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Traditionally, remote sensing has employed pixel-based classification techniques to deal
with land use/land cover (LULC) studies. Generally, pixel-based approaches have been
proven to work well with low spatial resolution imagery (e.g. Landsat or System Pour
L’Observation de la Terre sensors). Now, however, commercially available high spa-
tial resolution images (e.g. aerial Leica ADS40 and Vexcel UltraCam sensors, and
satellite IKONOS, Quickbird, GeoEye and WorldView sensors) can be problematic
for pixel-based analysis due to their tendency to oversample the scene. This is driving
research towards object-based approaches. This article proposes a hybrid classifica-
tion method with the aim of incorporating the advantages of supervised pixel-based
classification into object-based approaches. The method has been developed for medi-
um-scale (1:10,000) LULC mapping using ADS40 imagery with 1 m ground sampling
distance. First, spatial information is incorporated into a pixel-based classification
(AdaBoost classifier) by means of additional texture features (Haralick, Gabor, Law fea-
tures), which can be selected ‘ad hoc’ according to optimal training samples (‘Relief-F’
approach, Mahalanobis distances). Then a rule-based approach sorts segmented regions
into thematic CORINE Land Cover classes in terms of membership class percentages
(a modified Winner-Takes-All approach) and shape parameters. Finally, ancillary data
(roads, rivers, etc.) are exploited to increase classification accuracy. The experimen-
tal results show that the proposed hybrid approach allows the extraction of more LULC
classes than conventional pixel-based methods, while improving classification accuracy
considerably. A second contribution of this article is the assessment of classification
reliability by implementing a stability map, in addition to confusion matrices.

Keywords: hybrid classification; texture; LULC; CORINE Land Cover; ADS40;
stability map

1. Introduction

Land cover is a fundamental environmental variable for understanding causes and trends
of human and natural processes and, consequently, for supporting effective environmental
management and monitoring. Qualitative and quantitative information on existing land use
is essential for organizations that have to deal with land management decisions, such as
government agencies and research institutions.
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1026 E.S. Malinverni et al.

There are many approaches for land use/land cover (LULC) mapping. Traditional tech-
niques include field survey and conventional aerial photograph interpretation. In the past
three decades, high spatial resolution imagery from satellite sensors (IKONOS, Quickbird,
etc.) or digital aerial platforms (Leica ADS40 and Vexcel UltraCam, etc.) have provided
new opportunities for detailed LULC mapping at very fine scales.

Often, LULC map updating must be carried out on a regular basis, so automatic classi-
fication algorithms have become increasingly desirable to reduce the high costs associated
with photo-interpretation. However, these automated approaches require sophisticated dig-
ital image processing and computer vision techniques, and their performance depends
strongly on factors such as remote sensing data quality, landscape complexity, training
data collection, classification method, etc. (Lu and Weng 2007, Gao and Mas 2008).

Automatic and semi-automatic LULC classification using multispectral image data can
be divided into two major approaches: pixel-based and object/region-based classification
(Shackelford and Davis 2003, Sims and Mesev 2007). Pixel-based approaches try to iden-
tify the class of each pixel from its multispectral values and/or texture measures computed
over a neighbourhood. Object-based approaches operate on sets of pixels (objects/regions)
that have been grouped together by an image segmentation technique. Shape characteristics
and neighbourhood relationships can also be added to spectral/textural information to aid
the classification process. Both approaches have drawbacks: the object-based approach is
heavily influenced by the quality of segmentation results, while the pixel-based approach,
which can exploit only spectral features, might result in errors when the same land cover
type does not have unique spectral characteristics and the same spectral response character-
izes various different natural objects. Comparisons between the two approaches (Matinfar
et al. 2007) show that object-based classification often performs more accurately, in
addition to having the advantage of being more readily integratable into vector GIS.

In recent years, several techniques (e.g. fuzzy and neural c1assifiers, stepwise opti-
mization approaches) have been developed that can increase the accuracy of automatic
classification. In particular, the integration of object- and pixel-based classification shows
great potential for improving classification performance (Shackelford and Davis 2003,
Wang et al. 2004, Yuan and Bauer 2006). An integration of segmentation techniques
and pixel-based classification with the aim of assigning a class to each object or segment
(hybrid approach) may be more efficacious than traditional approaches when classes are
not homogeneous in terms of spectral and textural characteristics.

This article presents a new hybrid approach that takes advantage of spectral/textural
values and forms factors and a rule-based system (Zingaretti et al. 2009). First, differ-
ent image data sets are provided to an AdaBoost-supervised classifier to yield pixel-based
classification results. These results are then integrated with the segmented map obtained
from an object-based classification. This last process is performed using the Winner-Takes-
All (WTA) algorithm, as derived from other research fields (Ascani et al. 2008). Finally,
heterogeneous classes are integrated in a decision rule system, taking into account both per-
centages of classified pixels (resulting from the pixel-based classification) and additional
information, such as context, shape and proximity to a certain land cover type. The pro-
posed automatic classification approach provides quick, GIS-ready, LULC maps from high
spatial resolution imagery with higher accuracy than conventional pixel- and object-based
methods.

A second major contribution of this article is the incorporation of a stability map in the
accuracy assessment process, in addition to use of well-known confusion matrices. This
assists the user in recognizing regions where classification output should be further checked
before use (Woodcock and Gopal 2000, Stehman et al. 2003, Wickham et al. 2004).
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This article is organized as follows: Section 2 introduces the case study area and the
available data sets. Section 3 describes each procedure of the supervised hybrid classifi-
cation methodology developed for this research: feature set identification and selection,
pixel-based classification, image segmentation and object rule-based processing. Section 4
presents the advantages and limitations of the hybrid approach, which also includes analy-
sis of the classification results in comparison to pixel-based classification. Finally, Section
5 concludes.

2. Study site and data sets

This case study refers to an area of approximately 16 km2 located near the city of Ancona
(Italy), comprising both urban and rural environments and with a topography that includes
flat areas but also the Conero mountain Natural Park. Figure 1 gives an overview of the
study image and its geographic location.

The data set is composed of high-resolution multispectral Leica ADS40 images inte-
grated with ancillary information. The ADS40 imagery is mono-temporal (July 2007) and
with four spectral wavebands (red, green, blue and near infrared (NIR)).

For this research the CORINE Land Cover (CLC) standard classification system, which
was derived from a European Project (EEA 1994) led by the European Environmental
Agency, is used. In particular, this work follows the CLC nomenclature to its second and
third level (EEA 2007) and adopts a minimum mapping unit (MMU) of 5 mm × 5 mm, cor-
responding to 0.25 ha and broadly matching a map scale of 1:10,000 (Knight and Lunetta
2003).

3. Methodology

The proposed hybrid classification schema is presented in Figure 2.
Due to its high image spatial resolution, the ADS40 imagery has limited spectral infor-

mation and shows a high degree of between-pixel variation. This could lead to problems
in class information extraction, especially using pixel-based image classification methods,

Strip

200706300913

Conero

RGB and FC composition

July 2007

Figure 1. ADS40 strips of the Marche region block (centre) and test imagery (right).
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1028 E.S. Malinverni et al.
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Figure 2. Workflow diagram describing the hybrid classification schema.

in which spatial information existing between a pixel and its neighbours is not used. To
overcome these drawbacks and achieve reliable and accurate results, spectral and texture
information are initially integrated in the classification schema.

Many parameters influence the generation of texture features, starting with the choice
of which ADS40 bands to use for texture analysis. Thirty-three different texture features
are generated according to three different texture approaches: the grey-level co-occurrence
matrix (GLCM), Gabor-energy and Laws’ texture features. The best suited feature set is
then chosen by means of the Mahalanobis separability criteria and the Relief-F feature
selection algorithm: the 33 texture features are thus reduced to 8.

The selected feature set (8 texture features + 4 ADS40 spectral bands + 1 Normalized
Difference Vegetation Index (NDVI) feature = 13 features) is used to run a pixel-based
supervised classification with the AdaBoost classifier. These pixels, partitioned into broad
categories, form the input to the subsequent object rule-based post-classification process-
ing. In particular, a fuzzy object classifier, implemented on the basis of a WTA approach,
is employed to exploit the pixel-based results in classifying objects derived from previous
image segmentation, thus providing a refined object classification.

In this hybrid context, image segmentation represents the first step of object-based
image analysis and affects the quality of the results directly. The double-headed arrow in
Figure 2 points out the possibility of using, in an iterative way, the obtained object-based
classification to refine the image segmentation step.

3.1. Texture generation

To avoid increasing feature space dimensionality and redundancy, and due to the strong
correlation between some ADS40 spectral bands, only the red and NIR bands are used to
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derive texture features since they show the lowest band correlation and the highest variance
for the different land cover classes.

The following three feature generation methods were preferred for texture characteri-
zation:

• Grey-level co-occurrence matrix (GLCM) statistical texture features. The second-
order image histogram, referred to as the GLCM of an image, offers much
information about inter-pixel relationships and spatial grey-level dependencies. The
assumption that no land cover exhibits a preferential directionality is adopted and
the grey-scale quantization level is set to 64 to increase computational and statisti-
cal performance and to reduce processing time. To avoid generating texture features
that are highly correlated with each other, not all texture descriptors derivable from
GLCM (Haralick et al. 1973) are used. Instead, only four of them are computed for
the red and NIR bands and for five window sizes (ranging from 3×3 to 7×7), leading
up to the generation of 4×5 = 20 GLCM texture features.

• Laws’ spectral texture features. Laws’ 1D kernels are popular analysis tools for
classifying different texture patterns based on regular homogeneity. Twenty-five 2D
masks are generated by convolving five 1D kernels (L5, E5, S5, W5 and R5) with
each other (Laws 1980). Each of these 1D kernels performs local averaging and
edge, spot and wave detection on the sub-image. Only 2 of the 25 generated NIR-
texture energy measures are chosen for further analysis, using visual examination.
In particular, measures that provide strong discrimination between permanent crops
and background are adopted.

• Gabor Wavelet’s spectral texture features. The Gabor transform reveals the frequency
distribution of a signal or an image using a bank of filters. Specifically, the magnitude
response is extracted to capture texture homogeneity (Idrissa and Acheroy 2002).
The frequency response is Gaussian in shape and the central frequency of each filter
was selected to correspond to a peak in the texture power spectrum. The parameters
involved are the radial frequency (f ), the standard deviation (σ ) of the Gaussian
curve and the orientation (θ ). For the purpose of simplicity, the Gaussian curve is
assumed to be symmetrical. The filter bank is created with different orientations (0◦,
45◦, 90◦ and 135◦), standard deviation (σ = 1) and different frequencies (f = 0.2,
f = 0.5, f = 1). Once the filters are applied, 11 such Gabor magnitudes are extracted.

In short, 33 texture features are generated and selected along with the original four
spectral bands (red, green, blue and NIR) and the NDVI band to build the feature set (to
the amount of 38 bands) summarized in Table 1.

Table 1. Available feature set (ADS40 spectral bands and texture features).

ID Band Description

1–4 Multispectral (R-G-B-NIR)
5–12 Haralick NIR
13–24 Haralick Red
25–30 Gabor NIR
31–35 Gabor Red
36–37 Laws NIR
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1030 E.S. Malinverni et al.

Texture features, differing only by some parameters, are expected to be highly cor-
related. Using all 38 available features as input and always taking into account their
correlation, the Relief-F approach and Mahalanobis measures are carried out for feature
selection.

In order to guarantee that each source (spectrum, texture and NDVI) makes the same
contribution to the feature space and to avoid scale effects, each source of data is scaled to
the same range of grey levels (floating point values from 0 to 1) before running the classi-
fication schema. This range is chosen in order to minimize the information loss (especially
for the 16-bit spectral data).

3.2. Feature selection

The feature selection is necessary to reduce the feature space dimension and correlation
of the generated feature set (a total of 37 plus NDVI). Many approaches are available (Liu
and Motoda 2008), mostly aiming to evaluate class separability by means of cost function
or metrics (i.e. Jeffrey-Matusita and Mahalanobis distances).

To make a more reliable supervised feature selection, Mahalanobis separability dis-
tances, computed for each training class combination, are integrated with other weights
coming from the data-mining branch. In particular, the Relief-F algorithm, a modified
scheme of the classical Relief (Liu and Motoda 2008), is carried out.

The following parameters are necessary to set up the algorithm: the number n of near-
est instances from each class, the maximum distance teq between two feature values to
still consider them equal, the minimum distance tdiff between feature values to still con-
sider them different and the sampling parameter m (less than the number M of training
instances).

In all the tests n is varied from n = 1 to n = 10 with m = M while teq and tdiff are
calculated according to the following equations:

teq = α (max (Fi) − min (Fi)) α = 0.05
tdiff = β (max (Fi) − min (Fi)) β = 0.10

where Fi is the ith feature. The values of α and β are set by different simulation runs,
according to the literature.

One of the main drawbacks of Relief-F is the computational complexity estimated in
O(mMN). To solve the feature selection problem and reduce the computation time (number
of training instances over 170,000), the algorithm is executed exploiting a sophisticated
computer cluster architecture.

A 2-D matrix DIS of size k × l with k = (N (N − 1))
/

2 and l = N is generated where
N is the feature space dimension. A generic DISij element is calculated as the distance
between the ith combination (e.g. first combination is represented by classes 1–2, last one
by classes N–1, N) over jth features.

A minmax principle is adopted to maximize distances and/or Relief-F weights and
minimize band correlation. This principle is implemented by a normalized ranking vector
giving more priority to the distance maximization.

A subset of 13 bands was selected for the classification stage.

3.3. Pixel-based classification: AdaBoost classifier

After selecting the feature set to process, a supervised classification is performed by means
of the Adaptive Boosting classifier (often known as AdaBoost) which iteratively focuses
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on difficult patterns increasing the weights of misclassified training patterns (Sutton 2005).
The first problem formulation (Schapire and Singer 1999) is extended in this work using
the Real AdaBoost boosting variant to create a strong hypothesis from weak classifiers’
combinations and the One Against All technique to obtain a multiclass classification.

One Against All technique works as follows: given C discrete classes (e.g. the CLC
codes), the multiclass problem is decomposed into C binary problems to be solved with
the Real AdaBoost. A class C is assigned to a given pattern x if it has the greatest positive
value, while in case of all negative weights the sample is considered unclassified. However,
it is possible to avoid this behaviour choosing the minimum of all negative values.

In order to eliminate ‘salt and pepper’ noise due to the intrinsic spectral variability
characterizing the images, the pixel-based classified output is post-processed by means of
‘smoothing’ techniques to improve the spatial coherency of pixel-based classifications tak-
ing into account the spatial context. In particular, techniques of majority analysis, sieving
and clumping are carried out before proceeding with the rule-based object processing.

In this article a Classification And Regression Tree was adopted as a weak learner
(Breiman et al. 1984, Friedman and Tibshirani 2000); the number (T) of iterations was set
at 35 according to a series of simulation runs that evidenced overfitting with T > 35.

3.4. Ancillary data integration

In order to improve classification results from image analysis, it is important to be able
to integrate ancillary geographical knowledge in the overall classification system. In this
research, buildings, roads and rivers can be extracted from the regional technical map
and added to the pixel-based classification by means of a raster operation implemented
in a stand-alone code (C++ working environment). It is instrumental in the pixel-based
classification refinement and especially in preparation for the following object rule-based
processing.

3.5. Image segmentation: region growing and edge detection with merging rules

Accurate and precise segmentation is a prerequisite for extracting a set of meaningful
objects, such as regions with closed contours (polygons), useful for thematic mapping.
The developed segmentation algorithm (Figure 3), derived from Yu and Wang (1999),
uses the ADS40 imagery as an input and is based on an image pyramid combining edge-
detection (difference in strength, Sobel, Scharr, etc.) with region-growing techniques, in
order to obtain a segmentation that outlines the real objects localized into the image with
small computation time and strong accuracy. Furthermore, the use of edges during the
region growing step allows correct recognition of strong region boundaries and assures
robustness with respect to the noise inside the regions (e.g. spikes, small trees, canopies).
Another great advantage of this algorithm is that the growing process stops when regions
reach strong boundaries.

During the segmentation process, it is possible for too many and unrealistically small
regions to be extracted, leading to over-segmentation. To overcome this problem, a redis-
tribution process is then carried out on the basis of specific spectral and spatial parameters
(i.e. compactness, convexity) in order to increase the degree of connectivity between adja-
cent regions. Starting from regions with an area less than the MMU, neighbouring regions
with the same characteristics are grouped together to form new regions.

It is important to realize the proper set of working parameters in order to make the
algorithm as efficient as possible (Tabb and Ahuja 1997). In particular, the developed seg-
mentation algorithm takes into account compactness, convexity, solidity and roundness
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1032 E.S. Malinverni et al.

Step 1 - Multi-scale reduction

Step 2 - Segmentation on deepest level

Step 3 Redistribution (optional)

Step 4 - Scale change (up to down)

Segmentation with region growing and edge detection

Generation of pyramidal image on N levels

Region merging using different set of criteria (spatial,
spectral, textural)

Segmented image is projected into a double size resolution
image and border are skeletonized

Level N

Level 0

Figure 3. Region growing and edge detection segmentation workflow.

parameters after having investigated them through several tests with different images and
pyramid levels.

Finally, selecting a proper set of these parameters and the useful input image (single
band, ratio or principal component image), a vector file is produced containing all the
information characterizing the regions (Zingaretti et al. 1998). A sample of the attribute
values resulting from the segmentation process is shown in Figure 4. At this stage, land
cover class assignment is not yet achieved.

3.6. Object rule-based processing: a modified Winner-Takes-All approach

Object rule-based processing is performed to improve the pixel-based classification result
in terms of spatial consistency, semantic representation and number of extracted classes. In
particular, the pixel-based classification is combined with the segmentation result through
the overlay technique and the WTA approach, providing meaningful and realistic GIS-
ready objects.

Figure 4. Extract of segmentation attributes required for the merging procedure.
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The WTA algorithm classifies image segments adopting a voting scheme which assigns
the segment to its winner class, counting the pixels classified for each class in a generic
region. At the end of the process, for each region the winner wi and the second si are
assigned, respectively, to the first two classes collecting the majority of votes. From the
ratio of these values comes out the stability/confusion index (CI):

CI = si

wi

A low CI value confirms the strong presence of a dominant class, while a high CI value
highlights mixed polygons that may be unreliable.

Afterwards, the core WTA procedure is improved using other rules to enhance the
performance of the object classifier and correctly identify critical regions as heterogeneous
areas and discontinuous/continuous urban areas.

3.6.1. Hybrid classification rules to identify the CORINE third level

The necessity to obtain a classification according to CLC nomenclature at the third level
requires a rule system aid. This nomenclature is in fact strongly related to the image
interpretation process, and, to assign detailed legend levels to complex patterns, complex
rules that go beyond simple spectral signature identification are needed. When the spec-
tral response is not homogeneous, spatial information (i.e. geometrical segment attributes
coming from the segmentation algorithm including size, shape) and WTA land cover per-
centage over the segment’s area are used to build a new learning system. These context
relations identify when a class is ‘part of’ a different class, providing the opportunity to
obtain a multiscale database, strongly related to the segments’ quality (MMU setting).

In particular, the approach developed enables the identification of heterogeneous
agricultural areas belonging to Class 2.4.2 (Complex cultivation patterns) and the differen-
tiation of the urban fabric class according to its density (Continuous Urban Fabric – 1.1.1
and Discontinuous Urban Fabric – 1.1.2).

The decision rules employed are represented below in their logical expressions:
IF (conditions) THEN (decision class), where the conditions consist of some attribute

hypothesis and the decision class is the class to which the segment is assigned to.

• Rule 1: IF Winner is %Area Class 1.1 and PERC-AREA > 80% THEN
Class = 1.1.1 Continuous Urban Fabric

• Rule 2: IF Winner is %Area Class 1.1 and PERC-AREA > 40% and < 80% THEN
Class = 1.1.2 Discontinuous Urban Fabric

• Rule 3: IF Winner is %Area Class 1.1 and Second not Class 2.2. and PERC-AREA
< 40% THEN Class = 1.1.2 Discontinuous Urban Fabric

• Rule 4: IF Winner is %Area Class 1.1 and Second is Class 2.2 and PERC-AREA
Class 1.1 < 40% THEN Class = 2.4.2 Complex cultivation patterns

• Rule 5: IF Winner is %Area Class 2.2. and Second is Class 1.1 and PERC-AREA
Class 1.1 > 20% THEN Class = 2.4.2 Complex cultivation patterns.

Building density is the main criteria used to label a segment as belonging to the built-up
class or to the agricultural class. A cultivated segment (permanent crops) with a built-up
presence of at least 40% is labelled as complex cultivation pattern (Class 2.4.2).

D
ow

nl
oa

de
d 

by
 [

E
va

 S
av

in
a 

M
al

in
ve

rn
i]

 a
t 0

6:
04

 3
1 

A
ug

us
t 2

01
1 



1034 E.S. Malinverni et al.

In dense urban areas, the land cover class confusion tends to be low. The Continuous
Urban Fabric class (Class 1.1.1) is assigned when urban structures and roads occupy more
than 80% of the surface area. Misunderstandings can arise only in the case of bare soil with
similar spectral responses, but they can be limited by checking the segments’ dimensions:
the segmentation procedure over urban fabrics gives mostly small regions.

Discrimination between continuous and discontinuous urban fabric is performed by
computing houses’ and roads’ area percentages and setting a threshold (between 40% and
80%) to underline a green areas’ presence. As the density of urban objects decreases, con-
fusion arises between urban and other land cover classes (especially crop fields) having a
spectral signature similar to the urban fabric: there is in fact no vegetation cover on the
fields.

Finally, the appearance of a heterogeneous urban land cover class is closely related to
the image spatial resolution. Using high spatial resolution images it is necessary to use a
more complex rule system than the fuzzy membership function that can be sufficient for
coarse spatial resolution images.

4. Tests and results

The classification results are displayed in Figures 5–8.
After having augmented the multispectral ADS40 bands with the selected texture

features the pixel-based classification accuracy is improved and it is reasonably good
(Figure 5), even if insufficient in terms of homogeneity. A first improvement, by means
of the WTA object classification, is shown in Figure 6 where the ‘salt and pepper’ noise is
overcome and a GIS-ready quality is reached, but to the detriment of the number of CLC

11 Urban fabric

121 Industrial and commercial units

122 Road and rail networks

210 Arable land

220 Permanent crops

230 Pastures

310 Forests

322 Moors and heathland

323 Sclerophylous vegetation

324 Transitional woodland/shrub

Legend

Corine classes

Figure 5. AdaBoost pixel-based classification result and its CLC legend.
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11 Urban fabric

121 Industrial and commercial units

122 Road and rail networks

210 Arable land

220 Permanent crops

230 Pastures

310 Forests

322 Moors and heathland

323 Sclerophylous vegetation

324 Transitional woodland/shrub

Legend

Corine classes

Figure 6. WTA object classification result and its CLC legend.

111 Continuous urban fabric

112 Discontinuous uraban fabric

210 Arable land

220 Permanent crops

230 Pastures

242 Complex cultivation patterns

310 Forests

322 Moors and heathland

323 Sclerophylous vegetation

324 Transitional woodland/shrub

Legend

Corine classes

Figure 7. Rule-based WTA classification result and its CLC legend.
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111 Continuous urban fabric

Roads

Rivers

(CTR)

112 Discontinuous uraban fabric

210 Arable land

220 Permanent crops

230 Pastures

242 Complex cultivation patterns

310 Forests

322 Moors and heathland

323 Sclerophylous vegetation

324 Transitional woodland/shrub

122 Road and rail networks

511 Water courses

Legend

ANCILLARY

DATA

INTEGRATION

Corine classes

Figure 8. Ancillary data integration and final CLC land use map.

classes extracted: Class 1.2.1 (Industrial and/or Commercial units) disappears because
it never wins. Further improvements are shown in Figure 7 where the rule-based WTA
approach allows the extraction of Complex cultivation patterns (Class 2.4.2) and distinc-
tion between Continuous and Discontinuous Urban Fabric (respectively, Class 1.1.1 and
Class 1.1.2).

In order to carry out an unbiased assessment of the accuracy of different approaches,
confusion matrices are extracted and the maps derived from classification are compared
with a set of control data.

Hereafter in Tables 2 and 3, the developed hybrid classification approach is assessed in
comparison with the classic pixel-based approach.
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Table 2. AdaBoost pixel-based accuracy assessment.

10 CLC classes

Feature set: SPECTRAL SPECTRAL + TEXTURE

Overall accuracy: 74.31% 86.33%

Kappa coefficient: 0.6737 0.8209

CLC class Prod. acc. (%) User acc. (%) Prod. acc. (%) User acc. (%)

110 99.26 82.78 99.46 59.51
121 90.46 99.41 85.21 100
122 98.42 77.75 97.47 83.47
210 55.56 98.14 81.09 99.03
220 83.24 40.94 95.56 54.38
230 75.04 75.42 91.42 85.24
310 82.33 97.72 87.78 98.36
322 77.77 15.56 85.07 18.73
323 83.84 64.67 92.36 69.26
324 57.55 36.35 83.38 58.1

The final rule-based WTA classification produces strong results in terms of overall
accuracy (89.02%) and single producer/user accuracy (10 CLC classes with producer
accuracy higher than 80%), yielding a legend more detailed than the other classifications.

Table 2 confirms the value of adding texture images in the per-pixel classification
approach. By incorporating texture features it is possible to achieve a higher classification
accuracy than using only the ADS40 bands: the overall accuracy increases (from 74.31%
to 86.33%) and the producer’s accuracies for the different classes increase as well.

Lastly, ancillary data integration allows a further refinement of the land use map
nomenclature, adding Water courses (Class 5.1.1) and Road and rail networks (Class 1.2.2).
Visual inspection of the final CLC map (Figure 8) confirms that the results of this automatic
developed classification schema are reasonably strong.

4.1. Stability assessment

The accuracy assessment shown above simply assures that, for example, the pixel-based
classification can be considered correct at 86%, but does not identify where regions are
located correctly or incorrectly throughout the data set. In this context, the proposed hybrid
classification schema provides a stability map, coming from the CI, to distinguish stable
segments from unstable ones. Unstable segments are useful in two ways when providing
guidance to the user for LCLU map consultation. First, they can help identify where it is
necessary to verify manually the output classification map before delivery to end-users.
Second, they can highlight class heterogeneity, which is helpful for identification of mixed
and complex CLC classes.

The thematic stability map (Figure 9) is obtained using a CI threshold of 0.65 and a
minimum dominant class threshold of 40%. In Figure 9, red polygons are unstable (CI >

0.65), and yellow ones are stable and cover 86% of the total study area.
The mean stability value of each class is an effective way of illustrating classification

accuracy and underlines which classes require careful consideration or further analysis
(Figure 10, Table 4).

D
ow

nl
oa

de
d 

by
 [

E
va

 S
av

in
a 

M
al

in
ve

rn
i]

 a
t 0

6:
04

 3
1 

A
ug

us
t 2

01
1 



1038 E.S. Malinverni et al.

Table 3. Object classification accuracy assessment: (a) WTA and (b) rule-based WTA.

WTA classification

8 CLC classes (121 and 122 never win)

Overall accuracy: 89.41%

Kappa coefficient: 0.8134

CLC class Commission (%) Omission (%) Prod. acc. (%) User acc. (%)

110 4.9 0 100 95.1
210 1.21 9.4 90.6 98.79
220 40.68 19.3 80.7 59.32
230 3.52 9.38 90.62 96.48
310 0 14.47 85.53 100
322 69.24 1.13 98.87 30.76
323 23.12 17.88 82.12 76.88
324 72.4 12.98 87.02 27.6

Rule-based WTA classification

10 CLC classes (classification refinement: 111, 112 and 242)

Overall accuracy: 89.0296

Kappa coefficient: 0.8098

CLC class Commission (%) Omission (%) Prod. acc. (%) User acc. (%)

111 0 0 100 100
112 11.73 0 100 88.27
210 1.21 9.4 90.6 98.79
220 41.14 19.32 80.68 58.85
230 3.52 9.38 90.62 95.48
242 0.31 45.75 54.25 99.69
310 0 14.47 85.53 100
322 71.58 1.13 98.87 28.42
323 23.9 17.88 82.12 76.1
324 74.09 12.98 87.02 25.91

While the CI quantifies local characteristics, a global stability index (GSI) can be
computed for every region (Ri) to provide a global overview:

GSI =
N∑

i=1

(
St (Ri)

Area (Ri)

)

St (Ri) =
{

Area(Ri) if CI ≤ TH
0 if CI > TH

A parametric analysis of the GSI trend for every class is shown in Figure 11.
Further checking is performed by overlaying the stability map and the control data set

(Figure 12). In Figure 12, red segments identify control data that are generally inaccurately
predicted in the rule-based WTA classification. About 90% of the control data are shown
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Figure 9. Stability map – rule-based WTA classification: yellow polygons are stable (86% of area),
while red ones are unstable (14% of area).
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Figure 10. Mean stability value for each CLC class.
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Table 4. Class Stability.

CORINE classes Stability (S)

1.1.1 100%
1.1.2 91%
2.1.0 84%
2.2.0 76%
2.3.0 74%
2.4.2 100%
3.1.0 88%
3.2.2 69%
3.2.3 68%
3.2.4 75%

Figure 11. Trend of global stability index for each CLC class.
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Figure 12. Overlay of stability map and control data set.

to be stable, and this corresponds with the overall accuracy of the rule-based WTA map
compared against the control data set. The unstable regions in great part belong to the
heterogeneous class, which is relatively inaccurate in general (maximum accuracy of 54%
in Table 3). It is clear that additional rules and supplementary information are necessary to
avoid misclassification.

5. Conclusions

In this article, a new method for high spatial resolution image classification is proposed.
This integrates a pixel-based classification method (AdaBoost classifier) with an object-
based classification method, based on a WTA system augmented with rules.

The classification output shows a LCLU map with 12 classes (CLC second and
third level). Classification accuracy is improved through various procedures. First, the
per-pixel classification accuracy increases from 74.31% to 86.33% by including texture
analysis in the classification schema. Then, object-based WTA classification removes
noise (misclassified pixels) from the result and accuracy increases further to 89.41%.
A refinement is implemented by means of a rule-based WTA approach that allows the
extraction of new third-level CLC classes and achieves an accuracy of 89.02% by cross-
reference with a different object-based control data set. Figure 13 shows the control data
set used for the pixel-based accuracy assessment and the more exhaustive control data set
derived by photo-interpretation of the segmented image used for object-based accuracy
assessment.
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(a) (b)

Figure 13. (a) Pixel-based and (b) object-based ground control data.

A final output of the research is a stability map that helps the user distinguish stable
and unstable regions, whereby unstable regions can be further verified before use of the
final classification product. This is an efficient checking procedure, targeting only those
locations that have a relatively high likelihood of misclassification.

The proposed method provides accurate results that can be used for a range of applica-
tions and by a range of users (i.e. urban planner, environmental agencies). Moreover, the
final product is a GIS-ready map that can easily supplement and enhance other thematic
databases.
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