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Abstract: The new epidemiological scenario has so far focused on the environmental circulation of
human viral pathogens. Owing to the side effects of chemical disinfectants, there is an increasing need
for knowledge on the use of virucidal compounds, especially those of a natural origin. Climacostol is
a molecule produced by a freshwater ciliate and it exhibits activity against bacterial and fungal
pathogens. We thus also speculated that there might be an effect on viral viability, which has never
been tested. To evaluate such activity, we chose human adenovirus (HAdV), which is representative of
waterborne viruses. We conducted experiments using HAdV serotype 5, whose titer was determined
by infecting HeLa cell cultures. HAdV5 was shown to be sensitive to climacostol at a concentration
of 0.0002 mg/mL, with an approximate 3 Log10 reduction when the initial titer of HAdV5 was
approximately 104 and 103 TCID50/mL. These preliminary results could be an important starting point
for further research aimed at improving the characterization of climacostol activity under different
experimental conditions and against various viruses, including enveloped ones (i.e., the coronavirus).
The production of climacostol by a protist living in fresh water also suggests a possible application in
the activated sludge of wastewater treatment plants.
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1. Introduction

The environmental circulation of human viral pathogens is a topic of great interest, particularly
today with the occurrence of new epidemiological scenarios [1]. Especially in emergency situations,
the need for knowledge on the use of virucidal compounds of a natural origin is even greater, due to
the well-known side effects of chemical disinfectants [2]. Several publications underline the role of
different natural compounds on viral inactivation and their possible use as alternatives to chemical
substances [3–5].

Eukaryotic microorganisms living in water environments, commonly referred to as protists, are now
considered an important source of new bioactive secondary metabolites. Autotrophic species have
antimicrobial, antioxidant, anticancer and anti-inflammatory activities [6], and in ciliated protists, many
of these compounds appear to be the results of evolutionary selection associated with either attack or
defense mechanisms [7]. These substances include climacostol (5-[(2Z)-non-2-en-1-yl]benzene-1,3-diol),

Viruses 2020, 12, 658; doi:10.3390/v12060658 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0003-4078-5108
https://orcid.org/0000-0002-3890-8546
https://orcid.org/0000-0002-9051-4085
https://orcid.org/0000-0003-0131-053X
http://dx.doi.org/10.3390/v12060658
http://www.mdpi.com/journal/viruses
https://www.mdpi.com/1999-4915/12/6/658?type=check_update&version=2


Viruses 2020, 12, 658 2 of 7

produced by the freshwater ciliate, Climacostomum virens [7], a colorless toxin essentially used for
chemical defense against predators. Climacostol is classified within a large group of natural compounds
known as resorcinol lipids, frequently found in plants, fungi and algae. Initially synthesized by Masaki
et al. (1999) [8], it was more recently obtained as a pure compound in the natural and most bioactive
Z-configuration by a novel and straightforward synthesis [9] (Figure 1).

Figure 1. The chemical structure of climacostol.

Studies on climacostol have revealed biological activity on bacterial and fungal pathogens,
protozoa, human and rodent cell lines, and isolated mitochondria (see [10] for a review). These findings
have indicated that the toxin exerts antimicrobial, cytotoxic, pro-apoptotic and genotoxic activities,
and that it also induces dysfunctional autophagy [11].

Based on these various biological proprieties, we also speculated that climacostol could have an
effect on virus viability, but to date, no data have been available to confirm this specific characteristic.
Considering the habitat of C. virens, it would also be interesting to study the effects of climacostol
on waterborne viruses, such as the human adenovirus (HAdV). HAdV is a member of the genus
Mastadenovirus in the Adenoviridae family, and comprises more than 100 different types, several of
which in recent years have been identified with molecular techniques [12]. Overall, the types are
divided into seven species (A to G) that infect humans, causing a wide range of clinical symptoms,
such as upper respiratory tract syndromes (pharyngitis, rhinitis and also pneumonia), gastroenteritis,
kerato-conjunctivitis and urinary diseases. HAdVs are also responsible for a large number of
asymptomatic infections, which would explain the worldwide distribution of the virus [13].

The main route of transmission is by the inhalation of aerosolized droplets and fecal–oral exposure,
since HAdV can be excreted in high levels in stool specimens [12]. Giving the combination of fecal
elimination and a relatively high degree of resistance to water disinfection, HAdV has been detected
worldwide in various water environments, from wastewaters at various stages of treatment to surface
waters (i.e., recreational waters) and tap waters [13]. HAdV has also shown a high frequency and
abundance in water environments compared to other enteric, nonenveloped viruses (i.e., norovirus,
enterovirus) [14]. HAdV has thus been suggested as an indicator of fecal pollution, and more recently
also as an index pathogen for quantitative microbial risk assessment [15].

The aim of our study was a preliminary evaluation of the effect of climacostol on human adenovirus
5 (HAdV5) by in vitro experiments. HAdV5, in fact, is representative of respiratory HAdV, but also,
with a waterborne transmission. The obtained data, if significative, could be used as a starting point
for a more in-depth research.

2. Materials and Methods

2.1. Climacostol Preparation

Lyophilized synthetic climacostol (11.6 mg) kindly provided by Prof. Enrico Marcantoni
(University of Camerino, Italy) was rehydrated with 70% ethanol, at a concentration of 2 mg/mL, and
working solutions of 1 mL were prepared.

2.2. Human Adenovirus Cultivation and Quantification

HAdV5 was obtained by American Type Culture cCollection (ATCC VR-5), and it was propagated
and assayed on Henrietta Lacks (HeLa) cell line (ATCC CCL-2, batch n. 59681574) as the host cell culture,
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according to the manufacturer’s instructions. Briefly, a small volume of virus with 0.1 multiplicity of
infection (MOI) was absorbed on 25-cm2 flasks for 1 h at 37 ◦C in a humidified 5% CO2 atmosphere,
rocking every 20 min to redistribute inoculum. After adsorption, growth medium containing Eagle’s
minimum essential medium (EMEM) with 2% fetal bovine serum (FBS), 10% L-glutamine and 0.125%
gentamycin, was added and the flasks were incubated for 2–3 days. The cytopathic effect (CPE) was
revealed by observation on an inverted microscope of rounded, clump and sloughed cells.

Viral quantification was performed by an endpoint dilution assay and working solutions of
1 mL were used. Briefly, the viral titer was measured using 96-well plastic plates by seeding three
ten-fold dilutions of each sample onto 8-well lines containing HeLa cell culture. Then, after five days
of observation, the highest dilution producing a CPE in 50% of the inoculated cells was determined
using the Spearman–Karber formula based on number of wells presenting CPE, and the results were
expressed in 50% tissue culture infective dose per milliliter (TCID50/mL) [16].

2.3. Climacostol Effect on HeLa Cell Line

In order to choose the right concentration for the subsequent tests, cytotoxicity assays were
preliminarily performed to evaluate the effect of climacostol on the HeLa cell line. Six serial dilutions of
climacostol working solution, from 2 × 10−1 to 2 × 10−6 mg/mL, were prepared and seeded into 25-cm2

flasks with a confluent HeLa cell monolayer. A negative control of HeLa cell without climacostol
treatment has been also prepared. After a 24-h incubation period, the cell morphology was observed
under the inverted microscope. All six dilutions and the negative control were analyzed in triplicate.

The lowest concentration of climacostol that revealed no effect on HeLa growth and morphology
was compared with the concentration of climacostol responsible for 50% cell viability for HeLa cells,
defined as 50% cytotoxic concentration (CC50). The value of CC50 has been obtained from previous
experiments using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for
estimating cell viability, as described by Perrotta et al. (2016) [17].

2.4. Climacostol Effect on HAdV5

Three experiments, carried out in triplicate, were designed to test the effect of climacostol
concentration coming from Section 2.3 on HAdV5. A total of 1-mL suspension was prepared with
900-µL climacostol (Section 2.3) and 100-µL HAdV5 at three different infectious titers, which were
chosen on the basis of the mean viral estimated concentrations found in the water environment, namely
3 × 105, 4 × 104, 3 × 103 TCID50/mL [15]. For each assay, a negative control was prepared using 900-µL
deionized water and 100-µL HAdV5. To compare our results with studies on water disinfection, the
experiments were performed at room temperature (23–25 ◦C), and the contact time between climacostol
and HAdV5 was set at 30 min.

2.5. Data Analysis

The CC50 values were analyzed and represented using GraphPad Prism (GraphPad Software 7.0,
San Diego, CA, USA). The other results were analyzed with Excel for Windows (Microsoft Office Excel
2016, Redmond, Washington, USA) for the calculation and graphical representation of means, standard
deviations and viral abatement.

The viral abatement was expressed both as percent reduction and logharitmic (Log10) reduction.
The percent reduction was calculated using the formula R% = (1 − Nt/N0) × 100, and the Log10

reduction was calculated as LR = Log10(N0/Nt), where N0 is the viral titer at the beginning of each
experiment, and Nt is the viral titer estimated after the contact time (30 min).
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3. Results

3.1. Results of Climacostol Cell Culture Assays

A clear effect on HeLa cells with the alteration of morphology and loss of viability was revealed for
the dilutions ranging from 0.2 to 0.002 mg/mL, while the cells remained alive for the other climacostol
dilutions. Based on these results, the concentration of 0.0002 mg/mL represented the lowest dilution
that did not influence the replication of HeLa cells. This result was in accordance with the CC50 value
of climacostol (0.0007 mg/mL) based on available data (Figure 2).

Figure 2. CC50 (mg/mL) of climacostol related to HeLa cell lines.

3.2. Results of Climacostol Effect on HAdV5

For each experiment, the reduction effect on HAdV5 replication was evaluated by comparing
the viral titers of the negative control and the suspension treated with climacostol (Figure 3).
Under the experimental conditions, our results showed that climacostol was able to reduce HAdV5
infectivity. We observed a 1.62 Log10 (97.6%) infectivity decrease when the initial titer of the
suspension was 2.36 × 105 TCID50/mL, and around a 3 Log10 (99.9%) reduction, namely a 2.90 Log10

and 2.80 Log10 abatement, when the starting HAdV5 titer was 2.58 × 104 and 1.82 × 103 TCID50/mL,
respectively (Table 1).

Figure 3. Variation of the HAdV5 titer before and after treatment with climacostol.
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Table 1. Inhibition of HAdV5 replication by climacostol (fixed at 0.0002 mg/mL) after 30 min of contact
time at room temperature.

HAdV5 Starting
Titer (TCID50/mL)

HAdV5 Final Titer
(TCID50/mL) Log10 Reduction Percentage Reduction

Experiment 1 2.36 × 105
± 0.4 × 105 5.6 × 103

± 1.2 × 103 1.62 97.6%

Experiment 2 2.58 × 104
± 1.2 × 104 2.96 × 10 ± 1.9 × 10 2.90 99.9%

Experiment 3 1.82 × 103
± 0.5 × 103 2.75 ± 2.13 2.80 99.9%

4. Discussion and Conclusions

In order to compare our results with the literature, we need to consider that most of the HAdV
inactivation studies were performed to evaluate the efficiency of chemical disinfectants (i.e., chlorine,
chlorine dioxide) or UV irradiation [18], because they are commonly used in water treatments, mainly
to disinfect drinking water. For example, Thurston-Enriquez et al. (2003) [19] conducted water
experiments to test the chlorine inactivation on HAdV40, and found a 99.9% reduction in buffered
demand-free water (0.31 mg/L free chlorine, pH 8.5 ◦C). These results have been confirmed by other
groups [20,21] who performed inactivation assays in similar experimental conditions, also comparing
different types of HAdV, including the respiratory types 2 and 5. The viral reduction values found in our
study are similar to the results of de Abreu Correa et al. (2012) [22] obtained in their experiments on the
abatement of HAdV2 in seawater after 30 min exposure with 2.5 mg/mL free chlorine (approximately
2.7 Log10 reduction). Chlorine can produce toxic by-products due to its interaction with organic
matter in water, so the use of natural compounds can be an alternative for water disinfection against
viral pathogens, as recently highlighted by Garcia et al. (2019) [23]. These authors obtained HAdV
abatement in water of 2.5 Log10 after 120 min exposure with N-chlorotaurine (NCT) and grape seed
extract (GSE) and of 4 Log10 after 10 min with bromomamine-T (BAT). Considering the data after
30 min (the contact time adopted in our study), NCT and GSE determined a HAdV abatement of
approximately 0.8 Log10, while BAT reduced the viral infectivity of 2.5 Log10.

However, these data are not comparable with the results of our study, because we tested climacostol
inactivation efficiency in a viral suspension and not in a water environment.

In conclusion, to the best of our knowledge, this is the first study demonstrating the effect of
climacostol on viral viability, using HAdV5 as a surrogate of human waterborne viruses. Although these
findings are very preliminary, they represent a starting point for future research to better understand
the molecular mechanism of climacostol action on viral particles. Further investigations are therefore
necessary to evaluate the climacostol activity under different conditions, also taking into account the
temperature, ionic strength, pH and contact time. Moreover, experiments with natural compounds
and chemical substances could be performed in parallel, in order to compare the virucidal action of
different types of disinfectant agents.

Nevertheless, these preliminary results on climacostol are interesting for the possible application of
this natural compound (and the protists producing it) in water treatments. As an example, wastewater
treatment plants could benefit from the presence of ciliated protists producing climacostol in the
activated sludge, in order to reduce the viral load in the secondary effluent. It would also be interesting
to evaluate its effect on enveloped viruses, such as the coronavirus, whose environmental spread
through surfaces and waters should not be underestimated.
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