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Abstract 
 
At the commonsensical level of the manifest image, we seem to take for granted 
logical laws of all sorts, including classical logic (CL) and naive principles of truth 
and predication (TP), which, however, generate logical paradoxes such as the liar, 
Russell’s paradox and Curry’s paradox. The formal logic of the scientific image 
comes to the rescue by proposing many competing formal systems that restore con-
sistency, by sacrificing either principles of CL or principles of TP. We wish to ex-
plore a different path, which aims at saving both CL and TP, and deals with the 
paradoxes when they come to the fore, without swallowing contradictions or ex-
plosion. We consider the viability of Batens’ Inconsistency-Adaptive Logic (IAL) 
to pursue this goal and we end up with a negative assessment. We then sketch an 
alternative proposal that incorporates IAL’s distinction between provisional and 
final derivability. 
 
Keywords: Truth, Predication, Logical paradoxes, Adaptive logics, Provisional de-

rivability, Final derivability. 
 
 
 
 

1. Introduction 

There is a familiar clash between the scientific image offered by science and the 
manifest image emerging from common sense. This dichotomy is typically put 
forward at a metaphysical level, but it can be extended to logic by distinguishing 
between the formal logic of the scientific image and the informal logic of the man-
ifest image. At the commonsensical level of the manifest image, we seem to take 
for granted logical laws and rules of all sorts, which taken together could be seen 
as constituting a logical system, which we may call the Global Deductive System, or 
GDS in short (following Orilia 2014). This presumably includes classical logic 
(CL), as well as naive principles of truth and predication (TP). However, as it is 
well known, CL and TP taken together generate logical paradoxes such as the 
liar, Russell’s paradox and Curry’s paradox. Russell’s paradox and the liar gener-
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ate contradictions, and, by assuming CL and its Ex Falso Quodlibet rule, explo-
sion, i.e., that every proposition whatsoever can be proven. Curry’s paradox, on 
the other hand, generate explosion directly.  

The formal logic of the scientific image comes to the rescue by proposing 
many competing formal systems that restore consistency, by sacrificing in some 
way or another either principles of CL or principles of TP. For example, in the 
truth theory of Kripke 1975, or the property theory of Field 2004, the law of Ex-
cluded Middle of CL is not generally valid, and in the paraconsistent logic of 
Priest 1987 Modus Ponens and the principle of non-contradiction are rejected. In 
contrast, the truth theory of Gupta and Belnap 1993, and the property theories of 
Orilia 2000, and Orilia and Landini 2019, save CL, but circumscribe TP. 

It is as if the scientific image prescribes a reform of the GDS based on one or 
the other of such proposals; any such reform in effect rejects as non-valid some 
prima facie valid logical rules. In this way however we do not do full justice to the 
manifest image, for it seems that ordinary reasoners are deeply committed to all 
the prima facie principles that are sacrificed in one or the other reformatory pro-
posal, and thus it is difficult to admit that the GDS does not really include some 
of them. Moreover, the number of reformatory proposals is very large (see Cantini 
and Bruni 2021: §6), and it is hard to see how one can choose among them. In-
deed, it is even hard to understand how there can be such radical disagreements 
among the experts about how the GDS should be reformed. 

These problems suggest a different path. Perhaps, we should save the mani-
fest image and make it compatible with the scientific image in a different way. 
That is, we should seek consistency, not by rejecting rules of the GDS, but by 
administering deductions by meta-deductive principles that allow one to deal with 
problematic inferences when they come to the fore, without swallowing contra-
dictions or explosion, while otherwise enjoying the full deductive power of the 
GDS. 

An approach of this sort has been informally outlined in Orilia 2014. In that 
work, it was also suggested that the adaptive logic framework put forward by Bat-
ens in many publications (e.g., Batens 1999, 2000, 2001) could provide a way to 
formalize the approach in question. In this paper, we explore this suggestion and 
we end up with a negative response. Unfortunately, adaptive logic does not seem 
fit for this goal. We then move forward by making some further steps toward an 
appropriate formalization, in a way that inherits some ideas from adaptive logic, 
in particular, a distinction between provisional and final derivability. 

The paper is organized as follows. In §2, we make our desiderata more pre-
cise, introduce a formal language adequate to them, and explain how Russell’s 
paradox and Curry’s paradox arise, in a format useful to explain our proposal in 
the following. In §3, we discuss adaptive logic and explain why, despite its initial 
appeal, is not in fact satisfactory. In §4, we focus on our proposal, explain how it 
is meant to deal with the paradoxes, without sacrificing neither CL nor TP, and 
lay down directions for future research. 

 
2. Desiderata, Formal Language and Paradoxes 

The project of saving the manifest logical image, as we may call it, generates the 
following three desiderata for a GDS, 𝒯. 
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(D1) 𝒯 is a classical theory, in the sense that it contains the rules of inference 
of CL, and deductively grants all the laws of CL.1 

(D2) 𝒯 must be consistent, in the sense that it should not feature any logical 
contradictions among its theorems, and it must be non-trivial, in the 
sense that the set of its theorems does not have to coincide with the whole 
set of sentences of the language it is based upon.2 

(D3) 𝒯 contains TP, i.e., naive principles of truth and predication. 

It is immediately clear for all those who are acquainted with the literature on 
logical paradoxes where the difficulty of keeping together these desiderata lies: 
for every realization of (D3) one can think of, the paradoxes make it impossible 
to think of keeping (D1) and (D2). The solution that we are going to explore here 
relies on approaching to the concept of “provability” in a way that departs signif-
icantly from the one in which this is usually implemented in formal logic. It is 
based on a distinction between provisionally derivable sentences, and finally derivable 
ones. This distinction leads to considering deductive processes that may be re-
vised, so as to reject previously derived conclusions in order to avoid incon-
sistency. The family of logics of the adaptive type going under the name of incon-
sistency-adaptive logics may seem to provide what is needed here. In the next 
section, we shall explain the reason why these logical systems are natural candi-
dates for trying to formally capture an approach of this sort, in the spirit of the 
proposal made in Orilia 2014. However, we shall also show that the adaptive 
mechanism is not fully satisfactory in this respect. In the light of the critical issues 
that we isolate, we shall then move on to our proposal in §4. Before proceeding 
we shall here make explicit a formal framework apt to implement our desiderata 
and review how it gives rise to logical paradoxes. 

A formal language appropriate to desiderata (D1) and (D3) is the language 
ℒ! from Orilia 2000, which is also at use in Orilia and Landini 2019. ℒ! is based 
on a standard alphabet, with symbols for the logical connectives “¬” (negation), 
“&” (conjunction), “∨” (disjunction), “→” (conditional), and “↔” (biconditional), 
as well as for the quantifiers “∀” (universal) and “∃” (existential), the abstraction 
operator “𝜆”, a denumerable set 𝒱 of individual variables, and a denumerable set 
𝒫! of predicate constants including the dyadic predicate constant “=” (the iden-
tity predicate), and, for any 𝑛 > 0, the predicate constants “𝑝"” (the predication or 
exemplification predicates), plus additional punctuation signs, such as parentheses 
and brackets.3 

 
1 What we mean here by “logical theory” is an informal notion, basically referring to the 
collection of inferences that are accepted for the sake of producing an argument. Our project 
is to find formal candidates to play the role of such a collection, hence to substitute a candi-
date theory in this informal sense with a proper, formal one, even though this may turn out 
not to be a “standard” system of axioms (i.e., a theory whose set of theorems is a recursively 
enumerable collection of formulas). 
2 If 𝒯 is a classical theory, i.e., it is based upon classical logic, then consistency is enough 
to entail non-triviality (and vice versa). So, if (D1) already holds, then (D2) simply amounts 
to requiring that 𝒯 be consistent (or non-trivial). However, if one considers (D2) per se, as 
we are doing here, then consistency and non-triviality are not equivalent as, for example, 
a theory based on a non-classical logic, like, e.g., a paraconsistent logic, can be inconsistent 
but non-trivial (see §3). 
3 We have here retained the definition of the language ℒ! from Orilia 2000 for the sake of 
illustrating a general point. In particular, the language as it is here defined contains no 
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The collections 𝒯! and ℱ! of expressions of ℒ!, containing the terms and 
well-formed formulas of ℒ! respectively, are defined by simultaneous induction as 
follows: 

Definition 1.  The sets 𝒯!, ℱ! are the smallest collections of expressions of ℒ! such that: 
(T1) all elements of 𝒱 are elements of 𝒯! as well; 
(F1) if 𝑡#, … , 𝑡" are elements of 𝒯! and 𝑝" is any 𝑛-adic predicate constant, then 

𝑝"(𝑡#, … , 𝑡") is an (atomic) element of ℱ!; 
(F2) if 𝑥 is an element of 𝒱, and 𝐴 and 𝐵 are elements of ℱ!, then ¬𝐴, (𝐴&𝐵), 

(𝐴 ∨ 𝐵), (𝐴 → 𝐵), (𝐴 ↔ 𝐵), ∃𝑥𝐴 and ∀𝑥𝐴 are elements of ℱ! as well; 
(T2) if 𝑥#, … , 𝑥" are elements of 𝒱 and 𝐴 is an element of ℱ!, then [𝜆𝑥#, … , 𝑥$. 𝐴] is 

an element of 𝒯!. 

We shall often omit superscripts from formulas 𝑝"(𝑡#, … , 𝑡"), as they can be easily 
recovered from the context. 

The reasons for choosing such a language have been extensively explained 
elsewhere, for example in Orilia and Landini 2014: §2, §4. Thus, for space con-
sideration, we shall not dwell on them again, but the main idea is to have a type-
free, first-order language for predication,4 which could replicate and account for 
phenomena which seem to be present in natural languages.5 In particular, the 
predicate 𝑝# can work as a truth predicate, when applied to vacuous lambda terms 
(as in 𝑝#([𝜆𝑥. 𝐴])), and the predicates 𝑝" (for 𝑛 ≥ 2) can work as predication re-
lations, when applied to non-vacuous lambda terms (as in 𝑝$([𝜆𝑥. 𝐴(𝑥)], 𝑡)). 

Clearly, to meet desideratum (D1), we need to associate to this language a 
complete system of rules for CL. Moreover, as explained in Orilia 2014, to meet 
desideratum (D3), one should also associate to this language the following gener-
alized lambda-conversion schema: 

(𝜆-conv) 𝑝"([𝜆𝑥#, … , 𝑥". 𝐴], 𝑡#, … , 𝑡") ↔ 𝐴(𝑡#/𝑥#, … , 𝑡"/𝑥"), for every formula 
𝐴 in ℱ! and terms 𝑡#, … , 𝑡" in 𝒯!. 

Let 𝛤! be the collection of instances of the lambda-conversion schema over 
formulas of ℒ!, namely the whole set of instances (𝜆-conv). The combination of 
the expressive power of the language ℒ! with the deductive power of 𝛤! provides 
us with a very general theory of predication. However, the combination of 𝛤! 
with classical logic is explosive, as it allows one to reconstruct, for instance, the 
arguments by Russell and Curry leading to contradiction or explosion. 

 
individual constants. Of course, should one have particular applications in mind (like, for 
instance, introducing a theory for doing arithmetic), this feature would have to be changed, 
but to get an extension of the given language by means of new constants is unproblematic, 
as is well known. Since we are not concerned with any such application in this paper, we 
have preferred to leave the definition of ℒ! as it was. 
4 As a referee has pointed out to us, the language ℒ! is, literally speaking, not “type-free” 
if by this we mean that there are no distinctions of expression types. The language is type-
free however in the sense that its predication predicates allow one to view lambda terms as 
capable of occurring in both subject and predicate position, and thus as capable of giving 
rise to self-predication, as it will be illustrated in the discussion of Russell’s and Curry’s 
paradoxes below. 
5 For instance, this language makes it possible to foster a compositional approach to mean-
ing à la Montague (see Montague 1974: Chapters 6-8, for instance), as explained by Orilia 
and Landini (2014: §4). 
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For Russell’s paradox, let 𝑅 ≡ [𝜆𝑥.¬𝑝(𝑥, 𝑥)]. Then the formula 𝑝(𝑅, 𝑅) ↔
¬𝑝(𝑅, 𝑅) is in our set 𝛤!. (We shall abbreviate the formulas 𝑝(𝑅, 𝑅) and ¬𝑝(𝑅, 𝑅) 
of ℒ! with 𝑅 ∈ 𝑅 and 𝑅 ∉ 𝑅, respectively.) 

For Curry’s paradox, let 𝐴 be an arbitrary, but fixed formula of ℒ!. Take 𝑡% 
to be [𝜆𝑥. (𝑝(𝑥, 𝑥) → 𝐴)]. Call 𝐶% the formula 𝑝(𝑡%, 𝑡%), the Curry formula for 𝐴. 
Then,	𝑝(𝑡%, 𝑡%) ↔ 𝑝(𝑡%, 𝑡%)®	𝐴 is also in 𝛤!. 

The derivations of the paradoxes then go on according to the standard route, 
which is the following, as far as Russell’s paradox is concerned:6 

(1) 𝑅 ∈ 𝑅 ↔ 𝑅 ∉ 𝑅                               𝜆-conv 
(2) 𝑅 ∈ 𝑅 → 𝑅 ∉ 𝑅                               ConjEl 
(3) 𝑅 ∈ 𝑅 → 𝑅 ∈ 𝑅                                    Ref 
(4) 𝑅 ∈ 𝑅 → (𝑅 ∈ 𝑅	&	𝑅 ∉ 𝑅)        ConjCons 
(5) ¬(𝑅 ∈ 𝑅	&	𝑅 ∉ 𝑅)                            LNC 
(6) 𝑅 ∉ 𝑅                                                  MT 
(7) 𝑅 ∉ 𝑅 → 𝑅 ∈ 𝑅                             ConjEl 
(8) 𝑅 ∈ 𝑅                                                 MP. 

Curry’s paradox is then obtained as follows:7 

(1) 𝐶% ↔ (𝐶% → 𝐴)                              𝜆-conv 
(2) 𝐶% → (𝐶% → 𝐴)                              ConjEl 
(3) G𝐶% → (𝐶% → 𝐴)H → (𝐶% → 𝐴)       Contr 
(4) 𝐶% → 𝐴                                                MP 
(5) (𝐶% → 𝐴) → 𝐶%                             ConjEl 
(6) 𝐶%                                                       MP 
(7) 𝐴                                                        MP. 
 

3. Adaptive Logic and the Paradoxes 

Adaptive logics are deductive systems that have been introduced by Diderik Bat-
ens for the sake of recovering features that are commonly lacking in standard for-
mal theories and that are typical of the natural way of arguing.8 In particular, 
adaptive proofs exhibit two sorts of dynamics that are absent in standard formal 
systems: 

(A) an external dynamics that may cause a conclusion to be withdrawn in view 
of new information; 

 
6 We use a simplified Hilbert-style presentation with abbreviations for the relevant appli-
cations of classical laws and rules of inference involved: “𝜆-conv” just indicate an instance 
of a formula contained in the set 𝛤!; “ConjI” (“ConjEL”) is an abbreviated reference to 
the derivation going from a premise of the form 𝐴, 𝐵 (𝐴	&	𝐵) to 𝐴	&	𝐵 (either 𝐴, or 𝐵); 
“Ref” indicates an instance of the classical law of reflexivity 𝐴 → 𝐴; “ConjCons” refers 
instead to the inference going from 𝐴 → 𝐵 and 𝐴 → 𝐶 to 𝐴 → (𝐵	&	𝐶); “LNC” indicates an 
instance of the classical law of non-contradiction ¬(𝐴	&	¬𝐴); “MT” is an abbreviation for 
modus tollens and “MP” for modus ponens. 
7 In addition to the abbreviations used before and explained in Footnote 6, we here intro-
duce “Contr” to indicate an instance of the classical law of contraction. 
8 The adaptive logic project is now huge. See the webpage illustrating all the directions of 
work it has given birth to at http://logica.ugent.be/adlog/al.html. 
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(B) an internal dynamics according to which a conclusion may be withdrawn in 
view of a better understanding of the premises provided by a continuation 
of the reasoning. 

On the basis of the first feature, adaptive proofs are non-monotonic with re-
spect to the set of their premises, since a conclusion drawn on the basis of a certain 
set of this sort might be withdrawn in a deduction from a larger set. On the basis 
of the second feature, adaptive proofs are also non-monotonic with respect to the 
length of the proof, since a conclusion drawn at a certain stage in a proof might 
be withdrawn at a later stage. So, every conclusion in an adaptive logic is provi-
sional, as it can be revised in view of additional information. This is made possible 
by means of a marking system that keeps track of all those deductive steps that are 
candidate to be critical with respect to the adaptive proviso we have just described: 
a conclusion is marked whenever it is drawn under the assumption that some of 
the premises it relies upon are normal formulas (i.e., whenever it would require 
the application of an inference of the upper-limit logic—see below—that is not 
fully safe). 

In short,9 an adaptive logic AL can be presented as a triple whose compo-
nents are: a lower-limit logic, a set of formulas representing abnormalities, i.e., for-
mulas that exhibit a non-normal behaviour, that one would want to “block” de-
ductively speaking, and a strategy which coincides with the rules governing the 
marking system and how it applies to proofs. The lower-limit logic reflects how 
prudent one is willing to be in this respect, as it contains all of the axioms and 
inferences that are regarded as safe. Therefore, all consequences drawn by means 
of the lower-limit logic are never retracted and they end up being finally derivable. 
The upper-limit logic of the systems we are going to consider for our own pur-
poses is CL. 

As we saw, the GDS must come to terms with the contradictions arising from 
the paradoxes. Therefore, adaptive logics that could work as the GDS-like theory 
we are looking for are those in which the set of abnormalities contains logical 
contradictions. This is the characteristic feature of the so-called inconsistency-adap-
tive logics from Batens 1999. 

The three elements which characterize AL in general take the following 
shape in case AL is an inconsistency-adaptive logic (IAL, henceforth): 

(IAL1) the lower-limit logic of the IAL is a paraconsistent logic; 
(IAL2) the set of abnormalities are logical contradictions; 
(IAL3) the adopted strategy may vary, with the so-called reliability strategy and 

the minimal abnormality strategy (both described in Batens 1999), being 
the most prominent examples. 

The paraconsistent logic that serves the purpose of lower-limit logic is usually 
chosen in such a way to avoid explosion, so that it normally coincides with weak 
paraconsistent systems that somehow help blocking the deductive consequences 
of logical contradictions. Examples of IALs are the theories presented in Batens 
1999, Batens 2000, and Verdée 2012. The choice of the lower-limit logic and the 
set of abnormalities determines, as we said, the upper-limit logic, which is CL. 

 
9 The informal presentation of adaptive logics that follows, as well as the slightly more 
detailed one that can be found right after it, is based upon some general characterization 
of adaptive systems available in the literature, e.g. in Batens 2001. 
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This justifies viewing derivability in the lower-limit logic as corresponding to de-
rivability in CL with the additional assumption about certain abnormalities being 
false.10 As far as the strategy is concerned, we assume here the reliability strategy, 
which is simpler to describe, since changing the strategy would be irrelevant with 
respect to the critical issues we raise in the following. 

The nice aspect of IALs (as well as of ALs in general) is that they come 
equipped with a more or less standard proof theory. So, derivations in an IAL 
admit a simple description (despite their not being simple objects)11, that can be 
informally explained as follows. Let ℒ be a standard first-order language, and let 
𝛤 and 𝐴 be a finite set of formulas of ℒ and a formula of ℒ, respectively. Let S be 
an arbitrary, but fixed, IAL with LLL as its lower-limit logic, and let 𝛺 be the set 
of its abnormalities. The derivation of 𝐴 from 𝛤 in S depends upon conditions 𝛥, 
where 𝛥 is a subset of 𝛺, and it amounts to three cases: either (i) 𝐴 is a premise, 
that is 𝐴 is an element of 𝛤, and then it is provable in S under no condition (i.e., 
under conditions 𝛥 = ∅), or (ii) 𝐴 is derivable in the LLL from formulas that have 
already been derived in S from 𝛤, and then it is derivable under all conditions 
upon which the derivations of these formulas depend, or (iii) 𝐴 is derivable in the 
LLL from formulas that have already been derived in S from 𝛤 under the assump-
tion that a finite set 𝛩 of abnormalities is false, and then 𝐴 is derivable in S from 
𝛤 under all of the conditions on which the proofs of the previously derivable for-
mulas depend, plus the formulas in 𝛩. 

This informal description has the following formal counterpart, where we 
describe the proof procedure as being given in stages, to indicate which we use the 
Greek letters 𝛼, 𝛽,… possibly with subscripts. The only assumptions that we make 
about stages in an S-proof is that these are numbers greater than 1.12 

Definition 2. Let 𝛤 be a set of formulas of ℒ, 𝛥 ⊆ 𝛺, 𝐴 a formula of ℒ, and 𝛼 ≥ 1. 
We say that 𝐴 is provable in S from 𝛤 at stage 𝛼 under conditions 𝛥 (in 
symbols: 𝛤 ⊢&' 𝐴), if and only if: 

(P1) either 𝐴 ∈ 𝛤, 𝛥 = ∅ and 𝛼 is any number greater than 1, 

(P2) or, for some formulas 𝐵1, … , 𝐵𝑛 of ℒ we have 𝐵1, … , 𝐵𝑛	 ⊢!!!
	 𝐴, and, for some 

𝛼1, … , 𝛼𝑛 with 1 ≤ 𝛼+ < 𝛼, and for some 𝛥1, … , 𝛥𝑛 ⊆ 𝛺 we have 𝛤 ⊢&!
'! 𝐵, for 

every 1 ≤ 𝑗 ≤ 𝑛, and 𝛥 = ⋃ 𝛥,#-,-" , 

 
10 As a matter of fact, one can show that, for every formula 𝐴 of the language ℒ, 𝐴 is prov-
able in CL if and only if there exists a finite set 𝛥 of abnormalities such that 𝐴⋁𝛥 is provable 
in the lower-limit logic, where ⋁𝛥 is the disjunction of all the formulas in 𝛥 (i.e., ⋁𝛥
:= (𝐷" ∨ 𝐷# ∨ …𝐷$) if 𝛥 = {𝐷", … , 𝐷$}). See for instance Batens 1999, where both the case 
of a propositional IAL, as well as a first-order one are considered. 
11 The non-monotonic character of the process by means of which finally derivable formu-
las—see below—, are obtained in an AL makes proofs essentially infinite objects, as it is 
shown in Horsten and Welch 2007. 
12 In view of the result by Horsten and Welch (2007: §3) about adaptive derivations being 
infinite objects, stages should be indicated by ordinals, or by means of a suitable ordinal 
notation. Our own notation is chosen to remain coherent with this fact. However, since 
the matter is largely irrelevant for the purposes of the present paper, we have decided to 
avoid stressing this aspect any further here. 
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(P3) or, for some formulas 𝐵1, … , 𝐵𝑛 of ℒ and 𝛩 ⊆ 𝛺, we have 
𝐵1, … , 𝐵𝑛	 ⊢!!!

	 𝐴	⋁	𝛩, and, for some 𝛼1, … , 𝛼𝑛 with 1 ≤ 𝛼+ < 𝛼, we have 

𝛤 ⊢&!
'! 𝐵, , 1 ≤ 𝑗 ≤ 𝑛 and 𝛥 = ⋃ 𝛥,#-,-" ∪ 𝛩. 

That a formula is derivable in an IAL S in the above sense is just a first step 
toward the complete definition of theoremhood for a theory like S. This is be-
cause, as we said, provability in an adaptive system is provisional and it depends 
upon the strategy adopted to distinguish final theorems from non—final ones. 
The reliability strategy we are using to illustrate how this distinction may actually 
apply, is based upon making a difference, as the name suggests, between “relia-
ble” and “unreliable” conclusions. In turn, this is based upon stressing the role of 
minimal abnormalities. In short, a finite set 𝛥 of abnormalities is minimal at a given 
stage 𝛼 in an S-derivation (or, 𝛼-minimal), if and only if: 

(M1) 𝛥 is derivable in S under no condition at a prior stage 𝛽, i.e., ⊢𝛽
∅ ⋁𝛥 for 

some 𝛽 < 𝛼; 
(M2) no proper subset 𝛴 of 𝛥 is similarly derivable at a stage up to and includ-

ing 𝛼 under no conditions, i.e. ⊬𝛾
∅ ⋁𝛴 for every 𝛴 ⊂ 𝛥 and 𝛾 ≤ 𝛼. 

Then, we put: 

Definition 3.  Let 𝛤 be a set of formulas of ℒ. Then, for every 𝛼 ≥ 1, the set 𝑈𝛼(𝛤) 
of the 𝛤-unreliable formulas at 𝛼 is defined as: 

𝑈𝛼(𝛤) : = ⋃{𝛥: 𝛥 is 𝛼-minimal} 
Not surprisingly, “unreliability” in this calculus is a consequence of (prova-

ble) abnormality: at any stage of an adaptive proof, unreliable formulas are those 
that are proved to be abnormal and that are minimally so in the sense of the pre-
vious definition of the term. 

The idea behind the marking system based on the reliability strategy reflects 
the attempt of keeping track of anything that is proved under unreliable condi-
tions: 

Definition 4.  Let 𝛤 be as in the previous definition. Then, for every formula 𝐴 of ℒ, 
and stages 𝛼, 𝛽 ≥ 1, we say that the S-derivation of 𝐴 from 𝛤 at 𝛼 is 
marked at stage 𝛽 if and only if 𝛤 ⊢&' 𝐴 and 𝛥 ∩ 𝑈2(𝛤) ≠ ∅, and we 
say that the derivation is not marked at 𝛽 otherwise.13 

It must be noticed that the definition does not presuppose any previously 
established relation between the stages 𝛼 and 𝛽 that it involves. In particular, it 
might be that 𝛼 > 𝛽, meaning that the derivation of 𝐴 from 𝛤 under conditions 𝛥 
at 𝛼 is marked because some of the formulas in 𝛥 have already been proved to be 
unreliable. It might be that 𝛼 ≤ 𝛽 instead, which means that the prior proof of 𝐴 
from 𝛤 under conditions 𝛥 is marked only later, when the information about the 
unreliability of some of the formulas included in the set of conditions is gained. 
So, the marking system has quite a dynamics, since markings can apply forward 

 
13 We are here tacitly incorporating into our definition the modified marking system based 
on the reliability strategy from Horsten and Welch 2007. The main difference with Batens’ 
original definition (see Batens 2001: 60), lies in the fact that markings are never removed. 
The two marking systems give rise to equivalent definitions of finally derivable formulas 
(see Horsten and Welch 2007: §3.2). 
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(if 𝛽 < 𝛼), or backward (if 𝛼 < 𝛽). This dynamic reflects the one affecting the set 
of unreliable formulas, as this is based on minimally derivable abnormalities, 
which is something that can change along a proof. For, a given set of formulas 𝛥 
that turns out to be minimally derivable at a certain stage of an S-derivation, and 
which is unreliable at that given stage, might be partially “redeemed” at a later 
stage, due to a subset of it being equally derivable. 

This very same dynamics is also responsible for the following definition, that 
introduces the crucial distinction concerning finally vs. provisionally derivable 
formulas of S: 

Definition 5.  A formula 𝐴 of ℒ is finally derivable from 𝛤 at 𝛼 in S if and only if the 
S-derivation of 𝐴 from 𝛤 at 𝛼 is not marked, and, for every 𝛽 > 𝛼, the 
derivation of 𝐴 from 𝛤 at stage 𝛼 is not marked at 𝛽 . 

This concludes our excursus on the adaptive model of proof. We now consider 
whether it could provide a formal way to capture the desiderata set up in §2. 

Adaptive proofs are based on the idea of expanding the deductive strength of 
the LLL of a given AL with what follows from premises that are assumed to be-
have not abnormally, unless and until these are proven otherwise. So, the LLL 
represents the set of deductive principles that are regarded as trustworthy. Then, 
with a precise definition of the logical form of unreliable assumptions, one keeps 
working out the deductive consequences of formulas that do not turn out to have 
such a form. It may seem that in this way our desiderata can be met, because 
contradictions are handled without generating explosion. Nevertheless, there are 
problems, as we shall now see. 

First of all, the idea that the lower-limit logic encapsulates trustworthy de-
ductive rules causes the whole AL to be at least as strong, deductively speaking, 
as the LLL. For, as it turns out from the definitions we have spelled out in details 
in the previous section, formulas provable in the LLL, i.e., formulas that are prov-
able under no conditions, are also finally derivable. This means that an AL is as 
tolerant as its own LLL is toward unconditionally provable abnormalities. If the 
AL is an IAL, this general fact has the following consequence: minimal abnor-
malities are finally derivable. In particular, provable logical contradictions are fi-
nally derivable. The marking system is made up in such a way as to avoid that the 
logical consequences of provable contradictions spread, but it does not block the 
derivability of contradictions themselves. So, IALs are not in general consistent 
theories (as all logical contradictions that are provable in their LLL are finally 
derivable), but they are not trivial theories (i.e., they are theories whose set of 
finally derivable formulas does not coincide with the whole set of formulas of the 
language).14 

The previous observation can be made specific, by considering the logical 
paradoxes. Take the language ℒ to be ℒ+ from § 2 and let 𝛤 to be 𝛤+. This gives 
one the means required for carrying on Russell’s proof. It follows that a logical 

 
14 A referee for this journal has pointed out to us that our analysis sounds like a criticism 
to the adaptive-logic project while neither ALs in general, nor IALs in particular have been 
conceived with the goal of meeting our desiderata (D1) — (D3). This is certainly correct 
and we agree with the referee that our criticism applies just to IALs and not to ALs in 
general. However, among the ALs that have been developed in detail, they seem the most 
plausible candidates for this goal. Moreover, there are aspects of our proposal from §4 that 
might recall features of ALs (see for instance the comment in Footnote 21) and we wanted 
to make sure that there was no possible confusion between the two lines of work. 
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contradiction involving 𝑅 is finally derivable in a IAL featuring a fairly weak 
LLL.15 So, the “hybrid” nature of an AL, which does not entirely coincide with 
the nature of its own LLL, is in fact very much conditioned by the latter. In par-
ticular, despite the fact that CL is “saved” in an IAL, since it coincides with its 
upper-limit logic, it is only the axioms and rules of the LLL that are unquestion-
ably accepted, even if they lead to the derivation of a logical contradiction.16 This 
obviously goes against our desiderata. 

To further stress this conclusion, we can refer to a peculiar relation that may 
occur in an IAL between its LLL and CL. While the two systems are obviously 
different proof-theoretically speaking with respect to the whole language ℒ, there 
is a fragment ℒ′ of it and a “translation” 𝜏 of formulas of ℒ into formulas of ℒ′ 
such that, for every set 𝛤 of formulas of ℒ and for every formula 𝐴 of it, 𝐴 is 
derivable from 𝛤 in CL if and only if 𝜏(𝐴) is derivable from 𝜏(𝛤) in LLL (where 
𝜏(𝛤) is the set of formulas of ℒ′ that one obtains by applying 𝜏 to each element of 
𝛤).17 As noted, formulas derivable in LLL are finally derivable. Hence, the IAL 
in question is also as deductively strong as CL in the sense that for every formula 
𝐴 that is provable in CL, 𝜏(𝐴) is finally derivable in it. In a sense, this is good 
news, for it gives us a way to recover the deductive power of classical logic in an 
IAL, and weakens the impression that a theory of this sort is thought of as deduc-
tively replicating the “nature” of its LLL. 

However, it seems to us that this is not enough to declare the above short-
comings as dismissed. For (i) this does not change the fact that logical contradic-
tions remain finally derivable in general; (ii) the previous result is metatheoretical 
in nature (i.e., the logical equivalence of 𝐴 and 𝜏(𝐴) is not itself derivable in the 
LLL, while it is provable in CL instead18), so that, in order to see it as allowing 
one to recover the deductive power of CL, one should be able to recognize 𝜏(𝐴) 
as a translation of 𝐴. To make sense of (i) and (ii) it seems that one has to exploit 
what we have referred to before as the “hybrid nature” of IALs, and to retain any 
instance of them as being both committed to the view underlying its LLL, and to 
the one justifying CL (which is the upper-limit logic of a IAL in the most relevant 
cases). At the same time, this “hybrid” view explaining (i) and (ii), seems impos-
sible to be reconciled with our desiderata, and with (D1) and (D2) in particular: 

 
15 For instance, the contradiction in question is finally derivable in the LLL of the theory 
APIL1 from Batens 1999, whose LLL is the paraconsistent logic PIL that is obtained by: 
(i) restricting the axioms and rules of CL to positive formulas of ℒ (i.e., formulas that are 
not within the scope of a negation sign), (ii) by retaining as axioms and rules of PIL, all 
axioms and rules of CL but those applying to negated formulas, with the only exception of 
the law of excluded middle, (¬𝐴 ∨ 𝐴), for each and every formula 𝐴 of ℒ. 
16 In view of this, it is not surprising that ALs are listed among paraconsistent systems in 
Priest et al. 2022. 
17 To illustrate this situation, take LLL to be the system PIL from Batens 1999. Then, take 
𝜏 to be the function recursively defined in such a way that, for every formula 𝐴 of ℒ, 𝜏(𝐴) 
is the formula obtained by substituting every subformula ¬𝐵 of 𝐴 where 𝐵 is positive (i.e., 
non-negated) with 𝐵 →⊥ (where ⊥ is a propositional constant for falsity—i.e., character-
ized in CL by the axiom ⊥→ 𝐶 for every formula 𝐶 of ℒ). Notice that, for every 𝐴, 𝜏(𝐴) is 
a positive formula. Therefore, all axioms and rules of CL applied to 𝜏-formulas are prova-
ble and valid in PIL. 
18 This is what happens for instance with the exemplification of 𝜏 from Footnote 17. 
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for, while (ii) seem to “push” us in the right direction, (i) necessarily requires to 
depart from it.19 

To summarize: ALs regarded as theories allowing one to make use of an 
inconsistent set of premises as consistently as possible for deductive purposes, 
namely as IALs, give rise to non-trivial but logically inconsistent theories; theories 
of this sort featuring principles that would make them fit as candidate GDSs (since 
they feature naive abstraction principles and naive comprehension principles) are 
those from Verdée 2012 and Batens 2020; despite the fact that such theories are 
strong enough to recover the strength of classical logic (even if in the form of a 
“replica”), they require us to abandon either desideratum (D1), or (D2) and are 
therefore unfit for our project.20 

 
4. Our Proposal 

Let us give a look at the proof of 𝐴 from 𝐶𝐴 ↔ (𝐶𝐴 → 𝐴) first. What is striking in 
this construction is that there is nothing of it, neither in the construction of the 
term 𝑡𝐴 and of the formula 𝐶𝐴, nor in the argument leading to the proof of 𝐴, that 
seems to be specific to 𝐴 itself. The construction behind Curry’s paradox is “mod-
ular” in the sense that it can be applied mutatis mutandis to any given 𝐴. This is 
what makes it a particularly malignant construction: 𝐴 may correspond to a blan-
tantly false pronouncement, like “2+2=5”, and thus Curry’s construction can be 
used to disprove a perfectly legitimate arithmetical sentence. Now, imagine to 
carry on the same construction by substituting everywhere 𝐴 with ¬𝐴. If you per-
form this substitution inside the term 𝑡𝐴, you obtain the term [𝜆𝑥. (𝑝(𝑥, 𝑥) →

 
19 The specific situation involving PIL and CL depicted in Footnote 17, allows one to hint 
at another instance of this push-pull situation between the two “souls” of an IAL. For, the 
𝜏 considered there allows one to define a negation symbol ∼ in addition to the one the 
language is already provided with by putting ∼ 𝐴 := (𝐴 →⊥) as suggested in Batens 2001: 
54. This has the effect that logical contradictions that are already provable in their “stand-
ard” form, i.e., as ¬-contradiction, or formulas of the form (A & ¬A), can be shown to be 
also provable in PIL as ∼-contradictions, namely as formulas of the form (A & ~A), (since 
∼ 𝐴 is a positive formula, as we noted). Of course, this can be recognized as a logical con-
tradiction only “from the point of view” of CL (since ∼ 𝐴 and ¬𝐴 are logically equivalent 
in CL). However, if one feels that (ii) above pushes in the “right” direction, one should 
also feel that this further consideration pulls back in the direction of LLL, which allows 
one to argue that (A & ~A) is not a logical contradiction in the end. 
20 There is another notable thread of research related to ALs, namely the one that goes 
back to Batens 2000 and which constitutes the basis for the theory proposed in Verdée 
2013: §4, which one may think provides reasons for having second thoughts about this 
conclusion. In particular, Batens 2000 shows that it is possible to characterize reasoning 
from maximally consistent subsets of an inconsistent set of premises in terms of adaptive 
logics. That is: if 𝛤 is an inconsistent set of premises, consider the set 𝒯 of all formulas that 
are deducible from every maximally consistent subset of 𝛤; then, there exists a IAL S 
whose set of finally derivable formulas contains 𝒯. This may lead to think that, despite 
being inconsistent, IALs can be reduced to consistent theories. However, by closely ex-
ploring Batens’ result one sees that this is made possible by changing the definition of de-
rivability of the logic and by restricting the admissible premises. This does not change the 
fact that the theory is inconsistent anyway (as 𝒯 is only a proper subset of the set of finally 
derivable formulas of S). As to the theory considered in Verdée: §4, this is defined by using 
a “modal trick” that changes the set of abnormalities, which do not correspond to logical 
contradictions in the sense of CL, the view that we are favouring here. 
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¬𝐴)], which we abbreviate as 𝑡¬𝐴. Then, the formula	𝑝(𝑡¬%, 𝑡¬%) →
(𝑝(𝑡¬%, 𝑡¬%) → ¬𝐴), which is similarly obtained from 𝐶𝐴 by substituting 𝐴 with 
¬𝐴, is nothing but 𝐶¬𝐴. This is the formula that can be used to derive ¬𝐴 by means 
of Curry’s argument. The latter, by the way, amounts to the following proof: 

(1) 𝐶¬% ↔ (𝐶¬% → ¬𝐴)                                            𝜆-conv 
(2) 𝐶¬% → (𝐶¬% → ¬𝐴)                                            ConjEl 
(3) G𝐶¬% → (𝐶¬% → ¬𝐴)H → (𝐶¬% → ¬𝐴)               Contr 
(4) 𝐶¬% → ¬𝐴                                                            MP 
(5) (𝐶¬% → ¬𝐴) → 𝐶¬%                                             ConjEl 
(6) 𝐶¬%                                                                       MP 
(7) ¬𝐴                                                                        MP 

Note that this is nothing but the same proof that we used before to prove 𝐴, where 
the same substitution of 𝐴 with ¬𝐴 has been performed. Nothing else is changed, 
as the steps that make up this argument have remained exactly the same ones. 
This is an effect of the “modularity” of Curry’s construction, although it is a rather 
counter-intuitive effect. For, it is certainly odd that a proof works well to conclude 
that a certain formula holds and to conclude that its own logical negation also 
does. This is not what happens with “normal” proofs. These observations prompt 
the following definition of a negation-symmetric proof, which we shall use in our 
proposal in order to tame Curry’s paradox. 

Definition 6.  Let 𝒟 be a classically valid proof of a formula 𝐴 from 𝛤+. Let 𝒟𝑁 be 
obtained from 𝒟 by substituting every occurrence of 𝐴 with ¬𝐴. We 
say that 𝒟 is negation-symmetric if and only if 𝒟𝑁 is a classically valid 
derivation of ¬𝐴 from 𝛤+. 

Let us now turn to Russell’s proof. This is not negation-symmetric and we 
have to deal with it in a different way. We resort to the idea that proofs can have 
different degrees of validity, depending on the rules that they use. We can do this 
by placing all rules in a hierarchy with the understanding that a higher place in 
the hierarchy means greater validity. Thus, for example, the rules at the top of the 
hierarchy are given a validity of degree 1 and any rule lower in the hierarchy is 
given a lower degree of validity 1 − 𝑟, where 𝑟 is some positive real less than 1; 
the number 1 − 𝑟 is, we may say, the distance that a “lower rule” has from the 
topmost rules. Once rules are so ordered, we can assign a degree of validity to an 
argument by subtracting from 1 the sum of all values 𝑑 such that 𝑑 is a distance 
that a lower rule used at least once in the argument has from the topmost rules. 
For simplicity’s sake, we shall consider here only one simple way to assign de-
grees of validity, although other options could be considered (see Orilia 2014). 
The simple option that we consider here is this: all rules of CL have the topmost 
degree of validity, 1, whereas lambda-conversion has a lower degree of validity, 
inferior to 1 (it is not important to decide what this value is). Given this option, 
all proofs that use only rules of CL have a maximum degree of validity, whereas 
proofs that make use of lambda-conversion have a lower degree. Consider, for 
example, a proof in CL of the following instance of the principle of non-contra-
diction: ¬(𝑅 ∈ 𝑅	&	𝑅 ∉ 𝑅). This proof is more valid than the proof of 
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(𝑅 ∈ 𝑅	&	𝑅 ∉ 𝑅) exhibited above because the former makes use only of rules of 
CL, whereas the latter uses both rules of CL and lambda-conversion.21 

Let us assume the following abbreviation: if 𝒟,𝒟′ are any two derivations 
from 𝛤+, 𝒟 ≽ 𝒟′ means that the degree of validity of 𝒟 is higher than, or equal 
to, the degree of validity of 𝒟′. 

We are now ready to offer our notions of “provisional” and “final derivabil-
ity”: 

Definition 7.  1. A formula 𝐴 of ℒ+ is provisionally derivable from 𝛤+ iff there is a 
derivation 𝒟 of 𝐴 such that 𝒟 is not negation-symmetric (we say that 
𝒟 makes 𝐴 provisionally derivable).  

2. A formula 𝐴 of ℒ+ is finally derivable from 𝛤+ iff there exists a der-
ivation 𝒟 that makes 𝐴 provisionally derivable and there is no deri-
vation 𝒟′ of ¬𝐴 such that (i) 𝒟′ is not negation-symmetric, and (ii) 
𝒟′ ≽ 𝒟. 

Clearly, no formula can be even provisionally derived on the basis of the 
argument of Curry’s paradox, since this is a negation-symmetric derivation.22 As 
regards Russell’s paradox, there is a provisional derivation of (𝑅 ∈ 𝑅	&	𝑅 ∉ 𝑅) 
on the basis of the argument for Russell’s paradox offered above, but it is ruled 
out that it is finally derivable, since, as noted above, there is a proof of 
¬(𝑅 ∈ 𝑅	&	𝑅 ∉ 𝑅) that is more valid than this argument. 

These definitions might not suffice as they are. They may have to be 
equipped with a “backtrack procedure”. To illustrate this need, consider the der-
ivation of 𝑅 ∉ 𝑅 provided by lines 1-6 of the above proof of Russell’s paradox. 
We can imagine that, in the light of this, one takes 𝑅 ∉ 𝑅 to be true, qua provi-
sionally derived, and uses it in further derivations to prove additional formulas, 
e.g., 𝑃. However, one later realizes that, in a similar vein, 𝑅 ∈ 𝑅 can also be pro-
visionally derived (consider lines 1-8 of the above proof of Russell’s paradox). The 
proof of 𝑅 ∈ 𝑅 and the proof of 𝑅 ∉ 𝑅 are equally valid, for both make use of 

 
21 It should be clear that our proposal to introduce degrees of validity in the form of a partial 
ordering among proofs is not a replica of the adaptive logic scheme. For, it is true that by 
ordering proofs in the way we want we get as a consequence that there is a system of axi-
oms that we regard as fully reliable (classical logic) and a proper extension of it that is not 
(classical logic plus lambda abstraction). However, it is not enough to “combine” two sys-
tems that may act as a lower-limit logic and as an upper-limit one to get an AL: an AL is 
determined by the choice of the LLL and the logical form of the abnormalities (the formu-
las that one wants to block, deductively speaking). The upper-limit system is a “conse-
quence” of these choices: it is the logic related to the LLL “by means of” abnormalities in 
the sense of the theorem we hinted at in Footnote 10. In our case there is no obvious indi-
cation that a result like that can be found, although we cannot even exclude that as a fact. 
We thank a referee for this journal for pointing out to us the need to clarify this issue. 
22 Actually, we should also take care of contingent versions of Curry’s paradox, based on 
contingent assumptions such as, e.g., the longest sentence written on the blackboard is “if 
the longest sentence on the blackboard is true then 2+2=5”, which is true if it so happens 
that the only sentence on the blackboard is in fact “if the longest sentence on the blackboard 
is true then 2+2=5”. By assuming this fact, a Curry-style argument allows us to derive 
2+2=5. We do not deal with this issue here for simplicity’s sake, but we assume that the 
approach we are pursuing here can be extended to cover such cases in the way suggested 
in Orilia 2014: 193. 
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lambda-conversion, and accordingly neither 𝑅 ∈ 𝑅 nor 𝑅 ∉ 𝑅 are finally deriva-
ble, since the latter is the negation of the former. To reject both of them is fine, 
but it is not enough, since presumably we do not want to assume at this point that 
𝑃 is finally derivable, since it was established on the basis of a proof relying on 
𝑅 ∉ 𝑅. We rather want to reject this proof and rule out 𝑃 from what is finally 
derivable (unless of course 𝑃 is established via other means). In general, once a 
provisionally derived formula 𝐴 is rejected, we want to backtrack all formulas that 
were derived by means of 𝐴, and reject them as well, unless they were also derived 
independently of 𝐴. 

It should be clear from the foregoing that there is something in common be-
tween our approach and adaptive logic, as they both make use of a distinction 
between provisional and final derivability. However, our approach departs from 
the paradigm of adaptive logics, for while adaptive logics are based on setting 
criteria on formulas (in particular, in choosing which logical form corresponds to 
an abnormality), our approach is based on setting criteria on proofs. 

Some natural questions about our proposal arise and should be tackled in 
future research. In particular: is the set of finally derivable formulas actually con-
sistent? What is its complexity, or what can be said about the theory they give rise 
to? 

Adaptive logics are known for leading to theories that exhaust by far the 
complexity of formal theories in their standard shape (see Horsten and Welch 
2007). And there have been other attempts to “relax” these limits in the past (see 
Magari 1974, Jeroslow 1975, Hájek 1977), some of which have been recently re-
discovered within a trial-and-error approach to do mathematics (see Amidei et al. 
2016a, 2016b). Especially if a positive answer as regards the consistency issue can 
be given, it would be interesting to look at this matter more closely and see if any 
precise relationship between some of these approaches and our proposal can be 
found.23 
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