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Objectives: This study aims to develop an automatic deep-learning algorithm, which

is based on Convolutional Neural Networks (CNNs), for ultrasound informative-image

selection of hyaline cartilage at metacarpal head level. The algorithm performance and

that of three beginner sonographers were compared with an expert assessment, which

was considered the gold standard.

Methods: The study was divided into two steps. In the first one, an automatic

deep-learning algorithm for image selection was developed using 1,600 ultrasound (US)

images of the metacarpal head cartilage (MHC) acquired in 40 healthy subjects using a

very high-frequency probe (up to 22 MHz). The algorithm task was to identify US images

defined informative as they show enough information to fulfill the Outcome Measure in

Rheumatology US definition of healthy hyaline cartilage. The algorithm relied on VGG16

CNN, which was fine-tuned to classify US images in informative and non-informative

ones. A repeated leave-four-subject out cross-validation was performed using the expert

sonographer assessment as gold-standard. In the second step, the expert assessed

the algorithm and the beginner sonographers’ ability to obtain US informative images of

the MHC.

Results: The VGG16 CNN showed excellent performance in the first step, with a

mean area (AUC) under the receiver operating characteristic curve, computed among

the 10 models obtained from cross-validation, of 0.99 ± 0.01. The model that reached

the best AUC on the testing set, which we named “MHC identifier 1,” was then

evaluated by the expert sonographer. The agreement between the algorithm, and

the expert sonographer was almost perfect [Cohen’s kappa: 0.84 (95% confidence

interval: 0.71–0.98)], whereas the agreement between the expert and the beginner

sonographers using conventional assessment was moderate [Cohen’s kappa: 0.63 (95%

confidence interval: 0.49–0.76)]. The conventional obtainment of US images by beginner

sonographers required 6.0 ± 1.0min, whereas US videoclip acquisition by a beginner

sonographer lasted only 2.0 ± 0.8 min.
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Conclusion: This study paves the way for the automatic identification of informative

US images for assessing MHC. This may redefine the US reliability in the evaluation

of MHC integrity, especially in terms of intrareader reliability and may support beginner

sonographers during US training.

Keywords: hyaline cartilage, ultrasonography, metacarpal head, artificial intelligence, deep learning, convolutional

neural network, rheumatoid arthritis, osteoarthritis

INTRODUCTION

Hyaline cartilage is a highly specialized connective tissue
characteristic of synovial joints. Its principal function is to
provide low-friction articular surfaces and to act as a shock
absorber during the joint movement (1). Hyaline cartilage lacks
blood vessels, thus it has a limited capacity for intrinsic healing
and repair. In this regard, the integrity of this noble tissue
is essential to joint health. The chondrocyte, the unique cell
type in adult hyaline cartilage, maintains a stable equilibrium
between the synthesis and the degradation of extracellular
matrix components. With age and/or in the presence of
various rheumatic diseases, such as rheumatoid arthritis and
osteoarthritis, this balance is undermined, and the catabolic
activity exceeds the anabolic one, thus leading to dehydration,
degeneration, and thinning of the cartilage layer (2).

Although conventional radiography is the most adopted
imaging method for the assessment of joint damage in daily
clinical practice, it provides only an indirect visualization
of the hyaline cartilage through the evaluation of the joint
space narrowing. The accuracy of conventional radiography
has been questioned in non-weight-bearing joints such as the
ones of hands and wrists, which are commonly involved in
different rheumatic diseases (3, 4). Moreover, in several studies,
conventional radiography was found to be less sensitive than
ultrasonography (US) in the detection of joint damage (5–11).

Recently, US has been suggested as a reliable and reproducible
tool for the assessment of the hyaline cartilage of the small
joints of the hand (4, 11–17). One of the main drawbacks
of US is its subjectivity in the interpretation of US findings
and the consequent variable inter- and intraobserver reliability
(18–20). This issue is particularly relevant for the beginner
musculoskeletal sonographer (18–20). Thus, the development
of a tool that can enhance the US learning process is
noteworthy (21).

In the last few years, artificial intelligence has been gaining
importance inUS, and a number of advantages have been claimed
for this alternative method over the conventional acquisition and
interpretation of US images, including faster performance, higher
reliability and better standardization of image acquisition (22–
27). Only a few studies have applied artificial intelligence in the
field of musculoskeletal diseases (28–32), and no studies explored
the artificial intelligence (AI) in the US assessment of hyaline
cartilage, except our previous preliminary work (33).

To date, deep learning (DL) has shown its value in the
healthcare domain for computer-assisted medical image analysis
(24). DL is a branch of AI, and its algorithms are inspired
by human brain, being able to learn from a large amount

of data by itself. In fact, DL has the advantage of directly
learning image features from raw data, avoiding the need to
design hand-crafted features as for traditional machine learning
approaches (23). In particular, Convolutional Neural Networks
(CNNs), one of the most popular DL algorithms, are widely
used for medical image analysis tasks such as classification,
segmentation, detection, and biometric measurements, with
applications in diagnosis and image-guided interventions and
therapy (23). CNNs are able to recognize complex structures
in an image by applying convolutional filters (each defined
by a kernel matrix) whose weights are iteratively learned
during CNN training. Training a CNN relies on labeled data,
which are used to learn the mapping from the input to the
desired output. Training a CNN from scratch requires a large
amount of labeled data, which may not always be available,
especially in the medical image analysis domain where image
labeling by expert clinicians is a resource-expensive procedure.
Moreover, training a CNN from scratch may often lead to
overfitting issues (i.e., CNN inability to generalize on new
sets of data). A feasible alternative is to exploit transfer
learning. Transfer learning consists of extracting knowledge from
one task (where large annotated datasets are available) and
using the extracted knowledge for a second one. It has been
demonstrated that using transfer learning is particularly useful
for medical image analysis since limited training data are usually
available (34, 35).

Driven by this last consideration, we decided to use transfer
learning for training a CNN for US informative-frame selection.
We investigated CNNs pretrained on ImageNet, a large image
database that includes more than 1 million of annotated natural
images (e.g., cats, dogs, cars).

The main aim of this study was to develop an automatic DL
algorithm for US informative-image selection of hyaline cartilage
at metacarpal head level. An image was defined informative when
it shows enough information to fulfill the Outcome Measure
in Rheumatology US definition of healthy hyaline cartilage
(36). The algorithm performance and that of three beginner
sonographers were compared with an expert assessment, which
was considered the gold standard.

MATERIALS AND METHODS

Study Design
The study was conducted from January 2019 to March 2020. The
study was divided in two steps. In the first one, a CNN algorithm
for informative image selection was developed and trained using
1,600 static US images. The US images were acquired by an expert
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(E.F.) in musculoskeletal US who evaluated the metacarpal head
cartilage (MHC) from the 2nd to the 5th digit bilaterally in 40
healthy subjects.

In the second step of the study, the CNN output was compared
with the conventional assessment of the MHC carried out
independently by three beginner (E.M., F.F., and J.D.B.) and the
expert (E.F.) sonographers. A beginner sonographer was defined
as a sonographer with limited experience (<1 year) in the US
assessment of hyaline cartilage. MHC from the 2nd to the 5th
digit of both hands of eight healthy subjects was independently
evaluated on the same day by the beginner and the expert
sonographers. The beginner sonographers were asked to provide
a set of eight US images per subject (one US image per each
metacarpal head) for a total of 192 static images and a set of
eight 10-s videoclips on the same healthy subjects for a total of
192 videoclips. A random sample of 128 static images and 64
videoclips were used in the reliability analysis. The US images
evaluated by the beginners (each beginner judged a third of
the US images) and the videoclips assessed by the algorithm
were tested against the expert opinion who had to state whether
the US images were informative or not. Expert was blinded
to the US images authorship (i.e., beginner sonographer or
artificial intelligence algorithm). The time required for each US
examination was registered.

Subjects
Healthy subjects were selected from relatives visiting or
accompanying in- and out-patients, friends of the authors, and
medical students attending the “Carlo Urbani” Hospital (Jesi,
Ancona, Italy). Healthy subjects were enrolled because they had
the lowest probability to present US abnormalities indicative of
cartilage damage. In fact, pathologic findings may generate a
bias in the interpretation of US images by both the beginner
sonographers and the algorithm.

Exclusion criteria were as follows: (i) previous diagnosis of
inflammatory/degenerative arthropathies; (ii) joint pain [visual
analog scale (VAS) ≥10/100] and/or analgesic or non-steroidal
anti-inflammatory drugs’ intake in the 4 weeks preceding the
visit; (iii) age <18 years old; and (iv) hard tissue enlargement
or deformity of the metacarpophalangeal, proximal, or distal
interphalangeal joints suggestive of hand osteoarthritis and/or
joint inflammation at physical examination. The following
demographic data were recorded: sex, age, handedness, height,
weight, and body mass index.

US Image Acquisition and Interpretation
US examinations were carried out using a MyLab Class C
(Esaote SpA, Genoa, Italy), equipped with a very high-frequency
broadband linear probe (10–22 MHz). A grayscale standard
setting was adopted (B-mode frequency: 22 MHz, master gain:
70%, mechanical index: 0.3, dynamic range: 12, depth 15mm,
focus position at the area of interest).

The hands were placed on the table, with the
metacarpophalangeal joints in maximal flexion (>60◦)
(14, 36, 37). The metacarpal head from the 2nd to the 5th
digit of both hands was scanned on the dorsal aspect from
radial to ulnar and from proximal to distal sides to ensure the

maximal exploration of the hyaline cartilage using the EULAR
standard scans (38). Particular attention was paid to ensure a
perpendicular insonation of the cartilage surface (14, 36, 37).

The normal appearance of the hyaline cartilage is
characterized by a homogenous hypo-anechoic layer
delimited by two regular, sharp, and bright margins where
insonated orthogonally (36, 37). An US image displaying such
characteristics was defined informative. The detection in the
videoclip by the algorithm or by the expert of at least a frame
showing US features of healthy hyaline cartilage was a sufficient
criterion to classify it as informative. Figure 1 provides a pictorial
evidence of a healthy MHC.

CNN Algorithm for Informative Frame
Selection
A VGG16 CNN, pre-trained on the ImageNet dataset, was
used for transfer learning. The VGG16 architecture was chosen
for two main reasons: (1) its sequential architecture results
to be particularly suitable for small-size training set and low
image variability (2, 39) its shallow architecture (only 3 × 3
convolutional layers stacked on top of each other in increasing
depth) is associated with low computation cost.

In the original VGG16 architecture implementation, the
ImageNet images are processed through 13 convolutional (conv)
layers to perform feature extraction. The filters used in each
conv layer have very small receptive field (3 × 3) (the smallest
size to capture notion about left/right, up/down and center),

FIGURE 1 | Healthy hyaline cartilage. Dorsal longitudinal (A) and transverse

(B) scans of the hyaline cartilage of the 2nd metacarpal head in a healthy

subject. Hyaline cartilage appears as a homogeneously hypo-anechoic layer

delimited by two regular, sharp, continuous, and hyperechoic interfaces where

insonated orthogonally. Arrows indicate the outer margin (i.e., the

chondrosynovial interface); arrowheads indicate the inner margin (i.e., the

osteochondral interface). (C,D) The position of the probe in the dorsal

longitudinal (C) and transverse (D) scans. m, metacarpal head; p, base of the

proximal phalanx.
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followed by a rectified linear unit (ReLU) activation function.
After the convolutional layers, three fully connected (FC) layers
(4,096 neurons in the first two layers and 1,000 neurons in
the last one) followed by a softmax layer are used to predict
class probability.

In this work, the ImageNet pretrained weights were used
as a starting point for the CNN training process. We
modified the three FC layers using 1,024, 512, and 2 neurons
in the first, second, and third FC layers, respectively, to
adapt the architecture to our binary classification problem
(informative—non-informative image classification) (Figure 2).
The architecture was trained freezing the first 10 conv layers
and tuning the remaining ones. In this way, we managed to
exploit the knowledge encoded in the VGG16 trained on the large
ImageNet dataset.

Training Strategy
Prior training the VGG16, US images were resized to 224 ×

224 pixels and converted to RGB images, repeating the grayscale
channel for three times, to match the image input dimension
required by the pre-trained VGG16. Intensity mean was removed
from each image.

The mini-batch gradient descent, with a momentum of
0.9, was used as optimizer using the categorical cross-entropy
as loss function. The batch size was set to 64 as a balance
between training speed and gradient convergence. Training was
performed for 100 epochs with a learning rate of 0.0001.

A leave-four-subject out cross-validation was performed for
testing the classification. The dataset was divided into 10 subsets
of subjects. In turn, one of the 10 subsets (containing four
subjects) was used as the test set while the other nine subsets
were used as training set. The validation was performed selecting
randomly four subjects from the training set, obtaining in such a
way 10 models.

The analyses were performed using Keras with TensorFlow
library as backend on Google Colaboratory (https://colab.
research.google.com/).

Performance Metrics
To measure the performance of our approach, we computed the
mean area under the curve (AUC) of the operating characteristic
curve (ROC) and the mean classification Precision (Prec), Recall
(Rec), and f1-score (f1) for the ith class, with i ∈ C (informative,
non-informative), whereTPi,FPi,FNi were the true positives, false
positives, and the false negatives, respectively.

Preci =
TPi

TPi + FPi
(1)

Reci =
TPi

TPi + FNi
(2)

f 1i =
2 x Preci x Reci

Preci + Reci
(3)

Statistical Analysis
Results are expressed as number and/or corresponding
percentage for qualitative variables and as mean and standard
deviation (SD) for quantitative variables. The Chi-square test
and the Mann-Whitney test were used to compare the qualitative
and quantitative variables, respectively. The agreement in the
informative image selection between the expert (i.e., the gold
standard) and the algorithm, and between the expert and the
conventional assessment of the beginners was calculated using an
unweighted Cohen’s kappa and interpreted according to Landis
and Koch (40).

Two-tailed p-values <0.05 were considered significant.
Statistical analysis was performed using Statistical Package for
the Social Sciences (SPSS) software (version 26.0 for Windows,
Chicago, Illinois, USA).

FIGURE 2 | VGG16 transfer-learning strategy. The algorithm was obtained by freezing the first four blocks of the VGG16 pretrained on the ImageNet dataset and

training the remaining blocks along with the dense layers.
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RESULTS

Subjects
A total of 48 healthy subjects were included in this monocentric
and cross-sectional study: 40 in the training and testing of the
algorithm (first step) and 8 in the reliability analysis (second
step). Table 1 shows the main demographic characteristics of
the participants.

Artificial-Intelligence Algorithm: Training
and Testing
In the first step of the study, the VGG16 CNN showed excellent
performance in the informative image selection task, with an
AUC of 0.99± 0.01 (Figure 3) computed among the 10 models.

Table 2 shows the classification results for both informative
and non-informative frame obtained from the cross-validation
procedure.

Figure 4 shows an example of informative and non-
informative frames selected by the model that reached the best
AUC, which we named “MHC identifier 1.”

TABLE 1 | Demographic characteristics of the healthy participants.

Sex (female/male) 33/15

Age (years, mean ± SD) 54.6 ± 5.6

Handedness (right/left) 40/8

Height (cm, mean ± SD) 170.7 ± 9.5

Weight (kg, mean ± SD) 72.4 ± 6.4

Body mass index (kg/m2, mean ± SD) 24.8

SD, standard deviation.

FIGURE 3 | Receiving operating characteristic curve obtained with the

fine-tuned VGG16 CNN algorithm “MHC identifier 1.” AUC, area under the

curve; ROC, receiving operating characteristics; std dev, standard deviation.

Feasibility
The average time required to complete the conventional US
assessment was 6.0 ± 1.0 and 4.0 ± 0.5min for beginners and
expert sonographer, respectively (p < 0.01). On the other hand,
the time spent to acquire the videoclips was 2.0± 0.8.

Reliability Analysis
The agreement between the automatic algorithm and the expert
sonographer was almost perfect (Cohen’s kappa: 0.84, 95%
confidence interval: 0.71–0.98); whereas, the agreement between
the expert and the beginners using conventional assessment was
moderate (Cohen’s kappa: 0.63, 95% confidence interval: 0.49–
0.76) (p < 0.01) (Table 3) without significant difference in the
interobserver agreement between the expert and each beginner
sonographer (p= 0.14).

TABLE 2 | Classification metrics for precision, recall, and f1-score, with i ∈ C

(informative, non-informative).

i Precision Recall f1-score

VGG16 CNN algorithm

“MHC identifier 1”

Informative 0.94 (0.07) 0.98 (0.02) 0.97 (0.05)

Non-informative 0.98 (0.02) 0.96 (0.06) 0.97 (0.04)

Values in brackets are the standard deviation.

MHC, metacarpal head cartilage.

FIGURE 4 | Informative and non-informative US frame selected by the VGG16

CNN algorithm “MHC identifier 1.” Dorsal longitudinal scans acquired at the

metacarpal head level in healthy subjects. (A,B) Examples of non-informative

frames; (C,D) Examples of informative frames. In fact, while the inner margin

(arrowheads) is evident in all the panels, the chondrosynovial (arrows) interface

is clearly visible only in the lower images (C,D). m, metacarpal head; arrows,

chondrosynovial interface; arrowheads, osteochondral interface.
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TABLE 3 | Interobserver agreement.

Beginners

US static images (n = 128) Informative Non-informative

Expert Informative 56 (43.8) 8 (6.3)

Non-informative 16 (12.5) 48 (37.5)

Total agreement: 81.3%

MHC Identifier 1

10-s videoclips (n = 64) Informative Non-informative

Expert Informative 31 (48.4) 2 (3.1)

Non-informative 3 (4.7) 28 (43.8)

Total agreement: 92.2%

Values in brackets are percentages.

MHC, metacarpal head cartilage; US, ultrasound.

The beginner sonographers and the VGG16 CNN algorithm “MHC identifier 1” agreement

with the expert sonographer considered the gold standard.

DISCUSSION

Last-generation US systems allow the real-time identification
of otherwise undetectable musculoskeletal abnormalities,
which have a growing impact in the management of many
rheumatic diseases (41, 42). However, US is a highly operator-
dependent technique, and sonographer skills and experience
may affect both acquisition and interpretation processes (19, 20).
Several international initiatives were undertaken to ensure
the standardization of US assessment and to increase its
reproducibility in rheumatological setting (36, 38, 43, 44). The
use of artificial intelligence in musculoskeletal US may further
increase its reproducibility and may save sonographers time as
shown in cardiological setting (45).

The correct acquisition of an US image is the essential step
to ensure an accurate and reliable assessment of the image itself
(31, 39, 46). Thus, we believe that the availability of an algorithm
facilitating the identification of the region of interest during the
acquisition process of US images represents a further step toward
the standardization of US examination.

This study describes the first steps taken to develop an
algorithm that can identify informative US images for the
assessment of the MHC. The application of such an algorithm,
that we called “MHC identifier 1,” may redefine the US reliability
in the evaluation of the MHC integrity, especially in terms of
intrareader reproducibility. MHC identifier 1 showed an almost
perfect agreement with the expert sonographer. Here are some
possible explanations of disagreement between the algorithm
and the expert: while processing an US videoclip, the algorithm
may detect even just one frame to define it as informative,
which may be missed or considered not relevant by the expert
assessment. Conversely, the expert may consider sufficiently
assessable US images even if rejected by the algorithm for not
strictly fulfilling all the morphostructural criteria. The choice to
use both videoclips and static images could be considered a limit

of the present study. However, we decided to test the performance
of the algorithm using videoclips instead of pictures, since its
task will be to support the sonographer during a real-time US
examination and not only in the interpretation of static images.
Conversely, the sonographer selects a representative US image
which conveys the message of a part of the US examination.
Finally, according to the data we recorded, the use of this
algorithm may shorten the time required to obtain informative
US images up to one-third. However, it should be borne in mind
that, to date, MHC identifier 1 cannot be routinely applied to
clinical practice. In fact, the images must be manually exported
from the US system and transferred in a computer where the
algorithm can analyze them. A future development may include
the incorporation of MHC identifier1 into an US machine to test
the clinical value and the feasibility of this method in real-life
setting. Thus, the feasibility of this method, including easiness of
its use, costs, and availability are yet to be determined.

Our study presents some limitations. First, the same expert
sonographer, who served as the imaging “gold standard,” was
also the teacher and tutor of the beginner sonographers. This
fact may imply a possible risk of systematic bias. Second, only a
relatively low number of US images were used in the reliability
exercise. However, this limit should be read in light of the
fact that it is a pilot study. Third, its monocentric design may
limit the generalizability of our results. Fourth, the impact of
machine-assisted acquisition of US images was not evaluated.
Furthermore, the intrareader reliability of both the sonographers
and the algorithm was not tested. Finally, the impact of using
different US systems needs to be tested, as images in this study
were all obtained with the same US system.

The assessment of MHC status is progressively gaining a
relevant role in the management of patients with different
chronic arthropathies. In fact, in 2019, the Outcome Measure in
Rheumatology US Working Group proposed the US definitions
of cartilage damage in patients with rheumatoid arthritis
and osteoarthritis (36, 44). The same group of experts is
currently carrying out a Delphi exercise to define and quantify
the structural joint damage (including cartilage lesion) in
rheumatoid arthritis by US.

Although preliminary, our results open up new horizons
in the use of artificial intelligence in the US evaluation of
hyaline cartilage. In fact, the algorithm MHC identifier 1
could enhance the learning process improving the awareness
of the beginner sonographer regarding the probe positioning
required to obtain images conveying essential information to
assess the MHC. In addition, the ability of this algorithm to
identify informative frame on videoclips may suggest its use as
a tool that could assist the sonographer during the real time
US examination.

Further implementation may allow to measure the MHC
thickness and to evaluate the hyaline cartilage of other sites
commonly involved by rheumatic diseases such as the knee and
the hip (16, 17, 47).

The possibility of identifying, evaluating, and measuring
the hyaline cartilage in a reliable and faster way may
reduce the US examination time, shorten the learning
curve of beginner sonographers by taking advantage
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of AI feedbacks, and promote new studies in this
field (e.g., aimed to compare the semiquantitative
scoring system of cartilage damage and the quantitative
assessment, and to follow-up the progression of
cartilage damage).

In conclusion, this study describes the first steps in the
development of an algorithm identifying informative US
images for assessing the MHC. The automatic selection of
US images acquired by beginner sonographers resulted reliable
and feasible, as shown by the comparison with an expert
sonographer. The application of such an algorithm may
redefine the US reliability in the evaluation of the MHC
integrity, especially in terms of intrareader reliability and may
support beginner sonographers during US training. However,
this algorithm needs further validation before its use in
clinical practice.
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