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Abstract: The paper reviews the “κ-generalized distribution”, a statistical model for the analysis of
income data. Basic analytical properties, interrelationships with other distributions, and standard
measures of inequality such as the Gini index and the Lorenz curve are covered. An extension of
the basic model that best fits wealth data is also discussed. The new and old empirical evidence
presented in the article shows that the κ-generalized model of income/wealth is often in very good
agreement with the observed data.
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1. Introduction

The past two decades have seen a resurgence of interest in the study of income and
wealth distribution in both the physics [1–4] and economics [5–9] communities. Scholars
have focused particularly on the empirical analysis of large data sets to infer the shape of
income and wealth distributions and to develop theoretical models that can reproduce them.

Pareto’s observation that the number of people in a population whose income ex-
ceeds x is often well approximated by Cx−α was a natural starting point for this field
of analysis [10–13]. However, empirical research has shown that the Pareto distribution
accurately models only high income levels, while it does a poor job of describing the lower
end of distributions.

As research has continued, new models have been proposed to better describe the
data, using either a combination of known statistical distributions [14–22] or parametric
functional forms for the distribution as a whole. Among these, the two-parameter lognor-
mal [23] and gamma [24] distributions were proposed as models for the size distributions
of income and wealth, but later evidence showed that these models tend to exaggerate
skewness and perform poorly at the upper end of the empirical distributions [25–28].
Three-parameter models such as the generalized gamma [29–32], Singh–Maddala [33],
and Dagum Type I [34] provide better fits. These models converge to the Pareto model for
large values of income/wealth and accurately describe lower and middle ranges.

Finally, models with more than three parameters have also been suggested to fit
income and wealth data. For example, the generalized beta distribution of the second
kind (GB2) is a four-parameter distribution that was first described by [35]. It fits the
data very well and also includes some of the two- and three-parameter models mentioned
above as special or limiting cases. (The generalized beta distribution of the first kind
(GB1) [35] and the double Pareto-lognormal distribution [36] are other four-parameter
models that fit the data well. Ref. [37] also developed the five-parameter generalized beta
distribution family, which includes the GB1 and GB2 as special cases and all of the two- and
three-parameter distributions nested inside them. In turn, the double Pareto-lognormal
distribution has been generalized into a five-parameter family of distributions called the
generalized double Pareto-lognormal distribution [38]. However, closed-form expressions
for probability density and/or cumulative distribution functions do not always exist for
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these “super” models, making fitting them to data computationally difficult and slow due
to the need to use numerical methods [39,40]).

Among models that seek to provide a unified framework for describing real-world
data, including the power-law tails found in empirical distributions of income and wealth,
the κ-generalized distribution has demonstrated exceptional performance and is often
seen as a better alternative to other widely used parametric models. This model, which
was initially introduced in 2007 and progressively expanded in the years that followed,
has its origins in the framework of κ-generalized statistical mechanics [41–46]. It has a
bulk very similar to the Weibull distribution and an upper tail that decays according to a
Pareto power law for high values of income and wealth, providing a sort of middle ground
between the two descriptions.

The purpose of this paper is to provide a comprehensive overview of the impor-
tant results concerning the κ-generalized distribution. The desire to celebrate the 20th
anniversary of Kaniadakis’ notable contribution and the belief that an interdisciplinary
approach integrating statistical mechanics and economics may give novel insights into
economic relationships motivated this work. Giorgio Kaniadakis played a pivotal role in
the development of the κ-generalized model, making valuable and direct contributions to
its conception. The intention behind presenting information on the fundamental statistical
properties and empirical plausibility of this distribution is to convince the reader of its
importance and usefulness for future exploration.

The paper is structured as follows. Section 2 introduces the κ-generalized model,
covering topics such as interrelations with other distributions, basic statistical properties,
and inferential aspects. Section 3 presents recent results of fitting the κ-generalized distri-
bution to empirical income data corresponding to the distribution of household incomes in
Greece, and compares the relative merits of alternative income size distribution models us-
ing the same data. Section 4 reviews empirical applications showing that the κ-generalized
model is often in excellent agreement with observed income data; the κ-generalized mix-
ture model for net worth distribution, which best fits wealth data, is also discussed in this
section. Section 5 concludes the paper with some remarks.

2. The κ-Generalized Model for Income Distribution

The κ-generalized statistical model, named after [47], is based on the use of κ-deformed
exponential and logarithmic functions introduced by Kaniadakis [41–43] in the context of
special relativity. Within this framework, the ordinary exponential function exp(x) deforms
into the generalized exponential function expκ(x) given by:

expκ(x) =
(√

1 + κ2x2 + κx
) 1

κ , x ∈ R, κ ∈ [0, 1). (1)

The deformed logarithmic function lnκ(x), which is defined as the inverse of (1), can be
written as:

lnκ(x) =
xκ − x−κ

2κ
, x ∈ R+. (2)

Kaniadakis’ deformed functions have also been successfully used to analyze nonphysi-
cal systems. In economics, the κ-deformation has been used to study differentiated product
markets [48,49], finance [50–55], and the distribution of income by size [47,56–62]. In the
latter case, it is interesting to use such deformed functions because they can be used to
statistically describe the entire spectrum of incomes, from the low to the middle range and
up to the Pareto tail.
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2.1. Definitions and Basic Properties

A random variable X is said to have a κ-generalized distribution, and we write
X ∼ κ-gen(α, β, κ), if it has a probability density function (PDF) given by:

f (x; α, β, κ) =
α

β

(
x
β

)α−1 expκ

[
−(x/β)α]√

1 + κ2(x/β)2α
, x > 0, α, β > 0, κ ∈ [0, 1). (3)

Its cumulative distribution function (CDF) can be expressed as:

F(x; α, β, κ) = 1− expκ

[
−(x/β)α]. (4)

(For a complete description of the κ-generalized distributional properties, the reader is
referred to [60] and the references cited therein. A heuristic derivation of the κ-generalized
density, showing how this probability distribution emerges naturally within the field of
κ-deformed analysis, is given in [61,63]).

Figure 1 illustrates the behavior of the κ-generalized PDF and the complementary
CDF, 1− F(x; α, β, κ), for various parameter values.

Each of the three graph pairs holds two parameters constant and varies the remain-
ing one.

The constant β is a characteristic scale that has the same dimension as income. For this
reason, it takes into account the monetary unit and can be used to adjust for inflation
and facilitate cross-country comparisons of income distributions expressed in different
monetary units. Increases in the monetary unit result in a global increase in individual
income and average income.
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Figure 1. κ-generalized PDF (left) and complementary CDF (right) for different values of the parame-
ters. The complementary CDF is plotted on double-log axes, which is the standard way to emphasize
the right-tail behavior of a distribution.

The α and κ parameters are scale-free parameters that affect the distribution’s shape.
The region around the origin of the κ-generalized distribution is dominated by α, while the
upper tail is dominated by both α and κ. Increasing κ leads to a thicker upper tail, while
increasing α tapers both tails and increases the concentration of probability mass around
the peak of the distribution.

As κ approaches 0, the distribution converges to the Weibull distribution; it is easy to
verify that:

lim
κ→0

f (x; α, β, κ) =
α

β

(
x
β

)α−1
exp

[
−(x/β)α] (5)

and:
lim
κ→0

F(x; α, β, κ) = 1− exp
[
−(x/β)α]. (6)

(The Weibull distribution is primarily studied in the engineering literature. In physics, it is
known as the stretched exponential distribution when α < 1. In economics, it has potential
for income data, although it has only been used sporadically—some applications can be
found in Refs. [29,35,64–69].) The distribution behaves similarly to the Weibull model for
x → 0+, while for large x it approaches a Pareto distribution of the first kind with scale

k = β(2κ)−
1
α and shape a = α

κ , i.e.:

f (x; α, β, κ) ∼
x→+∞

aka

xa+1 (7)

and:

F(x; α, β, κ) ∼
x→+∞

1−
(

k
x

)a
, (8)

thus satisfying the weak Pareto law [70]. (Additional versions of the Pareto law were
introduced by [71], limx→+∞

x f (x)
1−F(x) = a, and [30], limx→+∞

[
1 + x f ′(x)

f (x)

]
= −a. Since

we have: limx→+∞
x f (x;α,β,κ)

1−F(x;α,β,κ) = α
κ = a and limx→+∞

[
1 + x f ′(x;α,β,κ)

f (x;α,β,κ)

]
= − α

κ = −a, the
κ-generalized distribution also obeys these alternative versions of the weak Pareto law.)

Equation (4) implies that the quantile function is available in closed form:

F−1(u; α, β, κ) = xu = β

[
lnκ

(
1

1− u

)] 1
α

, 0 < u < 1, (9)
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an attractive feature for generating random numbers from a κ-generalized distribution.
The median of the distribution is:

xmed = β[lnκ(2)]
1
α , (10)

and the mode occurs at:

xmode = β

[
α2 + 2κ2(α− 1)

2κ2(α2 − κ2)

] 1
2α


√√√√1 +

4κ2(α2 − κ2)(α− 1)2

[α2 + 2κ2(α− 1)]2
− 1


1

2α

(11)

if α > 1; otherwise, the distribution is zero-modal with a pole at the origin.
Finally, the rth raw moment of the κ-generalized distribution is equal to:

〈xr〉 =
∞∫

0

xr f (x; α, β, κ)d x = βr(2κ)−
r
α

Γ
(
1 + r

α

)
1 + r

α κ

Γ
(

1
2κ −

r
2α

)
Γ
(

1
2κ + r

2α

) , (12)

where Γ(·) denotes the gamma function, and exists for −α < r < α
κ . Specifically:

〈x〉 = β(2κ)−
1
α

Γ
(

1 + 1
α

)
1 + 1

α κ

Γ
(

1
2κ −

1
2α

)
Γ
(

1
2κ + 1

2α

) (13)

is the mean of the distribution and:

〈
x2
〉
− 〈x〉2 = β2(2κ)−

2
α

Γ
(
1 + 2

α

)
1 + 2 κ

α

Γ
(

1
2κ −

1
α

)
Γ
(

1
2κ + 1

α

) −
Γ
(

1 + 1
α

)
1 + κ

α

Γ
(

1
2κ −

1
2α

)
Γ
(

1
2κ + 1

2α

)
2 (14)

is the variance.

2.2. Measuring Income Inequality Using the κ-Generalized Distribution

The concept of inequality in economics dates back to Pareto’s early work [10–13],
which showed that the top 20% of population held about 80% of total income/wealth.
Later, the American economist Lorenz [72] introduced the Lorenz curve, a widely used tool
for measuring income/wealth inequality. This curve measures the difference in income
or wealth distribution from an equal distribution. If there is perfect equality, the Lorenz
curve coincides with the diagonal of a unit square, while worsening distribution (more
inequality) moves the curve away from the diagonal.

The Lorenz curve for a random variable X with CDF F(x) and finite mean 〈x〉 =∫
x d F(x) is defined as [73]:

L(u) =
1
〈x〉

u∫
0

F−1(t)d t, u ∈ [0, 1]. (15)

Using the closed form of the quantile function F−1(u) of the κ-generalized distribution,
the Lorenz curve can be reformulated as follows [74]:

L(u) = Ix

(
1 +

1
α

,
1

2κ
− 1

2α

)
, x = 1− (1− u)2κ , (16)

where Ix(·, ·) is the regularized incomplete beta function defined in terms of the incomplete
beta function and the complete beta function, that is, Ix(·, ·) = Bx(·,·)

B(·,·) . The curve (16) exists
if and only if α

κ > 1. In particular, if Xi ∼ κ-gen(αi, βi, κi), i = 1, 2, the necessary and



Entropy 2023, 25, 1141 6 of 18

sufficient conditions for the Lorenz curves of X1 and X2 not to intersect (otherwise, it
would be impossible to determine which distribution has more inequality) are [58]:

α1 ≥ α2 and
α1

κ1
≥ α2

κ2
. (17)

The Lorenz curves of two κ-generalized distributions X1 and X2 with parameters
chosen according to (17) are illustrated in Figure 2. The depicted curves indicate that X1
exhibits lower inequality compared to X2, as the Lorenz curve of X1 does not intersect or
fall below that of X2.
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X2 ~ κ−gen(1.50,1.00,0.75)

Figure 2. Lorenz curves for two κ-generalized distributions.

Economists have employed statistical metrics to quantify income and wealth inequality.
The Gini coefficient, developed in 1914 by the Italian statistician Gini [75], is one of the best
known. From the general definition G = 1− 1

〈x〉
∫ ∞

0 [1− F(x)]2 d x due to [76], the Gini
coefficient associated with the κ-generalized distribution is:

G = 1− 2α + 2κ

2α + κ

Γ
(

1
κ −

1
2α

)
Γ
(

1
κ + 1

2α

) Γ
(

1
2κ + 1

2α

)
Γ
(

1
2κ −

1
2α

) . (18)

Using the Stirling approximation for the gamma function, Γ(z) ≈
√

2πzz− 1
2 exp(−z),

and taking the limit as κ → 0 in Equation (18), after some simplification one arrives at
G = 1− 2−

1
α , which is the explicit form of the Gini coefficient for the Weibull distribution

(see e.g., [77], p. 177). Since the exponential distribution is a special case of the Weibull
distribution with a shape parameter of 1, it follows directly that for κ → 0 and α = 1,
the exponential law is also a special limiting case of the κ-generalized distribution with a
true Gini coefficient of one half [16].

The Gini coefficient is a widely used measure of inequality, but it makes specific
assumptions about income differences in different parts of the distribution. It is most
sensitive to transfers around the middle of the income distribution and least sensitive to
transfers among the very rich or very poor [78]. Differently, the generalized entropy class
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of inequality measures [79–83] provides a range of bottom-to-top sensitive indices used by
analysts to assess inequality in different parts of the income distribution. The expression
for this class of inequality indices in terms of the κ-generalized parameters is [57]:

GE(θ) =
1

θ2 − θ


(

β

m

)θ
 (2κ)−

θ
α

1 + θ
α κ

Γ
(

1
2κ −

θ
2α

)
Γ
(

1
2κ + θ

2α

)Γ
(

1 +
θ

α

)− 1

, θ 6= 0, 1, (19)

where m = 〈x〉 denotes the mean of the distribution given by Equation (13). Formula (19)
defines a class because GE(θ) takes different forms depending on the value given to θ,
the parameter that describes the sensitivity of the index to income differences in different
parts of the income distribution—the more positive or negative θ is, the more sensitive
GE(θ) is to income differences at the top or bottom of the distribution. Two limiting cases
of (19), obtained when the parameter θ is set to 0 and 1, have gained attention in practical
work for the purpose of measuring inequality; these are the mean logarithmic deviation
index:

MLD = lim
θ→0

GE(θ) =
1
α

[
γ + ψ

(
1

2κ

)
+ ln(2κ)− α ln

(
β

m

)
+ κ

]
, (20)

where γ = −ψ(1) is the Euler–Mascheroni constant and ψ(z) = Γ
′
(z)/Γ(z) is the digamma

function, and the Theil index [84]:

T = lim
θ→1

GE(θ) =
1
α

[
ψ

(
1 +

1
α

)
− 1

2
ψ

(
1

2κ
− 1

2α

)
− 1

2
ψ

(
1

2κ
+

1
2α

)
− ln(2κ) + α ln

(
β

m

)
− ακ

α + κ

]
,

(21)

where the former is more sensitive to variations in the lower tail, while the latter is more
sensitive to variations in the upper tail [85]. (Equation (19) is not defined for θ = 0 and
θ = 1, as

(
θ2 − θ

)
= 0 in both cases. Expressions for these values of θ are therefore

derived using l’Hôpital rule, which allows evaluating limits of indeterminate forms using
derivatives. Expressions for any GE(θ) index other than the cases θ = 0, 1 can be derived
by simple substitution—see for example [60]).

Finally, the class of inequality measures introduced by Atkinson [86] can be derived
from (19) by exploiting the relationship [87,88]:

A(ε) = 1− [ε(ε− 1)GE(1− ε) + 1]
1

1−ε , ε > 0, ε 6= 1, (22)

where ε = 1 − θ is the inequality aversion parameter. As ε increases, A(ε) becomes
more sensitive to transfers among lower incomes and less sensitive to transfers among
top incomes [78]. The limiting form of (22) is A(1) = 1− exp(−MLD). (All measures
considered here are functions of distributional moments, whose existence depends on
conditions assuring the convergence of the appropriate integrals. The Gini coefficient
(18) exists if and only if the mean of the distribution 〈x〉 =

∫ ∞
0 x f (x; α, β, κ)d x converges,

which is true if and only if α
κ > 1. According to [89], parametric income distribution models

share the existence problem of popular inequality measures).

2.3. Estimation

The κ-generalized distribution’s parameters can be estimated using the maximum like-
lihood technique, which produces estimators with good statistical properties [90,91]. If sam-
ple observations x = {x1, . . . , xn, } are independent, the likelihood function is as follows:

L(x; θ) =
n

∏
i=1

f (xi; θ)wi =
n

∏
i=1

 α

β

(
xi
β

)α−1 expκ

[
−(xi/β)α]√

1 + κ2(xi/β)2α


wi

, (23)
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where f (xi; θ) denotes the PDF, θ = {α, β, κ} the vector of unknown parameters, wi the
weight of the ith observation, and n the sample size. This leads to the problem of solving
the partial derivatives with respect to α, β and κ for the log-likelihood function:

l(x; θ) = ln[L(x; θ)] =
n

∑
i=1

wi ln[ f (xi; θ)], (24)

which is the same as finding the solution to the following nonlinear system of equations:

n

∑
i=1

wi
∂

∂α
ln[ f (xi; θ)] = 0, (25)

n

∑
i=1

wi
∂

∂β
ln[ f (xi; θ)] = 0, (26)

n

∑
i=1

wi
∂

∂κ
ln[ f (xi; θ)] = 0. (27)

However, the derivation of explicit expressions for maximum likelihood estimators of the
three κ-generalized parameters poses a challenge due to the absence of feasible analyt-
ical solutions. The utilization of numerical optimization algorithms becomes therefore
imperative in order to solve the maximum likelihood estimation problem.

3. Application to the Income Distribution in Greece

To celebrate 20 years of Kaniadakis’ contribution, it seems appropriate to consider the
income distribution in his native Greece to demonstrate the κ-generalized model’s capacity
to fit real-world data. First, income data for parameter estimation are briefly described.
Next, the κ-generalized distribution is fitted to Greek household income data. Finally, using
the same income microdata, different income size distribution models are compared.

3.1. Description of the Income Data

Income distribution data for Greece were obtained from the Luxembourg Income
Study (LIS) database, which provides public access to household-level data files for various
countries, including both developed and developing economies. The data are remote-
accessible, requiring program code to be sent to LIS rather than being run directly by the
user. At the time of writing, LIS contains Greek income distribution data for the following
years: 1995, 2000, 2004, 2007, 2010, 2013, and 2016. The data set used for this review is
the 2016 data set based on the 2017 wave of the Greek EU-SILC survey conducted by the
Hellenic Statistical Authority (ELSTAT). (EU-SILC is a cross-sectional and longitudinal
sample survey coordinated by Eurostat, focusing on income, poverty, social exclusion,
and living conditions in the European Union.) The sample size is 22,555 households.

The definition of income is “household disposable income”, which is the income avail-
able to households to support consumption expenditure and saving during the reference
period. The measure includes income from work, wealth, and direct government benefits,
but subtracts direct taxes paid. It does not include sales taxes or noncash benefits, such as
healthcare provided by a government or employer. Additionally, the income definition
excludes income from capital gains, a significant source of nonwage income for wealthy
individuals. As a result, many top incomes are likely to be underestimated.

Household disposable income is expressed in euro and “equivalized”, i.e., divided by
the square root of household size to adjust for differences in household demographics. Prior
to equivalization, top and bottom coding is applied to set limits for extreme values. We also
exclude all households with missing disposable income and use person-adjusted weights
(the product of the household weights and the number of household members) when
generating income indicators for the total population and estimating model parameters.
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3.2. Results of Fitting

Figure 3 shows the results of fitting the κ-generalized distribution to empirical income
data corresponding to the distribution of household income in Greece for the year 2016.
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Figure 3. κ-generalized distribution fitted to Greek household income data for 2016. The red solid
line represents the κ-generalized model, which fits the data well over the whole range from low to
high incomes, including the middle income region. It is compared to the Weibull (blue dashed line)
and Pareto power-law (green dashed line) distributions. The complementary cumulative distribution
is plotted on double-log axes, emphasizing the right-tail behavior of the distribution. The Lorenz
curve plot compares the empirical and theoretical curves, with the gray solid line representing the
Lorenz curve of a society with equal income distribution. The Q-Q plot of sample percentiles versus
theoretical percentiles of the fitted κ-generalized shows excellent fit, with corresponding percentiles
being close to the 45◦ line from the origin.

The best-fitting parameter values were determined using maximum likelihood estima-
tion, resulting in estimates of α = 2.233± 0.017, β = 10, 667± 46, and κ = 0.630± 0.014.
The small errors indicate accurate estimations, and the comparison between the observed
and fitted probabilities in panels (a) and (b) of Figure 3 suggests that the κ-generalized dis-
tribution has great potential for describing data across the range of low-to-middle-income
to high-income power-law regimes, including the intermediate region where Weibull and
Pareto distributions show clear departures. (In Figure 3, the curves for the Pareto and
Weibull distributions have been drawn by expressing their parameters in terms of the
estimated κ-generalized parameters—see Section 2.1).

Panel (c) of the same figure displays data points for the empirical Lorenz curve
superimposed on the theoretical curve given by Equation (16) with estimates replacing α
and κ as necessary. This formula, represented by the red solid line in the plot, matches the
data exceptionally well. In addition, the plot contrasts the empirical Lorenz curve with
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the theoretical curves associated with the Weibull and Pareto distributions, respectively,
given by:

lim
κ→0

L(u) = P
(

1 +
1
α

,− ln(1− u)
)

, (28)

where P(·, ·) is the lower regularized incomplete gamma function, and:

lim
x→∞

L(u) = 1− (1− u)1− 1
a . (29)

As one can easily see, these curves tell only a small part of the story.
To provide an indirect check on the validity of the parameter estimation, we have

also computed predicted values for median and mean household disposable income,
as well as the Gini and Atkinson coefficients—the latter with the inequality aversion
parameter ε equal to 1. The results, obtained by substituting the estimated parameters
into relevant expressions, are presented in Table 1, along with their empirical counterparts,
corresponding to the LIS staff’s “Inequality and Poverty Key Figures” for the considered
country and year. (In this article, inequality measures are calculated using the most
recent version of DASP, the Distributive Analysis Stata Package [92], which is available at
http://dasp.ecn.ulaval.ca/—accessed on 29 June 2023. The complete set of corresponding
“key figures” is available in an Excel workbook that can be downloaded from https://www.
lisdatacenter.org/data-access/key-figures/—accessed on 29 June 2023.)

Table 1. Observed and predicted values of the median, the mean, the Gini index G and the Atkinson
inequality measure A(1).

Statistic
Observed

Predicted
Value LB a UB b

Median 9123 8983 9264 9181
Mean 10,548 10,292 10,805 10,488
G 0.323 0.312 0.334 0.322
A(1) 0.179 0.169 0.189 0.172

Notes: a lower bound of the 95% normal-based confidence interval obtained by adding −1.96 times the standard
error to the sample indicator; b upper bound of the 95% normal-based confidence interval obtained by adding
+1.96 times the standard error to the sample indicator. Source: author’s calculations based on Greek LIS data
for 2016.

The κ-generalized distribution predictions are fully covered by asymptotic normal
95% confidence intervals, confirming excellent agreement between the model and sam-
ple observations.

The linear behavior of the quantile-quantile (Q-Q) plot of sample percentiles against
the fitted κ-generalized distribution and its limiting cases, shown in panel (d) of Figure 3,
confirms the model’s validity as well as the fact that the Weibull and Pareto distributions
provide partial and incomplete data descriptions.

3.3. Comparisons of Alternative Distributions

This section compares the κ-generalized distribution’s performance with other para-
metric models, including the three-parameter generalized gamma [93], Singh–Maddala [33],
and Dagum type I [34] distributions, which have the following PDFs, respectively:

f (x; a, β, p) =
axap−1 exp

[
−(x/β)a]

βapΓ(a)
, x > 0, a, β, p > 0, (30)

f (x; a, b, q) =
aqxa−1

ba
[
1 + (x/b)a]1+q , x > 0, a, b, q > 0, (31)

http://dasp.ecn.ulaval.ca/
https://www.lisdatacenter.org/data-access/key-figures/
https://www.lisdatacenter.org/data-access/key-figures/
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f (x; a, b, p) =
apxap−1

bap
[
1 + (x/b)a]p+1 , x > 0, a, b, p > 0. (32)

Ref. [77] provides analytical expressions for distribution functions, moments, and tools
for inequality measurement, including the Lorenz curve and Gini coefficient. Refs. [87,94]
provide formulas for generalized entropy measures of the GB2 distribution, from which
the Singh–Maddala and Dagum versions are easily obtained. For the generalized gamma
distribution, closed expressions for the Theil entropy index and the mean logarithmic devi-
ation are given in Refs. [85,95]. (Let X be a random variable following the generalized beta
distribution of the second kind (GB2) with parameters a, b, p, and q, i.e., X ∼ GB2(a, b, p, q).
The Singh–Maddala distribution is the special case of the GB2 distribution when p = 1; the
Dagum type I distribution is the special case when q = 1. For a discussion of other special
cases, see [35,77]).

Table 2 displays maximum likelihood estimates for the models under consideration.

Table 2. Maximum likelihood estimates for the generalized gamma, Singh–Maddala, Dagum type I
and κ-generalized models of income distribution.

Model a
Parameters b Goodness-of-Fit Criteria c,d

a (α) b (β) q, p, κ RMSE MAE LRMSE LMAE

GG 0.684 829 5.475 2.325 2.047 0.939 0.812(0.018) (115) (0.270)

SM 2.441 12,531 1.835 0.716 0.574 0.319 0.187(0.021) (219) (0.053)

D 3.705 11,705 0.560 0.539 0.437 0.281 0.211(0.041) (104) (0.011)

κ-gen 2.233 10,667 0.630 0.530 0.418 0.188 0.139(0.017) (46) (0.014)

Notes: a GG = generalized gamma, SM = Singh-Maddala, D = Dagum type I, κ-gen = κ-generalized; b numbers
in parentheses: estimated standard errors; c RMSE = root mean square error, MAE = mean absolute error,
LRMSE = root mean square error between the observed and estimated Lorenz curves, LMAE = mean absolute
error between the observed and estimated Lorenz curves; d values multiplied by 100. Source: author’s calculations
based on Greek LIS data for 2016.

The κ-generalized model offers the best results, with parameter standard errors de-
rived from the inverse Hessian matrix being the lowest among competing income distribu-
tion models.

The root mean square error and mean absolute error between observed and predicted
probabilities were used to determine which distribution best fits the data. These goodness-
of-fit measures are, respectively, defined by:

RMSE =

√
1
n

n

∑
i=1

[
F̂W(t)− F

(
xi; θ̂

)]2
(33)

and:

MAE =
1
n

n

∑
i=1

∣∣F̂W(t)− F
(
xi; θ̂

)∣∣, (34)

where F̂W(t) = 1
W ∑n

i=1 wi1{xi ≤ t}, with W = ∑n
i=1 wi, denotes the weighted empirical

cumulative distribution function—equal to the sum of the income weights where x ≤ t
divided by the total sum of weights—and θ̂ is the vector of estimated parameters. (In the
formulas above, 1{·} is an indicator function that takes the value 1 if the condition in {·}
is true, 0 otherwise.) The RMSE and MAE between the observed and estimated Lorenz
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curves have also been used as goodness-of-fit criteria, as they are expected to better reflect
the accuracy of the inequality estimates. These additional measures are given by:

LRMSE =

√
1
n

n

∑
i=1

[
Li − L

(
λi; θ̂

)]2
(35)

and:

LMAE =
1
n

n

∑
i=1

∣∣Li − L
(
λi; θ̂

)∣∣, (36)

where λi = F̂W(t) and Li denote the cumulative share of population and income, respec-
tively, up to percentile i—i.e., (λi, Li) is a point on the empirical Lorenz curve.

Based on the above goodness-of-fit criteria, the κ-generalized model is clearly the best
fit. As shown in the last three columns of Table 2, the generalized gamma, Singh–Maddala,
and Dagum type I have larger RMSE and MAE values for both probabilities and Lorenz
curves, suggesting that these models perform worse than the κ-generalized distribution.

The performance of the four models is further evaluated by considering the accuracy
of selected distributional statistics implied by parameter estimates. Table 3 presents the
predicted values for the median, mean, and several inequality measures derived from
estimates in Table 2. (The Gini coefficient of the generalized gamma distribution is available
in [35] as a long expression involving the Gaussian hypergeometric function 2F1, which is
not currently available in the online statistical evaluator provided by the LIS web-based
interface. An estimate of the Gini index for the generalized gamma distribution was
therefore obtained by numerically integrating the area between the predicted Lorenz curve
and the line of hypothetical equality. Ref. [96] reviews various methods for numerically
estimating the Gini.)

Table 3. Observed and predicted values of selected distributional statistics.

Statistic a
Observed Predicted d

Value LB b UB c GG SM D κ-gen

Median 9123 8983 9264 9076 9108 9189 9181
Mean 10,548 10,292 10,805 10,532 10,463 10,447 10,488
G 0.323 0.312 0.334 0.333 0.321 0.320 0.322
MLD 0.197 0.185 0.209 0.196 0.183 0.188 0.188
T 0.191 0.175 0.207 0.180 0.174 0.178 0.181
A(1) 0.179 0.169 0.189 0.178 0.168 0.172 0.172

Notes: a G = Gini index, MLD = mean logarithmic deviation index, T = Theil index, A(1) = Atkinson coefficient
with inequality aversion parameter ε equal to 1; b lower bound of the 95% normal-based confidence interval
obtained by adding−1.96 times the standard error to the sample indicator; c upper bound of the 95% normal-based
confidence interval obtained by adding +1.96 times the standard error to the sample indicator; d GG = generalized
gamma, SM = Singh–Maddala, D = Dagum type I, κ-gen = κ-generalized. Source: author’s calculations based on
Greek LIS data for 2016.

For each of the models examined, the accuracy of the implied statistics is evaluated by
calculating the absolute percentage error:

APE =
|P− A|

A
× 100 (37)

between the predicted values (P) and the actual sample estimates (A) given in Table 3.
The results are summarized in Figure 4.
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Figure 4. Absolute percentage error between the predicted values for key distributional summary
measures and their sample counterparts.

Except for the median, the κ-generalized distribution has more accurate implied
estimates of selected distributional statistics than the Singh–Maddala and Dagum type I
models, with the Gini coefficient being significantly more accurate. This implies that the
κ-generalized estimation procedure preserves the mean characteristic of the analyzed data
and accurately models intra- and/or inter-group variation. Additionally, when considering
income differences in different parts of the income distribution, the κ-generalized provides
more accurate estimates than the two competitors of the MLD index, Theil index T and the
Atkinson inequality measure A(1). The Gini is an inequality index sensitive to the middle,
while the other indices are more sensitive to the top and bottom of the income distribution.
These results support the closest approximation to the income distribution found for the
κ-generalized model.

The κ generalized distribution also outperforms the generalized gamma in predicting
the Gini coefficient and Theil index, while the generalized gamma provides more accurate
estimates for the MLD index, the A(1) measure, the median, and the mean. This agreement
is due to better fit in the lower part of the observed distribution, while disagreements
arise from poorer fit in the upper-middle range, especially at the top end. This is demon-
strated by the double-logarithmic plot in Figure 5, known as the Zipf plot, which shows
the relationship between income and the complementary CDF of income for the data
under study.

The Zipf plot is natural to use when looking at the upper part of the distribution
because it puts more emphasis on the upper tail and makes it easier to detect deviations
in that part of the distribution from what a model would predict [97]. The lines show
the Zipf plots that were predicted by fitting the generalized gamma and κ-generalized
models. As the graph shows, both are pretty close to the actual data in the lower part of
the income distribution. However, the empirical observations of the upper tail are very
different from what the generalized gamma says they should be, while the theoretical Zipf
plot for the κ-generalized distribution is much closer to the empirical one in the same part
of the observed income distribution.
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Figure 5. Zipf plot for the 2016 Greek household income data. The lines are the predicted Zipf plots
obtained from the fit of the generalized gamma and κ-generalized models.

4. Applications of κ-Generalized Models to Income and Wealth Data

Apart from the one considered in this review, there have been numerous applications
of the κ-generalized model to real-world income data over the past two decades.

The first study was conducted by [47], who analyzed 2001–2002 household incomes in
Germany, Italy, and the United Kingdom. They found excellent agreement between the
model and the empirical distributions across the full spectrum of incomes, including the
intermediate income range where clear deviation was found when the Weibull model and
pure Pareto law were used for interpolation.

The κ-generalized distribution was later applied to Australian household incomes in
2002–2003 [56] and US family incomes in 2003 [56,57]. The model again described the entire
income range well and accurately estimated the inequality level in both countries using the
Lorenz curve and Gini measure.

Comparative studies that fit multiple distributions to the same data are crucial for
comparing performance. For example, Ref. [58], which examined the distribution of house-
hold income in Italy from 1989 to 2006, showed that the κ-generalized model outperforms
three-parameter competitors such as the Singh–Maddala and Dagum type I distributions,
except for the GB2, which has an extra parameter. The model has also also been used to
analyze household income data for Germany between 1984 and 2007, the United King-
dom between 1991 and 2004, and the United States between 1980 and 2005. In many
cases, the distribution of household income is observed to conform to the κ-generalized
model, rather than the Singh–Maddala or Dagum type I distributions. In particular, the κ-
generalized distribution is found to outperform competitors in the right tail of the data.
The three-parameter κ-generalized model provides superior income inequality estimates
even when the fit is worse than distributions belonging to the GB2 family, as obtained
by [98] when comparing US and Italian income data for the 2000s. Finally, Ref. [60] finds
that the κ-generalized distribution offers a superior fit to the data and, in many cases,
estimates income inequality more accurately than alternatives using household income
data for 45 countries from Wave IV to Wave IX of the LIS database. (Four-parameter
extensions of the κ-generalized distribution, called extended κ-generalized distributions of the
first and second kind—EκG1 and EκG2, respectively—were introduced by [74]. These two
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extensions are not discussed here, but Refs. [60,61,74] provide formulas for the moments,
Lorenz curve, Gini index, coefficient of variation, mean logarithmic deviation, and Theil
index for both the models. The new variants of the κ-generalized distribution outperform
other four-parameter models in almost all cases, especially in estimating inequality indices
with greater precision. In addition, a κ-deformation of the generalized gamma distribution
with a power-law tail has recently been proposed by [99], to which the reader is referred
for further details.)

The κ-generalized distribution has also been used to analyze the singularities of
survey data on net wealth, which is gross wealth minus total debt [60,61,100]. These
data show highly significant frequencies of households or individuals with wealth that
is either null or negative. The κ-generalized model of wealth distribution is a mixture
of an atomic and two continuous distributions. The atomic distribution accounts for
economic units with no net worth, while a Weibull function accounts for negative net worth
data. Positive net worth values, on the other hand, are represented by the κ-generalized
model (3). The κ-generalized mixture model for wealth distribution was used to model
US net worth data from 1984 to 2011 [100]. The model was generally accurate and its
performance was superior to that of finite mixture models based on the Singh–Maddala
and Dagum type I distributions for positive net worth values. Similar results were later
obtained by Ref. [60] when analyzing net wealth data for nine countries selected from the
Luxembourg Wealth Study (LWS) database. (The Luxembourg Wealth Study database—see
https://www.lisdatacenter.org/our-data/lws-database/, accessed on 29 June 2023—is a
collaborative project to assemble existing microdata on household wealth into a coherent
database, aiming to do for wealth what the LIS database has achieved for income. The LWS
was officially launched in 2004 and currently provides wealth data sets for several countries
and years.)

5. Concluding Remarks

The κ-generalized distribution, a statistical model developed over several years of
collaborative, multidisciplinary research, is a valuable tool for studying income and wealth
distributions. This article discussed its basic properties, relationships with other distribu-
tions, and important extensions. It also discussed common inequality measures such as the
Lorenz curve and Gini index, and how they can be computed from κ-generalized parameter
estimates. A review of empirical applications showed excellent agreement with observed
data. It is hoped that the collection of all these results in a single source will facilitate and
promote the use of the κ-generalized distribution.
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