample for tag assignment

(Section 3.5.1), TagCooccur, TagCooccur+, RobustPCA, and TensorAnaly-

sis for tag refinement (Section 3.5.2), and all for tag retrieval (Section 3.5.3).

For TensorAnalysis we were able to evaluate only tag refinement with BovW

features on MIRFlickr with Train10k and Train100k. The reason for this ex-

ception is that our implementation of TensorAnalysis performs worse than

the baseline. Consequently, the results of TensorAnalysis were kindly pro-

vided by the authors in the form of tag ranks. Since the provided tag ranks

cannot be converted to image ranks, we could not compute MAP scores.

Finally a comparison between our Flickr based training data and ImageNet

is given in Section 3.5.4.

3.5.1 Tag assignment

Table 3.4 shows the tag assignment performance of KNN, TagVote, Tag-

Prop, TagFeature and RelExample. Their superior performance against the

RandomGuess baseline shows that learning purely from social media is mean-

ingful. TagVote and TagProp are the two best performing methods on both

test sets. Substituting CNN for BovW consistently brings improvements for

all methods.
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Table 3.4: Evaluating methods for tag assignment. Given the same feature,

bold values indicate top performers on individual test sets.

MIRFlickr NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MiAP scores:

RandomGuess 0.147 0.147 0.147 0.061 0.061 0.061

BovW + KNN 0.232 0.286 0.312 0.171 0.217 0.248

BovW + TagVote 0.276 0.310 0.328 0.183 0.231 0.259

BovW + TagProp 0.276 0.299 0.314 0.230 0.249 0.268

BovW + TagFeature 0.278 0.294 0.298 0.244 0.221 0.214

BovW + RelExample 0.284 0.309 0.303 0.257 0.233 0.245

CNN + KNN 0.326 0.366 0.379 0.315 0.343 0.376

CNN + TagVote 0.355 0.378 0.389 0.340 0.370 0.396

CNN + TagProp 0.373 0.384 0.392 0.366 0.376 0.380

CNN + TagFeature 0.359 0.378 0.383 0.367 0.338 0.373

CNN + RelExample 0.309 0.385 0.373 0.365 0.354 0.388

MAP scores:

RandomGuess 0.072 0.072 0.072 0.023 0.023 0.023

BovW + KNN 0.231 0.282 0.336 0.094 0.139 0.185

BovW + TagVote 0.228 0.280 0.334 0.093 0.137 0.184

BovW + TagProp 0.245 0.293 0.342 0.102 0.149 0.193

BovW + TagFeature 0.200 0.199 0.201 0.090 0.096 0.098

BovW + RelExample 0.284 0.303 0.310 0.119 0.155 0.172

CNN + KNN 0.564 0.613 0.639 0.271 0.356 0.400

CNN + TagVote 0.561 0.613 0.638 0.257 0.358 0.402

CNN + TagProp 0.586 0.619 0.641 0.305 0.376 0.397

CNN + TagFeature 0.444 0.554 0.563 0.262 0.310 0.326

CNN + RelExample 0.538 0.603 0.584 0.300 0.346 0.373
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In more detail, the following considerations hold. TagProp has higher

MAP performance than KNN and TagVote in almost all the cases under

analysis. As discussed in Section 3.4.5, TagProp is built upon KNN, but it

weights the neighbor images by rank and applies a logistic model per tag.

Since the logistic model does not affect the image ranking, the superior per-

formance of TagProp should be ascribed to rank-based neighbor weighting.

A per-tag comparison on MIRFlickr is given in Fig. 3.1. TagProp is almost

always ahead of KNN and TagVote. Concerning TagVote and KNN, recall

that their main difference is that TagVote applies the unique-user constraint

on the neighborhood and it employs tag prior as a penalty term. The fact

that the training data contains no batch-tagged images minimizes the influ-

ence of the unique-user constraint. While the penalty term does not affect

image ranking for a given tag, it affects tag ranking for a given image. This

explains why KNN and TagVote have mostly the same MAP. Also, the result

suggests that the tag prior based penalty is helpful for doing tag assignment

by neighbor voting.
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Figure 3.1: Per-tag comparison of methods for tag assignment on

MIRFlickr, trained on Train1m. The colors identify the features used:

blue for BovW, red for CNN. The test tags have been sorted in descending

order by the performance of CNN + TagProp.

We observe that RelExample has a better MAP than TagFeature in every

case. The absence of a filtering component makes TagFeature more likely

to overfit to training examples irrelevant to the test tags. For the other two

model-based methods, the overfit issue is alleviated by different strategies:

RelExample employs a filtering component to select more relevant training

examples, while TagProp has less parameters to tune.
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A per-image comparison on NUS-WIDE is given in Fig. 3.2. The test

images are put into disjoint groups so that images within the same group

have the same number of ground truth tags. For each group, the area of

the colored bars is proportional to the number of images on which the cor-

responding methods score best. The first group, i.e., images containing only

one ground-truth tag, has the most noticeable change as the training set

grows. There are 75,378 images in this group, and for 39% of the images,

their single label is ‘person’. When Train1m is used, RelExample beats KNN,

TagVote, and TagProp for this frequent label. This explains the leading po-

sition of RelExample in the first group. The result also confirms our earlier

discussion in Section 3.3.1 that MiAP is likely to be biased by frequent tags.
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Figure 3.2: Per-image comparison of methods for tag assignment on

NUS-WIDE. Test images are grouped in terms of their number of ground

truth tags. The area of a colored bar is proportional to the number of images

that the corresponding method scores best.

In summary, as long as enough training examples are provided, instance-

based methods are on par with model-based methods for tag assignment.

Model-based methods are more suited when the training data is of limited

availability. However, they are less resilient to noise, and consequently a

proper filtering strategy for refining the training data becomes essential.

3.5.2 Tag refinement

Table 3.5 shows the performance of different methods for tag refinement. We

were unable to complete the table. In particular, RobustPCA could not go

over 350k images due to its high demand in both CPU time and memory
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Figure 3.3: Per-tag comparison of methods for tag refinement on

MIRFlickr, trained on Train100k. The colors identify the features used:

blue for BovW, red for CNN. The test tags have been sorted in descending

order by the performance of CNN + RobustPCA.

(see Table 3.3), while TensorAnalysis was provided by the authors only on

MIRFlickr with Train10k, Train100k, and the BovW feature.

RobustPCA outperforms the competitors on both test sets, when pro-

vided with the CNN feature. Fig. 3.3 presents a per-tag comparison on

MIRFlickr. RobustPCA has the best scores for 9 out of the 14 tags with

BovW, and wins all the tags when CNN is used.

Concerning the influence of the media dimension, the tag + image based

methods (RobustPCA and TagCooccur+) are in general better than the tag

based method (TagCooccur). As shown in Fig. 3.3, except for 3 out of 14

MIRFlickr test tags with BovW, using the image media is beneficial. As in

the tag assignment task, the use of the CNN feature strongly improves the

performance.

Concerning the learning methods, TensorAnalysis has the potential to

leverage tag, image, and user simultaneously. However, due to its relatively

poor scalability, we were able to run this method only with Train10k and

Train100k on MIRFlickr. For Train10k, TensorAnalysis yielded higher MiAP

than RobustPCA, probably thanks to its capability of modeling user corre-

lations. It is outperformed by RobustPCA when more training data is used.

As more training data is used, the performance of TagCooccur, TagCooc-

cur+, and RobustPCA on MIRFlickr consistently improves. Since these

three methods rely on data-driven tag affinity, image affinity, or tag and

image affinity, a small set of 10k images is generally inadequate to compute
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Table 3.5: Evaluating methods for tag refinement. The asterisk (*) indicates

results provided by the authors of the corresponding methods, while the

dash (–) means we were unable to produce results. Given the same feature,

bold values indicate top performers on individual test sets per performance

metric.

MIRFlickr NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MiAP scores:

UserTags 0.204 0.204 0.204 0.255 0.255 0.255

TagCooccur 0.213 0.242 0.253 0.269 0.305 0.317

BovW + TagCooccur+ 0.217 0.262 0.286 0.245 0.297 0.324

BovW + RobustPCA 0.271 0.310 – 0.332 0.323 –

BovW + TensorAnalysis *0.298 *0.297 – – – –

CNN + TagCooccur+ 0.234 0.277 0.310 0.305 0.359 0.387

CNN + RobustPCA 0.368 0.376 – 0.424 0.419 –

CNN + TensorAnalysis – – – – – –

MAP scores:

UserTags 0.263 0.263 0.263 0.338 0.338 0.338

TagCooccur 0.266 0.298 0.313 0.223 0.321 0.308

BovW + TagCooccur+ 0.294 0.343 0.377 0.231 0.345 0.353

BovW + RobustPCA 0.225 0.337 – 0.229 0.234 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.330 0.381 0.420 0.264 0.391 0.406

CNN + RobustPCA 0.566 0.627 – 0.439 0.440 –

CNN + TensorAnalysis – – – – – –
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these affinities. The effect of increasing the training set size is clearly visible

if we compare scores corresponding to Train10k and Train100k. The results

on NUS-WIDE show some inconsistency. For TagCooccur, MiAP improves

from Train100k to Train1m, while MAP drops. This is presumably due to

the fact that in the experiments we used the parameters recommended in

the original paper, appropriately selected to optimize tag ranking. Hence,

they might be suboptimal for image ranking. BovW + RobustPCA scores a

lower MAP than BovW + TagCooccur+. This is probably due to the fact

that the low-rank matrix factorization technique, while being able to jointly

exploit tag and image information, is more sensitive to the content-based

representation.

A per-image comparison is given in Fig. 3.4. As for tag assignment, the

test images have been grouped according to the number of ground truth tags

associated. The size of the colored areas is proportional to the number of

images where the corresponding method scores best. For the majority of

test image, the three tag refinement methods have higher average precision

than UserTags. This means more relevant tags are added, so the tags are

refined. It should be noted that the success of tag refinement depends much

on the quality of the original tags assigned to the test images. Examples are

shown in Table 3.7: in row 6, although the tag ‘earthquake’ is irrelevant to

the image content, it is ranked at the top by RobustPCA. To what extent a

tag refinement method shall count on the existing tags is tricky.

To summarize, the tag + image based methods outperform the tag based

method for tag refinement. RobustPCA is the best, and improves as more

training data is employed. Nonetheless, implementing RobustPCA is chal-

lenging for both computation and memory footprint. In contrast, TagCooc-

cur+ is more scalable and it can learn from large-scale data.

3.5.3 Tag retrieval

Tables 3.8 and 3.9 show the performance of different methods for tag re-

trieval. Recall that when retrieving images for a specific test tag, we con-

sider only images that are labeled with this tag. Hence, MAP scores here

are higher than their counterpart in Table 3.5.

We start our analysis by comparing the three baselines, namely UserTags,

TagNum, and TagPosition, which retrieve images simply by the original

tags. As it can be noticed, TagNum and TagPosition are more effective

than UserTags, TagNum outperforms TagPosition on Flickr51, and the latter
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Figure 3.4: Per-image comparison of methods for tag refinement on

NUS-WIDE. Test images are grouped in terms of their number of ground

truth tags. The area of a colored bar is proportional to the number of images

that the corresponding method scores best.
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Table 3.6: Selected tag assignment results on NUS-WIDE. Visual feature:

BovW. The top five ranked tags are shown, with correct prediction marked

by the bold italic font.

Tag assignment

Test image Ground truth User tags KNN TagVote TagProp RelExample
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Table 3.7: Selected tag refinement results on NUS-WIDE. Visual feature:

BovW. The top five ranked tags are shown, with correct prediction marked

by the bold italic font.

Tag refinement

Test image Ground truth User tags TagCooccur TagCooccur+ RobustPCA
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has better scores on NUS-WIDE. The effectiveness of such metadata based

features depend much on datasets, and are unreliable for tag retrieval.

All the methods considered have higher MAP than the three baselines.

All the methods have better performance than the baselines on Flickr51 and

performance increases with the size of the training set. On NUS-WIDE,

SemanticField, TagCooccur, and TagRanking, are less effective than Tag-

Position. We attribute this result to the fact that, for these methods, the

tag relevance functions favor images with fewer tags. So they closely follow

similar performance and dataset dependency.

Concerning the influence of the media dimension, the tag + image based

methods (KNN, TagVote, TagProp, TagCooccur+, TagFeature, Robust-

PCA, RelExample) are in general better than the tag based method (Seman-

ticField and TagCooccur). Fig. 3.5 shows the per-tag retrieval performance

on Flickr51. For 33 out of the 51 test tags, RelExample exhibits average pre-

cision higher than 0.9. By examining the top retrieved images, we observe

that the results produced by tag + image based methods and tag based

methods are complementary to some extent. For example, consider ‘mili-

tary’, one of the test tags of NUS-WIDE. RelExample retrieves images with

strong visual patterns such as military vehicles, while SemanticField returns

images of military personnel. Since the visual content is ignored, the results

of SemanticField tend to be visually different, so making it possible to han-

dle tags with visual ambiguity. This fact can be observed in Fig. 3.6, which

shows the top 10 ranked images of ‘jaguar’ by TagPosition, SemanticField,

BovW + RelExample, and CNN + RelExample. Although their results are

all correct, RelExample finds jaguar-brand cars only, while SemanticField

covers both cars and animals. However, for a complete evaluation of the

capability of managing ambiguous tags, fine-grained ground truth beyond

what we currently have is required.

Concerning the learning methods, TagVote consistently performs well as

in the tag assignment experiment. KNN is comparable to TagVote, due to the

reason we have discussed in Section 3.5.1. Given the CNN feature, the two

methods even outperform their model-based variant TagProp. Similar to the

tag refinement experiment, the effectiveness of RobustPCA for tag retrieval is

sensitive to the choice of visual features. While BovW+ RobustPCA is worse

than the majority on Flickrt51, the performance of CNN + RobustPCA is

more stable, and performs well. For TagFeature, its gain from using larger

training data is relatively limited due to the absence of denoising. In contrast,
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Table 3.8: Evaluating methods for tag retrieval, MAP scores. Given the

same feature, bold values indicate top performers on individual test sets per

performance metric.

Flickr51 NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

MAP scores:

UserTags 0.595 0.595 0.595 0.489 0.489 0.489

TagNum 0.664 0.664 0.664 0.520 0.520 0.520

TagPosition 0.640 0.640 0.640 0.557 0.557 0.557

SemanticField 0.687 0.707 0.713 0.565 0.584 0.584

TagCooccur 0.625 0.679 0.704 0.534 0.576 0.588

BovW + TagCooccur+ 0.640 0.732 0.764 0.560 0.622 0.643

BovW + TagRanking 0.685 0.686 0.708 0.557 0.574 0.578

BovW + KNN 0.678 0.742 0.770 0.587 0.632 0.658

BovW + TagVote 0.678 0.741 0.769 0.587 0.632 0.659

BovW + TagProp 0.671 0.748 0.772 0.585 0.636 0.657

BovW + TagFeature 0.689 0.726 0.737 0.589 0.602 0.606

BovW + RelExample 0.706 0.756 0.783 0.609 0.645 0.663

BovW + RobustPCA 0.697 0.701 – 0.650 0.650 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.654 0.781 0.821 0.572 0.653 0.674

CNN + TagRanking 0.744 0.735 0.747 0.589 0.590 0.590

CNN + KNN 0.811 0.859 0.880 0.683 0.722 0.734

CNN + TagVote 0.808 0.859 0.881 0.675 0.724 0.738

CNN + TagProp 0.824 0.867 0.879 0.689 0.727 0.731

CNN + TagFeature 0.827 0.853 0.859 0.675 0.700 0.703

CNN + RelExample 0.838 0.863 0.878 0.689 0.717 0.734

CNN + RobustPCA 0.811 0.839 – 0.725 0.726 –

CNN + TensorAnalysis – – – – – –
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Table 3.9: Evaluating methods for tag retrieval, NDCG20 scores. Given the

same feature, bold values indicate top performers on individual test sets per

performance metric.

Flickr51 NUS-WIDE

Method Train10k Train100k Train1m Train10k Train100k Train1m

NDCG20 scores:

UserTags 0.432 0.432 0.432 0.487 0.487 0.487

TagNum 0.522 0.522 0.522 0.541 0.541 0.541

TagPosition 0.511 0.511 0.511 0.623 0.623 0.623

SemanticField 0.591 0.623 0.645 0.596 0.622 0.624

TagCooccur 0.482 0.527 0.631 0.529 0.602 0.614

BovW + TagCooccur+ 0.503 0.625 0.686 0.590 0.681 0.734

BovW + TagRanking 0.530 0.568 0.571 0.557 0.572 0.572

BovW + KNN 0.577 0.699 0.756 0.638 0.734 0.799

BovW + TagVote 0.573 0.701 0.754 0.629 0.734 0.804

BovW + TagProp 0.570 0.715 0.759 0.666 0.750 0.809

BovW + TagFeature 0.547 0.626 0.646 0.622 0.615 0.618

BovW + RelExample 0.614 0.722 0.748 0.692 0.736 0.776

BovW + RobustPCA 0.549 0.548 – 0.768 0.781 –

BovW + TensorAnalysis – – – – – –

CNN + TagCooccur+ 0.504 0.615 0.724 0.571 0.705 0.738

CNN + TagRanking 0.577 0.607 0.597 0.578 0.594 0.583

CNN + KNN 0.709 0.830 0.897 0.773 0.832 0.863

CNN + TagVote 0.722 0.826 0.899 0.740 0.837 0.879

CNN + TagProp 0.768 0.857 0.865 0.764 0.839 0.845

CNN + TagFeature 0.755 0.813 0.818 0.704 0.807 0.787

CNN + RelExample 0.764 0.843 0.879 0.773 0.814 0.866

CNN + RobustPCA 0.733 0.821 – 0.865 0.862 –

CNN + TensorAnalysis – – – – – –
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Figure 3.5: Per-tag comparison between TagPosition, Seman-

ticField, TagVote, TagProp, and RelExample on Flickr51, with

Train1m as the training set. The 51 test tags have been sorted in descending

order by the performance of RelExample.

RelExample, by jointly using SemanticField and TagVote in its denoising

component, is consistently better than TagFeature.

The performance of individual methods consistently improves as more

training data is used. As the size of the training set increases, the perfor-

mance gap between the best model-based method (RelExample) and the best

instance-based method (TagVote) reduces. This suggests that large-scale

training data diminishes the advantage of model-based methods against the

relatively simple instance-based methods.

In summary, even though the performance of the methods evaluated

varies over datasets, common patterns have been observed. First, the more
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(a) TagPosition (b) SemanticField (c) BovW

+ RelExample

(d) CNN

+ RelExample

Figure 3.6: Top 10 ranked images of ‘jaguar’, by (a) TagPosi-

tion, (b) SemanticField, (c) BovW + RelExample, and (d) CNN

+ RelExample. Checkmarks (!) indicate relevant results. While both

RelExample and SemanticField outperform the TagPosition baseline, the

results of SemanticField show more diversity for this ambiguous tag. The

difference between (c) and (d) suggests that the results of RelExample can

be diversified by varying the visual feature in use.

social data for training are used the better performance is obtained. Since

the tag relevance functions are learned purely from social data without any

extra manual labeling, and social data are increasingly growing, this result

promises that better tag relevance functions can be learned. Second, given

small-scale training data, tag + image based methods that conducts model-

based learning with denoised training examples turn out to be the most

effective solution, This however comes with a price of reducing the visual

diversity in the retrieval results. Moreover, the advantage of model-based

learning vanishes as more training data and the CNN feature are used, and

TagVote performs the best.
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3.5.4 Flickr versus ImageNet

To address the question of whether one shall resort to an existing resource

such as ImageNet for tag relevance learning, this section presents an empir-

ical comparison between our Flickr based training data and ImageNet. A

number of methods do not work with ImageNet or require modifications.

For instance, tag + image + user information based methods must be able

to remove their dependency on user information, as such information is un-

available in ImageNet. Tag co-occurrences are also strongly limited, because

an ImageNet example is annotated with a single label. Because of these lim-

itations, we evaluate only the two best performing methods, TagVote and

TagProp. TagProp can be directly used since it comes from classic image

annotation, while TagVote is slightly modified by removing the unique user

constraint. The CNN feature is used for its superior performance against

the BovW feature.

To construct a customized subset of ImageNet that fits the three test

sets, we take ImageNet examples whose labels precisely match with the test

tags. Notice that some test tags, e.g., ‘portrait’ and ‘night’, have no match,

while some other tags, e.g, ‘car’ and ‘dog’, have more than one matches.

In particular, MIRFlickr has 2 missing tags, while the number of missing

tags on Flickr51 and NUS-WIDE is 9 and 15. For a fair comparison these

missing tags are excluded from the evaluation. Putting the remaining test

tags together, we obtain a subset of ImageNet, containing 166 labels and over

200k images, termed ImageNet200k. For a fair comparison, we considered

only Train100k and Train1m training sets of socially tagged images.

The left half of Table 3.10 shows the performance of tag assignment.

TagVote/TagProp trained on the ImageNet data are less effective than their

counterparts trained on the Flickr data. For a better understanding of the

result, we employ the same visualization technique as used in Section 3.5.1,

i.e., grouping the test images in terms of the number of their ground truth

tags, and subsequently checking the performance per group. As shown in

Fig. 3.7, while ImageNet200k performs better on the first group, i.e., images

with a single relevant tag, it is outperformed by Train100k and Train1M on

the other groups. For its single-label nature, ImageNet is less effective for

assigning multiple labels to an image.

For tag retrieval, as shown in the right half of Table 3.10, TagVote/Tag-

Prop learned from ImageNet200k in general have higher MAP and NDCG

scores than their counterparts learned from the Flickr data. By compar-
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Table 3.10: Flickr versus ImageNet. Notice that the numbers on Train100k

and Train1M are different from Tables 3.4, 3.8 and 3.9 due to the use of a

reduced set of test tags. Bold values indicate top performers on a specific

test set per performance metric.

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389

Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405

Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745

Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856

Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847
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Figure 3.7: Per-image comparison of TagVote/TagProp learned

from different training datasets, tested on NUS-WIDE. Test images are

grouped in terms of the number of ground truth tags. Within each group,

the area of a colored bar is proportional to the number of images that (the

method derived from) the corresponding training dataset scores the best.

ImageNet200k is less effective for assigning multiple labels to an image.

ing the performance difference per concept, we find that the gain is largely

contributed by a relatively small amount of concepts. Consider for instance

TagVote + ImageNet200k and TagVote + Train1M on NUS-WIDE. The

former outperforms the latter for 25 out of the 66 tested concepts. By sort-

ing the concepts according to their absolute performance gain, the top three

winning concepts of TagVote + ImageNet200k are ‘sand’, ‘garden’, and ‘rain-

bow’, with AP gain of 0.391, 0.284, and 0.176, respectively. Here, the lower

performance of TagVote + Train1M is largely due to the subjectiveness of

social tagging. For instance, Flickr images labeled with ‘sand’ tend be much

more diverse, showing a wide range of things visually irrelevant to sand. In-

terestingly, the top three losing concepts of TagVote + ImageNet200k are

‘running’, ‘valley’, and ‘building’, with AP loss of 0.150, 0.107, and 0.090,

respectively. For these concepts, we observe that their ImageNet examples

lack diversity. E.g., ‘running’ in ImageNet200k mostly shows a person run-

ning on a track. In contrast, the subjectiveness of social tagging now has a

positive effect on generating diverse training examples.

In summary, for tag assignment social media examples are a preferred

resource of training data. For tag retrieval ImageNet yields better perfor-

mance, yet the performance gain is largely due to a few tags where social

tagging is very noisy. In such a case, controlled manual labeling seems indis-
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pensable. In contrast, with clever tag relevance learning algorithms, social

training data demonstrate competitive or even better performance for many

of the tested tags. Nevertheless, where the boundary between the two cases

is precisely located remains unexplored.

3.6 Conclusions

Having established the common ground between methods, a new experi-

mental protocol was introduced for a head-to-head comparison between the

state-of-the-art. A selected set of eleven representative works were imple-

mented and evaluated for tag assignment, refinement, and/or retrieval. The

evaluation justifies the state-of-the-art on the three tasks. For tag assign-

ment, TagProp and TagVote perform best. For tag refinement, RobustPCA

is the choice. For tag retrieval, TagVote achieves the best overall perfor-

mance. Concerning what media is essential for tag relevance learning, tag +

image is consistently found to be better than tag alone. While the joint use

of tag, image, and user information (via TensorAnalysis) demonstrates its

potential on small-scale datasets, it becomes computationally prohibitive as

the dataset size increases to 100k and beyond. Comparing the three learning

strategies, instance-based and model-based methods are found to be more

reliable and scalable than their transduction-based counterparts. As model-

based methods are more sensitive to the quality of social image tagging, a

proper filtering strategy for refining the training media is crucial for their

success. Despite their leading performance on the small training dataset,

we find that the performance gain over the instance-based alternatives di-

minishes as more training data is used. Finally, the CNN feature used as

a substitute for the BovW feature brings considerable improvements for all

the tasks.



Chapter 4

A Cross Modal Approach for

Tag Assignment

Tag assignment is still an important open problem in multimedia

and computer vision. Many approaches previously proposed in

the literature do not accurately capture the intricate dependencies

between image content and annotations. We propose a learning

procedure based on Kernel Canonical Correlation Analysis which

finds a mapping between visual and textual words by projecting

them into a latent meaning space. The learned mapping is then

used to annotate new images using advanced nearest neighbor

methods. We evaluate our approach on three popular datasets,

and show clear improvements over several approaches relying on

more standard representations. 1

4.1 Introduction

The exponential growth of media sharing websites, such as Flickr or Pi-

casa, and social networks such as Facebook, has led to the availability of

large collections of images tagged with human-provided labels. These tags

reflect the image content and can thus be exploited as a loose form of la-

bels and context. Several researchers have explored ways to use images with

1A preliminary version of the work presented in this chapter has been published as

“A Cross-modal Approach for Automatic Image Annotation” in Proc. of International

Conference of Multimedia Retrieval (ICMR), Glasgow, 2014.

61
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associated labels as a source to build classifiers or to transfer their tags to

similar images [45, 68, 105, 113, 133, 233]. Image annotation is therefore a

very active subject of research [23,126,141,195,221,223] since we can clearly

increase performance of search and indexing over image collections that are

machine enriched with a set of meaningful labels. In this chapter we tackle

the problem of assigning a finite number of relevant tags to an image, given

the image appearance and some prior knowledge on the joint distribution of

visual features and tags based on some weakly and noisy annotated data.

The main shortcomings of previous works in the field are twofold. The

first is the aforementioned semantic gap problem, which points to the fact

that it is hard to extract semantically meaningful entities using just low

level visual features. The second shortcoming arises from the fact that many

parametric models, previously presented in the literature, are not rich enough

to accurately capture the intricate dependencies between image content and

annotations. Recently, nearest neighbor based methods have attracted much

attention since they have been found to be quite successful for tag prediction

[68,113,133,192,233] (see also Chapter 2 and 3). This is mainly due to their

flexibility and capacity to adapt to the patterns in the data as more training

data is available. The base ingredient for a vote based tagging algorithm is

of course the source of votes: the set of K nearest neighbors. In challenging

real world data it is often the case that the vote casting neighbors do not

contain enough statistics to obtain reliable predictions. This is mainly due

to the fact that certain tags are much more frequent than others and can

cancel out less frequent but relevant tags [68,113]. It is obvious that all voting

schemes can benefit from a better set of neighbors. We believe that the main

bottleneck in obtaining such ideal neighbors set is the semantic gap. We

address this problem using a cross-modal approach to learn a representation

that maximizes the correlation between visual features and tags in a common

semantic subspace.

In Figure 4.1 we show our intuition with an example provided by real

data. We compare for the same query, a flower close-up, the first thirty-five

most similar examples provided by the visual features and by our represen-

tation. The first thing to notice is the large visual and semantic difference

between the sets of retrieved neighbors by the two approaches. Note also

that some flower pictures, which we highlight with a dashed red rectangle,

were not tagged as such. Second, note how the result presented in Figure

4.1(b) have more and better ranked flower images than the one in Figure
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(a) Baseline

(b) Our Method

Figure 4.1: Nearest neighbors found with baseline representation (a) and

with our proposed method (b) for a flower image (first highlighted in yellow in

both figures) from the MIRFlickr-25K dataset. Training images with ground

truth tag flower are highlighted with a red border. Nearest neighbors are

sorted by decreasing similarity and arranged in a matrix using a row-major

convention. Dashed red lines indicate flower pictures not tagged as such.
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4.1(a). Indeed with the result set in Figure 4.1(a) it is not possible to obtain

a sufficient amount of meaningful neighbors and the correct tag flower is

canceled by others such as dog or people.

In this chapter we present a cross-media approach that relies on Kernel

Canonical Correlation Analysis (KCCA) [71,72] to connect visual and textual

modalities through a common latent meaning space (called semantic space).

Visual features and labels are mapped to this space using feature similarities

that are observable inside the respective domains. If mappings are close

in this semantic space, the images are likely to be instances of the same

underlying semantic concept. The learned mapping is then used to annotate

new images using a nearest-neighbor voting approach. We present several

experiments using different voting schemes. First, the simple KNN voting of

Makadia et al. [133], and second three advanced NN models such as TagVote

[113], TagProp [68] and 2PKNN [195].

4.1.1 Contribution

Other existing approaches learn from both words and images, including pre-

vious uses of CCA [63, 71, 76, 159]. In contrast, we are the first to propose

an approach that combines an effective cross-modal representation with ad-

vanced nearest-neighbor models for the specific task of tag assignment.

In the following we show that, if combined with advanced NN schemes

able to deal with the class-imbalance (i.e. large variations in the frequency of

different labels), our cross-media model achieves high performance without

requiring heavy computation such as in the case of metric learning frame-

works with many parameters (as in [68,195]).

We present experimental results for two standard datasets, Corel5K [45]

and IAPR-TC12 [67], obtaining highly competitive results. We report also

experiments on a challenging dataset collected from Flickr, i.e. the MIRFlickr-

25K dataset [74], and our results show that the performance of the proposed

method is boosted even further in a realistic and more interesting scenario

such as the one provided by weakly-labeled images.

4.2 Related Work

In the multimedia and computer vision communities, jointly modeling images

and text has been an active research area in the recent years. A first group
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of methods uses mixture models to define a joint distribution over image

features and labels. The training images are used by these models as com-

ponents to define a mixture model over visual features and tags [23,49,101].

They can be interpreted as non-parametric density estimators over the co-

occurrence of images and labels. In another group of methods based on topic

models (such as LDA and pLSA), each topic represents a distribution over

image features and labels [11,147]. These kind of generative models may be

criticized because they maximize the generative data likelihood, which is not

optimal for predictive performance. Another main criticism of these models

is their need for simplifying assumptions in order to do tractable learning

and inference.

Discriminative models such as support vector machines have also been

proposed [65, 196]. These methods learn a classifier for each label, and use

them to predict whether a test image belongs to the class of images that are

annotated with a particular label. A main criticism of these works resides in

the necessity to define in advance the number of labels and to train individual

classifiers for each of them. This is not feasible in a realistic scenario like the

one of web images. Despite their simplicity, nearest-neighbor based methods

for image annotation have been found to give state-of-the-art results [68,

133, 195]. The intuition is that similar images share common labels. The

common procedure of the existing nearest-neighbor methods is to search for

a set of visually similar images and then to select a set of relevant associated

tags based on a tag transfer procedure [68, 113, 133]. In all these previous

approaches, this similarity is determined only using image visual features.

4.3 Approach

The proposed method is based on KCCA which provides a common represen-

tation for the visual and tag features. We refer to this common representation

as semantic space. Similarly to [71, 76] we use KCCA to connect visual and

textual modalities, but our method is designed to effectively tackle the par-

ticular problem of image auto-annotation. In Section 4.3.1 we present our

visual and text features with their respective kernels; next we briefly describe

KCCA (Section 4.3.2) and the different NN schemes (Section 4.3.3). In Fig-

ure 4.2 we show an embedding computed with ISOMAP [184] of the visual

data and its semantic projection. We randomly pick three tags to show how

the semantic projection that we learn with KCCA better suits the actual
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distribution of tags with respect to the visual representation. The semantic

projection improves the separation of the classes, allowing a better mani-

fold reconstruction and, as our experiments will confirm, an improvement on

precision and recall on different datasets.

4.3.1 Visual and Tags Views

Visual Feature Representation and Kernels

We directly use the 15 features provided by the authors of [68,194]2. These

are different types of global and local features commonly used for image re-

trieval and categorization. In particular we use two types of global descrip-

tors: Gist and color histograms with 16 bins in each channel for RGB, LAB,

HSV color spaces. Local features include SIFT and robust hue descriptors,

both extracted densely on a multi-scale grid or for Harris-Laplacian interest

points. The local feature descriptors are quantized using k-means and then

all the images are represented as bag-of-(visual)words histograms. The his-

tograms are also computed in a spatial arrangement over three horizontal

regions of the image, and then concatenated to form a new global descriptor

that encodes some information of the global spatial layout.

In this work we use χ2 exponential kernels for all visual features f ∈ F :

Kχ2(hi, hj) = exp

(

−
1

2A

d
∑

k=1

(hi(k)− hj(k))
2

(hi(k) + hj(k))

)

, (4.1)

where A is the mean of the χ2 distances among all the training examples, d

is the dimensionality of a particular feature descriptor and hi is its respective

histogram representation. It has to be noticed that all the feature descriptors

are L1-normalized. Finally, all the different visual kernels are averaged to

obtain the final visual representation. We obtain the kernel between two

images Ii, Ij via kernel averaging:

Kv(Ii, Ij) =
1

|F|

∑

f∈F

Kχ2(hf
i , h

f
j ). (4.2)

2These features are available at: http://lear.inrialpes.fr/people/guillaumin/

data.php.

http://lear.inrialpes.fr/people/guillaumin/data.php
http://lear.inrialpes.fr/people/guillaumin/data.php
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Figure 4.2: Visualization of three labels (Corel5K): (a) distribution of image

features in the visual space (b) distribution of the same images after project-

ing into the semantic space learned using KCCA. Note the clearer distinction

of the clusters in the semantic space.
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Tag Feature Representation and Kernel

We use as tag features the traditional bag-of-words which records which

labels are named in the image, and how many times. Supposing V is our

vocabulary size, i.e. the total possible words used for annotation, each tag-

list is mapped to an V -dimensional feature vector h = [w1, · · · , wV ], where

wi counts the number of times the i-th word is mentioned in the tag list. In

our case this representation is highly sparse and often counts are simply 0 or

1 values. We use these features to compute a linear kernel that corresponds

to counting the number of tags in common between two images:

Kt(hi, hj) =< hi, hj >=
V
∑

k

hi(k)hj(k). (4.3)

4.3.2 Kernel Canonical Correlation Analysis

Given two views of the data, such as the ones provided by visual and textual

modalities, we can construct a common representation. Canonical Corre-

lation Analysis (CCA) seeks to utilize data consisting of paired views to

simultaneously find projections from each feature space such that the corre-

lation between the projected representations is maximized. In the literature,

the CCA method has often been used in cross-language information retrieval,

where one queries a document in a particular language to retrieve relevant

documents in another language. In our case, the algorithm learns two se-

mantic projection bases, one per each modality (i.e. the v view is the visual

cue while the t view is the tag-list cue).

More formally, givenN samples from a paired dataset {(v1, t1), . . . , (vN , tN )},

where vi ∈ R
n and ti ∈ R

m are the two views of the data, the goal is to

simultaneously find directions w∗

v and w∗

t that maximize the correlation of

the projections of v onto wv and t onto wt. This is expressed as:

w∗

v , w
∗

t = arg max
wv,wt

Ê[⟨v, wv⟩⟨t, wt⟩]
√

Ê[⟨v, wv⟩2]Ê[⟨t, wt⟩2]
=

arg max
wv,wt

wT
v Cvtwt

√

wT
v Cvvwvw

T
t Cttwt

, (4.4)

where Ê denotes the empirical expectation, Cvv and Ctt respectively de-

note the auto-covariance matrices for v and t data, and Cvt denotes the
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between-sets covariance matrix. The solution can be found via a generalized

eigenvalue problem [72].

The common CCA algorithm can only recover linear relationships, it is

therefore useful to kernelize it by projecting the data into a higher-dimensional

feature space by using the kernel trick. Kernel Canonical Correlation Anal-

ysis (KCCA) is the kernelized version of CCA. To this end, we define ker-

nel functions over v and t as Kv(vi, vj) = φv(vi)
Tφv(vj) and Kt(ti, tj) =

φt(ti)
Tφt(tj). Here, the idea is to search for solutions of wv,wt that lie in

the span of the N training instances φv(vi) and φt(ti):

wv =
∑

i

αiφv(vi),

wt =
∑

i

βiφt(ti), (4.5)

where i ∈ {1, · · · , N}. The objective of KCCA is thus to identify the weights

α,β ∈ R
N that maximize:

α∗,β∗ = argmax
α,β

αTKvKtβ
√

αTK2
vαβ

TK2
t β

, (4.6)

where Kv and Kt denote the N×N kernel matrices over a sample of N pairs.

As shown by Hardoon [72], learning may need to be regularized in order to

avoid trivial solutions. Hence, we penalize the norms of the projection vectors

and obtain the standard eigenvalue problem:

(Kv + κI)−1Kt(Kt + κI)−1Kvα = λ2α. (4.7)

The top D eigenvectors of this problem yield basis A =
[

α(1) . . .α(D)
]

and

B =
[

β(1) . . .β(D)
]

that we use to compute the semantic projections of any

vector vi, ti.

Implementation Details

In order to avoid degeneracy with non-invertible Gram matrices and to in-

crease computational efficiency we approximate the Gram matrices using

the Partial Gram-Schmidt Orthogonalization (PGSO) algorithm provided

by Hardoon et al. [72].As suggested in [72] the regularization parameter κ

is found by maximizing the difference between projections obtained by cor-

rectly and randomly paired views of the data on the training set. In the
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experiments we have optimized both the parameters of the PGSO algorithm

(i.e. κ and T ); however, we found as a good starting configuration the set-

ting T = 30 and κ = 0.1. We also found important swapping the use of

visual and textual spaces as Hardoon [72] fixes A to be unit vectors while

computing B on the basis of the two kernels.

4.3.3 Tag Assignment Using Nearest Neighbor Models

in the Semantic Space

The intuition underlying the use of nearest-neighbor methods for tag assign-

ment is that similar images share common labels. Following this key idea,

we have investigated and applied several NN schemes to our semantic space

in order to automatically annotate images. We briefly describe these models

below and refer the interested reader to the Chapter 3.

For all baseline methods the K neighbors of a test image Ii are selected

as the training images Ij for which our averaged test kernel value Kv(Ii, Ij),

defined in Eq. 4.2, scores higher. In case the semantic space projection is

used, the K neighbors are computed using:

d(ψ(Ii),ψ(Ij)) = 1−
ψ(Ii)

T · ψ(Ij)

∥ψ(Ii)∥2 · ∥ψ(Ij)∥2
(4.8)

where ψ(Ii) is the semantic projection of a test image Ii. The projection of

Ii is defined as ψ(Ii) = Kv(Ii, ·)
TA, where Kv(Ii, ·) is the vector of kernel

values of a sample Ii and all the training samples. Note that we only use

the visual view of our data both for training and test samples.

KNN

Given a test image, we project onto the semantic space and identify its

K Nearest-Neighbors. Then we merge their labels to create a tag-list by

counting all tag occurrences on the K retrieved images, and finally we re-

order the tags by their frequency. If we fix K to a very small number (e.g.

K = 2) this approach is similar to the ad-hoc nearest neighbor tag transfer

mechanism proposed by Makadia et al. [133].

TagVote

Li et al. [113] proposed a tag relevance measure based on the consideration

that if different persons label visually similar images using the same tags,
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then these tags are more likely to reflect objective aspects of the visual

content. Following this idea it can be assumed that, given a query image,

the more frequently the tag occurs in the neighbor set, the more relevant

it might be. However, some frequently occurring tags are unlikely to be

relevant to the majority of images. To account for this fact the proposed tag

relevance measurement takes into account both the distribution of a tag t in

the neighbor set for an image I and in the entire collection:

tagV ote(l, I,K) := nt[N(I,K)]− Prior(t), (4.9)

where nt is an operator counting the occurrences of t in the neighborhood

N(I,K) of K similar images, and Prior(t) is the occurrence frequency of t

in the entire collection.

TagProp

Guillaumin et al. [68] proposed an image annotation algorithm in which

the main idea is to learn a weighted nearest neighbor model, to automat-

ically find the optimal combination of multiple feature distances. Using

yit ∈ {−1,+1} to represent if tag t is relevant or not for the test im-

age Ii, the probability of being relevant given a neighborhood of K images

Ij ∈ N(Ii,K) = {I1, I2, . . . , IK} is:

p(yit = +1) =
∑

Ij∈N(Ii,K)

πij p(yit = +1|N(Ii,K)), (4.10)

p(yit = +1|N(Ii,K)) =

{

1− ϵ for yit = +1,

ϵ otherwise
(4.11)

πij ≥ 0,
∑

Ij∈N(Ii,K)

πij = 1, (4.12)

where πij is the weight of a training image Ij of the neighborhood N(I,K)

and p(yit = +1|N(Ii,K)) is the prediction of tag t according to each neighbor

in the weighted sum.

The model can be used with rank-based (RK) or distance-based weight-

ing; the latter can be learnt by using a single distance (referred to as the SD

variant) or using metric learning (ML) over multiple distances. Furthermore,

to compensate for varying frequencies of tags, a tag-specific sigmoid is used

to scale the predictions, to boost the probability for rare tags and decrease
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that of frequent ones. Sigmoids and metric parameters can be learned by

maximizing the log-likelihood
∑

Ii,t
ln p(yit).

2PKNN

Verma and Jawahar [195] proposed a two phase method: a first pass is

employed to address the class-imbalance by constructing a balanced neigh-

borhood for each test image and then a second pass, where the actual tag

importance is assigned based on image similarity.

The problem of image annotation is formulated similarly as Guillaumin

et al. [68], by finding the posterior probabilities:

P (yit|Ii) =
P (Ii|yit)P (yit)

P (Ii)
(4.13)

Given a test image Ii, and a vocabulary Y = {t1, t2, . . . , tM}, the first

phase collects a set neighborhoods Tit for each tag t ∈ Y by selecting at

least the nearest M training images annotated with t. The neighborhood

of image Ii is then given by N(Ii) =
⋃

t∈Y Tit. It should be noticed that a

tag can have less than M training image and therefore N(Ii), may still be a

lightly unbalanced set of tags.

On the second phase of 2PKNN, given a tag t ∈ Y , the probability P (Ii|t)

is estimated by the neighborhood defined in phase one for image I:

P (Ii|t) =
∑

Ij∈N(Ii)

exp(−D(Ii, Ij))p(yit = +1|N(Ii)) (4.14)

where p(yit = +1|N(Ii)) is the presence of tag t for image Ii as in Guillaumin

et al. [68] and D(Ii, Ij) is the distance between image Ii and Ij .

In the simplest version of this algorithmD(Ii, Ij) is just a scaled version of

the distance wD(Ii, Ij), where w is a scalar. Authors in [195] also propose a

more complex version whereD(Ii, Ij) can be parameterized as a Mahalanobis

distance where the weight matrix can be learned in a way that the resulting

metric will pull the neighbors from the Tt belonging to ground-truth tags

closer and push far the remaining ones.

4.4 Experiments

We evaluate the performance of our cross-media model for tag assignment

on three popular datasets and we compare it to closely related work.
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Figure 4.3: Precision and recall of all the methods on MIRFlickr-25k varying

the number of nearest neighbors. Dashed lines represent baseline methods.

Note that 2PKNN implicitly define the size of the neighborhood based only

on the number of images per labels.
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(a) Corel5K
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(b) IAPR-TC12
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(c) MIRFlickr-25K
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N+ 17 18 18 18 18 18 16 18

Table 4.1: This table shows the results of several configurations of our

method based on KCCA and baselines on the Corel5K , IAPR-TC12 and

MIRFlickr-25K datasets.

4.4.1 Datasets

Corel5K. The Corel5K dataset [45] has been the standard evaluation bench-

mark in the image annotation community for around a decade. It contains

5,000 images which are annotated with 260 labels and each image has up to
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P 16 17 18 24 23 25 30 28 26 28 29 32 39 33 44 42
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N+ 107 112 114 122 137 131 146 140 143 145 157 179 177 160 191 179

Table 4.2: This table shows the results of our method and related work on

the Corel5K dataset (as reported in the literature). JEC-15 refers to the

JEC [133] implementation of [68] that uses our 15 visual features.

5 different labels (3.4 on average). This dataset is divided into 4,500 images

for training and 500 images for testing.

IAPR-TC12. This dataset was introduced in [67] for cross-language

information retrieval and it consists of 17,665 training images and 1,962

testing images. Each image is annotated with an average of 5.7 labels out of

291 candidate.

MIRFlickr-25K. The MIRFlickr-25K dataset has been recently intro-

duced to evaluate keyword-based image retrieval methods. The set contains

25,000 images that were downloaded from Flickr and for each one of these

images the tags originally assigned by the users are available (as well as EXIF

information fields and other metadata such as GPS). It is a very challenging

dataset since the tags are weak labels and not all of them are actually relevant

to the image content. There are also many meaningless words. Therefore a

pre-processing step was performed to filter out these tags. To this end we

matched each tag with entries in Wordnet and only those tags with a cor-

responding item in Wordnet were retained. Moreover, we removed the less

frequent tags, whose occurrence numbers are below 50. The result of this

process is a vocabulary of 219 tags. The images are also manually annotated

for 18 concepts (i.e. labels) that are used to evaluate the automatic annota-

tion performances. As in [194], the dataset is divided into 12,500 images for

training and 12,500 images for testing.
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4.4.2 Evaluation Measures

We evaluate our models with standard performance measures, used in pre-

vious work on image annotation. The standard protocol in the field is to

report Precision and Recall for fixed annotation length [45]. Thus each im-

age is annotated with the n most relevant labels (usually, as in this chapter,

the results are obtained using n = 5). Then, the results are reported as

mean precision P and mean recall R over the ground-truth labels; N+ is

often used to denote the number of labels with non-zero recall value. Note

that each image is forced to be annotated with n labels, even if the image

has fewer or more labels in the ground truth. Therefore we will not measure

perfect precision and recall figures.

4.4.3 Results

As a first experiment we compare our method with the corresponding nearest

neighbor voting schemes. It can be seen from Table 4.1 that our approach

improves over baseline methods in every setting on all datasets. Precision

is boosted notably, confirming the better separation of the classes in the

semantic space (as previously discussed in Section 4.3). Also recall is im-

proved by a large margin on Corel5K and MIRFlickr-25k. On IAPR-TC12

recall improvement is less pronounced. We believe this is due the different

amount of textual annotation: IAPR-TC12 has an average of 5.7 tags per

image (TPI) and up to 23 TPI while on Corel5K and MIRFlickr-25k the

average TPI is respectively 3.4 and 4.7 with a maximum of 5 and 17 TPI

respectively. Recalling that we are predicting n = 5 tags per image, recall is

harder to improve on this dataset.

We conduct an evaluation of how the amount of neighbours affect the per-

formance for both our method and the baseline on the challenging MIRFlickr-

25k dataset. As can be seen from Figure 4.3 the KCCA variants (solid lines)

of the four considered voting schemes systematically improve both precision

and recall for any amount of nearest neighbors used. Note that in both cases,

a similar pattern emerges due the natural instability of NN methods.

It is interesting to note that while recall gets better as the neighborhood

gets bigger, saturating at near 2, 000 neighbours, precision depends on the

algorithm chosen. Basic voting and TagVote show an improvement until 200

neighbors and then begin decreasing; TagProp improves until saturates at

around 900.
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Table 4.3: This table shows the results of our method and related work on

the IAPR-TC12 dataset (as reported in the literature).

2PKNN misses a direct parameter to choose the dimension of the neigh-

borhood, but it implicitly defines it by choosing at most M images per label.

However, while it has a clear advantage on Corel5K and IAPR-TC12, both

as a baseline and after the projection, it fails to achieve comparable per-

formance on MIRFlickr-25K. We believe that this is due to the noisy and

missing tags of MIRFlickr-25K, a notable difference on this more realistic

and challenging dataset.

Comparing with the state of the art, on Tables 4.2 and 4.3, our method

achieves better performance than all previous works while it is comparable

with the state of the art method 2PKNN [195] on Corel5K. Our method

performs slightly worse than 2PKNN in metric learning configuration. How-

ever, metric learning involves a learning procedure with many parameters

that rise the complexity of optimization and undermines scalability.

Our method, once learned the semantic space, continues to work in what

we call an open world setting. In this setting that is indeed more realistic,

the amount of tags per image evolves over time. That is the case of big data

from social media and, more in general, from the web.

We also report in Table 4.4 a comparison with the methods presented

in [68,194] using per-image average precision (iAP). This measure indicates

how well a method identifies relevant concepts for a given image. Our method

combining the 2PKNN voting scheme, without metric learning, with the

semantic projection outperforms all the other methods.



78 A Cross Modal Approach for Tag Assignment

Previously reported results ML

ra
n
d
om

S
V
M

v

S
V
M

t

S
V
M

v
+
t

T
ag
P
ro
p
R
K

T
ag
P
ro
p
M
L

O
u
r
b
e
st

re
su

lt

iAP 5.6 44.2 32 45 46.3 47.3 50.8

Table 4.4: This table shows the results of our method and related work [194]

on the MIRFlickr-25k dataset.

Qualitative Analysis

In Figure 4.4 we present some anecdotal evidence for our method (from the

MIRFlickr-25k dataset). It can be seen that TagProp and TagVote perform

better in general for the baseline representation and our proposed KCCA

variant. It has to be noted that for challenging images where visual features

can be deceiving our cross-modal approach allows to retrieve more tags. As

an example see the first two rows: a close-up of a flower and a cloudy sunset

with a road. For the first one it is not surprising that visual features do not

provide enough good neighbors to retrieve the flower tag. For the second

one none of the baseline method can retrieve the sunset and cloud tags; we

believe that this is due to the lack of color features. In this two cases it is

clear that semantically induced neighbors in the common space can boost

the accuracy.

Another challenging example is shown at row five: a girl is depicted

behind an object that hides a part of the face. This image component do not

have enough visual neighbors to retrieve its tags. With our representation

we are able to retrieve girl and portrait in the first three voting schemes and

also people in the TagProp voting scheme, though face and woman may be

considered correct even if not present in the ground truth tags.

4.5 Conclusions

We presented a cross-media model based on KCCA to perform tag assign-
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Figure 4.4: Anecdotal results of the baseline methods and our proposed

representation for a set of challenging images (MIRFlickr-25K dataset). The

tags are ordered by their relevance scores.

ment. We learn semantic projections for both textual and visual data. This

representation is able to provide better neighbors for voting algorithms. The

experimental results show that our method makes consistent improvements

over standard approaches based on a single-view visual representation as well

as other previous work that also exploited tags. We report also experiments

on a challenging dataset collected from Flickr and our results show that the

performance of the proposed method is boosted even further in a realistic

scenario such as the one provided by weakly-labelled images. Possible exten-

sions of this work include the exploration of how richer textual and semantic

cues from natural language annotations might improve our model.
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Chapter 5

Fisher Encoded

Bag-of-Windows Representation

This chapter presents an efficient and powerful method to ag-

gregate a set of Deep Convolutional Neural Network responses,

extracted from a set of image windows. We show how to use

Fisher Vectors and PCA to obtain a short and highly descrip-

tive signature that can be used for effective image retrieval. We

show also how the very good performance in retrieval can be ex-

ploited for social image tagging. State-of-the art results is re-

ported for both tasks of image retrieval and tag assignment on

standard datasets.1

5.1 Introduction

In this chapter we address the problem of image retrieval and tag assign-

ment in the context of social media. In the first task we aim at obtaining

a very compact and discriminative signature, that allows the creation of

scalable image retrieval systems. The goal of the second task is to pre-

dict, for a given image, a finite set of tags from a given vocabulary, serving

as a compact description of the image. A popular group of recent image

1This chapter previously appeared as “Fisher Encoded Convolutional Bag-of-Windows

for Efficient Image Retrieval and Social Image Tagging” in Proc. of International Con-

ference on Computer Vision 2015, 3rd Workshop on Web-scale Vision and Social Media

(VSM).
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annotation methods apply tag propagation using diversely defined neighbor-

hoods [8, 68, 113, 117, 133, 195] (see also Chapter 2). These approaches have

been successfully applied to the context of social and user generated media,

that are typically annotated with tags that are likely to correlate with image

content. However, this rich source of metadata is often hard to exploit both

for the noise in labels and for the difficulty to find semantically meaningful

visual features. Clearly a good image representation boosts the precision and

recall of these techniques by providing a visually consistent neighborhood.

In fact, many of these techniques apply a form of metric learning to make

up for low quality image features. We point out that an essential require-

ment of these techniques is the ability to retrieve similar images to compose

good image neighborhoods. Hence, excelling in image retrieval is likely to

improve image tagging. A recent breakthrough in image representation has

been achieved using Convolutional Neural Networks (CNN) with deep ar-

chitectures. It has been shown that using a large corpus of images CNNs

can learn compact and powerful image features. CNNs are typically applied

to classification tasks and activations from the latest layers are used as fea-

tures. These have been used by several approaches to extract generic features

for image retrieval [64, 222]. While they show promising results, they leave

several questions unaddressed. First, CNNs features are more semantically

related to the global image and they hardly preserve local characteristics of

objects. Second, while previous approaches address CNNs limited invariant

to scale with multi-scale extraction, their approach is onerous due to the

requirement of extracting dense patches at multiple scales.

Recently Wei et al. [209] have applied a multi-label variation of CNN

extracting features from few hundred object proposals. We agree with their

intuition and we believe that multiple windows of an image can be carefully

selected in order to obtain a more comprehensive representation of image

content. This is particularly relevant in the case of image tagging where

more than one tag is sought. User tags may refer to the image as a whole but

they are also likely to be associated with specific scene elements. Specifically,

tags often refer to things (e.g. person, car, horse, etc.) and stuff (e.g. sky,

sand, cloud, water, etc.) present in a scene.

In this chapter we show a technique to combine CNN features from mul-

tiple windows into a more discriminative representation for image retrieval

and image tagging. This representation improves upon the single global rep-

resentation approach, obtaining state-of-the-art results with compact image
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signatures on three popular public dataset.

CNN FISHER
CODING

+ PCA

Figure 5.1: Full pipeline of the proposed method. Each image window is

represented by the FC7 CNN activations. The final signature is obtained

encoding activations (same color dots) with a Fisher Vector computed on a

GMM dictionary (blue dots). PCA is further applied to image signature.

5.2 Previous work

So far, the best performance in image retrieval has been obtained aggregating

SIFT descriptors using Fisher Vectors [80,167], VLAD [3,80], or variations of

these approaches e.g. pooling oriented local features [224]. A breakthrough

in performance for computer vision algorithms has recently been obtained

thanks to supervised image feature learning. Krizhevsky et al. revived su-

pervised deep learning for computer vision proposing to solve large scale

image classification problem using deep CNN [97]. Following that, several

architectures have been proposed in the last 3 years, all sharing a common

principle: networks are usually built with a sequence of convolutional/max-

pooling layers, followed by low-resolution fully-connected (FC) layers whose

activations are fed to a soft-max classifier.

The most interesting fact about CNNs is the ability to perform transfer

learning. Indeed a very powerful image representation can be obtained by

removing the soft-max classifier and keeping the activations of the last FC

layer. This approach has been applied to many computer vision and multi-

media retrieval tasks, with dramatic improvements over previously proposed

techniques such as Fisher Vectors over local SIFT descriptors. Razavian et

al. [161] made a comprehensive contribution on this matter testing CNN

features for: object and scene classification, attribute prediction and image

retrieval. However, their spatial search approach in image retrieval has an

unbearable computational cost: their method requires the extraction of CNN
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features for a large amount of image sub-windows and the computation of

all pairwise distances between them. The approach has scalability issues,

since it is quadratic in the number of windows. Approaches close to ours

have been proposed in [64, 149, 222]; Gong et al. [64], propose to CNN re-

sponses from multiple scales using VLAD, thus requires a dense computation

of multi-scale CNN responses. In contrast, we show how we can rely on the

computation of CNN responses on a few hundreds of proposal windows. Ng

et al. [149] have speeded up the approach of [64] applying the network only

once to the input image and extracting features at each location of the con-

volutional feature map of each layer. Yoo et al. [222] propose to apply Fisher

Vector encoding to dense multi-scale CNN activations. Compared to both

these methods our approach computes CNN activations on large parts of the

image, that are likely to contain objects, rather than considering CNN acti-

vations of dense and small patches, that are more similar in spirit to SIFT

descriptors. Another difference is that we introduce a simpler and effective

multi-scale representation by concatenating the Fisher Vector with a global

representation of image content, and reducing the overall descriptor size with

PCA.

The identification of relevant patches in an image has been recently ad-

dressed in the object detection community, with the introduction of window

proposal methods [59,191]. Object proposals are cheap to compute and cover

more than 90% of objects with few thousands boxes of different scales and

aspect ratios. This allows the application of expensive classifiers like [59] or

kernelized bag-of-words classifiers [191] to perform object detection.

Regarding the task of social image tagging, our work is related to instance

based tag assignment methods [117]. Makadia et al. [133], in their seminal

work, showed that simple tag voting on nearest neighbor outperformed pre-

vious complex approaches. Li et al. [113] improved upon by adding a penalty

on frequent tag votes. As low-level features are hardly semantically related,

Guillaumin et al. [68] and Verma et al. [195] proposed to learn a weighted

metric to improve on precision. Ballan et al. [8] proposed using KCCA

to learn mid-level features to be used with previous nearest neighbors ap-

proaches.
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5.3 Proposed method

Our idea is to represent an image as a bag of windows, each one represented as

CNN output activations. The final image signature is obtained using Fisher

Encoding and reducing the final descriptor dimensionality using PCA, as

shown in Figure 5.1.

This powerful novel image signature is used to boost performance in

image retrieval and social image tagging.

5.3.1 Image representation

Patch Sampling We start by sampling a set of few hundred windows

from each image to construct a bag-of-boxes X as image representation.

We use the object proposal approach from Zitnick et al. [232] due to its

computational efficiency and performance in terms of detection, recall and

repeatability [73]. Nonetheless, this step may be integrated using a set of

random windows. In fact, we found in some experiments that employing

a set of randomly sampled windows in addition to the Edgeboxes may be

beneficial. This is motivated by the fact that some discriminative portions

of images, often useful for retrieval are not part of objects or things but

rather are referred as stuff, i.e. part of larger textured regions like trees or

mountains.

CNN usually require, as it is in our case, a fixed size input patch. To this

end we resize each window to 224× 224 pixels disregarding the aspect ratio,

as it is common practice in object detection [59]. We use the CNN-S-128

CNN architecture from [24] in order to have a low dimensional representation

(128D), comparable to that of SIFT.

Activation Aggregation To obtain a short signature for each image we

perform an aggregation step. Given a set of patches x ∈ X , we encode it

using Fisher Encoding.

We first learn a Mixture of Gaussians codebook with diagonal covari-

ances on a subset of the windows extracted at the previous step. Differently

from [167] we do not apply PCA on the local window features. This is not

needed, and actually slightly worsen the performance in our case, since our

window representation has highly decorrelated features. In Fig. 5.2 we show

a comparison of the absolute values of correlation coefficients ρ among di-

mensions of CNN codes and SIFT descriptors extracted from the INRIA
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Figure 5.2: Correlation coefficients computed on a set of SIFT descriptors

(left) and on a set of CNN features on image windows (right).

Holidays dataset. The ρ coefficients of the CNN codes are 1 only on the di-

agonal, while as a counter-example on SIFT descriptors extracted from the

same dataset there are many directions with |ρ| > .8.

For each bag-of-boxes we compute an Improved Fisher Vector (IFV) ap-

plying L2 and Power Normalization as in [167]. Finally to compress the

representation we reduce the dimensionality of the IFVs using PCA.

Global-Local signature The classical approach for image representation

with CNN, is to resize the image to a fixed square size and compute the

activations from the first fully connected layer (FC7). This approach, al-

though discards some information about the image, has been proved to be

very powerful [161] as we can also observe from our baseline experiments in

Tab. 5.1, Tab. 5.2 and Tab. 5.3. Similarly as in [64] we show how, especially

for tagging, this single window signature can help. We propose a Global-

Local signature concatenating the full image encoding to the IFV encoding

by applying PCA. With this technique we try to leverage two different ways

of aggregating image responses in a single compact signature.

5.3.2 Image retrieval

The first task we address with our novel image representation is image re-

trieval. To retrieve images means that given an image as query we want to

rank a dataset of images in order to assign high ranks to images with the

same content of the query. We perform this task in a very straightforward
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manner. Given a query image I and a dataset of images Yi, we consider their

respective sets of image window features I and Yi and signatures φ(I) and

φ(Yi). For each query I we rank images by cosine distances:

d(I, Yi) = 1−

∑
φ(I) · φ(Yi)

∥φ(I)∥2∥φ(Y)∥2

5.3.3 Tag Assignment

A collection of social images, e.g. obtained from Flickr, can be modeled as a

set of tuples Ti = ⟨Y,W⟩ where Y is an image and W is a set of tags; when

performing image annotation we would like to predict tags for an untagged

image I. This problem is usually solved with voting algorithms based on

nearest neighbor search [9,68,113], because of their scalability and relatively

good performance [117]. We use the ranking described in Sect. 5.3.2 to obtain

the first K neighbors, and use the following three different algorithms (refer

also to Chapter 3 for an extended description).

NN voting The simplest voting algorithm is nearest neighbor tag voting,

which is close to the method first proposed by Makadia et al. [133]. We count

the tag occurrences of images in the neighborhood and rank tags per image

using their frequencies.

Tag Relevance With NN voting we assume that the more frequently the

tag occurs in the neighbor set, the more relevant it might be for the image.

However tags occurring frequently in the whole training set are not necessary

relevant for all the images. So to moderate this effect, Li et al. [113] proposed

a tag relevance measure that takes into account both the tags distributions

of the neighbor set and of the entire training set.

TagProp Guillaumin et al. [68] have proposed TagProp, a method that

learns a weighted nearest neighbor model.

Weights can be learned based on distance or rank. Moreover, to compensate

for varying frequencies of tags, a tag-specific sigmoid is used to boost the

probability for rare tags and decrease that of frequent ones. Sigmoids and

metric parameters can be learned by maximizing the log-likelihood of tag

predictions.
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5.4 Experiments

Datasets For the image retrieval task we use the popular INRIA Holidays

dataset [81]. The dataset is composed by 1,491 images in total. We mea-

sure average precision (AP) for 500 queries and 991 corresponding relevant

images.

We test image tagging on the challenging MIRFLICKR-25K and NUS-

WIDE datasets. The MIRFLICKR-25K dataset [75] is composed of 25,000

images with 1,386 tags that is split in 12,500 for training and 12,500 for

testing, with exactly the same partition as [8,68]. Images are weakly labeled

with tags from Flickr. As in [8], we keep the 219 tags that have an entry in

WordNet and whose frequency is at least 50. Manual annotations for 18 tags

are provided on the whole set. In the following experiments we propagate the

whole set of tags and measure precision and recall on the 18 manual anno-

tations for each image. The NUS-WIDE dataset [32] is composed of 259,233

images with 355,913 tags. Also in this case images are weakly labelled with

Flickr tags, and ground truth is available for 81 tags.

Baselines The natural baseline for our method is the extraction of a single

CNN code per image. We refer to this baseline as CNN-Image. We warp the

whole image to 224 × 224 and use the FC7 output as image signature. We

develop another baseline by averaging the output of all the CNN features

of the bag-of-boxes, and refer to it as AVG-Pooling. We test this variation

in order to see if the use of an aggregated signature is relevant to keep the

expressiveness of the many windows extracted or if sampling multiple CNN

responses is enough to boost retrieval and annotation performance.

Experimental results: retrieval We first evaluate the parameters affect-

ing retrieval performance on INRIA Holidays, evaluated in terms of mean

average precision (MAP). In a set of preliminary experiments we found that

the final PCA step slightly improves results but not significantly. This step

is indeed mostly relevant to compress the image signature. The size of the

GMM codebook is instead extremely relevant for performance.

Increasing the number of Gaussians allows to model the distribution of

CNN activations more precisely, as it has been observed also for SIFT fea-

tures [167], where increasing the number of Gaussians improves the perfor-

mance. To see how the codebook size affects retrieval performance we fixed
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the final PCA dimension to 512 which we found improving performance

across codebook sizes.

# Gaussians

20 40 60 80 100 120

M
A

P

0.74

0.76

0.78

0.8

0.82

0.84

0.86

EdgeBoxes

Random

EdgeBoxes+Random

Figure 5.3: Mean average precision of our proposed approaches varying the

number of Gaussians on Holidays dataset.

In Figure 5.3 we evaluate the performance of the proposed approach with

a varying number of Gaussians and with different types of windows. We can

see how using EdgeBoxes alone for retrieval is not sufficient. Adding random

boxes increases the performance also for a small amount of Gaussians (32).

In Figure 5.4 we report MAP values obtained using different numbers of

Edgeboxes and random windows, with different encoding. The combination

with the global signature does not improve the MAP for large codebooks

but instead allows to get very high results even for small codebooks. Fisher

vectors always outperform max and average pooling. In Figure 5.5 we eval-

uate the performance of Fisher Vector + PCA coding with varying number

of windows, either from Edgeboxes, random, or Edgeboxes + random sam-

pling. As for Fig.5.4 it can be observed that FV + PCA outperforms the sue
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Figure 5.4: Mean average precision of our proposed approaches varying the

number of Edgeboxes + Random windows.

of single global CNN descriptors, when using > 100 windows. Considering

the random boxes step we report the average of five runs.

Finally, we compare our method with other global methods aggregating

local features in Table 5.1 and some recent methods that use either convolu-

tional or fully connected layers of CNNs [5,64,149,161,162]. We can clearly

see that although the 128D CNN is competitive with some smaller size rep-

resentations based on SIFT features [80] the 4096D outperforms all the ap-

proaches based on engineered features. Average pooling of 128D activations

outperforms the single image 128D representation indicating that more in-

formation is contained in multiple windows. Adoption of Improved Fisher

Vector coding improves over the majority of the other methods based on

CNN features except [149,161]. Finally we can see how applying the Fisher

encoding and PCA outperforms all other methods, including [149,161], with
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Figure 5.5: Mean average precision of our proposed approaches varying the

number of windows, using Fisher-PCA coding.

a very small signature (512D).

Experimental results: tagging In this set of experiments we show how

our novel representation improves performance on image tagging. We report

results as Mean Average Precision (MAP) and Mean image Average Preci-

sion (MiAP) in Tab. 5.2 and Tab. 5.3. MAP measures the quality of image

ranking and can be affected by the performance on rare tags, while MiAP

measures the quality of tag ranking and is biased toward frequent tags [117].

To speedup computations on these larger datasets we have used a GMM

codebook of only 32 elements and half the number of windows w.r.t. the ex-

perimental setup used for retrieval, but reducing the dimension of the final

IVF to 512 dimensions as in the previous case.

Because of the high variability of the images of these datasets the use
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Method Features Codebook Dim. MAP

Fisher-PCA FC7-CNN 128 512 85.8

Fisher-GL-PCA FC7-CNN 128 635 83.3

Fisher-GL FC7-CNN 128 32,889 81.2

Fisher FC7-CNN 128 32,768 80.3

AVG-Pooling FC7-CNN − 128 66.2

CNN-Image 128D FC7-CNN − 128 60.0

CNN-Image 4096D FC7-CNN − 4,096 71.0

Spatial Pooling [162] CONV-CNN − 256 74.2

CNNaug-ss [161] FC7-CNN − 4,096 84.3

VLAD+PCA [149] CONV-CNN 100 128 83.6

Neural codes [5] FC7-CNN − 128 78.9

VLAD+PCA [64] FC7-CNN 100 2,048 80.8

VLAD+PCA [64] FC7-CNN 100 512 74.2

Fisher [167] SIFT 4,096 524,288 70.0

Zhao [224] SIFT 32 32,768 68.8

Delhumeau [39] SIFT 64 8,192 65.8

Arandjelovic [3] SIFT 256 32,536 65.3

Fisher [80] SIFT 256 16,384 62.5

Fisher [80] SIFT 64 4,096 59.5

VLAD [80] SIFT 256 16,384 58.7

VLAD [80] SIFT 64 4,096 55.6

Table 5.1: Image retrieval results on INRIA Holidays compared with state-

of-the-art approaches.

of the Global-Local component of the descriptor, that accounts for scales

variations, improves the results. In this case the single image approach

outperforms [194]. This means that CNN features are indeed a strong repre-

sentation for image annotation. In this case average pooling is not improving

over the single image approach. Finally we can see how adding the Global

Local part of the descriptor boosts MAP and MiAP for all voting methods;

compressing the descriptor with PCA further improves the results except for

a few cases on MIRFLICKR-25K, however in these cases the differences are

minimal. It has to be noted that TagProp always outperforms the simpler
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NN Voting and TagRel methods, exploiting better the improved visual neigh-

borhood obtained with the proposed method. This is visible when comparing

the performance obtained with the single CNN-Image descriptor w.r.t. that

of Fisher-GL-PCA.

Features
NN Voting TagRel TagProp

MAP MiAP MAP MiAP MAP MiAP

Fisher-GL-PCA 51.4 48.6 47.6 51.4 58.0 54.8

Fisher-GL 50.9 48.0 48.4 51.5 57.9 54.9

Fisher-PCA 46.1 44.9 43.7 48.2 51.6 50.9

Fisher 46.2 45.2 44.0 48.2 51.6 50.8

MAX-Pooling 40.7 45.6 41.5 47.1 47.6 49.2

AVG-Pooling 40.2 45.0 40.5 46.6 45.9 48.6

CNN-Image 48.3 46.6 46.0 50.1 55.7 53.7

LEAR [194] − − − − 38.4 47.3

Table 5.2: Image annotation results on MIRFLICKR-25K compared with

the state-of-the-art (200 Edgeboxes + 200 random windows).

Features
NN Voting TagRel TagProp

MAP MiAP MAP MiAP MAP MiAP

Fisher-GL-PCA 26.7 43.4 27.7 40.1 39.7 50.9

Fisher-GL 26.8 43.4 27.6 40.1 39.7 50.8

Fisher-PCA 21.7 40.4 24.1 37.0 35.9 48.0

Fisher 21.3 40.3 23.6 36.6 35.5 47.4

MAX-Pooling 18.8 37.8 22.1 34.9 29.1 45.0

AVG-Pooling 19.9 40.2 22.4 37.1 29.8 45.9

CNN-Image 24.4 42.0 25.3 38.7 31.9 48.2

Table 5.3: Image annotation results on NUS-WIDE compared with the state-

of-the-art (200 Edgeboxes + 200 random windows).

5.5 Conclusion

In this chapter we have shown the importance of extracting CNN activations

from multiple windows. We found out that using proposal methods and
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randomly sampled features improves object proposal windows alone. We

show that encoding multiple CNN activations from the same image using

Fisher vectors boosts image retrieval and image annotation performance.

We tested our approach on three datasets reporting state-of-the-art results

with short 512D signatures.



Chapter 6

Evaluating Temporal

Information in Social Images

Can we use the temporal gist of annotations in Web images to

improve tasks such as annotation, indexing and retrieval? Typi-

cally visual content and text, are used to improve these tasks. A

characteristic that has received less attention, so far, is the tem-

poral aspect of social media production and tagging. This chapter

gives a thorough analysis of the temporal aspects of two popu-

lar datasets commonly used for tasks such as tag ranking, tag

suggestion and tag refinement, namely NUS-WIDE and MIR-

Flickr-1M. The correlation of the time series of the tags with

Google searches shows that for certain concepts web information

sources may be beneficial to annotate social media.1

6.1 Introduction

Typically visual content, text and metadata, such as geo-tags, are used to

improve tasks such as annotation, indexing and retrieval of the huge quanti-

ties of media produced every day by the users of such systems. For instance,

visual content similarity is used in [113] to perform tag suggestion and im-

age retrieval, tag co-occurrence has been proposed in [174] for tag suggestion,

1This chapter has been published as “Evaluating Temporal Information for Social Im-

age Annotation and Retrieval” in Proc. of International Conference on Image Analysis

and Processing (ICIAP), 2013, pp. 722-732.

95
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geo-tags have been used in [176] for tag recommendation, content classifica-

tion and clustering. A recent review of the state-of-the-art in areas related to

web-based social communities and social media has been presented in [180],

considering in particular the contribution of contextual and social aspects of

media semantics to multimedia applications.

A characteristic that has received less attention, so far, is the temporal as-

pect of social media production. As noted in [1], extracting time information

from documents may improve several applications such as hit-list clustering

and exploratory search. More recently, several researchers have shown that

the temporal information associated to search engine queries (e.g. frequency

of query keywords over time) can be used to predict trends and behaviors

related to economics and medicine, such as claims for unemployment bene-

fits [31], and detection of flu epidemics [57].

In [160] “burst” analysis techniques derived from signal processing are

compared against a novel method to identify social events in the associated

social media, using the tags and geo-localization information of Flickr im-

ages. In [96], the temporal evolution of topics in social image collections is

proposed to perform subtopic outbreak detection and to classify noisy so-

cial images. The authors used a non-parametric approach in which images

are represented using a similarity network, created using Sequential Monte

Carlo, where images are the vertices and the edges connect the temporally

related an visually similar images. Temporal dynamics of social image col-

lections has been studied in [94] to improve search relevance at query time,

addressing both a general case and personalized interest searches. The au-

thors propose a unified statistical model based on regularized multi-task

regression on multivariate point process, in which an image stream is consid-

ered an instance of a process and a regression problem is formulated to learn

the relations between image occurrence probabilities and temporal factors

that influence them (e.g. seasons).

Analysis of the temporal evolution of social media collections have been

proposed in [84] to predict political success and product sales; regression-

based and diffusion-based models have been adapted to account for a Flickr-

based index, combining images’ metadata and visual similarity, that models

the popularity of politicians and products. The work presented in [95] re-

casts the problem of image retrieval re-ranking as a prediction of which

images will be more likely to appear on the web at a future time point. Both

collective group level and individual user level cases are considered, using a
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Figure 6.1: Time series of user tags and Google searches for “soccer” in

NUS-WIDE dataset.

multivariate point process to model a stream of input images, and using a

stochastic parametric model to solve the relations between the occurrences

of the images and factors such as visual clusters, user descriptors and month

of the image.

All the datasets used in these works are based on custom selections of

user-generated images selected from Flickr, and are not publicly available.

The main contribution of this chapter is a thorough analysis of the temporal

aspects of two “standard” datasets commonly used for tasks such as tag

ranking, tag suggestion and tag refinement [123] [113] [228] [125] [192]: NUS-

WIDE [32] and MIR-Flickr-1M [75]. These datasets provide images and

associated metadata, along with a ground-truth annotation of 81 and 18

tags, respectively. Analysis of the temporal evolution of both user tags

and ground-truth tags allows to evaluate the social context (e.g. use of tags

related to the semantics associated to social interaction, and not necessarily

associated with image content) and visual content (e.g. use of tags that are

more strictly related to image content). The correlation of the time series of

the tags with Google searches (see Fig. 6.1) shows that for certain concepts

web information sources may be beneficial to annotate social media.
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6.2 Data Analysis Method

6.2.1 Datasets

To measure the impact of temporal information for image annotation pur-

poses, we performed a quantitative analysis over two image datasets: NUS-

WIDE [32] and MIR-Flickr-1M [75].

NUS-WIDE is a large scale dataset collected from Flickr. It contains

269,648 images, provided as multiple visual features and source URLs, with

5,018 tags of which 81 have been manually checked and can be considered

ground-truth tags. Tab. 6.2.1 reports the classification of these tags ac-

cording to their main WordNet category. In order to obtain all temporal

metadata not contained in the set, we had to download again all the original

images from Flickr. Unfortunately, some images are not available anymore,

therefore we had to use a subset of 238,251 images that are still present on

Flickr. We refer to this subset as NUS-WIDE-240K. Images are unbalanced

with respect to time, having very different number of images per date. The

time interval goes from year 1900 (old photo scans) to 2009, concentrating

most of the images between 2005-2008.

MIR-Flickr-1M is also a large dataset crawled from Flickr which contains

1 million images, selected by their Flickr interestingness score [198] [74].

Every image provided has full Flickr metadata which includes taken and

posted timestamps, indicating when a photo was taken and when it was

shared on Flickr. However, only about half of the images provide a valid

“taken” timestamp, in particular only 584,892 are valid, as 330,454 have no

timestamps and 84,654 have an invalid timestamp. Like NUS-WIDE-240K,

images are unbalanced with respect to time. Images are concentrated around

years 2007-2009. A ground-truth comprised of 18 tags is provided for the

first 25,000 images only, that compose a subset called MIR-Flickr25K [74].

Object 12 Animal 13 Location 2 Substance 2

Action 5 Plant 4 Top 4 Time 2

Artifact 26 Event 4 Phenomenon 4 Person + Groups 3

Table 6.1: WordNet categories of NUS-WIDE ground-truth tags.
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6.2.2 Temporal features

Given a set of images I, all taken in a set of dates D (as a daily interval),

we denote as T the set of all tags used and U the set of all users. For every

image i ∈ I we denote tag(i) ⊆ T the set of tags associated, day(i) ∈ D the

timestamp associated and user(i) ∈ U the user who owns the image. We

also consider two other time spans, a set of weeks W and a set of months M ,

easily computed by integrating over the interval of days considered. These

can be thought as time series over the selected index set. For every set

considered, we computed a set of features, as proposed in [95]:

• Images per day: the number of relevant images which are taken in

a day. More specifically, given a day d ∈ D, the number of images per

day (IMD) is defined as

IMD(d) := |{i ∈ I|day(i) = d}| (6.1)

Similarly we also define a feature for the number of images per week

(IMW) and per month (IMM).

• Images per day for a tag: the number of relevant images associated

with a tag which are taken in a day. More specifically, given a tag

t ∈ T and a day d ∈ D, the number of images with t per day (ITD) is

defined as

ITD(t, d) := |{i ∈ I|day(i) = d ∧ t ∈ tag(i)}| (6.2)

Similarly we also define a feature per week (ITW) and per month

(ITM).

However, a phenomenon associated with a social source is that of batch

tagging : a user may decide to upload an entire album of photos and, instead

of carefully tagging each photo, he could simply opt to tag each photo with

the same tags (e.g. tag the album instead of every single photo). This may

result in a kind of noise with respect to the normal use of tags in time.

In addition, the features defined above are sensitive to this kind of noise,

producing noisy peaks over single days. To produce a more meaningful

analysis we decide to collapse all images that are batch tagged into a single

entry. A set of images are considered batch tagged if they are all uploaded

by the same user on the same day and have the same set of tags. More

specifically, given a user û ∈ U , a day d̂ ∈ D and a set of tags t̂ ⊆ T , a
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set of images IB = {i1, i2, . . . , ik} are considered batch tagged if tag(i) =

t̂, user(i) = û, day(i) = d̂ ∀i ∈ IB .

6.2.3 Flickr Popularity Model

As described in [84], available images from the two datasets are only a sample

of all images in Flickr. In addition, the number of images over time in Flickr

are mostly variable, based on the popularity of the site itself. This slow

change over time can be modeled as a trend over all tags, independent from

any particular query. Unfortunately, no statistics are released publicly and

other sources such as Alexa2 or Google Trends3 are affected by the impact

of news. Based on this preliminary analysis and supposing an uniform sam-

pling in Flickr searches, we use the feature IMD to remove this background

deviation by normalizing the ITD feature.

Given a tag t ∈ T and a date d ∈ D we compute:

ITD(t, d) =
ITD(t, d)

IMD(d)
(6.3)

This may also be considered as a frequentist probability distribution of tag

t in day d with respect to all other tags considered, which is p(t; d). Simi-

larly we also compute ITW and ITM by considering a week and a month

granularity, respectively. After collapsing all batch tagged images, the two

datasets retain 179,128 images for NUS-WIDE-240K and 531,670 images for

MIRFLICKR-1M respectively.

6.2.4 Processing

First of all we present a qualitative analysis by measuring the occurrence

of tags in time. Given that NUS-WIDE-240K has the biggest ground truth

of all datasets considered and that we are looking to discover the relations

between tags and image content with respect to time, we choose to use it as

the main reference. We use all the 81 manually checked tags as T set and

consider four different information sources which are different in the kind of

underlining latent process :

2Alexa Internet, Inc. http://www.alexa.com
3Google Trends. http://www.google.com/trends

http://www.alexa.com
http://www.google.com/trends
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• From NUS-WIDE-240K, for all images, we consider the T set of tags

using themanually validated tags which constitute the entire ground

truth; we refer to this source as NUS-GT.

• From NUS-WIDE-240K, for all images, we consider the T set of tags

using the user tags (e.g. the tags provided by the respective Flickr

users); we refer to this source as NUS-TAGS.

• From MIRFLICKR-1M, for all images, we consider the T set of tags

using the user tags; we refer to this source as MIR-TAGS.

• Beside image datasets, we also consider a source of temporal query

information given by Google Trends. From Google Trends, we have

downloaded all available query data for the T set of tags considered;

we refer to this source as GOO-TAGS.

All sources are to be considered subject to different kinds of noise, in par-

ticular all images are highly unbalanced over time, resulting in days with

hundreds of images and others with at most ten images. To reduce this

effect, we choose to consider only the largest time span with at least 350

images per week. In addition the two image datasets differ in the time in-

terval which has the most images. This forced us to use a reduced time

interval that we choose as starting from 2005-06-01 and ending in 2008-08-

01 for NUS-WIDE-240K (retaining 161,176 images from 179,128) and from

2007-01-01 to 2008-08-01 for MIR-Flickr-1M (retaining 110,064 images from

531,670). Those filters were processed with a combination of Python scripts

and Google Refine4. After this we used the R package [183] to plot and exe-

cute any successive analysis. A plotting of features of this data revealed an

insufficient reduction in noise to be able to clearly visualize most character-

istics pattern. To make the time series patterns more clear, we computed a

simple moving average over all time series, varying the windows size n from

2 to 10 weeks. For a day time series defined over a time span Ψ for a tag

t ∈ T is defined as:

ITDn(t, d) =
1

n

n
∑

i=−n

ITD(t, d+ i) ∀d ∈ Ψ (6.4)

This has the effect to smooth the series, letting to visualize more clearly the

trend. On the other hand, tags which have very sparse frequency tends to be

4Google Refine. http://code.google.com/p/google-refine

http://code.google.com/p/google-refine
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worsened, so we adjusted the window size empirically, based on visualization

clearness. The final time series are composed of 1,158 and 579 week samples

respectively for NUS-WIDE-240K and MIR-Flickr-1M.

6.2.5 Correlation analysis

To exploit the underlying time process and to be able to improve image

annotation using temporal information, we need a way to evaluate quanti-

tatively the possible correlation between sources. This allows us to analyze

if a series can be estimated by another one and how a generalized model

may describe the original time series. To this end we compute a correlation

measure over two series. First of all we standardize all time series: given a

time series X = {xi : i ∈ D}, we compute xi =
xi−X

s
, where X is the sample

mean and s is the sample standard deviation. Even if sample mean and

sample standard deviation are sensible to outliers, those are removed thanks

to the filtering and smoothing procedure described above. To evaluate the

correlation between two time series, we choose to use the sample Pearson

correlation coefficient, often denoted as r. Given two time series X and Y

of n samples, r is defined as the ratio between covariance and the product

of X variance and Y variance:

r =

∑n

i=1(xi −X)(yi − Y )
√

∑n

i=1(xi −X)2
√

∑n

i=1(yi − Y )2
(6.5)

which is defined in [−1, 1]. Values towards the positive or negative end reveal

a strong correlation between the two time series, changing only in the sign.

We can reformulate it as the mean of the products of the standard scores,

which permits us to use standardized time series x̂i =
xi−X
sX

and ŷi =
yi−Y

sY
:

r =
1

n− 1

n
∑

i=1

(xi −X

sX

)(yi − Y

sY

)

=
1

n− 1

n
∑

i=1

x̂iŷi (6.6)

Given that the strength of correlation is not dependent on the direction or

the sign, we also computed r-square. Unfortunately the interpretation of

a correlation coefficient depends heavily on the context and purposes that

can’t be easily defined at this stage of work. However several works like [34]

offered some guidelines which can be used to interpret our analysis, that are

reported in Tab. 6.2.
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Correlation None Small Medium Strong

Positive 0.0 to 0.09 0.1 to 0.3 0.3 to 0.5 0.5 to 1.0

Negative -0.09 to 0.0 -0.3 to -0.1 -0.5 to -0.3 -1.0 to -0.5

Table 6.2: Guidelines for sample Pearson correlation coefficient.

6.3 Experiments and Discussion

In the following we will consider both the presence of the tags that have been

added by the users that uploaded the images to Flickr (referring to them as

“user tags”) and the tags that have been manually checked by the creators

of NUS-WIDE as referring to visual content of images (referring to them

as “ground-truth” tags). In fact, several studies have shown that tags are

often ambiguous and personalized [91] [174], and do not necessarily reflect

the visual content of the image. As an example consider Fig. 6.2 and 6.3,

showing the temporal usage of the tags “snow” and “soccer” in NUS-WIDE,

along with the respective Google searches, as obtained from Google Trends.

It can be observed that the peak in usage of the “soccer” tag - associated

with the 2006 FIFA World Cup - reflects that in Google Trends, but the

peak is much less pronounced in the ground truth tags; this indicates that

for this tag the relationship between tags and image may exist because of

how people react to social events, rather than uploading photos depicting

that event on Flickr. On the other hand the peaks of both user and ground

truth “snow” tag are corresponding to that of Google Trends: in this case

the relationship may exist because it is more likely that people take pictures

of snow scenes during winter, and this concept is less related to social aspects

than to visual content of these images.

6.3.1 Temporal Evaluation

Considering time series composed of the frequencies of image tags (either

user or ground-truth) and Google searches obtained from Google Trends, it

is possible to observe that they exhibit the presence of different components,

that may appear mixed together:

trend long term variation, that can be increasing, decreasing or also sta-

ble (see Fig. 6.4). Terms such as “computer” or “military” have this

pattern;
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Figure 6.2: Frequency of “soccer” in NUS-GT, NUS-TAGS and GOO-TAGS:

the peak of Google Trends and user tags in the summer of 2006 are related

to the World Soccer Championship.

cyclical variation repeated but not periodic variations. Tags like “sports”

or “flags” have this pattern;

seasonal variation periodic variations, e.g. due to concepts associated with

some regular event (see Fig. 6.4). Concepts related to seasons show this

behavior, like “garden”, “snow”, “beach” or “frost”;

irregular variation random irregular variations, e.g. due to the sudden

emergence of a topic (see Fig. 6.5), that appears as a burst of activ-
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Figure 6.3: Frequency of “snow” in NUS-GT, NUS-TAGS and GOO-TAGS:

the peaks are associated with winter seasons. Tag frequencies have been

normalized by the number of images of the same day.

ity. Concepts that exhibit this pattern are related to social or natural

events like “soccer”, “earthquake” and “protest”.

6.3.2 Correlation Analysis

Fig. 6.6 reports the outcome of correlation analysis of NUS-TAGS with NUS-

GT, NUS-TAGS with GOO-TAGS and NUS-GT with MIR-TAGS. In par-
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Figure 6.4: Time series patterns of NUS-TAGS and GOO-TAGS, averaged

over 10 weeks. i) trend (computer); ii) seasonal (garden).
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Figure 6.5: Time series patterns of NUS-TAGS and GOO-TAGS, averaged

over 10 weeks. Episodic behavior (earthquake: peaks correspond to earth-

quakes in China and Pakistan).
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ticular it can be observed that the correlation of NUS-TAGS and NUS-GT

has a vast majority of “Medium” and “Strong” values, while the correlation

between user tags and Google searches is overall weaker and can be useful

for a selected number of tags. The correlation between NUS-GT and MIR-

TAGS has a large number of “Medium” and “Strong” values, suggesting that

the temporal information of NUS-WIDE can be used in MIR-Flickr-1M.

Correlation analysis of NUS-TAGS with GOO-TAGS, followed by aver-

aging of r-square values over tags classes (Fig. 6.7 left) shows that Plant,

Event, Phenomenon and Action obtain the higher values. A second group

of categories comprises Artifact, Person+Group, Animal, Object and Time.

In general, the categories that obtain the best performances are benefitting

from tags whose time series show seasonal behaviors (e.g. “snow”, “frost”,

“grass”, “leaf”) or have a “burst” behavior associated with specific social

events (e.g. “soccer”, “protest”, “earthquake”).

Correlation analysis of NUS-GT with GOO-TAGS (Fig. 6.7 right) shows

that Plant and Phenomenon categories maintain their position among the

best performing classes, because of the tags that exhibit a seasonal pattern.

Instead the correlation of Event and Action categories is lower because the

ground-truth tags that have an episodic pattern like “soccer”, “protest” and

“earthquake” have a lower correlation. This is due to the fact that these

tags are employed by users also when the content of the image is not visually

related to the described event.

6.4 Conclusions

This chapter presented a thorough analysis of the temporal aspects of user

annotations in two popular large-scale datasets. The correlation of the time

series of the tags with Google searches showed that for certain concepts web

information sources may be beneficial to annotate social media.
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Figure 6.7: NUS-WIDE dataset: r-square averages for tags classes. i) NUS-

TAGS correlation with GOO-TAGS; ii) NUS-GT correlation with GOO-

TAGS.



Chapter 7

Multimodal Feature Learning

for Sentiment Analysis

In this chapter we investigate the use of a multimodal feature

learning approach, using neural network based models such as

Skip-gram and Denoising Autoencoders, to address sentiment anal-

ysis of micro-blogging content, such as Twitter short messages,

that are composed by a short text and, possibly, an image. Moti-

vated by the recent advances of unsupervised learning of language

models and visual features based on neural networks models, we

propose a novel architecture that incorporates these models and

test it on several standard Twitter datasets. We show that the

approach is efficient and obtains good classification results. 1

7.1 Introduction

In the last few years micro-blogging services, in which users describe their

current status by means of short messages, obtained a large success among

users. Unarguably, one of the most successful services is Twitter2, that is

used worldwide to discuss about daily activities, to report or comment news,

1This chapter previously appeared as “A Multimodal Feature Learning Approach for

Sentiment Analysis of Social Network Multimedia” in Multimedia Tools and Applications,

DOI: 10.1007/s11042-015-2646-x
2Twitter reports to have 271 million monthly active users that send 500 million status

updates per day - https://about.twitter.com/company

111
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and to share information using messages (called ‘tweets’) composed by at

most 140 characters. Since 2011 Twitter natively supports adding images to

tweets, easing the creation of richer content. A study performed by Twitter3

has shown that adding images to tweets increases user engagement more

than adding videos or hashtags.

Despite their brevity these messages often convey also the feeling and the

point of view of the people writing them. The addition of images reinforces

and clarifies these feelings (see Fig.7.1). Automatic analysis of the senti-

ment of these tweets, i.e. retrieving the opinion they express, has received a

large attention from the scientific community. This is due to its usefulness

in analyzing a large range of domains such as politics [189] and business [56].

Sentiment analysis may encompass different scopes [20]: i) polarity, i.e. cat-

egorize a sentiment as positive, negative or neutral; ii) emotion, i.e. assign

a sentiment to an emotional category such as joy or sadness; iii) strength,

i.e. determine the intensity of the sentiment.

So far, the vast majority of works have addressed only the textual data.

In this chapter we address the classification of tweets, according to their po-

larity, considering both textual and visual information. We propose a novel

schema that, by incorporating a language model based on neural networks,

can efficiently exploit web-scale sources corpus and robust visual features

obtained from unsupervised learning. The proposed method has been tested

on several standard datasets, showing promising results.

The chapter is organized as follows: Sect. 7.2 provides an overview of

previous works; the proposed method is presented in Sect. 7.3, while ex-

periments on four standard datasets and comparison with state-of-the-art

approaches and baselines are reported in Sect. 7.4. Conclusions are drawn

in Sect. 7.5.

7.2 Previous Work

Sentiment analysis in texts. Brevity, sentence composition and vari-

ety of topics are among the main challenges in sentiment analysis of tweets

(and micro-blogs in general). In fact these texts are short, often they are

not composed carefully as news or product reviews, and cover almost any

conceivable topic. Several specific approaches for Twitter sentiment analysis

have been proposed, typically using sentence-level classification with n-gram

3https://blog.twitter.com/2014/what-fuels-a-tweets-engagement
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Figure 7.1: Examples of tweets with images from the SentiBank Twitter

dataset [19]. left) positive sentiment tweet; right) negative sentiment tweet.

word models. Liu et al. [129] concatenate tweets of the same class (polar-

ity) in large documents, from which a language model is derived and then

classify tweets through maximum likelihood estimation, using both super-

vised and unsupervised data for training; the role of unsupervised data is

to deal with words that do not appear in the vocabulary that can be built

from a small supervised dataset. In [16] three approaches to sentiment clas-

sification are compared: Multinomial Näıve Bayes (MNB), Hinge Loss with

Stochastic Gradient Descent and Hoeffding Tree; the authors report that

MNB outperforms the other approaches. In [38] unigram and bigram fea-

tures have been used to train Näıve Bayes classifiers, where bigrams help to

account for negation of words. Saif et al. [165] have evaluated the use of a

Max Entropy classifier on several Twitter sentiment analysis datasets. Since

using n-grams on tweet data may reduce classification performance due to

the large number of infrequent terms in tweets, some authors have proposed

to enrich the representation using micro-blogging features such as hashtags

and emoticons as in [10], or using semantic features as in [166].

Neural networks language models. Recently, the scientific community

has addressed the problem of learning vector representations of words that

can represent information like similarity or other semantic and syntactic re-
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lations, obtaining better results than using the best n-gram models. The use

of neural networks to perform this task is motivated by recent works address-

ing the scalability of training. In this formulation every word is represented

in a distributional space where operations like concatenation and averaging

are used to predict other words in context, trained by the use of stochastic

gradient descent and backpropagation. In the work of [13], a model is trained

based on the concatenation of several words to predict the next word: every

word is mapped into a vector space where similar words have similar vector

representations. A successive work uses multitask techniques [35] to jointly

train several tasks showing improvements in generalization. A fast hierarchi-

cal language model was proposed in [146], attacking the main drawback of

needing long training and testing times. The use of unsupervised additional

words was proposed by [190] showing further improvements using word fea-

tures learned in advance to a supervised NLP task. Recently Mikolov et

al. [143] have proposed several improvements on Hierarchical Softmax [146]

and Negative Sampling [70] and introduced the Skip-gram model [145], re-

ducing further the computational cost, and showing fast training on corpora

of billions of words [143]. More recently, researchers also extended these mod-

els, trying to achieve paragraph and document level representations [103].

Micro-blog multimedia analysis. Most of the works dealing with analy-

sis of the multimedia content of micro-blogs have dealt with content summa-

rization and mining, image classification and annotation. Geo-tagged tweet

photos are used in [90, 217] to visually mine events using both textual and

visual information. The system presented in [173] provides tools for content

curation, creation of personalized web sites and magazines through topic de-

tection of tweets and selection of representative associated multimedia. A

system for exploration of events based on facets related to who, when, what,

why and how of an event, has been presented in [208], using a Bilateral Corre-

spondence model (BC-LDA) for image and words. A multi-modal extension

of LDA has been proposed in [15] to discover sub-topics in microblogs, in

order to create a comprehensive summarization.

An algorithm for photo tag suggestion using Twitter and Wikipedia are

used in [139] to annotate social media related to events, exploiting the fact

that tweets about an event are typically tweeted during its development.

Classification of tweets’ images in visually-relevant and visually-irrelevant,

i.e. images that are correlated or not to the text of the tweet, has been
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studied in [28], using a combination of text, context and visual features.

Zhao et al. [225] have studied the effects of adding multimedia to tweets

within Sina Weibo, a Chinese equivalent of Twitter, finding that adding

images boosts the popularity of tweets and authors, and extends the lifespan

of tweets.

Sentiment analysis in social images. Sentiment analysis of visual data

has received so far less attention than that of text data and, in fact, only a

few small datasets exist, such as the International Affective Picture System

(IAPS) [100] and the Geneva Affective Picture Database (GAPED) [36].

The former provides ratings of emotion (in terms of pleasure, arousal and

dominance) for 369 images, while the latter provides 520 images associated

to negative sentiment, 89 neutral and 121 positive images. Another related

direction is given by works on aesthetics: surveys are provided in [88, 207].

However, none of these datasets deal with social media.

A few works have addressed the problem of multimedia sentiment analysis

of social network data. Borth et al. [19] have recently presented a large-scale

visual sentiment ontology and associated set of detectors, consisting of 3,244

pairs of nouns and adjectives (ANP), based on Plutchik’s Wheel of Emo-

tions [155]. Detectors are trained using Flickr images, represented using a

combination of global (e.g. color histogram and GIST) and local (e.g. LBP

and BoW) features. The paper provides also two publicly available image

datasets obtained from Flickr and from Twitter. The system proposed in [22]

for the classification of Sina Weibo statuses exploits the ANP detectors pro-

posed in [19], fusing them with text sentiment analysis based on 3 features:

i) sentiment words from Hownet (Chinese equivalent to WordNet), ii) se-

mantic tags and iii) rules of sentence construction, to cope with rhetorical

questions, negations and exclamatory sentences.

Cross-media bag-of-words, combining bag of text words with bag of image

words obtained from the SentiBank detectors of [19], has been proposed

in [206] for sentiment analysis of microblog messages obtained from Sina

Weibo. Yang et al. [220] have proposed a hybrid link graph for images of

social events, weighting links based on textual emotion information, visual

similarity and social similarity. A ranking algorithm to discover emotionally

representative images in microblog statuses is then presented. The work of

Chen et al. [30], distinguishes between the intended publisher effect and the

sentiment that is induced in the viewer (‘viewer affect concept’) and aims at
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predicting the latter. The goals are to recommend appropriate images and

suggest image comments.

7.3 The Proposed Method

Recent works have shown [144] that neural network based language models

significantly outperform N-gram models; similarly, the use of neural networks

to learn visual features and classify images has shown that they can achieve

state-of-the-art results on several standard datasets and international com-

petitions [97]. The proposed method builds on these advances.

We start by describing the well-known text based approach Continuous

Bag-Of-Words (CBOW) model [145] that is the base of our scheme, then

we present our model for polarity classification problem. Finally, we show a

further extension of the model to incorporate visual information, based on a

Denoising Autoencoder [197], that allows the same unsupervised capabilities

on images as CBOW-based methods on text.

7.3.1 Textual information

Mikolov et al. [145] showed that in the CBOW model, words with similar

meaning are mapped to similar positions in a vector space. Thus, distances

may carry a meaning, allowing to formulate questions in the vector space

using simple algebra (e.g. the result of vector(‘king’) - vector(‘man’) + vec-

tor(‘woman’) is near vector(‘queen’)). Another property is the very fast

training, that allows to exploit large-scale unsupervised corpora such as web

sources (e.g . Wikipedia).

Continuous Bag-Of-Words model. In this framework, each word is

mapped to a unique vector represented by a column in a word matrix W

of Q length. Every column is indexed by a correspondent index from a dic-

tionary VT . Given a sequence of words w1, w2, . . . , wK , CBOW model with

hierarchical softmax aims at maximizing the average log probability of pre-

dicting the central word wt given the context represented by its M -window

of words, i.e. the M words before and after wt:

1

K

K−M
∑

t=M

log p(wt|wt−M , . . . , wt−1, wt+1, . . . , wt+M ) (7.1)
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Figure 7.2: Visualization of CBOW word vectors trained on tweets of the

SemEval-2013 dataset. Blue points are single words classified as negative,

while red ones are positive. Semantically similar words are near (e.g. ‘crash-

ing’ and ‘crashed’, ‘better’ and ‘best’) and share the same polarity.

The output f ∈ R
|VT | for the model is defined as:

fwt
=

[

Wt−M , . . . ,Wt−1,Wt+1, . . . ,Wt+M

]T
G (7.2)

whereWi is the column ofW corresponding to the word wi and G ∈ R
P×|VT |.

Both W and G are considered as weights and have to be trained, resulting

in a dual representation of words. Typically the columns of W are taken

as final word features. An output probability is then obtained by using the

softmax function on the output of the model:

p(wt|wcontext) =
efwt

∑

i e
fwi

(7.3)

where wcontext = (wt−M , . . . , wt−1, wt+1, . . . , wt+M ). When considering a

high number of labels, it can be computed more efficiently by employing a

hierarchical variation [146], requiring to evaluate log2(|VT |) words instead of

|VT |.
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In [145], an additional task named Negative Sampling is considered,

where a word wl is to be classified as related to the given context or not,

i.e. p(wl|wcontext):

uwl
= σ

([

Wt−M , . . . ,Wl, . . . ,Wt+M

]T
Ns

)

(7.4)

where Ns ∈ R
Q and σ is the logistic function. Depending on wl as the actual

wt word or a randomly sampled one, uwl
has a target value of respectively

1 or 0.

The CBOW-LR method. Our model, denoted as CBOW-LR, is an ex-

tension of CBOW with negative sampling, specialized on the task of senti-

ment classification. An important difference from approaches that directly

use a CBOW representation, or from [190], is that our model learns repre-

sentation and classification concurrently. Considering that multi-task learn-

ing can improve neural networks performance [190], the idea is to use two

different contributions accounting for semantic and sentiment polarity, re-

spectively.

Given a corpus of tweets X where each tweet is a sequence of words

w1, w2, . . . , wK , we aim at classifying tweets as positive or negative, and learn

word vectors W ∈ R
Q×|VT | with properties related to the sentiment carried

by words, while retaining semantic representation. Semantic representation

can be well-represented by a CBOW model, while sentiment polarity has

limited presence or is lacking. Note that polarity supervision is limited and

possibly weak, thus a robust semi-supervised setting is preferred: on the one

hand, a model of sentiment polarity can use the limited supervision available,

on the other hand the ability to exploit a large corpus of unsupervised text,

like CBOW, can help the model to classify previously unseen text. This is

explicitly accounted in our model by considering two different components:

i) inspired by [145], we consider a feature learning task on words by

classifying sentiment polarity of a tweet. A tweet is represented as a set of

M -window of words that we denote as G. Each window G is represented as

a sum of their associated word vectors Wi, and a polarity classifier based on

logistic regression is applied accordingly:

y(G) = σ(CT (
∑

Wi←wi∈G

Wi) + bs) (7.5)

Here the notation Wi ← wi ∈ G refers to selecting the i-th column of

W by matching the wi word from G. The matrix C ∈ R
Q and the vector
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bs ∈ R are parameters of a logistic regression, while a binary cross entropy is

applied as loss function for every window G. This is applied for every tweet

T labeled with yT in the training set and results in the following cost:

Csent =
∑

(T,y
T
)

∑

G∈T

−yT log(y(G)− (1− yT ) log(1− y(G))) (7.6)

However, differently from a standard logistic regression, the representa-

tion matrix W is also a parameter to be learned. A labeled sentiment dataset

is required to learn this task.

ii) we explicitly represent semantics by adding a task similar to negative

sampling, without considering the hierarchical variation. The idea is that

a CBOW model may also act as a regularizer and provide an additional

semantic knowledge of word context. Given a window G, a classifier has to

predict if a word wl fits in it. To this end, an additional cost is added:

Csem =
∑

T

∑

G∈T

∑

(rl,wl)∈F

(rl − uwl
)2 (7.7)

where F is a set of words wl with their associated target rl, derived from

a training text sequence. This is the core of negative sampling: F always

contains the correct word wt for the considered context G (rl = 1) and K−1

random sampled words from VT (rl = 0). It is indeed a sampling as K <

|VT |− 1 of the remain wrong words. Note that differently from the previous

task, this is unsupervised, not requiring labeled data; moreover tweets can

belong to a different corpus than that used in the previous component. This

allows to perform learning on additional unlabeled corpora, to enhance word

knowledge beyond that of labeled training words.

Finally, concurrent learning is obtained by forging a total cost, defined

by the sum of the two parts, opportunely weighted by a λ ∈ [0, 1], and

minimized with SGD:

CCBOW-LR = λ · Csent + (1− λ) · Csem (7.8)

Fig. 7.2 visualizes the word vectors learned by our model. Note the

tendency of separating the opposite polarities and the fact that similar words

are close to each other.

At prediction time, for each word in a tweet T we consider its M -window

G and we compute (7.5) for each window, summing the results:

Pred(T ) =
∑

G∈T

(

y(G)− 0.5

)

(7.9)
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If Pred(T ) < 0 the tweet is labeled as negative, otherwise it is considered

positive. It is worth noticing that at prediction time the method does not

consider a word as positive or negative in its own, but it uses also its context

to classify its sentiment and how strong it is. Thus the same word can be

classified differently if used in different contexts.

7.3.2 Textual and Visual Information

The CBOW-LR model presented in Sect. 7.3.1 can be extended to account

for visual information, such as that of images associated to tweets or sta-

tus messages. Popular image representations are the Visual Bag-Of-Words

Model [66, 102, 107], Fisher Vector [153] and its improved version [7, 154].

However, as shown recently in [24, 97], neural network based models have

been shown to widely outperform these previous models. So, to fit with the

CBOW representation discussed in the previous section, we choose to exploit

the images by using a representation similar to the one used for the textual

information, i.e. a representation obtained from the whole training set by

means of a neural network. Moreover, likewise for the text, unsupervised

learning can be performed. For these reasons, inspired also by works such

as [197], we choose to extend our network with a single-layer Denoising Au-

toencoder, to take its middle level representation as our image descriptor.

As for the textual version, the inclusion of this additional task allows our

method to concurrently learn a textual representation and a classifier on text

polarity and its associated image.

Denoising Autoencoder. In general, an Autoencoder (also called Au-

toassociator [14]) is a kind of neural network trained to encode the input

into some representation (usually of lower dimension) so that the input can

be reconstructed from that representation. For this type of network the out-

put is thus the input itself. Specifically, an Autoencoder is a network that

takes as input a K-dimensional vector x and maps it to a hidden represen-

tation h through the mapping:

h = σ(Pe x+ be) (7.10)

where σ is the sigmoid function (but any other non-linear activation

function can be used), Pe and be are respectively a matrix of encoding weights

and a vector of encoding biases. At this point, h is the coded representation

of the input, and has to be mapped back to x. This second part is called the
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reconstruction z of x (being z of the same dimension and domain of x). In

this step a similar transformation as in Eq. 7.10 is used:

z = σ(Pd h+ bd) (7.11)

where Pd and bd are respectively a matrix of decoding weights and a vector

of decoding biases. One common choice is to constrain Pd = PT
e ; in this

configuration the Autoencoder is said to have ‘tied weights’. The motivation

for this is that tied weights are used as a regularizer, to prevent the Autoen-

coder to learn the identity matrix when the dimension of the hidden layer

is big enough to memorize the whole input; another important advantage

is that the network has to learn fewer parameters. With this configuration,

Eq. (7.11) becomes:

ẑ = σ(PT
e h+ bd) (7.12)

Learning is performed by minimizing the cross-entropy between the input

x and the reconstructed input z:

L(x, z) = −
K
∑

k=1

(

xk log zk + (1− xk) log (1− zk)
)

(7.13)

using stochastic gradient descent and backpropagation.

In this scenario h is similar to a lossy compression of x, that should

capture the coordinates along the main directions of variation of x. To

further improve the network, the input x can be ‘perturbed’ to another

slightly different image, x̃, so that the network will not adapt too much to

the given inputs but will be able to better generalize over new samples. This

forms the Denoising variant of the Autoencoder. To do this, the input is

corrupted by randomly setting some of the values to zero [14]. This way

the Denoising Autoencoder will try to reconstruct the image including the

missing parts. Another benefit of the stochastic corruption is that, when

using a hidden layer bigger than the input layer, the network does not learn

the identity function (which is the simplest mapping between the input and

the output) but instead it learns a more useful mapping, since it is trying to

also reconstruct the missing part of the image.

The CBOW-DA-LR method. The model used to deal with textual and

visual information, denoted as CBOW-DA-LR, is an extension of CBOW-

LR with the addition of a new task based on a Denoising Autoencoder (DA)
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Figure 7.3: The process of polarity prediction of a tweet with its associated

image performed by our model. On the left, one tweet text window (in

red) at a time is fed into the CBOW model to get a textual representation.

Likewise, the associated image is fed into the denoising autoencoder (DA).

The two representations are concatenated and a polarity score for the window

is obtained from the logistic regression (LR). Finally, each window polarity

is summed into a final tweet polarity score.

applied to images, aiming at obtaining a mid-level representation. In this

final form, the descriptor obtained from the DA, together with the continuous

word representation, represents the new descriptor for a window of words in

a tweet and is concurrently used to learn a logistic regressor. Given a tweet,

for each window, we compute the continuous word representation and the

image descriptor associated with the tweet. Each window in a tweet will

be associated with the same image descriptor as the image for the tweet is

always the same.

Fig. 7.3 shows an exemplification of the prediction process for a tweet

with its accompanying image. While the image gets a fixed representation

for the entire process, the text is represented one window at a time through

a sliding window process. Each window is processed independently to get a

local polarity score. To get the overall tweet polarity, each window polarity

is summed into a final score and classified according to its sign.

This can be formalized as follows: if we define hG as the encoding of the
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image associated to the window G of the tweet T , then Eq. (7.5) becomes:

y(G) = σ

(

CT
(

(
∑

Wi←wi∈G

Wi) ∥ (hG)
)

+ bs

)

(7.14)

where ∥ is the concatenation operator, i.e. the encoded representation of

the image is concatenated to the continuous word representation of the win-

dow, forming a new vector whose size is the sum of the size of the continuous

word space and the size of the encoding representation of the image.

As stated before, the Autoencoder can be pre-trained in the same fashion

as the continuous word representation. Any set of unlabeled images can be

used to train the network before the actual training on the tweets.

The DA will be a component of our model and, like the two previous

components CBOW and LR, it has its own cost function. Similar to Eq.

(7.13), it is:

Cimage = −
K
∑

k=1

(

x̃k log ẑk + (1− x̃k) log (1− ẑk)
)

(7.15)

Since we are aiming at concurrent learning the textual and image rep-

resentations, the three components are combined together in a single final

cost of CBOW-DA-LR. Starting from the previously defined Eq. (7.8) for

CBOW and Eq. (7.7) for LR, the cost becomes:

CCBOW-DA-LR = λ1 · Csent + λ2 · Csem + λ3 · Cimage (7.16)

where λ1,λ2,λ3 weight the contribution of each task. The model can be

trained by minimizing CCBOW-DA-LR with stochastic gradient descend. Sym-

bolic derivatives can be easily obtained by using an automatic differentiation

algorithm (e.g. Theano [12]). After training, Eq. (7.9) can be used to pre-

dict the label of the tweet in the same manner as it is used when we do not

consider the image descriptor.

7.4 Experiments

The datasets. To evaluate the proposed approach we have used four

datasets obtained from Twitter:

i) Sanders Corpus4, consists of 5,513 manually labelled tweets on 4 topics

(Apple, Google, Microsoft and Twitter). Of these, after removing missing

4http://sananalytics.com/lab/twitter-sentiment/

http://sananalytics.com/lab/twitter-sentiment/
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tweets, retweets ad duplicates, only 3,625 remain. The dataset does not

specify a train and a test subset, so to evaluate the performance the whole

set is randomly divided multiple times into subsets each time each one with

the same size and the mean performance is reported;

ii) Sentiment1405 [60] consists of a 1.6 million tweet training set collected

and weakly annotated by querying positive and negative emoticons, consid-

ering a tweet positive if it contains a positive emoticon like “ :) ”and negative

if, likewise, it contains a negative emoticon like “ :( ”; the dataset also com-

prises a manually annotated test set of 498 tweets obtained querying names

of products, companies and people;

iii) SemEval-20136 provides a training set of 9,684 tweets of which only

8,208 are not missing at the time of writing and a test set of 3,813 tweets,

selected querying a mixture of entities, products and events; the dataset is

part of the SemEval-2013 challenge for sentiment analysis and also comprises

of a development set of 1,654 (of which only 1,413 available at the time

of writing) that can be used as an addendum to the training set or as a

validation set;

iv) SentiBank Twitter Dataset7, consists of 470 positive and 133 negative

tweets with images, related to 21 topics, annotated using Mechanical Turk;

the dataset has been partitioned by the authors into 5 subsets, each of around

120 tweets with the respective images, to be used for a 5-fold cross-validation.

In this work we consider the binary positive/negative classification, thus

we have removed neutral/objective tweets from the corpora when necessary.

This approach follows that of [60] and [129], and is motivated by the dif-

ficulty to obtain training data for this class; it has to be noted that even

human annotators tend to disagree whether a tweet has a negative/positive

polarity or it is neutral [82]. Performance is reported in terms of Accuracy.

The evaluation for SemEval is performed using F1, since this is the metric

originally used in this dataset.

For the Sanders dataset, as described earlier, there is no definition of an

actual test set nor of a training set. For these reasons we choose to follow

the experimental setup of [129], where experiments on Sanders dataset have

been performed varying the number of training tweets between 32 to 768.

For each test, first the number of training tweets is selected, then half of

them are randomly chosen from all the positive tweets and the other half

5http://help.sentiment140.com/for-students
6http://www.cs.york.ac.uk/semeval-2013/task2/
7http://www.ee.columbia.edu/ln/dvmm/vso/download/sentibank.html

http://help.sentiment140.com/for-students
http://www.cs.york.ac.uk/semeval-2013/task2/
http://www.ee.columbia.edu/ln/dvmm/vso/download/sentibank.html
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are chosen from the negative ones. Finally, the remaining tweets are used as

test set. Since there could be some variation from a random set to another,

for each test 10 different runs are evaluated and the mean is taken as the

result of the selected test. Results with this dataset are reported with the

notation “Sanders@n”, where n is the number of training tweets selected.

The evaluation of the SentiBank dataset has been performed preserving

the structure given by the authors so that the results could be comparable.

The dataset is divided into 5 subsets for 5-fold cross-validation. Each at a

time a subset is considered as test set while the other 4 are considered as

training set; 5 runs are performed and in the end the mean of the 5 results

is computed and considered the resulting value given by the method for

the dataset. Considering the high imbalance between positive and negative

tweets of this dataset we report also the F1 score in addition to Accuracy.

We have evaluated the proposed method through a set of 5 experiments:

in the first one we evaluate the performance of the proposed CBOW-LR text

model comparing it against the standard CBOW model. Then we assess

the performance of these models after pre-training them with large scale

Twitter corpora. In a third experiment we compare the proposed approach

against a baseline and two state-of-the-art methods. In the final experiment

we compare the proposed CBOW-DA-LR text+image model against a state-

of-the-art method on a publicly available dataset composed by tweets with

images. In all these experiments we empirically fixed K = 5 and Q = 100. In

the last experiment we evaluate the effects of K and Q parameters w.r.t. the

classification performance an all the datasets. Regarding λ in the first three

experiments and λ1,λ2,λ3 in the last one, we tested several combinations

and found a good setting by fixing λ = 0.5 and λ1 = λ2 = λ3 = 0.33,

respectively. Also the image DA was implemented with ‘tied weights’ to

reduce overfitting. Its dimensionality was tested in the range [200, 1000] and

found it better performing by fixing it to 500. To perform the optimization

using stochastic gradient descent, we employed Theano [12] to automatically

compute the derivatives.

Exp. 1: Comparison with baselines. Tab. 7.1 compares our proposed

method (CBOW-LR) with two baselines: RAND-LR and CBOW+SVM.

The purpose is twofold: i) since we are learning features crafted for the

specific task, we compare our method with randomly generated features.

RAND-LR learns a logistic regression classifier on random word features
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Dataset
(proposed)

CBOW-LR RAND-LR CBOW+SVM

Sentiment140 83.01 61.56 79.39

SemEval-2013 (F1) 72.57 53.01 71.32

Sanders @ 32 62.55 58.38 59.89

Sanders @ 256 74.91 63.69 67.91

Sanders @ 768 82.69 65.53 73.03

Table 7.1: Comparison between our method and two baselines. Performance

is reported in terms of accuracy except for SemEval-2013, where is used the

F1 measure. Sanders@n indicates the number of training tweets used for the

experiments on that dataset.

(i.e. we set λ = 1 in eq. 7.8); ii) we verify the superiority of CBOW-LR

learned features against a standard unsupervised CBOW representation.

The CBOW+SVM baseline employs SVM with standard pre-trained CBOW

representation on the specific dataset.

Performance figures show that the proposed method consistently outper-

forms both baselines, thus our method learns useful representations with

some improvement over CBOW.

Exp. 2: Exploiting CBOW training on large scale data. Tab. 7.2

compares our proposed method with two baselines when exploiting large

scale training data for the CBOW representation. We pre-trained a CBOW

model using the 1.6 million tweets of Sentiment140 and used the learned fea-

tures (termed CBOWS) with two standard learning algorithms. CBOWS+LR

employs the logistic regression while CBOWS+SVM uses the SVM classifier.

In contrast to the baselines, our model CBOWS-LR employs the pre-trained

CBOWS features as initialization for the W matrix. Comparing Tab. 7.2

with Tab. 7.1 shows that CBOWS+SVM baseline benefit from the use of

pre-learned CBOWS. This is visible especially on the Sanders dataset, as

more rich representation is built. Note that when CBOWS+SVM is applied

to Sentiment140 dataset it corresponds to CBOW+SVM, since CBOWS de-

scription is trained on Sentiment140; therefore the result is the same.

While both CBOWS+SVM and CBOWS+LR are unable to modify the
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Dataset
(proposed)

CBOWS-LR CBOWS+LR CBOWS+SVM

Sentiment140 83.84 76.32 79.39

Semeval-2013 (F1) 72.23 73.73 71.48

Sanders @ 32 66.28 66.90 66.65

Sanders @ 256 76.33 71.14 73.69

Sanders @ 768 82.98 75.43 76.44

Table 7.2: Comparison between our method and two baselines, using an ini-

tialization based on CBOW pre-trained aside with 1.6 million tweets of Senti-

ment140. Performance is reported in terms of accuracy except for SemEval-

2013, where is used the F1 measure. Sanders@n indicates the number of

training tweets used for the experiments on that dataset.

word vector representation, our model CBOWS-LR is able to retain the full

richness of the initial representation and improve it on two datasets.

Exp. 3: Comparison with FSLM and ESLAM. In this experiment

we have compared both textual variants of our approach, one with CBOW

trained using the dataset on which the method is applied and one using

CBOWS, with two state-of-the-art methods: FSLM and ESLAM, proposed

in [129]. FSLM uses a fully supervised probabilistic language model, learned

concatenating all the tweets of the same class to form synthetic documents.

ESLAM extends FSLM exploiting noisy tweets, based on the presence of

‘positive’ and ‘negative’ emoticons, to smooth the language model. Inclu-

sion of manually labelled data with the unsupervised noisy data gives the

power to deal with unforeseen text that is not easily handled by fully su-

pervised methods. Fig. 7.4 shows the Accuracy while varying the number of

training tweets of the Sanders dataset. The proposed approach has a much

lower performance when using only 32 or 64 tweets for training. However,

it can be observed that as the number of training data increases so does

the performance of the proposed method, that outperforms that of ESLAM

when using 768 tweets for training. In general the proposed method out-

performs FSLM. The fact that ESLAM outperforms the proposed method

when using smaller training data can be explained by the fact that CBOW
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models, as Skip-Gram and feature learning methods, require large training

datasets.

60

65

70

75

80

85

32 64 128 256 512 768

Sanders - Polarity Classification Accuracy 

A
c
c
u

ra
c
y
 (
%

)

# Train Tweets

FSLM ESLAM CBOW  -LR SCBOW -LR

Figure 7.4: Comparison between our method with FSLM and ESLAM [129]

on Sanders dataset, while varying the number of training tweets.

Exp. 4: Exploiting textual and visual data. In this experiment we

have evaluated the performance of three versions of our proposed approach

– CBOW-LR for text, DA-LR for visual data, and CBOW-DA-LR for both

text and visual information – with different baselines and state-of-the-art

approaches.

CBOW-LR has been compared with SentiStrenght [185] and the CBOW+SVM

baseline used in Exp. 1 and Exp. 2. DA-LR has been compared with Sen-

tiBank [19] classifiers. CBOW-DA-LR has been compared with the approach

proposed by the authors of the SentiBank Twitter dataset [19], that uses

SentiStrenght [185] API8 for text classification and SentiBank classifiers as

mid-level visual features, with a logistic regression model. As the dataset

is imbalanced, we also compare these approaches with an additional base-

8http://sentistrength.wlv.ac.uk/
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Data Method SentiBank (AC) SentiBank (F1)

Random 47 42

Text

SentiStrenght [185] 58 51

CBOW+SVM 72 50

(proposed)

CBOW-LR 75 52

Image

SentiBank [19] 71 51

(proposed)

DA-LR 69 51

Text+Image

SentiStrenght [185] +

SentiBank [19] 72 n.a.

(proposed)

CBOW-DA-LR 79 57

Table 7.3: Comparison between our method (on single and combined modal-

ities) with baselines and state-of-the-art approaches on SentiBank Twitter

Dataset.

line based on random classification, i.e. we assign a random polarity to each

test tweet. We used the code provided by the authors of the methods, ex-

cept for the SentiStrenght+SentiBank case, for which we report the result

published in [19]. Results reported in Tab. 7.3 show that not only CBOW-

LR outperforms both the baseline and SentiStrenght, but also the multi-

modal SentiStrenght+SentiBank approach. When using only visual informa-

tion SentiBank obtains a better performance than DA-LR. Considering the

text+image case it can be observed that the proposed multimodal CBOW-

DA-LR method improves upon single modalities (CBOW-LR and DA-LR)

and outperforms SentiStrenght+SentiBank by a larger margin, proving that

images hold meaningful informations regarding the polarity of text, and thus

can be exploited to improve overall Accuracy and F1.

Exp. 5: Parameters analysis. Fig. 7.5 shows accuracy and F1 of our

model when varying K and Q parameters on Sanders, SemEval-2013 and

Sentiment140 datasets. The performance on SentiBank is practically not

affected by these parameters. The same set of parameters results in the best

performance on all the datasets. The values of K and Q are in line with

those obtained to train CBOW models on Wikipedia by Mikolov et al. .
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Figure 7.5: Performance of the proposed method when varying K and Q

parameters on Sanders, SemEval-2013 and Sentiment140 datasets.

7.5 Conclusions

In this chapter we have presented a method for sentiment analysis of social

network multimedia, presenting an unified model that considers both textual

and visual information.

Regarding textual analysis we described a novel semi-supervised model

CBOW-LR, extending the CBOW model, that learns concurrently vector

representation and a sentiment polarity classifier on short texts such as that

of tweets. Our experiments show that CBOW-LR can obtain improved ac-

curacy on polarity classification over CBOW representation on the same

quantity of text. When considering a large unsupervised corpus of tweets as

additional training data for CBOW, a further improvement is shown, with

our model being able to improve the overall accuracy. Comparison with the

state-of-the-art methods FSLM and ESLAM shows promising results.

The CBOW-LR model has been expanded to account for visual informa-

tion using a Denoising Autoencoder. The unified model (CBOW-DA-LR)

works in an unsupervised and semi-supervised manner, learning text and
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image representation, as well as the sentiment polarity classifier for tweets

containing images. The unified CBOW-DA-LR model has been compared

with SentiBank, a state-of-the-art approach on a publicly available Twitter

dataset, obtaining a higher classification accuracy.
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Chapter 8

Popularity Prediction with

Sentiment and Context Features

Images in social networks share different destinies: some are go-

ing to become popular while others are going to be completely

unnoticed. In this chapter we propose to use visual sentiment

features together with three novel context features to predict a

concise popularity score of social images. Experiments on large

scale datasets show the benefits of proposed features on the perfor-

mance of image popularity prediction. Exploiting state-of-the-art

sentiment features, we report a qualitative analysis of which sen-

timents seem to be related to good or poor popularity.1

8.1 Introduction

In the last decade users of social networks such as Flickr and Facebook have

uploaded tens of billions of photos, often adding accompanying metadata by

tagging and by providing a short description. Users interact with each other

by forming groups of shared interests, following the status streams of each

other, and by commenting the photos that have been shared. Inevitably,

in the huge quantity of available media, some of these images are going to

become very popular, while others are going to be totally unnoticed and end

1This chapter appeared as “Image Popularity Prediction in Social Media Using Senti-

ment and Context Features” in Proc. of ACM International Conference on Multimedia,

2015, pp. 907-910.
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Description

Popularity Prediction Model

Popularity Score (e.g. 50 views/day)

user
features

Tags

Title

object
features

sentiment
features

context
features

Figure 8.1: A schema of our approach to popularity prediction of images.

up in oblivion. Often, media may be popular because it conveys sentiments

or it has a rich meaning in the social context it is put. In fact, sentiments

have been known to affect popularity of visual media since the widespread

watch of television programs [41]. Also, it was recently found to be related

to popularity in tweets [6]. Being able to predict the popularity of a media

may have a profound impact on several essential applications such as content

retrieval and annotation, but also in other fields such as advertising and

content distribution [51].

In this chapter, we address the problem of predicting the popularity of

an image posted in a social network, considering different scenarios that

are typical of different situations. Despite the recent crop of literature that

studies the question of what makes an image popular [93, 138, 186], none

of these works addresses the question of how much the visual sentiment

is influencing the popularity of media. As social context has been widely

found important to predict media popularity [93], we show how to further

improve popularity estimation by using a knowledge base to supplement the

understanding of semantics in textual metadata.

The main contributions of this chapter are:

• we propose to employ state-of-the-art visual sentiment features [19,27]

to perform image popularity prediction;

• we propose three new textual features based on a knowledge base, to
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better model the semantic description of an image, in addition to the

social context features proposed in [93,138];

• we show qualitative results of which sentiments seem to be related to

a good or poor popularity.

To the best of our knowledge, this is the first work understanding specific

visual concepts that positively or negatively influence the eventual popularity

of images, beyond just numerical prediction of photo popularity.

Experiments performed on large scale datasets illustrate several bene-

fits of the two types of proposed features, and show how their combination

impacts effectively on the performance of popularity prediction.

8.2 Related work

Popularity Prediction Recently, a significant effort has been spent on in-

vestigating popularity of social media content. Regarding image popularity,

the majority of works agree that social features have the greatest predictive

power [93, 138, 186]. Visual content features are less powerful than social

ones in terms of predictive power, but they are useful when no user meta-

data is present (e.g. no tags or description) or to address scenarios such as

the case in which no social interactions have been recorded before posting

the image (e.g. because the user has just joined the social network). Previous

works vary in terms of popularity score definition (e.g. image views, reshares,

mean views over a period) but they all share the same basic pipeline: they

extract several content and context related features and successively employ

a regressor to compute the popularity score.

In [93], Khosla et al. investigate both low-level features such as color,

GIST, LBP, and content features such as the object predictions and network

activations of a state-of-the-art CNN image classifier [97]. Together with

user and image context features, they show promising results. McParlane

et al. [138] propose to use image content, context features and user context

to predict popularity. Their analysis is limited to a cold start scenario,

i.e. where there exist no or little textual or interaction data. Totti et al. [186]

investigate the use of aesthetics features such as blur, aspect ratio and color

channel statistics together with the output of 85 object classifiers as content

features.



136 Popularity Prediction with Sentiment and Context Features

Visual Sentiment A few works have addressed the problem of multimedia

sentiment analysis of social network images. Starting from the 24 basic emo-

tions of Plutchik’s Wheel of Emotions [155], Borth et al. [19] have recently

presented a large-scale visual sentiment ontology termed SentiBank. They

train 3,244 detectors on pairs of nouns and adjectives (ANPs) based on a

combination of global and local features. Based on the recent breakthrough

of convolutional networks for classification [97], Chen et al. [27] used a CNN

to replace SVM in the approach of Borth et al. [19], obtaining an improved

accuracy on ANPs.

The authors in [29] proposed an hierarchical system able to handle sen-

timent concept classification and localization on objects. They found in-

dividual concept detector of SentiBank [19] less reliable for object-based

concepts.

Chen et al. [30] studied the correlation between the intended publisher

sentiment and the actual induced in the viewer (‘viewer affect concept’).

They aim to recommend appropriate images for the publisher by predicting

in advance the induced sentiment in the viewer.

8.3 The Proposed Method

Our proposed method is based on two hypotheses: i) the popularity of an

image can be fueled by the inherent visual sentiments conveyed; ii) semantic

descriptions of an image is also important for its popularity, since it makes

it easier to be found or looked at.

8.3.1 Measuring Popularity

It is difficult to precisely define a single score as measure of popularity, and

several ways have been proposed to measure it. Khoshla et al. [93] used the

number of views on Flickr as the principal metric. McParlane et al. [138]

consider both the number of views and the number of comments for each

image as they have been found correlated in video popularity [25]. However

they only aim to predict two classes of popularity: high or low.

In this work we follow Khoshla et al. [93] and consider the number of

views on Flickr as popularity metric. To cope with the large variation of

views, we divide the popularity metric by the difference of time between the

user upload and our retrieval, then we apply the log function.
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8.3.2 Visual Sentiment Features

To discover which visual emotions are roused from the visualization of an

image, a visual sentiment concept classification is performed based on the

Visual Sentiment Ontology (VSO). The ontology, consisting in a collection

of 3,244 Adjective-Noun-Pairs (ANPs), has been defined by Borth et al. [19].

In particular we used DeepSentiBank [27]: a convolutional neural network

pre-trained from [97] has been fine-tuned to classify images in one of a subset

of 2,096 ANPs. Similarly to its previous version [19], this tool provides a

mid-level representation of an image.

For each image we extract two descriptors that we term respectively

SentANPs and FeatANPs: the ANPs prediction layer of 2,096d and the

rectified activations of the 7th fully connected layer of 4,096d.

8.3.3 Object Features

Since image popularity is related also to the visual content of the image, we

extract the convolutional neural networks features, initially proposed in [93].

A very deep CNN with 16 layers [24] was used to extract for each image the

final output containing 1,000 objects from ILSVRC 2014 challenge (termed

ObjOut) and the 4,096d representation of the 7th rectified fully connected

layer (termed ObjFC7).

8.3.4 Context Features

Image context information such as tags and description contains important

cues that may reflect on the number of views that an image obtains. Entities

like people, locations or tourist attractions can affect popularity as i) people

may be more interested in photographs referring some particular subject;

ii) the presence of tags and description, the submission of a photo to some

groups, etc. make it easier to be found by other users. The extraction of en-

tities from image context strongly depends on the nature of the text, i.e. tags

and textual description; due to the different nature of these channels, two

different approaches are proposed.

Entity Extraction from Tags Starting from image tags, we define two

new context features that we term TagType and TagDomain. They both

rely on Freebase, a large collaborative ontology containing millions of inter-

connected topics. Given a tag, a search for a Freebase topic is performed: if



138 Popularity Prediction with Sentiment and Context Features

the tag is related to some topics, the most popular one is picked, according

to Freebase popularity ranking. Meaningless tags that do not have a match

in Freebase topics are ignored, thus they do not act as a nuisance. When a

Freebase topic is retrieved, another query is performed to extract its Free-

base types with the “notable” property and its Freebase domain. While types

are mostly specific (e.g. Person, Author) domains cover broader areas (e.g.

Film, Music).

Due to the vast number of types in the ontology, a smaller specific type

knowledge base is introduced. We first randomly sampled 10k tags from

MIR-Flickr dataset vocabulary [75] and used them to extract Freebase types.

We select the 100 most frequent types as our specific knowledge base.

The extraction of TagType feature for an image is then straightforward:

each tag is used to query Freebase for a notable type. We count the matches

to the 100 selected types and obtain a 100d histogram as final feature.

Regarding the TagDomain feature, we take the full list of 78 domains

pre-defined by Freebase curators and count the tag matches, similarly as

TagType. Thus, the eventual TagDomain feature result in a 78d histogram.

Entity Extraction from description Differently from the concise tags,

image descriptions allow users to comprehensively detail their images in nat-

ural language. We seek to recognize subjects and objects of this text to

detail context. Hence, we adopt a well known CRF-based language model

to perform Named Entity Recognition (NER) [52]. We used the pre-trained

7-class model for MUC that is able to recognize Time, Location, Organiza-

tion, Person, Money, Percent, Date. We count the occurrences for each class

and build a 7d feature that we term NER7.

8.3.5 User Features

Previous works have found that the number of views that a photograph is

going to obtain depends not only on the image itself and its context infor-

mation, but also on the author data. In this work we used the same user

features proposed by Khosla et al. [93]: among these features the most re-

lated one to popularity is the mean views of the images of the user, as it

represents the popularity of the user himself.
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8.3.6 Popularity prediction

In order to predict popularity as a concise score, we used an off-the-shelf

Support Vector Machine. As we are working with large-scale dataset, we used

a L2 regularized L2 loss Support Vector Regression (SVR) from LIBLINEAR

package due to its scalability with large sparse data and huge number of

instances compared to a kernelized version.

8.4 Experiments

As different scenarios show different aspects of popularity, we structure our

experimental setups similarly to those of Khosla et al. [93], using Flickr social

network. Two datasets were used to represent two different scenarios:

• One-Per-User (OPU): we randomly selected 250k images from the

VSO Flickr Dataset [19]. This dataset represents the scenario of a

Flickr search, where images belong to different users.

• User Specific (US): 25 users from the VSO Flickr Dataset are selected

at random to constitute 25 different trials. For each one, 10k images

are randomly selected. This dataset represent the scenario of a user

that wants to select which of his pictures should be uploaded to attract

the attention of other users.

In each experiment, we extract and concatenate the selected features. We

freely provide the extracted features on our website. Multidimensional fea-

tures are L2 normalized, while scalar attributes are scaled in the [0, 1] range.

We split every dataset in training and evaluation: half was randomly chosen

as training set, while the remaining images were equally split in validation

and testing set. The C of SVM was set in the range [0.001− 100].

After the prediction, testing images are ranked in descending popularity

scores and compared to the correct ranking obtained by the ground truth

scores. The correlation between these two lists r and s is computed using

Spearman’s rank correlation that ranges in [−1, 1]:

ρ =

∑

i
(ri − r)(si − s)

√
∑

i
(ri − r)2

√
∑

i
(si − s)2

(8.1)

a score of 1 (or -1) corresponds to perfect (inverse) correlation, while 0

corresponds to random ranks.
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8.4.1 Results

Experiments have been carried out for visual features, context ones and

visual + context + user combination. We train a model with each single

feature to show its predictive power. Then, we combine the features and

compare a model with all of them against baselines implemented following

the method of Khosla et al. [93] i.e. without our novel features. Results are

reported in terms of Spearman’s rank correlation and, for the User Specific

dataset, the average scores between the 25 users are reported.

Visual Features Visual content features include visual sentiment and ob-

ject detections (Sec. 8.3.2, 8.3.3). The latter ones are used in this case as a

baseline, including ObjOut and ObjFC7.

Dataset SentANPs FeatANPs ObjOut ObjFC7 Baseline All

OPU 0.28 0.32 0.13 0.30 0.30 0.36

US 0.31 0.40 0.27 0.40 0.40 0.43

Table 8.1: Visual Features Results

Results are reported in Table 8.1: sentiment features are comparable

with object features. As ANPs are learned starting from a similar network

for classification, this suggests the existence of some correlation between

them. Nevertheless, SentANPs is higher than ObjOut, suggesting that ANPs

are better for popularity prediction than purely object classification. Our

features are able to improve overall prediction in both scenarios.

Context Features The performance of the proposed context features

(Sec. 8.3.4) is compared with a baseline composed by the number of tags,

the length of title and description (Table 8.2).

Dataset TagType TagDomain NER7 TagNum TitleLen DescLen Baseline All

OPU 0.42 0.36 0.50 0.55 0.22 0.48 0.61 0.63

US 0.44 0.37 0.13 0.23 0.17 0.20 0.33 0.54

Table 8.2: Context Features Results

Our features are comparable with other context-based ones in the OPU

scenario. In the US scenario, all the features except TagType and TagDo-

main lose predictive power due to the limited context of a single user. This is

because our features are able to better model semantically the single photos,
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regardless of the single user. When combined, our feature boost correlation

to 0.54 from 0.33 of the baseline.

Visual + Context + User In this experiment we combined visual, con-

text and user features along with the total combination with and without

our novel features. User features are added to resemble a state of the art

pipeline. Each modality is singularly tested and finally combined together.

Results are reported in Table 8.3. Note that User Features can’t be used for

the User Specific scenario as each model is trained for a single user.

Dataset Method Visual Content Image Context User Features All

OPU
proposed 0.36 0.63 0.72 0.76

baseline 0.30 0.61 0.72 0.74

US
proposed 0.43 0.54 n/a 0.61

baseline 0.40 0.33 n/a 0.50

Table 8.3: Visual + Context + User Features Results

User Features produce the highest correlation in the OPU scenario, con-

firming that popularity is highly related to the popularity of the author [93].

Despite this, the combination of the three modalities is helpful, boosting cor-

relation from 0.72 to 0.74. Our features further improve upon this, bringing

the value to 0.76. In the User Specific dataset, the improvement from the

baseline is more pronounced, where a correlation of 0.61 vs 0.50 is obtained.

8.4.2 Qualitative Analysis

We investigate which specific ANP and semantic metadata correlated the

most with the number of views of images. This analysis is performed for the

One-Per-User scenario, as it aims to be as generic as possible. Fig. 8.2(a)

shows the trained SVR weights for each of the 2089 ANPs, in descending

order. According to the figure we split the visual sentiments in three cate-

gories.

A first group include those ANPs that have a positive impact on image

popularity (e.g. sexy legs, beautiful eyes, heavy rain). The rapid drop evinces

that a very short number of ANPs corresponds to strongly popular images in

the training dataset. Then, we observe that some visual sentiments obtain

very low weights, near zero: that ANPs are almost irrelevant to the number

of views (e.g. sunny trees, dry forest). Finally a third group includes ANPs
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that are associated to a sufficiently negative score: the detection of those

push an image towards unpopularity (e.g. creepy eyes, silly clown).

Extending our analysis to the 28 basic emotions of the Plutchick wheel,

we found out that our model marked as unpopular those images that arouse

emotions such as annoyance or serenity, while high scores are likely to be

returned in case of sentiments as amazement or ecstasy. These last emotions

derive from ANPs containing the adjective sexy, resulting in 10 occurrences

in the top 35 visual emotions. A similar analysis on the 100 semantic en-

tities is shown in Fig. 8.2(b). This plot has a similar trend compared with

that of visual sentiment, but for the extreme values: in this case the nega-

tively weighted types (e.g. religious practice and software genre) have more

prominent values than the positively weighted ones (e.g. garment and film

character).

8.5 Conclusions

In this chapter we proposed to employ state-of-the-art visual sentiment fea-

tures and three new context features to address the problem of predicting

whether an image posted on a social network may became popular. We

are the first to show a qualitative analysis of which sentiments (as ANPs)

are correlated to popularity. Our experiments suggest that some sentiments

have a correlation with popularity, still smaller than user features. However,

together with our novel context features, they have good prediction power,

especially when user features are unavailable as in the User Specific scenario.
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Chapter 9

Conclusion

This chapter summarizes the contribution of the thesis and dis-

cusses avenues for future research.

9.1 Summary of Contribution

After presenting a structured survey of related work on social tagging and

retrieval, we detailed a novel experimental protocol that we used to test and

analyze eleven key methods. Established the state of the art, we proposed

several models and methods to achieve objective annotation of images. Fi-

nally we moved to subjective annotation of sentiments aroused in a viewer

and the expected popularity of an image.

In particular, we first presented in Chapter 2 a survey on image tag

assignment, refinement and retrieval, with the hope of illustrating connec-

tions and difference between the many methods and their applicabilities,

and consequently helping the interested audience to either pick up an exist-

ing method or devise a method of their own given the data at hand. Based

on the key observation that all works rely on tag relevance learning as the

common ingredient, exiting works, which vary in terms of their methodolo-

gies and target tasks, are interpreted in a unified framework. Consequently,

a two-dimensional taxonomy has been developed, allowing us to structure

the growing literature in light of what information a specific method exploits

and how the information is leveraged in order to produce their tag relevance

scores.
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Having established the common ground between methods, a new experi-

mental protocol was introduced in Chapter 3 for a head-to-head comparison

between the state-of-the-art. A selected set of eleven representative works

were implemented and evaluated for tag assignment, refinement, and/or re-

trieval.

Nearest neighbors methods proved to be the best overall performing

method for assignment in Chapter 3. Hence, we proposed two novel tech-

niques in Chapters 4 and 5 that reduce the semantic gap in these class of

methods. In Chapter 4, we presented a cross-media model based on KCCA

for tag assignment. The key idea was learning a semantic space, where visual

and textual data where represented as blended unified features. This repre-

sentation is able to provide better neighbors for nearest neighbor algorithms.

The experimental results showed that our method makes consistent improve-

ments over standard approaches based on a single-view visual representation

as well as other previous work that also exploited tags. The properties of

tested methods found in Chapter 3 remain still valid in the semantic space,

although with an improved capability of retrieving better neighbors. Hence

a better performance is obtained.

While a global representation is a requirement for nearest neighbors

methods, local cues are important evidence for partially visible objects. Con-

sidering that users typically tag both local and global elements of a scene, in

Chapter 5 we built a novel global representation that considers both types

of features. Nearest neighbor methods are then used to perform the actual

assignment or retrieval. Fisher vectors were adopted to produce new sig-

natures that aggregate local descriptors but retain the global feature. The

experiments proved the effectiveness of the new signatures compared to the

baseline features.

Considering the influence of real world events in tagging behavior, in

Chapter 6 we briefly analyzed the correlations between user tags, news and

the objective relevance of concepts. The results suggest that analyzing the

time series of tags may be beneficial to annotate social media.

Moving on to subjective information extraction, in Chapter 7 and 8 we

explored the related tasks of sentiment analysis in tweets and the popularity

estimation of images in social networks. In Chapter 7 we have presented

a method for sentiment analysis of social network multimedia, capable of

learning both textual and visual features in an unified fashion. Our model

CBOW-LR, extending the CBOW model, learns concurrently a vector rep-
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resentation and a sentiment polarity classifier on short texts. Comparing to

previous work, our representation explicitly includes the sentiment of words

and maintains good performance. By adding images to the mix, a further ex-

tension CBOW-DA-LR was presented. This semi-supervised model concur-

rently learns text and image representation, as well as the sentiment polarity

classifier for tweets containing images. Experiments with large unsupervised

corpus of tweets show promising results compared to the state-of-the-art.

Chapter 8 presented a novel approach to predict whether an image posted

on a social network may became popular. The approach uses a combination

of state-of-the-art visual sentiment features and three novel context features

to reduce the semantic gap. The experiments reported suggest that some

sentiments have a correlation with popularity. Moreover, our novel context

features have good prediction power, especially when user features are un-

available. We also presented the first study that show a qualitative analysis

of which sentiments (as ANPs) are correlated to popularity.

9.2 Direction of future work

Much remains to be done. Several exciting recent developments open up

new opportunities for the future. First, extraction of objective informa-

tion can profit from recent developments of deep learning. Employing novel

deep learning based visual features is likely to boost the performance of an-

notations method that employ visual features. What is scientifically more

interesting is to devise a learning strategy that is capable of jointly exploit-

ing tag, image, and user information in a much more scalable manner than

currently feasible. The importance of the filter component, which refines

socially tagged training examples in advance to learning, is underestimated.

Having a number of collaboratively labeled resources publicly available, re-

search on joint exploration of social data and these resources is important.

This connects to the most fundamental aspect of content-based image re-

trieval in the context of sharing and tagging within social media platforms:

to what extent a social tag can be trusted remains open. Image retrieval by

multi-tag query is another important yet largely unexplored problem. For a

query of two tags, it is suggested to view the two tags as a single bi-gram

tag [19, 116, 150], which is found to be superior to late fusion of individual

tag scores. Nonetheless, due to the increasing sparseness of n-grams, how to

effectively answer generic queries of more than two tag is challenging. Ex-

ploiting further modalities remain still a largely unexplored area of research.
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In Chapter 6 we investigated the correlation of tags with the ground truth

and events gathered from news by considering the time dimension. Although

of limited scope, the study found that objective tags have a strong correlation

to both content and context, giving a promising direction for improving con-

tent understanding. Possible extensions of this work include the exploration

of how richer textual and semantic cues from natural language annotations

might improve our models. Compared to extracting objective information,

subjective information extraction is still young and full of exciting directions.

We are still far from getting reliable estimations of sentiments in visual con-

tent. Current features are handcrafted on psychological or empirical studies

but they are inherently affected by the semantic gap. Automatically learning

features alike to approaches used in deep learning could bring considerable

improvements in recognizing feelings despite the hard interpretability of fil-

ters. We barely scratched the surface in Chapter 7. Similarly, the prediction

of popularity is still relying in basic handcrafted features. Although the social

network aspects are well known to be related to popularity, visual content

and context analysis is still needed when aiming to maximize popularity of

a content. An underestimated factor is the peculiarity of different cultures

in having different values and thus interest and feelings. Social networks can

provide a world playground for study these aspects.

We see contributions of this field as essential to other related fields such

as that of computer vision and artificial intelligence. The last two years were

marked by a surge of deep convolutional models that showed remarkable im-

provement on vision tasks such as object recognition and image captioning.

However, their limit is related to the strong supervision they need for train-

ing. Due to the cost of scaling these approaches, we expect an increased

interest in unsupervised and semi-supervised learning, ultimately reaching

social networks as an essential source of media.

“One way to resolve the semantic gap comes from sources outside the

image ...”, Smeulders et al. wrote at the end of their seminal paper [177].

While what such sources would be was mostly unknown by that time, it is

now becoming evident that the many images shared and tagged in social

media platforms are promising to resolve the semantic gap. By adding new

relevant tags, refining the existing ones or directly addressing retrieval, the

access to the semantic of the content has been much improved. This is

achieved only when appropriate care is taken to attack the unreliability of

social tagging.
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.1

International Journals

1. L. Ballan*, M. Bertini*, T. Uricchio*, A. Del Bimbo*, “Data-driven ap-

proaches for social image and video tagging”. InMultimedia Tools and Appli-

cations, Feb 2015, Volume 74, Issue 4, pp. 1443-1468. DOI: 10.1007/s11042-

014-1976-4 *equal contribution.

2. C. Baecchi, T. Uricchio, M. Bertini, A. Del Bimbo, “A multimodal feature

learning approach for sentiment analysis of social network multimedia”. In

Multimedia Tools and Applications. DOI: 10.1007/s11042-015-2646-x (in

press).

Submitted

1. X. Li*, T. Uricchio*, L. Ballan, M. Bertini, C.G.M. Snoek, A. Del Bimbo,

“Socializing the Semantic Gap: A Comparative Survey on Image Tag As-

signment, Refinement and Retrieval”. Submitted after major revision to

ACM Computing Surveys and available as arXiv preprint arXiv:1503.08248.

*equal contribution.

1The author’s bibliometric indices are the following: H -index = 5, total number of

citations = 43, i10-index = 1 (source: Google Scholar on November 28, 2015).
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“Image Tag Assignment, Refinement and Retrieval”. In Proc. of ACM Con-
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Australia, 2015.
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Italy, 2013.

4. T. Uricchio, L. Ballan, M. Bertini, and A. Del Bimbo, “An Evaluation of

Nearest-Neighbor Methods for Tag Refinement”. In Proc. of IEEE Inter-

national Conference on Multimedia & Expo (ICME), San Jose, CA, USA,

2013.
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ImageCLEF 2013 Scalable Concept Image Annotation”. In Proc. of Con-

ference and Labs of the Evaluation Forum (CLEF), Valencia, Spain, 2013.
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Convolutional Bag-of-Boxes for Efficient Image Annotation and Retrieval”.
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