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Abstract

This paper systematically compares methods to build confidence intervals for willingness to

pay measures in a discrete choice context. It contributes to the literature by including methods

developed in other research fields. Monte Carlo simulations are used to assess the performance

of all the methods considered. The various scenarios evaluated reveal a certain skewness in the

estimated willingness to pay distribution. This should be reflected in the confidence intervals.

Results show that the commonly used Delta method, producing symmetric intervals around

the point estimate, often fails to account for such a skewness. Both the Fieller method and

the likelihood ratio test inversion method produce more realistic confidence intervals. Some

bootstrap methods also perform reasonably well. Finally, empirical data are used to illustrate

an application of the methods considered.

Keywords: Confidence intervals; willingness to pay; discrete choice models; elasticities;

standard errors.

1. Introduction

Willingness to pay (WTP ) is the amount of money an agent would pay to obtain a desired

good or service. The derivation of reliable WTP measures is fundamental in transportation

economics and in other applied fields. WTP considerations are relevant for: travel time savings
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(Hensher, 2010); travel time reliability (Li et al., 2010); transport externalities (Ortúzar et al.,

2000); accident risk reduction and value of life (Iraguen and Ortúzar, 2004; Guria et al., 2005);

information technologies (Molin and Timmermans, 2006); residential location (Jara-Diaz and

Martinez, 1999)1.

In a choice modeling framework, typically assuming linear-in-attributes utility functions,

the WTP for a given attribute is obtained dividing its coefficient by that of cost. Since model

estimation yields an estimate of the true coefficients, the computed WTP (i.e. ŴTP ) is itself

an estimate with a given probability distribution. Thus, it is desirable to calculate confidence

intervals (CIs), in addition to point estimates. This is not trivial since the exact distribution of

the WTP estimator is not known. When maximum likelihood estimates (MLEs) are used for

the coefficients, the distribution of WTP is the ratio between two correlated, asymptotically

normal distributions. The distribution of the ratio of two normal variables has been derived by

Fieller (1932) and Hinkley (1969), and shown to be approximately normal when the coefficient

of variation of the denominator variate is negligible. More recently, Daly et al. (2012a) showed

that ŴTP is itself a MLE and, thus, asymptotically normal. Also Daly et al. (2012b) study

WTP distribution and provide conditions for the finiteness of its moments under different cost

distributions in random coefficient models.

Notwithstanding the relevant results obtained by Daly et al. (2012a) with respect to the

asymptotic properties of ŴTP , its finite sample distribution can be substantially different

from the normal distribution. This motivates the development of different methods to cal-

culate CIs for WTP . For example, the Delta method assumes normally distributed ŴTP .

Alternatively, Fieller (Fieller, 1940, 1954; Bolduc et al., 2010) and likelihood ratio test inver-

sion methods (Armstrong et al., 2001), only rely on the normality of the coefficients involved in

1The list of the subjects reported reflects the seven most cited articles in ISI WEB OF SCIENCE database

(accessed on 29th October 2014) resulting from a search using “willingness to pay” as a keyword for Title

jointly with “transport” for Topic.
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the ratio. Other methods use bootstrap sampling techniques, thus avoiding any distributional

assumption (Efron and Tibshirani, 1993; Davison and Hinkley, 1997).

Only few studies compare methods to construct CIs for WTP . Armstrong et al. (2001)

investigate the potentialities of likelihood ratio test inversion method only on real data. Hole

(2007) proposes a Monte Carlo study to assess the performance of Delta, Fieller and some

bootstrap methods. Bolduc et al. (2010) focus on the advantages of Fieller method when the

coefficient in the denominator approaches 0. Hirschberg and Lye (2010) compare the Delta and

Fieller methods from a geometrical point of view. The conclusions reached by these studies are

not always in accordance and, to the best of our knowledge, a comparison of all the existing

methods does not exist.

This paper provides some guidelines for choosing, under different critical conditions, an

appropriate method to construct CIs for WTP . It contributes to the literature by comprehen-

sively and systematically comparing all the methods investigated in the discrete choice field,

as well as other methods borrowed from different research areas. The comparison is carried

out through a Monte Carlo study. Data are simulated under different scenarios mimicking real

situations in which the ŴTP distribution is potentially highly skewed and far from normal.

Two real data sets are used to illustrate the practical relevance of the issues raised in the

simulation study.

The paper is structured as follows: Section 2 describes WTP estimation within a choice

modeling context; Section 3 illustrates the main assumptions, advantages and disadvantages of

various methods for CI estimation; Section 4 compares methods through a Monte Carlo study;

Section 5 reports the results from real data applications; Section 6 concludes and suggests some

general guidelines.

2. Logit models and WTP estimation

Consider a sample of N decision makers, facing J alternatives, in T choice experiments.

A choice performed by individual n, for n = 1, . . . , N , can be modeled, in a random utility
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framework, as follows:

yint =

{
1 if Uint ≥ Ujnt for j = 1, . . . , J
0 otherwise

(1)

where

Uint = Vint + εint (2)

is the unobservable utility that individual n derives from alternative i (for i = 1, . . . , J), in

choice experiment t (for t = 1, . . . , T ), Vint is the observable utility and εint is an error term.

Observable utility is generally assumed linear-in-the-attributes so that

Vint = Xintβ, (3)

where Xint is a (1×K) vector of attributes and β is a (K×1) vector of coefficients. The choice

probability associated with the alternative i chosen by individual n in choice experiment t, is

defined as:

Pint = P (Uint ≥ Ujnt, for j = 1, . . . , J) .

Different model specifications can be derived from (2), depending on the assumptions made

on the error term. For example, assuming that the error vector εn, obtained by stacking the

vectors εnt = (ε1nt · · · εJnt), is independent, identically Gumbel distributed, leads to the well

known Multinomial Logit (MNL) model, for which Pint can be analytically determined.

From now on, all subscripts, unless strictly necessary, are dropped to lighten notation and

utility is simply denoted as U = V + ε. When utility is specified as in (3), the total derivative

of U with respect to changes in the k-th attribute Xk and the cost attribute XC is given by

dU = βkdXk + βCdXC . Setting this expression equal to 0 and solving for dXC = dXk yields

the change in cost that keeps utility unchanged, given a variation in Xk:

dXC

dXk

= WTPk = − βk
βC
,

representing the WTPk for an improvement in Xk.
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Dropping the subscript for WTP , a point estimate is calculated as follows:

ŴTP = − β̂k
β̂C
, (4)

where β̂k and β̂C are the MLEs of βk and βC , respectively, which are asymptotically nor-

mally distributed, as well as ŴTP (Daly et al., 2012a). ŴTP distribution is needed for

constructing CIs. As stressed, despite its asymptotic normality, finite ŴTP distribution can

be heavily skewed and relevant for practical purposes. The uncertainty existing on finite ŴTP

distribution gives rise to various methods for constructing CIs.

3. Methods to construct WTP confidence intervals

This section illustrates, for each method, the procedure to construct CIs, the assumptions

made, the pros and cons. Figure 1 shows all the methods considered classifying them into two

sets (approximation vs. simulation) and three families (pivotal, percentile and test inversion).

 

Figure 1: Classification of methods to build WTP confidence intervals

The distinction between approximation and simulation depends on the use of either an

analytic or simulated distribution of ŴTP .

The methods belonging to the pivotal family use a pivotal function of ŴTP and the

percentiles of its analytic or simulated distribution to construct CIs. Percentile methods
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directly consider the simulated distribution of ŴTP and its percentiles. Finally, the test

inversion methods exploit the duality between hypothesis testing and CIs.

Eleven methods are illustrated. Nine have already been used in the choice modeling liter-

ature, while the remaining, derived from different research contexts, have not.

3.1. Approximation methods

The three methods hereby described are based on the analytic distribution of ŴTP . The

first belongs to the pivotal family and the others to the test inversion one.

3.1.1. Delta method

The first method discussed is the Delta method (Delta) due to its widespread adoption

given it is simple and often incorporated in commercial software packages. Delta relies on the

normality assumption of MLEs coefficients and their ratio. ŴTP is asymptotically normal

and its variance is obtained by taking a first order Taylor expansion around the mean of the

variables involved in the ratio and estimating the variance for this expression, i.e.

ŴTP ∼ N

(
− βk
βC

; var(ŴTP )

)
,

where

var(ŴTP ) = (ŴTP βk)2σ̂2
β̂k

+ (ŴTP βC )2σ̂2
β̂C

+ 2ŴTP βkŴTP βC σ̂β̂k,β̂C =

= (−1/β̂C)2σ̂2
β̂k

+ (β̂k/β̂
2
C)2σ̂2

β̂C
+ 2(−1/β̂C)(β̂k/β̂

2
C)σ̂β̂k,β̂C ,

where ŴTP βk and ŴTP βC are the partial derivatives of ŴTP with respect to βk and βC ,

evaluated at the MLEs, and with σ̂2
β̂k

, σ̂2
β̂C

and σ̂β̂k,β̂C representing, respectively, the estimated

variances and covariance of β̂k and β̂C .

The CI’s lower and upper bounds at the (1− α)-level are:

WTPL = ŴTP − zα/2
√

var(ŴTP ) and WTPU = ŴTP + zα/2

√
var(ŴTP ) (5)

where zα/2 indicates the 100(1− α/2)th percentile of the standard normal density.
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Daly et al. (2012a) show that the standard errors obtained using Delta are correct esti-

mates of ŴTP accuracy characterized by full maximum likelihood properties. Delta generally

produces narrow CIs since it delivers errors achieving the Cramér-Rao lower bound. However,

this holds only for continuous functions and βC can never be equal to 0. Bolduc et al. (2010)

show that CIs’ effective coverage rate, when using Delta, rapidly deteriorates, independently

of sample size, as βC gets closer to 0. Finney (1971) suggests to use Delta whenever the t-

statistic of the coefficient at the denominator, tc, is above 8.75. Marsaglia (2006), on the other

hand, considering also the possible correlation among coefficients, suggests a more stringent

bound for the ratio variable requiring tc to be greater than 4 and (tb − ρtc)/(1− ρ2)0.5 be less

than 2.26, where tb is the t-statistic for the numerator. Note that increasing sample size does

not guarantee meeting this condition. In addition, this method always produces symmetric

CIs around ŴTP point estimates. This might represent a serious drawback since, has shown

in practice, the finite sample ŴTP distribution is often non-symmetric and far from normal

(Armstrong et al., 2001).

3.1.2. Fieller method

The Fieller method2 (Fieller) exploits the duality between CIs and hypothesis testing. This

method makes no assumption on ŴTP distribution as Delta does, assuming normality only

for estimates of attributes’ coefficients. This represents a considerable advantage in all those

cases where the normality assumption for ŴTP might not hold. Moreover, Fieller does not

present discontinuity points, as for Delta in βC = 0, and CIs are defined for all βC . However,

some computational effort is required.

The asymptotic t-test is generally used to check whether a parameter, whose estimator is

normally distributed, is significantly different from 0. Ben-Akiva and Lerman (1985) extend

2Also known as asymptotic t-test inversion method.
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this test to a linear combination of parameters. Recalling (4) and postulating:

H0 : βk +WTPβC = 0. (6)

one can derive the following test statistic (Garrido and Ortúzar, 1993):

T (WTP ) =
β̂k +WTPβ̂C√

WTP 2σ̂2
β̂C

+ 2WTPσ̂β̂k,β̂C + σ̂2
β̂k

. (7)

Under the null hypothesis, (7) is asymptotically standard normal. The CI for WTP is given by

the set of WTP values for which it is not possible to reject H0 at a predetermined significance

level. Thus, the (1−α)-level interval corresponds to the WTP0 values such that |T (WTP0)| ≤

zα/2 or equivalently T 2(WTP0) ≤ z2α/2. Garrido and Ortúzar (1993) derive upper and lower

bounds of the CI for WTP and Bolduc et al. (2010) extend the result to the simultaneous CI

case. Upper and lower bounds are obtained solving the following second-degree-polynomial

inequality for WTP0: A(WTP0)
2 + 2B(WTP0) + C ≤ 0, where

A = β̂2
C − z2α/2σ̂2

β̂C
, B = β̂kβ̂C − z2α/2σ̂β̂k,β̂C , C = β̂2

k − z2α/2σ̂2
β̂k
. (8)

One can compute CIs using the following algorithm:

1. fit the model and obtain MLEs of the parameter vector β along with its variance-

covariance matrix;

2. compute A, B and C as in (8) and let ∆ = B2 − AC;

3. calculate the interval as:

[WTPL ; WTPU ] if ∆ > 0 and A > 0

(−∞ ; WTPL]
⋃

[WTPU ; ∞) if ∆ > 0 and A < 0 (9)

(−∞ ; ∞) if ∆ < 0 (which implies A < 0)

where WTPL =
−B −

√
∆

A
and WTPU =

−B +
√

∆

A
.

Notice that the CI in (9) can be bounded or unbounded (including the entire real line). The

unbounded solution occurs if |β̂C/σ̂β̂C | ≤ zα/2, i.e. when βC is not significantly different from
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0 at level α. Fieller coverage rate does not deteriorate as βC approaches 0. Notice, also, that

the bounded CI in (9) is, in general, not symmetric around ŴTP . In fact, the interval’s mid-

point is usually greater than ŴTP . The CI becomes progressively symmetric when σ̂2
β̂C
/β̂C

and σ̂β̂k,β̂C/β̂
2
C tend to 0. In presence of asymmetrically distributed WTP , Fieller is likely

to yield more accurate CIs than Delta. Asymptotically, the two methods produce the same

interval endpoints (Bolduc et al. (2010)).

3.1.3. Likelihood ratio test inversion method

The likelihood ratio test inversion method (LRTI) is similar to Fieller since it also takes

advantage of the duality between CIs and hypothesis testing. They share similar assumptions

and have equivalent implications. The likelihood ratio test for the null hypothesis in (6)

compares the likelihood of the unrestricted model to that of the restricted, with the restriction

being that imposed under the null hypothesis. The test statistic is:

LR = −2[l(β̂R)− l(β̂)], (10)

where l(β̂R) and l(β̂) represent the logarithm of the likelihood at the MLEs for the restricted

and unrestricted models, respectively. Under the null hypothesis, the statistic is distributed

χ2 with one degree of freedom, corresponding to the single linear restriction βk+WTPβC = 0.

Inverting the test statistic (10) to obtain a CI for WTP , requires a search for the maximum

and minimum values of WTP for which −2[l(β̂R) − l(β̂)] ≤ χ2
1,α. The following algorithm

(Armstrong et al., 2001) can be used to compute WTPL (similarly for WTPU). First, fit the

model to the unconstrained systematic utility function

V = βkXk + βCXC +
K∑
h=1

βhXh (11)

and obtain MLEs β̂, the corresponding ŴTP and the unrestricted log-likelihood l(β̂). Then,

initialize the algorithm by letting Inf = ŴTP − λ, with λ being a sufficiently large positive

value, Sup = ŴTP , Tol = 1, 000 and ε be an arbitrarily small tolerance limit. Perform the

following steps until Tol > ε:
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1. let WTPL =
Inf + Sup

2
;

2. fit the constrained model using the constrained utility function

Vcon = βC(−WTPLXk +XC) +
K∑
h=1

βhXh, (12)

obtain restricted MLEs and restricted log-likelihood and then calculate LR as in (10);

3. if LR < χ2
1,α, let Sup = WTPL and WTPL =

Inf + Sup

2
, otherwise if LR > χ2

1,α let

Inf = WTPL and WTPL =
Inf + Sup

2
;

4. set Tol = |LR− χ2
1,α|.

When the algorithm stops, the last WTPL value is the lower bound of the interval.

In addition to the advantages of Fieller, the usage of LRTI is not restricted to linear utility

functions. A drawback is the iterative procedure needed to obtain each interval limit which

makes it computationally more demanding than Fieller method while much less intensive than

any bootstrap method.

3.2. Bootstrap methods

Bootstrap methods use the simulated distribution of parameter estimates in place of their

analytical one (Efron, 1987; DiCiccio and Efron, 1996). Most of these methods are discussed in

detail by Hall (1992) and DiCiccio and Efron (1996) while those belonging to the test inversion

family are reviewed by Carpenter (1999); Carpenter and Bithell (2000). Efron and Tibshirani

(1993) and Davison and Hinkley (1997) provide practical examples of CI construction along

with some S-plus software code. All these methods are computationally intensive and affected

by Monte Carlo error (Carpenter and Bithell, 2000).

Before describing the eight bootstrap methods, resampling algorithms are discussed in a

regression context. Different sampling strategies, either parametric or non-parametric, can be

used to produce a bootstrap sample and, thus, a simulated ŴTP distribution.

Parametric resampling. A parametric model for the data is assumed known up to the

unknown parameter vector, generally replaced by its MLE. In a regression context ‘as-
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suming the model’ implies treating model assumptions as true. In other words, the

predictors are known without error (i.e. the natural framework of a stated preference

study) and the error term follows a specific distribution (e.g. Gumbel).

Let β̂ be the MLE of β obtained by fitting the logit model (e.g. MNL) to the original

data. The algorithm producing the ŴTP bootstrap distribution, under the parametric

resampling scheme, performs the following steps, for b = 1, . . . , B:

1. generate a vector, e?(b), of residuals parametrically (equal in size to the number of

observations in the data set), by drawing each component, e?int(b), independently

from the same specified distribution;

2. compute Û?
int(b) = Xintβ̂+e?int(b) and, thus, y?int according to (1), ∀i, n, t, and produce

a parametric bootstrap sample, y?(b);

3. regress the bootstrapped values y?(b) on the fixed predictors to obtain bootstrap

replications of the estimated regression coefficients, β̂?(b), and bootstrap replications

of the estimated WTP parameter, ŴTP
?

(b).

Non-parametric resampling. In this case, no assumptions are made concerning the data

generating process. Let the original sample of observations be wint = (yint , Xint), for

i = 1, . . . , J , n = 1, . . . , N and t = 1, . . . , T . Then, for b = 1, . . . , B:

1. resample the observations wint with replacement to generate a new sample; let this

sample be w?(b) and have the same number of observations as the original one;

2. fit the logit model to the bootstrap sample w?(b) to obtain β̂?(b) and ŴTP
?

(b).

Notice that, under this sampling scheme, predictors too are treated as random. This

potentially implies loosing all the desirable experimental design properties a researcher

might have developed in a stated preference study. Nevertheless non-parametric random-

x resampling plans are appealing mainly for the following reason. Fixed-x resampling

enforces the assumption that the errors are identically distributed by resampling residu-

als from a common distribution. Consequently, if the model is incorrectly specified (e.g.
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unmodelled nonlinearity, non-constant error variance, outliers, etc.) these characteristics

will not carry over into the resampled data sets.

Krinsky and Robb resampling. This resampling method consists in drawing many values

of the parameters of the model from a multivariate normal distribution with mean β̂

and variance-covariance matrix Σ̂β̂, the variance-covariance matrix of the estimates.

This method can be considered as a parametric sampling scheme, since it samples from

a specified distribution. The sampling algorithm, for b = 1, . . . , B, proceeds as follows:

1. draw a vector β̂?(b) from a N(β̂, Σ̂β̂);

2. use the vector β̂?(b) to calculate ŴTP
?

(b).

This sampling scheme, originally proposed by Krinsky and Robb (1986, 1990), has both

been widely applied in transportation research and also misinterpreted (Daly et al.,

2012a). In fact, Krinsky and Robb, assuming random parameters derived from linear

models, consider them as exactly normally distributed. In logit models, instead, param-

eter estimates are only asymptotically normal and the assumption of normality might

be inappropriate. This is particularly true for small samples. Furthermore, the elastic-

ity functions considered in those papers did not involve a ratio of parameters as in the

WTP case. Since for a ratio of random normal variables the variance does not exist,

using Krinsky and Robb resampling can be seriously misleading Daly et al. (2012a,b).

The method can be purposely used in the case of WTP percentiles when the required

result actually exists.

3.2.1. Non-Studentized bootstrap method

A natural way of constructing a CI for WTP is to seek a function of ŴTP and WTP whose

distribution is known and use its quantiles to construct a CI. When drawing observations

from an unknown population distribution, it is not clear which function should be chosen.

However, since many estimators are asymptotically normally distributed around their mean,
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it is reasonable to use

W = ŴTP −WTP. (13)

If the distribution of W were known,
[
ŴTP − w1−α/2 ; ŴTP − wα/2

]
would represent a (1−

α)-level CI for WTP , where wα is the quantile of W such that P (W < wα) = α. When

the distribution of W is unknown, the non-studentized bootstrap method3 (NS) suggests to

replace the quantile, wα, with the appropriate quantile, w?α, of W ?, calculated through the

following algorithm:

1. set W ?
(b) = ŴTP

?

(b) − ŴTP , for b = 1, . . . , B;

2. estimate the α-th quantile of W ? as ŵ?α, the ordered value of {W ?
(b), b = 1, . . . , B} which

occupies the position dαBe, where dxe denotes the integer ceiling of the real positive

number x, thus x ≤ dxe < x+ 1.

3. calculate the (1− α)-level non-Studentized pivotal interval as:

[
ŴTP − ŵ?1−α/2 ; ŴTP − ŵ?α/2

]
. (14)

Unfortunately, the distributions of W and W ? might differ markedly, leading to substantial

coverage errors. Moreover, if there is a parameter constraint (such as WTP > 0) then the

interval might include invalid parameter values. On the other hand, this procedure provides

simple to calculate CIs. Davison and Hinkley (1997) prove that NS is particularly accurate

for some parameters such as the median.

3.2.2. Studentized bootstrap method

The Studentized bootstrap method4 (S), first suggested by Efron (1979), tries to overcome

the shortcomings of NS. However, some poor numerical results reduced its appeal. Hall (1988)

showed the bootstrap-t’s good second-order properties, thus reviving interest in its use. In

3Also known as basic bootstrap method.
4Also known as bootstrap-t interval or studentized pivotal method.
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line with Student’s t-statistic, S replaces (13) with

W =
ŴTP −WTP√

var(ŴTP )
, (15)

where
√

var(ŴTP ) is an estimate of ŴTP standard deviation. The endpoints of a (1−α)-level

two-sided CI for WTP are:

[
ŴTP − w1−α/2

√
var(ŴTP ) ; ŴTP − wα/2

√
var(ŴTP )

]
. (16)

In the usual Student’s-t case, the percentiles wα are those of the Student distribution, while

S estimates the percentiles of W by bootstrapping, through the following algorithm:

1. set W ?
(b) =

ŴTP
?

(b) − ŴTP√
var(ŴTP

?

(b))
, for b = 1, . . . , B, where var(ŴTP

?

(b)) must be numerically

computed for each bootstrap data set, using, for example, Delta estimates;

2. estimate the α-th quantile of W ? as ŵ?α, the ordered value of {W ?
(b), b = 1, . . . , B} which

occupies the position dαBe.

3. calculate the CI as in (16), replacing wα with ŵ?α.

The quantiles used represent the only difference with respect to the CI in (5). An advantage of

this approach compared to Delta, when the distribution of ŴTP is skewed, is that it produces

not necessarily symmetric CIs.

3.2.3. Normal-theory bootstrap method

Assuming that ŴTP is approximately normal, a bootstrap CI can be obtained as in (5),

where now var(ŴTP ) is estimated on the bootstrap sample. The Normal-theory bootstrap

method (NT) is based on the following algorithm:

1. estimate var(ŴTP
?
) =

1

B − 1

B∑
b=1

(ŴTP
?

(b)−WTP
?
)2, where WTP

?
=
∑B
b=1 ŴTP

?

(b)/B

is the mean of the B bootstrap replicates of ŴTP ;

2. calculate the (1− α)-level bootstrap CI as:

[
ŴTP − zα/2

√
var(ŴTP

?
) ; ŴTP + zα/2

√
var(ŴTP

?
)
]
. (17)
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In this case, the ŴTP standard deviation, rather than the quantiles, is replaced by its boot-

strap estimate. It is important to note that this method, like Delta, always delivers symmetric

CIs.

3.2.4. Bootstrap percentile method

The bootstrap percentile method (P) uses empirical percentiles of ŴTP bootstrap distri-

bution to obtain a CI through the following algorithm:

1. let ŴTP
?

[1], . . . , ŴTP
?

[B] be the ordered bootstrap replicates of ŴTP ;

2. calculate L = (B + 1)α/2 and U = (B + 1)(1− α/2) and build the CI for WTP as:

[
ŴTP

?

dLe ; ŴTP
?

dUe

]
. (18)

The rationale, which is then pushed forward to get the methods described in Section

3.2.5 and 3.2.6 is the following. Assuming g(·) to be a monotonically increasing function, let

φ = g(WTP ), φ̂ = g(ŴTP ) and φ̂? = g(ŴTP
?
). Choose g(·), such that

φ̂− φ ∼ φ̂? − φ̂ ∼ N(0, σ2) (19)

so to deliver the following (1− α)-level CI for WTP :

[
g−1(φ̂− σzα/2) ; g−1(φ̂+ σzα/2)

]
. (20)

However, (19) implies that φ̂− σzα/2 = F−1
φ̂?

(α/2) and φ̂+ σzα/2 = F−1
φ̂?

(1− α/2), with F−1
φ̂?

(·)

being the inverse of the cumulative distribution of φ̂?. Since g(·) is monotonically increasing

F−1
φ̂?

(α/2) = g(F−1
ŴTP

?(α/2)) and analogously for F−1
φ̂?

(1−α/2), where F−1
ŴTP

? is the bootstrap

inverse cumulative distribution of ŴTP
?
. Interval (20) becomes

[
F−1
ŴTP

?(α/2) ; F−1
ŴTP

?(1− α/2)
]
, (21)

which is exactly the interval in (18).

The simplicity of P is particularly appealing. In fact, neither the estimate of var(ŴTP )

nor the specification of g(·) are required. An important advantage over the methods belonging
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to the pivotal family is that no invalid parameter values can be included within the interval.

Unfortunately, the method rests on the existence of a g(·) such that (19) holds, but in many

practical situations such a g(·) does not exist. This determines a substantial coverage error,

whenever ŴTP distribution is not nearly symmetric.

3.2.5. Bias-corrected bootstrap percentile method

The bias-corrected bootstrap percentile method (BC) tries to improve over P, by relaxing

the assumption of a symmetric ŴTP distribution. It considers a monotonically increasing

function g(·), such that

φ̂− φ ∼ φ̂? − φ̂ ∼ N(−cσ, σ2), (22)

for some constant c. In this case, the interval, slightly more complex than (21), is:

[
F−1
ŴTP

?

(
Φ(2c− zα/2)

)
; F−1

ŴTP
?

(
Φ(2c+ zα/2)

)]
, (23)

with the bias-correction parameter estimated as:

c = Φ−1

#{ŴTP
?

(b) ≤ ŴTP}
B

 (24)

where
#{ŴTP

?

(b) ≤ ŴTP}
B

is the proportion of bootstrap replicates at or below the original-

sample estimate ŴTP . If ŴTP is unbiased and its bootstrap distribution symmetric, this

proportion will be close to 0.5, and c will be close to 0, making the interval (23) equal to that

in (21).

The algorithm to compute CIs is sketched below:

1. estimate c as in (24);

2. calculate L = (B + 1)Φ(2c − zα/2) and U = (B + 1)Φ(2c + zα/2) and build the CI for

WTP as in (18).

BC represents an improvement over P in presence of non-symmetric ŴTP distributions.

Similar considerations on the existence of g(·) apply also in this case.
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3.2.6. Bias-corrected-accelerated bootstrap percentile method

The bias-corrected-accelerated bootstrap percentile method (BCa) accounts for both lack

of symmetry in ŴTP distribution and changes in shape (i.e. skewness) as WTP varies. Two

key parameters characterize BCa, namely the bias-correction c and the acceleration a. The

function g(·) is such that

φ̂− φ ∼ N(−cσ(φ), σ2(φ)) and φ̂? − φ̂ ∼ N(−cσ(φ̂), σ2(φ̂)), (25)

where σ(x) = 1 + ax and the CI is:[
F−1
ŴTP

?

(
Φ

(
c+

c− zα/2
1− a(c− zα/2)

))
; F−1

ŴTP
?

(
Φ

(
c+

c+ zα/2
1− a(c+ zα/2)

))]
. (26)

A simple jackknife estimate of a is used (DiCiccio and Efron, 1996). It is obtained as:

a =

∑NT
h=1(ŴTP (−h) −WTP )3

6
[∑NT

h=1(ŴTP (−h) −WTP )2
] 3
2

, (27)

where ŴTP (−h), for h = 1, . . . , NT , represents the estimate of WTP when the h-th observa-

tion is deleted from the original sample and WTP represents the ŴTP (−h) average, that is

WTP =
∑NT
h=1 ŴTP (−h)/NT .

The following algorithm can be used to compute the CI:

1. estimate c as in (24) and a as in (27);

2. calculate L = (B + 1)Φ

(
c+

c− zα/2
1− a(c− zα/2)

)
and U = (B + 1)Φ

(
c+

c+ zα/2
1− a(c+ zα/2)

)
and build the CI for WTP as in (18).

When a = 0 and c = 0.5, BCa reduces to P. In all other cases, BCa is characterized by a

smaller coverage error with respect to P and BC. However, coverage error increases as α tends

to 0 and caution should be used when α < 0.025 (Davison and Hinkley, 1997, p. 205, p. 231).

3.2.7. Test inversion bootstrap method

The test inversion bootstrap method (TIB), first proposed by Kabaila (1993) in time series,

is here applied within a choice modeling context. The duality between CIs and hypothesis
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testing implies that, if [WTPL ; WTPU ] are the correct endpoints of the (1−α)-level interval

and a bootstrap sample is drawn after setting WTP = WTPL, then under some natural

monotonicity conditions,

P
(
ŴTP

?
≥ ŴTP | WTP = WTPL

)
= α/2. (28)

Similarly, if a sample is taken under WTP = WTPU , then

P
(
ŴTP

?
≤ ŴTP | WTP = WTPU

)
= α/2. (29)

Solving (28) and (29) with respect to WTPL and WTPU produces a CI estimate. In this

case, one has to simulate from the bootstrap distribution at different WTP values which is

possible only within a parametric resampling scheme. Suppose that WTPL is the current lower

bound estimate. A bootstrap sample can be obtained according to the previously described

parametric resampling scheme. The utility function is computed as Û? = Vcon + e?, where

Vcon, expressed in WTP space, is given as in (12), with WTP replaced by WTPL.

A stochastic root finding algorithm is needed to solve (28) and (29). The Robbins-Monro

algorithm is the most efficient for our purpose among those proposed in the literature (Garth-

waite and Buckland, 1992; Carpenter, 1999). Let g = 1 and WTP
(g)
L be an initial estimate of

WTPL. According to the Robbins-Monro algorithm:

1. generate a bootstrap sample with WTP set equal to WTP
(g)
L and let ŴTP

(g)
be the

estimate of WTP from this sample;

2. set 
WTP

(g+1)
L = WTP

(g)
L + `

α/2

g
if ŴTP

(g)
< ŴTP

WTP
(g+1)
L = WTP

(g)
L − `

1− α/2
g

if ŴTP
(g)
≥ ŴTP

,

where ` is the step length constant.

Each step is expected to reduce the distance from WTPL. The algorithm is iterated a prede-

termined number of times equal to G, so that WTP
(G)
L is taken as an estimate of WTPL. An
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independent search is needed for WTPU . Assuming WTP
(g)
U is, after g steps, the estimate of

WTPU , then WTP
(g+1)
U can be calculated as:
WTP

(g+1)
U = WTP

(g)
U − `

α/2

g
if ŴTP

(g)
> ŴTP

WTP
(g+1)
U = WTP

(g)
U + `

1− α/2
g

if ŴTP
(g)
≤ ŴTP

.

Garthwaite and Buckland (1992) provide details about WTPL and WTPU starting value

estimates, stopping rule and the choice of `.

TIB is characterized by the advantages pertaining to the test inversion family methods (i.e.

no assumptions on ŴTP distribution, no discontinuity points, no invalid parameter values

included in the intervals) as well as those of the bootstrap methods (i.e. no assumptions on

the distribution of the test statistic). The main disadvantage pertains to its computational

burden due to the different searches needed for the lower and upper confidence limits, with

a bootstrap sample needed at each search step. In addition, assessing CI limits convergence

requires careful monitoring.

3.2.8. Studentized test inversion bootstrap method

The studentized test inversion bootstrap method (STIB), never used in the choice modeling

context, aims at reducing TIB coverage error by replacing ŴTP in (28) and (29) with a

studentized statistic. If [WTPL ; WTPU ] are the correct endpoints of the (1 − α)-level

interval and a bootstrap sample is drawn after setting WTP = WTPL, then

P

ŴTP
?
− ŴTP√

var(ŴTP
?
)
≥ ŴTP −WTP√

var(ŴTP )
| WTP = WTPL

 = α/2

where the variances can be estimated using Delta. Similarly, if a resample is taken under

WTP = WTPU , then

P

ŴTP
?
− ŴTP√

var(ŴTP
?
)
≤ ŴTP −WTP√

var(ŴTP )
| WTP = WTPU

 = α/2.
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The same algorithm employed in TIB can be used for constructing CIs, where the estimates

of WTPL and WTPU are now updated as:

WTP
(g+1)
L = WTP

(g)
L + `

α/2

g
if

ŴTP
(g)
− ŴTP√

var(ŴTP
(g)

)

<
ŴTP − ŴTP

(g)

L√
var(ŴTP )

WTP
(g+1)
L = WTP

(g)
L − `

1− α/2
g

if
ŴTP

(g)
− ŴTP√

var(ŴTP
(g)

)

≥ ŴTP − ŴTP
(g)

L√
var(ŴTP )

and 

WTP
(g+1)
U = WTP

(g)
U − `

α/2

g
if

ŴTP
(g)
− ŴTP√

var(ŴTP
(g)

)

>
ŴTP − ŴTP

(g)

U√
var(ŴTP )

WTP
(g+1)
U = WTP

(g)
U + `

1− α/2
g

if
ŴTP

(g)
− ŴTP√

var(ŴTP
(g)

)

≤ ŴTP − ŴTP
(g)

U√
var(ŴTP )

.

STIB has the same advantages and disadvantages of TIB but is expected to have a smaller

coverage error.

4. Simulation study

This section compares the performance of the methods described in Section 3 through a

Monte Carlo study. The comparison is carried out within a MNL framework. This choice is

motivated by the fact that, in MNL models, choice probabilities have a closed form, leading to

quick parameter estimates. This is fundamental in Monte Carlo simulations, where estimation

is performed thousands of times. Considering, for example, a mixed logit framework would

have been prohibitive5. In addition, only few methods have been extended so far to a mixed

logit context. Hensher and Greene (2003) adapt P, based on Krinsky and Robb sampling, to

the mixed logit model, while Bliemer and Rose (2013) extend Delta, providing formulas for

many commonly used random parameter distributions. Bliemer and Rose (2013) also provide

a comparison based on real data between Delta and the method in Hensher and Greene (2003).

5In our simulation study more than 750,000,000 different parameter estimations were performed.
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In Section 6 we provide some discussion on the extensibility of our findings to the mixed logit

environment.

In line with Hole (2007), data sets mimicking actual choices are constructed. N hypo-

thetical subjects in T = 16 different choice exercises, choose among J = 2 alternatives each

characterized by X1, X2 (2-level attributes) and XC (4-level cost attribute). Dropping sub-

scripts for simplicity, the deterministic difference in utility is:

V1 − V2 = β0 + β1(X11 −X12) + β2(X21 −X22) + βC(XC1 −XC2),

where the values of the parameters are opportunely set.

A single data set can be simulated by drawing from an appropriate distribution, indepen-

dently for each N and T , a value for the error difference ε1 − ε2. If this value is less than

V1 − V2, the first alternative is chosen and the choice variable y is set equal to 1 for the first

alternative and to 0 for the second. Otherwise, the second alternative is chosen.

Several scenarios, under various sample size conditions, are simulated to assess the per-

formance of the different methods: 1) the effect of βC approaching 0, determining WTP

values close to its discontinuity point; 2) the correlation between numerator and denominator

estimates having the same sign of ŴTP ; 3) the impact of model mis-specification, due to

heteroscedasticity arising from a dishomogeneous population.

A number of M = 1000 different data sets is generated, drawing the error differences from

logistic distributions. A MNL model is fitted to each data set, and its parameters estimated

via MLE. Then, ŴTP 1, ŴTP 2 and their relative CIs are calculated. The M sample values

of the CIs are used to calculate: coverage rates, median interval length and median interval

shape attained by the various methods. Let WTP
(m)
L and WTP

(m)
U represent, respectively, the

lower and the upper limits of the CI, calculated with a certain method, for the m-th Monte

Carlo data set, and define:

c(m) = I
(
WTP

(m)
L ≤ WTP ≤ WTP

(m)
U

)
`(m) = WTP

(m)
U −WTP

(m)
L
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s(m) =
WTP

(m)
U −WTP

WTP −WTP
(m)
L

,

where I(·) is the indicator function. Coverage, median length, and median shape6 are calcu-

lated as follows:

Coverage =
1

M

M∑
m=1

c(m), Length = `(d0.5Me), Shape = s(d0.5Me),

after sorting, in non-decreasing order, the series `(m) and s(m) for m = 1, . . . ,M .

Left rejection probability (LRP) and right rejection probability (RRP) are also considered

in analyzing the effective coverage. The two indexes are calculated as follows:

LRP =
1

M

M∑
m=1

I
(
WTP ≤ ŴTP

(m)

L

)
and RRP =

1

M

M∑
m=1

I
(
WTP ≥ ŴTP

(m)

U

)
.

Monte Carlo estimates of confidence limits are derived calculating the 100α/2th and 100(1−

α/2)th percentiles of the M ŴTP
(m)

estimates. Monte Carlo CI serves as benchmark for

evaluating the accuracy of all the methods considered.

4.1. Cost parameter approaching zero

This section describes the effects a cost parameter approaching 0 has on CI estimates. More

in detail, the specific βC considered are: −1, −0.5 and −0.25. The remaining parameters are

set as follows: β0 = 0.5, β1 = 1 and β2 = 0.5. Performance indicators of the different 95%

level CIs for WTP1 and WTP2 are reported in Tables 1, 2 and 3, for various sample sizes (i.e.

N = 10, 25, 50).

When βC is far from 0 and its coefficient of variation is small7, most of the methods con-

sidered perform well even for small sample sizes (see Tables 1); few methods have inadequate

6Notice that median length and median shape are used since the median is more robust to extreme values

than the mean and also because the median length can be calculated in the presence of Fieller CIs with

infinite limits. For such intervals, the shape index s(m) cannot, instead, be computed and they are excluded

from determination of the median shape.
7In Table 1, the t-statistic is equal to -4.88, -7,71 and -10,90, respectively for N = 10, N = 25 and N = 50.
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ŴTP 1 ŴTP 2

N Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

10 Monte Carlo 0.9576 1.1303 0.0250 0.0250 0.9500 0.8439 1.0449 0.0250 0.0250 0.9500

10 Delta 0.8918 1.0000 0.0220 0.0310 0.9470 0.8428 1.0000 0.0200 0.0220 0.9580

10 LRTI 0.9082 1.1184 0.0310 0.0270 0.9420 0.8594 1.1020 0.0240 0.0250 0.9510

10 Fieller 0.9439 1.1639 0.0263 0.0172 0.9570 0.8940 1.1235 0.0232 0.0171 0.9600

P
ar

am
et

ri
c

sa
m

p
li

n
g

10 TIB 0.9587 1.0420 0.0160 0.0090 ∗∗ 0.9750 ∗∗∗ 0.9389 1.1487 0.0180 0.0250 0.9570

10 STIB 0.9258 1.0979 0.0400 ∗∗ 0.0430 ∗∗∗ 0.9170 ∗∗∗ 0.8892 1.0969 0.0250 0.0360 ∗ 0.9390

10 NS 1.0258 0.9415 0.0160 0.0240 0.9600 0.8944 0.9736 0.0100 ∗∗ 0.0390 ∗∗ 0.9510

10 S 0.9022 1.1127 0.0460 ∗∗∗ 0.0450 ∗∗∗ 0.9090 ∗∗∗ 0.8538 1.1026 0.0250 0.0280 0.9470

10 NT 1.0192 1.0000 0.0170 0.0230 0.9600 0.8939 1.0000 0.0120 ∗∗ 0.0360 ∗ 0.9520

10 P 1.0258 1.0621 0.0250 0.0350 ∗ 0.9400 0.8944 1.0272 0.0170 0.0330 0.9500

10 BC 1.0327 1.0764 0.0200 0.0210 0.9590 0.9023 1.1190 0.0180 0.0280 0.9540

10 BCa 1.0287 1.0411 0.0180 0.0300 0.9520 0.9007 1.0961 0.0180 0.0280 0.9540

N
on

p
ar

am
.

sa
m

p
li

n
g

10 NS 1.0619 0.9584 0.0130 ∗ 0.0230 0.9640 ∗ 0.9092 0.9829 0.0110 ∗∗ 0.0410 ∗∗ 0.9480

10 S 0.8912 1.1127 0.0460 ∗∗∗ 0.0500 ∗∗∗ 0.9040 ∗∗∗ 0.8490 1.1026 0.0240 0.0410 ∗∗ 0.9350 ∗

10 NT 1.0515 1.0000 0.0150 ∗ 0.0220 0.9630 0.9120 1.0000 0.0100 ∗∗ 0.0360 ∗ 0.9540

10 P 1.0619 1.0434 0.0260 0.0320 0.9420 0.9092 1.0174 0.0120 ∗∗ 0.0360 ∗ 0.9520

10 BC 1.0717 1.0561 0.0210 0.0230 0.9560 0.9222 1.1233 0.0130 ∗ 0.0280 0.9590

10 BCa 1.0685 1.0190 0.0200 0.0280 0.9520 0.9182 1.0976 0.0120 ∗∗ 0.0280 0.9600

K
ri

n
sk

y

an
d

R
ob

b

sa
m

p
li

n
g

10 NS 0.9432 0.8566 0.0170 0.0400 ∗∗ 0.9430 0.8951 0.8817 0.0090 ∗∗ 0.0300 0.9610

10 S 0.8475 1.1505 0.0500 ∗∗∗ 0.0320 0.9180 ∗∗∗ 0.8049 1.1168 0.0360 ∗ 0.0350 ∗ 0.9290 ∗

10 NT 0.9387 1.0000 0.0180 0.0280 0.9540 0.8868 1.0000 0.0110 ∗∗ 0.0270 0.9620

10 P 0.9432 1.1653 0.0300 0.0220 0.9480 0.8951 1.1318 0.0240 0.0290 0.9470

10 BC 0.9453 1.1574 0.0300 0.0200 0.9500 0.8966 1.1262 0.0320 0.0200 0.9480

10 BCa 0.9442 1.1049 0.0340 0.0280 0.9380 0.8957 1.0936 0.0310 0.0200 0.9490

25 Monte Carlo 0.5750 0.9714 0.0250 0.0250 0.9500 0.5239 1.0282 0.0250 0.0250 0.9500

25 Delta 0.5667 1.0000 0.0200 0.0320 0.9480 0.5389 1.0000 0.0190 0.0280 0.9530

25 LRTI 0.5615 1.0702 0.0240 0.0320 0.9440 0.5420 1.0591 0.0220 0.0210 0.9570

25 Fieller 0.5800 1.0925 0.0210 0.0280 0.9510 0.5510 1.0681 0.0200 0.0230 0.9570

P
ar

am
et

ri
c

sa
m

p
li

n
g

25 TIB 0.5793 1.0176 0.0180 0.0350 ∗ 0.9470 0.5511 1.0398 0.0230 0.0190 0.9580

25 STIB 0.5877 1.0731 0.0270 0.0260 0.9470 0.5597 1.0923 0.0250 0.0190 0.9560

25 NS 0.5743 0.9594 0.0150 ∗ 0.0380 ∗∗ 0.9470 0.5417 0.9615 0.0140 ∗ 0.0260 0.9600

25 S 0.5802 1.0733 0.0230 0.0280 0.9490 0.5461 1.0756 0.0190 0.0230 0.9580

25 NT 0.5743 1.0000 0.0190 0.0350 ∗ 0.9460 0.5409 1.0000 0.0160 0.0270 0.9570

25 P 0.5743 1.0423 0.0200 0.0370 ∗ 0.9430 0.5417 1.0400 0.0180 0.0250 0.9570

25 BC 0.5755 1.0501 0.0170 0.0310 0.9520 0.5428 1.0756 0.0220 0.0240 0.9540

25 BCa 0.5748 1.0297 0.0170 0.0310 0.9520 0.5427 1.0649 0.0220 0.0240 0.9540

N
on

p
a
ra

m
.

sa
m

p
li

n
g

25 NS 0.5796 0.9628 0.0160 0.0340 0.9500 0.5422 0.9686 0.0140 ∗ 0.0290 0.9570

25 S 0.5820 1.0793 0.0230 0.0270 0.9500 0.5430 1.0826 0.0210 0.0210 0.9580

25 NT 0.5800 1.0000 0.0180 0.0350 ∗ 0.9470 0.5437 1.0000 0.0150 ∗ 0.0270 0.9580

25 P 0.5796 1.0386 0.0210 0.0340 0.9450 0.5422 1.0324 0.0200 0.0260 0.9540

25 BC 0.5819 1.0540 0.0200 0.0280 0.9520 0.5438 1.0694 0.0210 0.0230 0.9560

25 BCa 0.5811 1.0308 0.0180 0.0300 0.9520 0.5433 1.0599 0.0200 0.0230 0.9570

K
ri

n
sk

y

an
d

R
ob

b

sa
m

p
li

n
g

25 NS 0.5800 0.9133 0.0130 ∗ 0.0380 ∗∗ 0.9490 0.5494 0.9318 0.0120 ∗∗ 0.0250 0.9630

25 S 0.5570 1.0858 0.0270 0.0340 0.9390 0.5283 1.0649 0.0240 0.0260 0.9500

25 NT 0.5767 1.0000 0.0180 0.0360 ∗ 0.9460 0.5472 1.0000 0.0170 0.0230 0.9600

25 P 0.5800 1.0949 0.0230 0.0280 0.9490 0.5494 1.0732 0.0200 0.0210 0.9590

25 BC 0.5810 1.0926 0.0180 0.0260 0.9560 0.5506 1.0665 0.0200 0.0220 0.9580

25 BCa 0.5799 1.0675 0.0180 0.0280 0.9540 0.5504 1.0565 0.0180 0.0230 0.9590

50 Monte Carlo 0.3861 1.0631 0.0250 0.0250 0.9500 0.3875 1.0254 0.0250 0.0250 0.9500

50 Delta 0.4047 1.0000 0.0180 0.0190 0.9630 0.3847 1.0000 0.0250 0.0270 0.9480

50 LRTI 0.4089 1.0494 0.0210 0.0180 0.9610 0.3784 1.0400 0.0260 0.0260 0.9480

50 Fieller 0.4092 1.0626 0.0190 0.0180 0.9630 0.3889 1.0461 0.0250 0.0240 0.9510

P
ar

am
et

ri
c

sa
m

p
li

n
g

50 TIB 0.4128 1.0186 0.0170 0.0230 0.9600 0.3890 1.0097 0.0200 0.0260 0.9540

50 STIB 0.4144 1.0513 0.0220 0.0150 ∗ 0.9630 0.3956 1.0484 0.0280 0.0250 0.9470

50 NS 0.4064 0.9708 0.0170 0.0200 0.9630 0.3849 0.9755 0.0210 0.0320 0.9470

50 S 0.4093 1.0491 0.0210 0.0150 ∗ 0.9640 ∗ 0.3876 1.0493 0.0250 0.0250 0.9500

50 NT 0.4067 1.0000 0.0190 0.0180 0.9630 0.3856 1.0000 0.0240 0.0290 0.9470

50 P 0.4064 1.0300 0.0220 0.0170 0.9610 0.3849 1.0251 0.0250 0.0270 0.9480

50 BC 0.4073 1.0336 0.0210 0.0160 0.9630 0.3859 1.0461 0.0270 0.0250 0.9480

50 BCa 0.4071 1.0196 0.0210 0.0170 0.9620 0.3860 1.0400 0.0270 0.0250 0.9480

N
on

p
ar

am
.

sa
m

p
li

n
g

50 NS 0.4085 0.9698 0.0140 ∗ 0.0190 0.9670 ∗ 0.3874 0.9765 0.0230 0.0280 0.9490

50 S 0.4102 1.0492 0.0200 0.0150 ∗ 0.9650 ∗ 0.3880 1.0512 0.0260 0.0250 0.9490

50 NT 0.4088 1.0000 0.0180 0.0170 0.9650 ∗ 0.3872 1.0000 0.0250 0.0270 0.9480

50 P 0.4085 1.0312 0.0220 0.0160 0.9620 0.3874 1.0241 0.0250 0.0260 0.9490

50 BC 0.4097 1.0330 0.0210 0.0160 0.9630 0.3884 1.0437 0.0270 0.0220 0.9510

50 BCa 0.4099 1.0181 0.0190 0.0180 0.9630 0.3884 1.0369 0.0270 0.0220 0.9510
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50 NS 0.4086 0.9404 0.0150 ∗ 0.0220 0.9630 0.3887 0.9539 0.0200 0.0290 0.9510

50 S 0.4020 1.0589 0.0220 0.0180 0.9600 0.3820 1.0428 0.0260 0.0260 0.9480

50 NT 0.4079 1.0000 0.0170 0.0180 0.9650 ∗ 0.3878 1.0000 0.0240 0.0260 0.9500

50 P 0.4086 1.0634 0.0220 0.0160 0.9620 0.3887 1.0483 0.0260 0.0250 0.9490

50 BC 0.4099 1.0628 0.0230 0.0150 ∗ 0.9620 0.3891 1.0426 0.0250 0.0240 0.9510

50 BCa 0.4095 1.0478 0.0230 0.0150 ∗ 0.9620 0.3890 1.0357 0.0240 0.0240 0.9520

Table 1: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals. Significance codes:

*** for p-value < 0.001; ** for p-value < 0.01; * for p-value < 0.05. Model simulated: MNL model

with orthogonal experimental design. Parameter values: β0 = 0.5, β1 = 1, β2 = 0.5, βC = −1.
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ŴTP 1 ŴTP 2

N Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

10 Monte Carlo 2.0553 1.3507 0.0250 0.0250 0.9500 1.7400 1.2915 0.0250 0.0250 0.9500

10 Delta 1.9566 1.0000 0.0000 ∗∗∗ 0.0520 ∗∗∗ 0.9480 1.6368 1.0000 0.0020 ∗∗∗ 0.0390 ∗∗ 0.9590

10 LRTI 2.2900 1.8844 0.0180 0.0250 0.9570 1.8359 1.4929 0.0170 0.0330 0.9500

10 Fieller 2.3146 1.8929 0.0140 ∗ 0.0190 0.9670 ∗ 1.8749 1.5069 0.0180 0.0250 0.9570
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10 TIB 2.0473 1.1043 0.0000 ∗∗∗ 0.0530 ∗∗∗ 0.9470 1.6717 1.0163 0.0020 ∗∗∗ 0.0400 ∗∗ 0.9580

10 STIB 2.2612 1.9265 0.0440 ∗∗∗ 0.0220 0.9340 ∗ 1.8296 1.4412 0.0310 0.0260 0.9430

10 NS 2.2821 0.5431 0.0000 ∗∗∗ 0.0700 ∗∗∗ 0.9300 ∗∗ 1.8100 0.6775 0.0000 ∗∗∗ 0.0390 ∗∗ 0.9610

10 S 1.8834 1.8686 0.0810 ∗∗∗ 0.0350 ∗ 0.8840 ∗∗∗ 1.5708 1.4647 0.0550 ∗∗∗ 0.0360 ∗ 0.9090 ∗∗∗

10 NT 2.3424 1.0000 0.0000 ∗∗∗ 0.0430 ∗∗∗ 0.9570 1.8260 1.0000 0.0010 ∗∗∗ 0.0330 0.9660 ∗

10 P 2.2821 1.8411 0.0170 0.0220 0.9600 1.8100 1.4760 0.0160 0.0290 0.9550

10 BC 2.2865 1.8797 0.0170 0.0250 0.9580 1.8249 1.4902 0.0170 0.0300 0.9530

10 BCa 2.2981 1.8850 0.0200 0.0270 0.9520 1.8238 1.4767 0.0190 0.0310 0.9500
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10 NS 2.3200 0.5360 0.0000 ∗∗∗ 0.0680 ∗∗∗ 0.9320 ∗∗ 1.8491 0.6805 0.0000 ∗∗∗ 0.0370 ∗ 0.9630

10 S 1.8854 1.8770 0.0830 ∗∗∗ 0.0340 0.8830 ∗∗∗ 1.5721 1.4798 0.0560 ∗∗∗ 0.0350 ∗ 0.9090 ∗∗∗

10 NT 2.3859 1.0000 0.0000 ∗∗∗ 0.0420 ∗∗∗ 0.9580 1.8835 1.0000 0.0000 ∗∗∗ 0.0330 0.9670 ∗

10 P 2.3200 1.8658 0.0130 ∗ 0.0230 0.9640 ∗ 1.8491 1.4695 0.0140 ∗ 0.0280 0.9580

10 BC 2.3433 1.9106 0.0140 ∗ 0.0230 0.9630 1.8583 1.4831 0.0140 ∗ 0.0270 0.9590

10 BCa 2.3411 1.9287 0.0170 0.0260 0.9570 1.8565 1.4670 0.0150 ∗ 0.0270 0.9580
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10 NS 2.3284 0.5232 0.0000 ∗∗∗ 0.0690 ∗∗∗ 0.9310 ∗∗ 1.8847 0.6614 0.0000 ∗∗∗ 0.0350 ∗ 0.9650 ∗

10 S 1.8475 1.8395 0.0780 ∗∗∗ 0.0430 ∗∗∗ 0.8790 ∗∗∗ 1.5049 1.4592 0.0620 ∗∗∗ 0.0400 ∗∗ 0.8980 ∗∗∗

10 NT 2.4304 1.0000 0.0000 ∗∗∗ 0.0430 ∗∗∗ 0.9570 1.9329 1.0000 0.0010 ∗∗∗ 0.0310 0.9680 ∗∗

10 P 2.3284 1.9112 0.0130 ∗ 0.0190 0.9680 ∗∗ 1.8847 1.5119 0.0140 ∗ 0.0250 0.9610

10 BC 2.3326 1.9113 0.0120 ∗∗ 0.0200 0.9680 ∗∗ 1.8898 1.5148 0.0150 ∗ 0.0240 0.9610

10 BCa 2.3326 1.9181 0.0170 0.0200 0.9630 1.8760 1.4946 0.0150 ∗ 0.0240 0.9610

25 Monte Carlo 1.3094 1.2689 0.0250 0.0250 0.9500 1.1109 1.2022 0.0250 0.0250 0.9500

25 Delta 1.2633 1.0000 0.0020 ∗∗∗ 0.0410 ∗∗ 0.9570 1.0421 1.0000 0.0100 ∗∗ 0.0350 ∗ 0.9550

25 LRTI 1.3379 1.4692 0.0230 0.0300 0.9470 1.0986 1.2644 0.0340 0.0250 0.9410

25 Fieller 1.3453 1.4753 0.0180 0.0230 0.9590 1.0971 1.2822 0.0250 0.0230 0.9520
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25 TIB 1.2918 1.0389 0.0030 ∗∗∗ 0.0390 ∗∗ 0.9580 1.0626 1.0043 0.0140 ∗ 0.0350 ∗ 0.9510

25 STIB 1.3392 1.4854 0.0310 0.0270 0.9420 1.1015 1.2831 0.0290 0.0250 0.9460

25 NS 1.3384 0.6823 0.0000 ∗∗∗ 0.0520 ∗∗∗ 0.9480 1.0867 0.7875 0.0000 ∗∗∗ 0.0390 ∗∗ 0.9610

25 S 1.2407 1.4698 0.0420 ∗∗∗ 0.0290 0.9290 ∗∗ 1.0256 1.2683 0.0390 ∗∗ 0.0290 0.9320 ∗∗

25 NT 1.3368 1.0000 0.0000 ∗∗∗ 0.0390 ∗∗ 0.9610 1.0834 1.0000 0.0040 ∗∗∗ 0.0340 0.9620

25 P 1.3384 1.4656 0.0200 0.0250 0.9540 1.0867 1.2699 0.0270 0.0270 0.9460

25 BC 1.3405 1.4770 0.0210 0.0240 0.9550 1.0898 1.2712 0.0260 0.0270 0.9470

25 BCa 1.3400 1.4754 0.0210 0.0250 0.9540 1.0889 1.2610 0.0260 0.0270 0.9470
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25 NS 1.3400 0.6852 0.0000 ∗∗∗ 0.0500 ∗∗∗ 0.9500 1.0889 0.7944 0.0000 ∗∗∗ 0.0400 ∗∗ 0.9600

25 S 1.2355 1.4765 0.0400 ∗∗ 0.0260 0.9340 ∗ 1.0261 1.2761 0.0360 ∗ 0.0300 0.9340 ∗

25 NT 1.3402 1.0000 0.0000 ∗∗∗ 0.0390 ∗∗ 0.9610 1.0810 1.0000 0.0020 ∗∗∗ 0.0320 0.9660 ∗

25 P 1.3400 1.4595 0.0200 0.0240 0.9560 1.0889 1.2588 0.0250 0.0250 0.9500

25 BC 1.3424 1.4864 0.0190 0.0240 0.9570 1.0940 1.2737 0.0260 0.0240 0.9500

25 BCa 1.3402 1.4858 0.0200 0.0260 0.9540 1.0920 1.2640 0.0260 0.0250 0.9490
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25 NS 1.3444 0.6718 0.0000 ∗∗∗ 0.0570 ∗∗∗ 0.9430 1.0990 0.7734 0.0000 ∗∗∗ 0.0390 ∗∗ 0.9610

25 S 1.2297 1.4663 0.0440 ∗∗∗ 0.0290 0.9270 ∗∗∗ 1.0083 1.2728 0.0400 ∗∗ 0.0320 0.9280 ∗∗

25 NT 1.3421 1.0000 0.0000 ∗∗∗ 0.0360 ∗ 0.9640 ∗ 1.0881 1.0000 0.0040 ∗∗∗ 0.0290 0.9670 ∗

25 P 1.3444 1.4886 0.0180 0.0250 0.9570 1.0990 1.2930 0.0280 0.0230 0.9490

25 BC 1.3471 1.4812 0.0180 0.0250 0.9570 1.1031 1.2874 0.0250 0.0200 0.9550

25 BCa 1.3492 1.4803 0.0180 0.0250 0.9570 1.1028 1.2780 0.0250 0.0210 0.9540

50 Monte Carlo 0.9554 1.2955 0.0250 0.0250 0.9500 0.7773 1.2883 0.0250 0.0250 0.9500

50 Delta 0.8962 1.0000 0.0110 ∗∗ 0.0360 ∗ 0.9530 0.7439 1.0000 0.0180 0.0250 0.9570

50 LRTI 0.9241 1.3087 0.0300 0.0200 0.9500 0.7666 1.1918 0.0310 0.0180 0.9510

50 Fieller 0.9236 1.3117 0.0290 0.0220 0.9490 0.7633 1.1888 0.0310 0.0180 0.9510
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50 TIB 0.9132 1.0175 0.0140 ∗ 0.0360 ∗ 0.9500 0.7569 0.9987 0.0190 0.0270 0.9540

50 STIB 0.9308 1.3247 0.0290 0.0220 0.9490 0.7719 1.1971 0.0320 0.0210 0.9470

50 NS 0.9240 0.7642 0.0000 ∗∗∗ 0.0460 ∗∗∗ 0.9540 0.7556 0.8443 0.0060 ∗∗∗ 0.0290 0.9650 ∗

50 S 0.8899 1.3084 0.0340 0.0240 0.9420 0.7376 1.1818 0.0360 ∗ 0.0200 0.9440

50 NT 0.9217 1.0000 0.0050 ∗∗∗ 0.0340 0.9610 0.7564 1.0000 0.0170 0.0230 0.9600

50 P 0.9240 1.3086 0.0300 0.0240 0.9460 0.7556 1.1844 0.0330 0.0170 0.9500

50 BC 0.9255 1.3098 0.0300 0.0220 0.9480 0.7585 1.1822 0.0330 0.0180 0.9490

50 BCa 0.9256 1.3095 0.0300 0.0230 0.9470 0.7575 1.1765 0.0320 0.0180 0.9500
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50 NS 0.9297 0.7616 0.0000 ∗∗∗ 0.0430 ∗∗∗ 0.9570 0.7548 0.8461 0.0100 ∗∗ 0.0300 0.9600

50 S 0.8930 1.3122 0.0370 ∗ 0.0240 0.9390 0.7335 1.1808 0.0380 ∗∗ 0.0170 0.9450

50 NT 0.9255 1.0000 0.0080 ∗∗∗ 0.0330 0.9590 0.7514 1.0000 0.0150 ∗ 0.0230 0.9620

50 P 0.9297 1.3130 0.0330 0.0190 0.9480 0.7548 1.1819 0.0300 0.0180 0.9520

50 BC 0.9331 1.3129 0.0320 0.0230 0.9450 0.7560 1.1818 0.0310 0.0190 0.9500

50 BCa 0.9331 1.3119 0.0320 0.0230 0.9450 0.7549 1.1746 0.0310 0.0200 0.9490
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50 NS 0.9247 0.7597 0.0000 ∗∗∗ 0.0480 ∗∗∗ 0.9520 0.7618 0.8329 0.0080 ∗∗∗ 0.0310 0.9610

50 S 0.8898 1.3039 0.0370 ∗ 0.0250 0.9380 0.7336 1.1898 0.0370 ∗ 0.0220 0.9410

50 NT 0.9234 1.0000 0.0060 ∗∗∗ 0.0340 0.9600 0.7595 1.0000 0.0160 0.0230 0.9610

50 P 0.9247 1.3163 0.0320 0.0230 0.9450 0.7618 1.2006 0.0320 0.0190 0.9490

50 BC 0.9223 1.3062 0.0320 0.0240 0.9440 0.7656 1.1896 0.0320 0.0180 0.9500

50 BCa 0.9234 1.3058 0.0320 0.0250 0.9430 0.7649 1.1833 0.0320 0.0190 0.9490

Table 2: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals. Significance codes:

*** for p-value < 0.001; ** for p-value < 0.01; * for p-value < 0.05. Model simulated: MNL model

with orthogonal experimental design. Parameter values: β0 = 0.5, β1 = 1, β2 = 0.5, βC = −0.5.
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ŴTP 1 ŴTP 2

N Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

10 Monte Carlo 15.2290 3.4325 0.0250 0.0250 0.9500 8.4442 3.0840 0.0250 0.0250 0.9500

10 Delta 6.8556 1.0000 0.0000 ∗∗∗ 0.1030 ∗∗∗ 0.8970 ∗∗∗ 4.2240 1.0000 0.0000 ∗∗∗ 0.0770 ∗∗∗ 0.9230 ∗∗∗

10 LRTI 20.6641 8.7843 0.0100 ∗∗ 0.0300 0.9600 10.6641 5.4118 0.0190 0.0270 0.9540

10 Fieller 21.3345 4.5744 0.0000 ∗∗∗ 0.0347 0.9580 11.6398 3.2236 0.0000 ∗∗∗ 0.0229 0.9620
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10 TIB 29.6260 5.5833 0.0030 ∗∗∗ 0.0820 ∗∗∗ 0.9150 ∗∗∗ 26.3406 1.0481 0.0010 ∗∗∗ 0.0760 ∗∗∗ 0.9230 ∗∗∗

10 STIB 8.4122 3.0851 0.0100 ∗∗ 0.0280 0.9620 5.4977 1.8749 0.0210 0.0280 0.9510

10 NS 15.1248 0.3136 0.0060 ∗∗∗ 0.1710 ∗∗∗ 0.8230 ∗∗∗ 8.2964 0.4599 0.0050 ∗∗∗ 0.0950 ∗∗∗ 0.9000 ∗∗∗

10 S 7.1503 4.8277 0.2390 ∗∗∗ 0.0580 ∗∗∗ 0.7030 ∗∗∗ 3.8728 3.0769 0.1930 ∗∗∗ 0.0680 ∗∗∗ 0.7390 ∗∗∗

10 NT 189.1937 1.0000 0.0000 ∗∗∗ 0.0420 ∗∗∗ 0.9580 93.3485 1.0000 0.0000 ∗∗∗ 0.0280 0.9720 ∗∗

10 P 15.1248 3.1887 0.0000 ∗∗∗ 0.0250 0.9750 ∗∗∗ 8.2964 2.1745 0.0000 ∗∗∗ 0.0220 0.9770 ∗∗∗

10 BC 16.7205 5.4917 0.0030 ∗∗∗ 0.0280 0.9690 ∗∗ 8.9018 4.0587 0.0080 ∗∗∗ 0.0250 0.9670 ∗

10 BCa 17.9803 6.3633 0.0040 ∗∗∗ 0.0290 0.9670 ∗ 9.0352 4.2639 0.0090 ∗∗ 0.0250 0.9660 ∗
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10 NS 15.4022 0.3310 0.0050 ∗∗∗ 0.1720 ∗∗∗ 0.8230 ∗∗∗ 8.7385 0.4649 0.0050 ∗∗∗ 0.0980 ∗∗∗ 0.8970 ∗∗∗

10 S 7.1528 4.8388 0.2380 ∗∗∗ 0.0570 ∗∗∗ 0.7050 ∗∗∗ 3.9462 3.1201 0.1920 ∗∗∗ 0.0680 ∗∗∗ 0.7400 ∗∗∗

10 NT 166.6002 1.0000 0.0000 ∗∗∗ 0.0350 ∗ 0.9650 ∗ 76.6297 1.0000 0.0000 ∗∗∗ 0.0240 0.9760 ∗∗∗

10 P 15.4022 3.0209 0.0000 ∗∗∗ 0.0220 0.9780 ∗∗∗ 8.7385 2.1509 0.0000 ∗∗∗ 0.0200 0.9800 ∗∗∗

10 BC 17.5345 5.9005 0.0020 ∗∗∗ 0.0280 0.9700 ∗∗ 9.3534 4.2173 0.0070 ∗∗∗ 0.0230 0.9700 ∗∗

10 BCa 18.4542 6.9539 0.0020 ∗∗∗ 0.0280 0.9700 ∗∗ 9.4445 4.4733 0.0070 ∗∗∗ 0.0230 0.9700 ∗∗
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10 NS 15.2320 0.3211 0.0050 ∗∗∗ 0.1730 ∗∗∗ 0.8220 ∗∗∗ 8.4909 0.4692 0.0060 ∗∗∗ 0.0890 ∗∗∗ 0.9050 ∗∗∗

10 S 6.9235 4.4932 0.2300 ∗∗∗ 0.0620 ∗∗∗ 0.7080 ∗∗∗ 3.8029 2.9941 0.1910 ∗∗∗ 0.0740 ∗∗∗ 0.7350 ∗∗∗

10 NT 150.9794 1.0000 0.0000 ∗∗∗ 0.0370 ∗ 0.9630 73.3779 1.0000 0.0000 ∗∗∗ 0.0200 0.9800 ∗∗∗

10 P 15.2320 3.1142 0.0000 ∗∗∗ 0.0220 0.9780 ∗∗∗ 8.4909 2.1313 0.0000 ∗∗∗ 0.0150 ∗ 0.9850 ∗∗∗

10 BC 16.2477 5.4088 0.0010 ∗∗∗ 0.0240 0.9750 ∗∗∗ 9.1288 3.9373 0.0080 ∗∗∗ 0.0190 0.9730 ∗∗∗

10 BCa 17.3287 6.3764 0.0010 ∗∗∗ 0.0230 0.9760 ∗∗∗ 9.3681 4.2903 0.0100 ∗∗ 0.0190 0.9710 ∗∗

25 Monte Carlo 5.9592 2.2693 0.0250 0.0250 0.9500 3.3758 1.8337 0.0250 0.0250 0.9500

25 Delta 4.2692 1.0000 0.0000 ∗∗∗ 0.0700 ∗∗∗ 0.9300 ∗∗ 2.6410 1.0000 0.0000 ∗∗∗ 0.0610 ∗∗∗ 0.9390

25 LRTI 5.6396 2.9577 0.0290 0.0250 0.9460 3.3398 2.4000 0.0270 0.0280 0.9450

25 Fieller 5.7322 2.8140 0.0062 ∗∗∗ 0.0280 0.9490 3.4067 2.3026 0.0145 ∗ 0.0239 0.9530
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25 TIB 4.5211 1.2532 0.0000 ∗∗∗ 0.0720 ∗∗∗ 0.9280 ∗∗ 2.6836 1.0399 0.0000 ∗∗∗ 0.0630 ∗∗∗ 0.9370

25 STIB 4.8668 2.9605 0.0990 ∗∗∗ 0.0310 0.8700 ∗∗∗ 2.9293 2.0964 0.0770 ∗∗∗ 0.0300 0.8930 ∗∗∗

25 NS 5.7330 0.3539 0.0000 ∗∗∗ 0.1350 ∗∗∗ 0.8650 ∗∗∗ 3.3658 0.4456 0.0000 ∗∗∗ 0.0940 ∗∗∗ 0.9060 ∗∗∗

25 S 4.2578 2.8970 0.1540 ∗∗∗ 0.0370 ∗ 0.8090 ∗∗∗ 2.5172 2.2041 0.1360 ∗∗∗ 0.0410 ∗∗ 0.8230 ∗∗∗

25 NT 7.2512 1.0000 0.0000 ∗∗∗ 0.0490 ∗∗∗ 0.9510 4.0064 1.0000 0.0000 ∗∗∗ 0.0470 ∗∗∗ 0.9530

25 P 5.7330 2.8257 0.0030 ∗∗∗ 0.0270 0.9700 ∗∗ 3.3658 2.2441 0.0100 ∗∗ 0.0240 0.9660 ∗

25 BC 5.7668 2.9512 0.0060 ∗∗∗ 0.0280 0.9660 ∗ 3.3647 2.3327 0.0160 0.0240 0.9600

25 BCa 5.8327 3.0240 0.0060 ∗∗∗ 0.0280 0.9660 ∗ 3.3728 2.3472 0.0160 0.0240 0.9600
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25 NS 5.8012 0.3520 0.0000 ∗∗∗ 0.1350 ∗∗∗ 0.8650 ∗∗∗ 3.4098 0.4377 0.0000 ∗∗∗ 0.0900 ∗∗∗ 0.9100 ∗∗∗

25 S 4.2666 2.9024 0.1520 ∗∗∗ 0.0380 ∗∗ 0.8100 ∗∗∗ 2.5059 2.2015 0.1310 ∗∗∗ 0.0400 ∗∗ 0.8290 ∗∗∗

25 NT 7.9278 1.0000 0.0000 ∗∗∗ 0.0460 ∗∗∗ 0.9540 4.2000 1.0000 0.0000 ∗∗∗ 0.0450 ∗∗∗ 0.9550

25 P 5.8012 2.8408 0.0030 ∗∗∗ 0.0240 0.9730 ∗∗∗ 3.4098 2.2849 0.0110 ∗∗ 0.0220 0.9670 ∗

25 BC 5.8818 3.0035 0.0060 ∗∗∗ 0.0230 0.9710 ∗∗ 3.4286 2.3526 0.0160 0.0230 0.9610

25 BCa 5.9124 3.0882 0.0070 ∗∗∗ 0.0220 0.9710 ∗∗ 3.4285 2.3745 0.0160 0.0230 0.9610
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25 NS 5.6870 0.3641 0.0000 ∗∗∗ 0.1320 ∗∗∗ 0.8680 ∗∗∗ 3.4123 0.4403 0.0000 ∗∗∗ 0.0920 ∗∗∗ 0.9080 ∗∗∗

25 S 4.2240 2.8264 0.1480 ∗∗∗ 0.0410 ∗∗ 0.8110 ∗∗∗ 2.4685 2.1847 0.1340 ∗∗∗ 0.0420 ∗∗∗ 0.8240 ∗∗∗

25 NT 8.3479 1.0000 0.0000 ∗∗∗ 0.0510 ∗∗∗ 0.9490 4.4484 1.0000 0.0000 ∗∗∗ 0.0400 ∗∗ 0.9600

25 P 5.6870 2.7462 0.0010 ∗∗∗ 0.0290 0.9700 ∗∗ 3.4123 2.2711 0.0100 ∗∗ 0.0260 0.9640 ∗

25 BC 5.7434 2.8614 0.0040 ∗∗∗ 0.0260 0.9700 ∗∗ 3.4339 2.3344 0.0120 ∗∗ 0.0260 0.9620

25 BCa 5.8148 2.9367 0.0040 ∗∗∗ 0.0260 0.9700 ∗∗ 3.4338 2.3551 0.0120 ∗∗ 0.0260 0.9620

50 Monte Carlo 3.6449 1.7233 0.0250 0.0250 0.9500 5.5166 -12.0957 0.0250 0.0250 0.9500

50 Delta 3.0629 1.0000 0.0000 ∗∗∗ 0.0630 ∗∗∗ 0.9370 1.9070 1.0000 0.0000 ∗∗∗ 0.0560 ∗∗∗ 0.9440

50 LRTI 3.4180 2.0522 0.0280 0.0350 ∗ 0.9370 2.1875 1.7638 0.0200 0.0250 0.9550

50 Fieller 3.5108 2.0342 0.0280 0.0280 0.9440 2.1449 1.7774 0.0180 0.0230 0.9590
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50 TIB 3.1429 1.1046 0.0000 ∗∗∗ 0.0630 ∗∗∗ 0.9370 1.9360 1.0097 0.0000 ∗∗∗ 0.0560 ∗∗∗ 0.9440

50 STIB 3.2540 2.1617 0.0770 ∗∗∗ 0.0290 0.8940 ∗∗∗ 2.0092 1.7775 0.0510 ∗∗∗ 0.0310 0.9180 ∗∗∗

50 NS 3.5301 0.4821 0.0000 ∗∗∗ 0.1020 ∗∗∗ 0.8980 ∗∗∗ 2.1503 0.5612 0.0000 ∗∗∗ 0.0810 ∗∗∗ 0.9190 ∗∗∗

50 S 3.0508 2.0766 0.0910 ∗∗∗ 0.0340 0.8750 ∗∗∗ 1.8479 1.7691 0.0680 ∗∗∗ 0.0360 ∗ 0.8960 ∗∗∗

50 NT 3.5871 1.0000 0.0000 ∗∗∗ 0.0530 ∗∗∗ 0.9470 2.1816 1.0000 0.0000 ∗∗∗ 0.0490 ∗∗∗ 0.9510

50 P 3.5301 2.0745 0.0260 0.0280 0.9460 2.1503 1.7818 0.0170 0.0260 0.9570

50 BC 3.5439 2.1001 0.0280 0.0270 0.9450 2.1695 1.7931 0.0190 0.0270 0.9540

50 BCa 3.5520 2.1322 0.0290 0.0260 0.9450 2.1701 1.7957 0.0190 0.0270 0.9540

N
on

p
ar

am
.

sa
m

p
li

n
g

50 NS 3.5028 0.4821 0.0000 ∗∗∗ 0.1040 ∗∗∗ 0.8960 ∗∗∗ 2.1332 0.5609 0.0000 ∗∗∗ 0.0770 ∗∗∗ 0.9230 ∗∗∗

50 S 2.9910 2.0568 0.0890 ∗∗∗ 0.0340 0.8770 ∗∗∗ 1.8567 1.7823 0.0700 ∗∗∗ 0.0330 0.8970 ∗∗∗

50 NT 3.5788 1.0000 0.0000 ∗∗∗ 0.0560 ∗∗∗ 0.9440 2.1648 1.0000 0.0000 ∗∗∗ 0.0450 ∗∗∗ 0.9550

50 P 3.5028 2.0744 0.0320 0.0280 0.9400 2.1332 1.7828 0.0170 0.0300 0.9530

50 BC 3.5390 2.0989 0.0300 0.0270 0.9430 2.1466 1.7841 0.0180 0.0290 0.9530

50 BCa 3.5533 2.1204 0.0310 0.0270 0.9420 2.1452 1.7845 0.0180 0.0290 0.9530

K
ri

n
sk

y

an
d

R
ob

b

sa
m

p
li

n
g

50 NS 3.5218 0.4880 0.0000 ∗∗∗ 0.1050 ∗∗∗ 0.8950 ∗∗∗ 2.1598 0.5586 0.0000 ∗∗∗ 0.0760 ∗∗∗ 0.9240 ∗∗∗

50 S 3.0155 2.0431 0.0910 ∗∗∗ 0.0350 ∗ 0.8740 ∗∗∗ 1.8520 1.7599 0.0690 ∗∗∗ 0.0410 ∗∗ 0.8900 ∗∗∗

50 NT 3.6298 1.0000 0.0000 ∗∗∗ 0.0540 ∗∗∗ 0.9460 2.1870 1.0000 0.0000 ∗∗∗ 0.0470 ∗∗∗ 0.9530

50 P 3.5218 2.0492 0.0280 0.0290 0.9430 2.1598 1.7903 0.0170 0.0230 0.9600

50 BC 3.5089 2.0457 0.0280 0.0290 0.9430 2.1632 1.8021 0.0170 0.0240 0.9590

50 BCa 3.5290 2.0696 0.0290 0.0280 0.9430 2.1616 1.8047 0.0170 0.0240 0.9590

Table 3: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals. Significance codes:

*** for p-value < 0.001; ** for p-value < 0.01; * for p-value < 0.05. Model simulated: MNL model

with orthogonal experimental design. Parameter values: β0 = 0.5, β1 = 1, β2 = 0.5, βC = −0.25.
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coverage rates for N = 10 (e.g. TIB and STIB, probably due to convergence problems, as

discussed later). Pivotal bootstrap methods show their limits, no matter the sampling scheme

used. Approximation methods and percentile bootstrap methods perform well and have good

coverage rates. For this last family, and for N = 10, the non parametric sampling scheme

produces slightly less satisfactory results with respect to Krinsky and Robb and parametric

schemes. A possible explanation is that when such a small sample size is available, respondents

may be sampled many times inducing unstable parameter estimates. The larger the sample

size the better all methods perform8.

Tables 2 and 3 show that βC approaching 0 reduces the performance of most methods. In

particular, already for βC = −0.5, Delta produces LRP and RRP significantly different from

α/2 and CIs shifted towards 0, even if the total coverage rate is unaffected9. The problem

persists even for N = 25 and, to some extent, also for N = 50. With βC = −0.25 this shift is

more marked and the total coverage rate deteriorates, falling well below the nominal level10.

Fieller and LRTI both produce accurate CIs for βC = −0.5 but show significantly smaller

LRP values than α/2 for βC = −0.25 and N = 10. This problem disappears as N increases.

Notice, however, that LRTI seems to perform slightly better than Fieller and its LRP recovers

earlier to its nominal value as N raises.

Percentile bootstrap methods also work well for βC = −0.5. Some problems are detected

for the Krinsky and Robb and for the non parametric sampling scheme when N = 10. In this

case, BCa seems superior to P and BC. The performance of these three methods, however,

deteriorates when βC goes to -0.25. Despite BCa seems to confirm its superiority, the three per-

centile methods give raise to LRPs significantly smaller than α/2 producing overconservative

8Notice that, in all of the tables reported, significance levels are not corrected to account for multiple testing

problems. Thus, coverage rates or rejection probabilities only significant at the 5% level should not be given

too much credit.
9In Table 2, the t-statistic is equal to -3.85, -6.09 and -8.61, respectively for N = 10, N = 25 and N = 50.

10In Table 3, the t-statistic is equal to -2.22, -3.50 and -4.95, respectively for N = 10, N = 25 and N = 50.
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CIs. However, these methods regain their accuracy well before Delta as N increases.

Pivotal bootstrap methods show very poor coverage rates, confirming their inadequacy in

delivering reliable CIs. NT gives huge CIs for N = 10 and βC = −0.25, due to the instability

of WTP estimates across bootstrap samples determining an inflated bootstrap estimate of the

standard error of ŴTP .

STIB performs reasonably well for βC = −0.5 but not for βC = −0.25, showing, in this

last case, a counterintuitive worsening as N increases11.

Looking at the shape index for the Monte Carlo CI in Tables 1, 2 and 3 one notices a positive

asymmetry, which increases as βC approaches 0 and decreases as N rises. The median shape

obtained with all methods, except Delta and NT (both symmetric by construction), reflects

such a positive asymmetry. The median length of the intervals behave as the median shape,

increasing for small βC or N . It is interesting to note that Delta produces, in general, the

shortest CIs, which would be desirable where the coverage rate correct; this is not always the

case for small βC values. Fieller and LRTI are characterized by more satisfactory coverage

rates and CIs of comparable lengths. Those produced by Fieller are slightly larger than

those produced by LRTI, making the latter somehow preferable. Percentile methods produce

intervals of length similar to Fieller and LRTI, except for βC = −0.25 and N = 10, when

they are much shorter but heavily shifted and with unsatisfactory coverage rates. The median

length of bootstrap CIs based on non-parametric sampling is generally higher than that

obtained using alternative resampling schemes.

Figure 2 reports the q-q plots of the sample quantiles of ŴTP 1 and ŴTP 2 when βC =

−0.25 with increasing N values, showing that such a small cost parameter provokes substantial

departures from normality in the distribution of ŴTP . The sample distributions of ŴTP 1

11TIB and STIB require careful monitoring to assess convergence to interval limits. They turned out

particularly sensitive to both step length and stopping rule. These issues might explain the controversial

results obtained in the simulation study, casting doubts on convergence in some cases.
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Figure 2: Quantile-quantile plots of the sample quantiles of ŴTP 1 (upper panel) and ŴTP 2 (bottom

panel) for increasing values of N (N = 10, left panel; N = 25, central panel; N = 50, right panel).

Parameter values: β0 = 0.5, β1 = 1, β2 = 0.5, βC = −0.25.

and ŴTP 2 are positively skewed even for N = 50, notwithstanding skewness decreases as N

rises. This might explain both the good performance of Fieller, LRTI and percentile meth-

ods, which do not rely on ŴTP normality assumption, and the poor performance of Delta,

rendering symmetric CIs. Additionally, Figure 2 reveals a larger departure from normality in

the distribution of ŴTP 1 (top panel) compared to ŴTP 2 (bottom panel). This suggests that

Delta reliability cannot simply rest on the coefficient of variation of WTP denominator. Ce-

teris paribus, the approximation of WTP distribution to normality improves as the coefficient

of variation of the numerator increases explaining the overall improvement in performance of

all methods for WTP2 compared to WTP1.

Figure 3 shows the CIs obtained through Delta, Fieller, LRTI and BCa on 10 different

data sets simulated under βC = −0.25 and N = 50 (same settings as Table 3). The last
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Figure 3: Confidence intervals for WTP1 obtained through Delta, Fieller, LRTI and BCa, for 10

different simulated data sets. N = 50. Parameter values: β0 = 0.5, β1 = 1, β2 = 0.5, βC = −0.25.

Horizontal dashed line represents the true value of WTP1.

three methods not only render CIs with the right coverage rate, LRP and RRP (see Table 3),

but also produce very similar intervals for the single data set. CIs produced by Delta differ,

in some cases, quite substantially. In particular, the shift towards 0 and the much smaller

superior limits further underline Delta inability to account for positive skewness in the ŴTP

distribution.

4.2. Correlation between numerator and denominator estimates

Most of the literature investigating the conditions under which Delta is likely to work

well have only focused on the coefficient of variation of the denominator. Nevertheless, in

some cases, it is acknowledged that the correlation between numerator and denominator plays

an important role in determining ŴTP distribution (Hirschberg and Lye, 2010; Marsaglia,

2006). As shown in Hirschberg and Lye (2010), Delta and Fieller intervals may diverge even

when the denominator has a high level of precision, if the sign of the estimated correlation
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between the numerator and denominator is the same as that of ŴTP . The performance of

all the methods under such a situation is illustrated by inducing positive correlation between

the numerator and denominator estimates through a non-orthogonal experimental design. In

particular, the first level of X1 is associated with any level of XC except the first one, and the

second level of X1 is associated with any level of XC except the fourth one12. This setting

gives cor(X1, XC) = −0.589 and introduces, as a side effect, a negligible negative correlation

between X2 and XC , i.e. cor(X2, XC) = −0.119. Letting β0 = 0.5, β1 = 1, β2 = 0.5, βC = −1,

as in Table 1, one obtains σβ̂1,β̂C = 0.555 and σβ̂2,β̂C = −0.390.

Table 4 shows the effects of positive correlation between the numerator and denominator of

ŴTP . Delta produces unsatisfactory CIs for WTP1 in terms of LRP, RRP and total coverage

rate. The LRP, even for N = 50, is significantly different from its nominal level, while Fieller,

LRTI, BC and BCa perform well independently of sample size13. Additionally, Delta intervals

for WTP1 include the value 0 in 73.5% of the cases when N = 10, while such a percentage

ranges from 27.2% to 32.0% when using Fieller, LRTI, BC and BCa. Since the coefficient of

variation for β̂1 is 0.380 (t-statistic equal to 2.631), this implies Delta often produces WTP1

intervals including 0 when the numerator of WTP1 is significantly different from 0. This is

counterintuitive and might have serious implications on policy making decisions when WTP

measures are used as a benchmark. Delta intervals with N = 25 still contain 0 in 5.6% of

12This apparently counterintuitive situation might, under some circumstances, happen in real-life service

industries production. In fact, one could have a raising cost associated with a decreasing level in a desirable

attribute of the available alternatives. In public transportation services, for instance, this might happen with

respect to frequency, comfort and price. In fact, imagine a situation where price is high and frequency is high

during peak time, while the opposite is true in off-peak. Now suppose that the rationing effect of the increase

in price is not sufficient to improve the level of comfort which remains low, while comfort is high during off-

peak. In this case, one would witness a negative correlation between comfort and price. Additionally, the same

phenomenon might appear also in stated preference data due both to efficient, non-orthogonal experimental

designs and missing responses.
13The only exception being non parametric sampling for BC and BCa for N = 10.
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ŴTP 1 ŴTP 2

N Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

10 Monte Carlo 2.4135 1.5135 0.0250 0.0250 0.9500 1.2654 1.0584 0.0250 0.0250 0.9500

10 Delta 2.2165 1.0000 0.0000 ∗∗∗ 0.0780 ∗∗∗ 0.9220 ∗∗∗ 1.1861 1.0000 0.0090 ∗∗ 0.0220 0.9690 ∗∗

10 LRTI 2.5000 2.1429 0.0230 0.0350 ∗ 0.9420 1.3281 1.1082 0.0310 0.0290 0.9400

10 Fieller 2.7841 2.4090 0.0180 0.0220 0.9600 1.3604 1.0894 0.0250 0.0210 0.9540

P
ar

am
et

ri
c

sa
m

p
li

n
g

10 TIB 3.3362 2.3762 0.0060 ∗∗∗ 0.0170 0.9770 ∗∗∗ 1.2182 0.9835 0.0120 ∗∗ 0.0220 0.9660 ∗

10 STIB 2.8687 2.5036 0.0560 ∗∗∗ 0.0150 ∗ 0.9290 ∗∗ 1.4341 1.0890 0.0290 0.0220 0.9490

10 NS 2.4930 0.5180 0.0000 ∗∗∗ 0.1200 ∗∗∗ 0.8800 ∗∗∗ 1.2928 0.8825 0.0010 ∗∗∗ 0.0130 ∗ 0.9860 ∗∗∗

10 S 2.4167 2.2684 0.0740 ∗∗∗ 0.0270 0.8990 ∗∗∗ 1.1544 1.0765 0.0700 ∗∗∗ 0.0280 0.9020 ∗∗∗

10 NT 2.5713 1.0000 0.0000 ∗∗∗ 0.0680 ∗∗∗ 0.9320 ∗∗ 1.2808 1.0000 0.0040 ∗∗∗ 0.0190 0.9770 ∗∗∗

10 P 2.4930 1.9305 0.0140 ∗ 0.0430 ∗∗∗ 0.9430 1.2928 1.1331 0.0290 0.0230 0.9480

10 BC 2.5850 2.0892 0.0170 0.0320 0.9510 1.2980 1.0624 0.0360 ∗ 0.0280 0.9360 ∗

10 BCa 2.5347 2.0117 0.0160 0.0330 0.9510 1.2970 1.0659 0.0360 ∗ 0.0250 0.9390

N
on

p
ar

am
.

sa
m

p
li

n
g

10 NS 2.5032 0.5215 0.0000 ∗∗∗ 0.1260 ∗∗∗ 0.8740 ∗∗∗ 1.2893 0.8685 0.0000 ∗∗∗ 0.0110 ∗∗ 0.9890 ∗∗∗

10 S 2.4148 2.3259 0.0810 ∗∗∗ 0.0350 ∗ 0.8840 ∗∗∗ 1.1382 1.0686 0.0710 ∗∗∗ 0.0410 ∗∗ 0.8880 ∗∗∗

10 NT 2.5678 1.0000 0.0000 ∗∗∗ 0.0750 ∗∗∗ 0.9250 ∗∗∗ 1.2919 1.0000 0.0050 ∗∗∗ 0.0130 ∗ 0.9820 ∗∗∗

10 P 2.5032 1.9174 0.0130 ∗ 0.0470 ∗∗∗ 0.9400 1.2893 1.1515 0.0320 0.0190 0.9490

10 BC 2.5675 2.0745 0.0140 ∗ 0.0400 ∗∗ 0.9460 1.2940 1.0914 0.0350 ∗ 0.0270 0.9380

10 BCa 2.5141 1.9675 0.0130 ∗ 0.0410 ∗∗ 0.9460 1.2926 1.1002 0.0350 ∗ 0.0260 0.9390

K
ri

n
sk

y

an
d

R
o
b

b

sa
m

p
li

n
g

10 NS 2.7973 0.4116 0.0000 ∗∗∗ 0.1270 ∗∗∗ 0.8730 ∗∗∗ 1.3643 0.9113 0.0000 ∗∗∗ 0.0030 ∗∗∗ 0.9970 ∗∗∗

10 S 2.1271 2.3431 0.1040 ∗∗∗ 0.0430 ∗∗∗ 0.8530 ∗∗∗ 1.0632 1.0819 0.0780 ∗∗∗ 0.0460 ∗∗∗ 0.8760 ∗∗∗

10 NT 3.1509 1.0000 0.0000 ∗∗∗ 0.0460 ∗∗∗ 0.9540 1.3777 1.0000 0.0010 ∗∗∗ 0.0080 ∗∗∗ 0.9910 ∗∗∗

10 P 2.7973 2.4294 0.0170 0.0230 0.9600 1.3643 1.0973 0.0280 0.0200 0.9520

10 BC 2.7843 2.4007 0.0180 0.0220 0.9600 1.3691 1.0880 0.0270 0.0210 0.9520

10 BCa 2.7204 2.2957 0.0170 0.0240 0.9590 1.3722 1.0880 0.0270 0.0190 0.9540

25 Monte Carlo 1.4374 1.3413 0.0250 0.0250 0.9500 0.7921 1.0891 0.0250 0.0250 0.9500

25 Delta 1.3953 1.0000 0.0040 ∗∗∗ 0.0600 ∗∗∗ 0.9360 ∗ 0.7469 1.0000 0.0250 0.0270 0.9480

25 LRTI 1.4453 1.6000 0.0230 0.0340 0.9430 0.7764 1.0537 0.0320 0.0280 0.9400

25 Fieller 1.5098 1.6747 0.0220 0.0220 0.9560 0.7830 1.0434 0.0290 0.0280 0.9430

P
ar

a
m

et
ri

c

sa
m

p
li

n
g

25 TIB 1.5213 1.4306 0.0090 ∗∗ 0.0260 0.9650 ∗ 0.7566 0.9725 0.0190 0.0270 0.9540

25 STIB 1.4959 1.6545 0.0300 0.0230 0.9470 0.8007 1.0347 0.0310 0.0260 0.9430

25 NS 1.4547 0.6675 0.0000 ∗∗∗ 0.0800 ∗∗∗ 0.9200 ∗∗∗ 0.7687 0.9292 0.0080 ∗∗∗ 0.0200 0.9720 ∗∗

25 S 1.4387 1.6288 0.0320 0.0250 0.9430 0.7345 1.0282 0.0390 ∗∗ 0.0290 0.9320 ∗∗

25 NT 1.4583 1.0000 0.0000 ∗∗∗ 0.0560 ∗∗∗ 0.9440 0.7647 1.0000 0.0200 0.0250 0.9550

25 P 1.4547 1.4980 0.0180 0.0310 0.9510 0.7687 1.0762 0.0290 0.0270 0.9440

25 BC 1.4745 1.5657 0.0190 0.0260 0.9550 0.7708 1.0274 0.0290 0.0300 0.9410

25 BCa 1.4617 1.5080 0.0160 0.0300 0.9540 0.7704 1.0270 0.0290 0.0290 0.9420

N
on

p
ar

am
.

sa
m

p
li

n
g

25 NS 1.4589 0.6644 0.0000 ∗∗∗ 0.0810 ∗∗∗ 0.9190 ∗∗∗ 0.7690 0.9322 0.0080 ∗∗∗ 0.0230 0.9690 ∗∗

25 S 1.4315 1.6327 0.0330 0.0250 0.9420 0.7303 1.0286 0.0440 ∗∗∗ 0.0360 ∗ 0.9200 ∗∗∗

25 NT 1.4608 1.0000 0.0000 ∗∗∗ 0.0550 ∗∗∗ 0.9450 0.7665 1.0000 0.0160 0.0240 0.9600

25 P 1.4589 1.5051 0.0180 0.0310 0.9510 0.7690 1.0728 0.0300 0.0240 0.9460

25 BC 1.4769 1.5639 0.0210 0.0280 0.9510 0.7701 1.0310 0.0320 0.0300 0.9380

25 BCa 1.4625 1.5029 0.0180 0.0270 0.9550 0.7700 1.0308 0.0310 0.0280 0.9410

K
ri

n
sk

y

an
d

R
ob

b

sa
m

p
li

n
g

25 NS 1.5194 0.5928 0.0000 ∗∗∗ 0.0870 ∗∗∗ 0.9130 ∗∗∗ 0.7842 0.9496 0.0080 ∗∗∗ 0.0150 ∗ 0.9770 ∗∗∗

25 S 1.3757 1.6666 0.0430 ∗∗∗ 0.0300 0.9270 ∗∗∗ 0.7178 1.0447 0.0430 ∗∗∗ 0.0380 ∗∗ 0.9190 ∗∗∗

25 NT 1.5275 1.0000 0.0000 ∗∗∗ 0.0480 ∗∗∗ 0.9520 0.7785 1.0000 0.0140 ∗ 0.0220 0.9640 ∗

25 P 1.5194 1.6869 0.0230 0.0240 0.9530 0.7842 1.0531 0.0300 0.0280 0.9420

25 BC 1.5240 1.6802 0.0260 0.0240 0.9500 0.7862 1.0398 0.0290 0.0280 0.9430

25 BCa 1.5067 1.6109 0.0220 0.0250 0.9530 0.7863 1.0377 0.0300 0.0280 0.9420

50 Monte Carlo 0.9882 1.3020 0.0250 0.0250 0.9500 0.5455 1.0106 0.0250 0.0250 0.9500

50 Delta 0.9943 1.0000 0.0040 ∗∗∗ 0.0340 0.9620 0.5283 1.0000 0.0250 0.0300 0.9450

50 LRTI 0.9961 1.3846 0.0210 0.0230 0.9560 0.5322 1.0297 0.0290 0.0320 0.9390

50 Fieller 1.0330 1.4315 0.0250 0.0200 0.9550 0.5414 1.0311 0.0270 0.0290 0.9440

P
ar

am
et

ri
c

sa
m

p
li

n
g

50 TIB 1.0422 1.2809 0.0130 ∗ 0.0180 0.9690 ∗∗ 0.5375 0.9907 0.0240 0.0290 0.9470

50 STIB 1.0353 1.4165 0.0230 0.0200 0.9570 0.5553 1.0159 0.0270 0.0340 0.9390

50 NS 1.0188 0.7492 0.0000 ∗∗∗ 0.0490 ∗∗∗ 0.9510 0.5355 0.9565 0.0120 ∗∗ 0.0290 0.9590

50 S 1.0095 1.4035 0.0250 0.0220 0.9530 0.5244 1.0190 0.0330 0.0360 ∗ 0.9310 ∗∗

50 NT 1.0132 1.0000 0.0040 ∗∗∗ 0.0300 0.9660 ∗ 0.5331 1.0000 0.0220 0.0280 0.9500

50 P 1.0188 1.3347 0.0210 0.0250 0.9540 0.5355 1.0454 0.0300 0.0280 0.9420

50 BC 1.0241 1.3660 0.0200 0.0240 0.9560 0.5371 1.0178 0.0260 0.0320 0.9420

50 BCa 1.0220 1.3289 0.0190 0.0240 0.9570 0.5368 1.0168 0.0270 0.0320 0.9410

N
on

p
ar

am
.

sa
m

p
li

n
g

50 NS 1.0206 0.7501 0.0010 ∗∗∗ 0.0470 ∗∗∗ 0.9520 0.5371 0.9533 0.0170 0.0310 0.9520

50 S 1.0099 1.4088 0.0230 0.0240 0.9530 0.5225 1.0138 0.0310 0.0370 ∗ 0.9320 ∗∗

50 NT 1.0195 1.0000 0.0050 ∗∗∗ 0.0340 0.9610 0.5353 1.0000 0.0250 0.0280 0.9470

50 P 1.0206 1.3331 0.0200 0.0250 0.9550 0.5371 1.0490 0.0320 0.0280 0.9400

50 BC 1.0240 1.3652 0.0240 0.0250 0.9510 0.5371 1.0160 0.0320 0.0310 0.9370

50 BCa 1.0194 1.3249 0.0210 0.0250 0.9540 0.5370 1.0151 0.0320 0.0310 0.9370

K
ri

n
sk

y

an
d

R
ob

b

sa
m

p
li

n
g

50 NS 1.0289 0.6946 0.0000 ∗∗∗ 0.0510 ∗∗∗ 0.9490 0.5407 0.9653 0.0110 ∗∗ 0.0270 0.9620

50 S 0.9849 1.4242 0.0260 0.0220 0.9520 0.5186 1.0272 0.0350 ∗ 0.0350 ∗ 0.9300 ∗∗

50 NT 1.0323 1.0000 0.0020 ∗∗∗ 0.0310 0.9670 ∗ 0.5387 1.0000 0.0210 0.0270 0.9520

50 P 1.0289 1.4396 0.0240 0.0210 0.9550 0.5407 1.0359 0.0290 0.0290 0.9420

50 BC 1.0305 1.4358 0.0230 0.0210 0.9560 0.5422 1.0284 0.0290 0.0280 0.9430

50 BCa 1.0258 1.3932 0.0210 0.0220 0.9570 0.5415 1.0282 0.0290 0.0280 0.9430

Table 4: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals. Significance codes:

*** for p-value < 0.001; ** for p-value < 0.01; * for p-value < 0.05. Model simulated: MNL model

with non-orthogonal experimental design. Parameter values: β0 = 0.5, β1 = 1, β2 = 0.5, βC = −1.
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Figure 4: Quantile-quantile plots of the sample quantiles of ŴTP 1 (upper panel) and ŴTP 2 (bottom

panel) for increasing values of N (N = 10, left panel; N = 25, central panel; N = 50, right panel).

Parameter values: β0 = 0.5, β1 = 1, β2 = 0.5, βC = −1. Non-orthogonal design.

cases, a percentage almost three times as large as that produced by using other methods.

Notice that Delta yields unreliable CIs also for WTP2 with N = 10. This is not due to

the correlation between the numerator and denominator, which has, this time, different sign

from WTP2 (a situation in which Delta is expected to perform well). It is rather due to the

diminished precision in parameter estimates, with respect to Table 1, as a consequence of the

correlation induced among the attributes. This is in line with the results in Hole (2007), who

found Delta intervals perform poorly as the precision of the estimates decreases. Unlike Hole

(2007), however, there is no evidence of coverage rates for P being lower than the nominal

level.

Figure 4 shows the effects on ŴTP distribution of a correlation between the numerator and

denominator having the same sign of ŴTP (top panels) and of a lack of precision in parameter
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Figure 5: Confidence intervals for WTP1 obtained through Delta, Fieller, LRTI and parametric BCa,

for 10 different simulated data sets. N = 10. Parameter values: β0 = 0.5, β1 = 1, β2 = 0.5,

βC = −1. Non-orthogonal design. Horizontal dashed line represents the true value of WTP1. Dotted

line corresponds to WTP1 = 0.

estimates (bottom panels). While the first issue determines a positively skewed distribution,

the second causes an overdispersed ŴTP distribution with respect to the normal density14.

Similar considerations emerge when looking at the shape index for the Monte Carlo intervals

in Table 4. In fact, it is larger than 1 for ŴTP 1, decreasing as N increases, while it is always

very close to 1 for ŴTP 2.

Figure 5 illustrates both the close agreement between CIs for WTP1 produced through

Fieller, LRTI and parametric BCa, and the shift towards 0 for those obtained via Delta

(N = 10). As noticed in the previous scenario, such a shift determines a higher inclusion of

the 0 value.

14This happens for N = 10, in the first bottom panel, while heavy tails disappear as the estimates become

more precise with the increase of N .
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4.3. Incorrect model specification

This section investigates methods’ performance under model mis-specification. Hole (2007)

considers the case of neglected unobserved individual heterogeneity, finding P more reliable

than Delta and Fieller. Here, the case of neglected heteroscedasticity, caused by hypothetical

unobserved discrete population heterogeneity, is examined. This is accomplished by consider-

ing two groups and letting the scale parameter of the second (µ2) fixed to 1 (i.e. var(ε) = π2/6),

while that of the first (µ1) takes values 2, 3 and 4. A MNL model is estimated without ac-

counting for heteroscedasticity15.

Table 5 shows a good global coverage for all the methods when µ1 is not too far from µ2

(i.e. µ1=2). In this case, however, LRP and RRP are somewhat different from expected and

this is more pronounced for Delta with respect to LRTI, Fieller and percentile methods. As the

degree of heteroscedasticity increases the global coverage worsen for all methods, even if more

slowly for LRTI, Fieller and percentile methods. Unlike Hole (2007), in this case bootstrap

methods do not seem more robust than LRTI or Fieller.

5. Real data applications

A MNL model is estimated on two real data sets to compare the methods described in

Section 3. The choice of the two data sets is motivated by their respective similarity with some

of the test settings used in the simulation study. In fact, the first data set is characterized

by a relatively small number of observations, potential correlation due to revealed preference

data structure and high coefficient of variation for the cost parameter estimate. The second

data set, not affected by such issues, should be less problematic.

15The scale parameter does not affect the ratio of any two coefficients, since it drops out in the ratio, so

that WTP and other measures of marginal rates of substitution are not affected. Only the magnitudes of all

coefficients are affected.

34



ŴTP 1 ŴTP 2

µ1 Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

2 Monte Carlo 0.4983 0.9798 0.0250 0.0250 0.9500 0.4950 1.1413 0.0250 0.0250 0.9500

2 Delta 0.5130 1.0000 0.0120 ∗∗ 0.0410 ∗∗ 0.9470 0.4901 1.0000 0.0220 0.0250 0.9530

2 LRTI 0.5176 1.0909 0.0140 ∗ 0.0370 ∗ 0.9490 0.5029 1.0513 0.0250 0.0230 0.9520

2 Fieller 0.5203 1.1083 0.0140 ∗ 0.0350 ∗ 0.9510 0.4969 1.0590 0.0240 0.0220 0.9540

P
ar

am
et

ri
c

sa
m

p
li

n
g

2 TIB 0.5223 1.0089 0.0120 ∗∗ 0.0430 ∗∗∗ 0.9450 0.4972 1.0015 0.0230 0.0240 0.9530

2 STIB 0.5269 1.1099 0.0110 ∗∗ 0.0320 0.9570 0.5053 1.0550 0.0250 0.0190 0.9560

2 NS 0.5162 0.9246 0.0090 ∗∗ 0.0450 ∗∗∗ 0.9460 0.4921 0.9562 0.0200 0.0260 0.9540

2 S 0.5151 1.0910 0.0150 ∗ 0.0370 ∗ 0.9480 0.4908 1.0529 0.0250 0.0230 0.9520

2 NT 0.5170 1.0000 0.0100 ∗∗ 0.0410 ∗∗ 0.9490 0.4923 1.0000 0.0220 0.0240 0.9540

2 P 0.5162 1.0815 0.0140 ∗ 0.0380 ∗∗ 0.9480 0.4921 1.0458 0.0240 0.0250 0.9510

2 BC 0.5171 1.0802 0.0150 ∗ 0.0370 ∗ 0.9480 0.4931 1.0469 0.0230 0.0250 0.9520

2 BCa 0.5168 1.0672 0.0120 ∗∗ 0.0380 ∗∗ 0.9500 0.4933 1.0386 0.0230 0.0250 0.9520

N
on

p
ar

am
.

sa
m

p
li

n
g

2 NS 0.5157 0.9246 0.0070 ∗∗∗ 0.0460 ∗∗∗ 0.9470 0.4926 0.9558 0.0170 0.0260 0.9570

2 S 0.5114 1.0957 0.0130 ∗ 0.0330 0.9540 0.4900 1.0524 0.0250 0.0240 0.9510

2 NT 0.5161 1.0000 0.0100 ∗∗ 0.0390 ∗∗ 0.9510 0.4912 1.0000 0.0220 0.0230 0.9550

2 P 0.5157 1.0815 0.0130 ∗ 0.0370 ∗ 0.9500 0.4926 1.0463 0.0240 0.0250 0.9510

2 BC 0.5168 1.0814 0.0130 ∗ 0.0370 ∗ 0.9500 0.4948 1.0503 0.0240 0.0240 0.9520

2 BCa 0.5166 1.0658 0.0130 ∗ 0.0370 ∗ 0.9500 0.4946 1.0424 0.0230 0.0240 0.9530

K
ri

n
sk

y

an
d

R
ob

b

sa
m

p
li

n
g

2 NS 0.5196 0.8979 0.0050 ∗∗∗ 0.0470 ∗∗∗ 0.9480 0.4961 0.9387 0.0180 0.0270 0.9550

2 S 0.5083 1.1038 0.0160 0.0390 ∗∗ 0.9450 0.4848 1.0522 0.0260 0.0250 0.9490

2 NT 0.5189 1.0000 0.0120 ∗∗ 0.0410 ∗∗ 0.9470 0.4950 1.0000 0.0210 0.0230 0.9560

2 P 0.5196 1.1137 0.0150 ∗ 0.0350 ∗ 0.9500 0.4961 1.0653 0.0230 0.0220 0.9550

2 BC 0.5204 1.1115 0.0150 ∗ 0.0370 ∗ 0.9480 0.4975 1.0581 0.0240 0.0220 0.9540

2 BCa 0.5198 1.0960 0.0150 ∗ 0.0370 ∗ 0.9480 0.4973 1.0514 0.0210 0.0220 0.9570

3 Monte Carlo 0.6025 1.0958 0.0250 0.0250 0.9500 0.5336 0.9754 0.0250 0.0250 0.9500

3 Delta 0.5939 1.0000 0.0040 ∗∗∗ 0.0590 ∗∗∗ 0.9370 0.5650 1.0000 0.0100 ∗∗ 0.0380 ∗∗ 0.9520

3 LRTI 0.6055 1.1193 0.0120 ∗∗ 0.0470 ∗∗∗ 0.9410 0.5640 1.0702 0.0230 0.0290 0.9480

3 Fieller 0.6044 1.1326 0.0060 ∗∗∗ 0.0480 ∗∗∗ 0.9460 0.5742 1.0702 0.0160 0.0320 0.9520
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3 TIB 0.6035 0.9925 0.0060 ∗∗∗ 0.0530 ∗∗∗ 0.9410 0.5735 1.0068 0.0120 ∗∗ 0.0360 ∗ 0.9520

3 STIB 0.6113 1.1316 0.0130 ∗ 0.0510 ∗∗∗ 0.9360 ∗ 0.5779 1.0642 0.0130 ∗ 0.0320 0.9550

3 NS 0.6007 0.9043 0.0030 ∗∗∗ 0.0670 ∗∗∗ 0.9300 ∗∗ 0.5683 0.9440 0.0070 ∗∗∗ 0.0380 ∗∗ 0.9550

3 S 0.5948 1.1218 0.0070 ∗∗∗ 0.0540 ∗∗∗ 0.9390 0.5637 1.0630 0.0180 0.0370 ∗ 0.9450

3 NT 0.6007 1.0000 0.0040 ∗∗∗ 0.0550 ∗∗∗ 0.9410 0.5691 1.0000 0.0090 ∗∗ 0.0390 ∗∗ 0.9520

3 P 0.6007 1.1058 0.0060 ∗∗∗ 0.0520 ∗∗∗ 0.9420 0.5683 1.0593 0.0160 0.0330 0.9510

3 BC 0.6036 1.1112 0.0070 ∗∗∗ 0.0510 ∗∗∗ 0.9420 0.5691 1.0572 0.0160 0.0330 0.9510

3 BCa 0.6031 1.0975 0.0070 ∗∗∗ 0.0510 ∗∗∗ 0.9420 0.5689 1.0518 0.0160 0.0340 0.9500
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3 NS 0.5992 0.9072 0.0020 ∗∗∗ 0.0700 ∗∗∗ 0.9280 ∗∗ 0.5670 0.9459 0.0070 ∗∗∗ 0.0400 ∗∗ 0.9530

3 S 0.5898 1.1225 0.0070 ∗∗∗ 0.0520 ∗∗∗ 0.9410 0.5609 1.0593 0.0180 0.0370 ∗ 0.9450

3 NT 0.5957 1.0000 0.0040 ∗∗∗ 0.0600 ∗∗∗ 0.9360 ∗ 0.5667 1.0000 0.0080 ∗∗∗ 0.0380 ∗∗ 0.9540

3 P 0.5992 1.1022 0.0060 ∗∗∗ 0.0520 ∗∗∗ 0.9420 0.5670 1.0572 0.0160 0.0310 0.9530

3 BC 0.6010 1.1146 0.0050 ∗∗∗ 0.0500 ∗∗∗ 0.9450 0.5687 1.0631 0.0150 ∗ 0.0360 ∗ 0.9490

3 BCa 0.6011 1.1010 0.0050 ∗∗∗ 0.0510 ∗∗∗ 0.9440 0.5685 1.0560 0.0150 ∗ 0.0360 ∗ 0.9490
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3 NS 0.6036 0.8760 0.0030 ∗∗∗ 0.0690 ∗∗∗ 0.9280 ∗∗ 0.5757 0.9303 0.0070 ∗∗∗ 0.0400 ∗∗ 0.9530

3 S 0.5877 1.1274 0.0060 ∗∗∗ 0.0510 ∗∗∗ 0.9430 0.5592 1.0683 0.0170 0.0390 ∗∗ 0.9440

3 NT 0.6015 1.0000 0.0040 ∗∗∗ 0.0600 ∗∗∗ 0.9360 ∗ 0.5733 1.0000 0.0100 ∗∗ 0.0360 ∗ 0.9540

3 P 0.6036 1.1416 0.0060 ∗∗∗ 0.0470 ∗∗∗ 0.9470 0.5757 1.0750 0.0160 0.0310 0.9530

3 BC 0.6047 1.1293 0.0070 ∗∗∗ 0.0490 ∗∗∗ 0.9440 0.5760 1.0699 0.0160 0.0300 0.9540

3 BCa 0.6043 1.1155 0.0070 ∗∗∗ 0.0520 ∗∗∗ 0.9410 0.5761 1.0630 0.0150 ∗ 0.0310 0.9540

4 Monte Carlo 0.6249 1.1421 0.0250 0.0250 0.9500 0.5482 1.0644 0.0250 0.0250 0.9500

4 Delta 0.6494 1.0000 0.0030 ∗∗∗ 0.0770 ∗∗∗ 0.9200 ∗∗∗ 0.6166 1.0000 0.0100 ∗∗ 0.0210 0.9690 ∗∗

4 LRTI 0.6702 1.1311 0.0080 ∗∗∗ 0.0730 ∗∗∗ 0.9190 ∗∗∗ 0.6250 1.0720 0.0170 0.0270 0.9560

4 Fieller 0.6627 1.1461 0.0040 ∗∗∗ 0.0570 ∗∗∗ 0.9390 0.6283 1.0782 0.0130 ∗ 0.0170 0.9700 ∗∗
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4 TIB 0.6591 1.0108 0.0030 ∗∗∗ 0.0740 ∗∗∗ 0.9230 ∗∗∗ 0.6241 1.0004 0.0060 ∗∗∗ 0.0200 0.9740 ∗∗∗

4 STIB 0.6725 1.1427 0.0070 ∗∗∗ 0.0580 ∗∗∗ 0.9350 ∗ 0.6360 1.0806 0.0130 ∗ 0.0200 0.9670 ∗

4 NS 0.6603 0.8858 0.0010 ∗∗∗ 0.0810 ∗∗∗ 0.9180 ∗∗∗ 0.6230 0.9352 0.0050 ∗∗∗ 0.0180 0.9770 ∗∗∗

4 S 0.6481 1.1344 0.0040 ∗∗∗ 0.0630 ∗∗∗ 0.9330 ∗ 0.6153 1.0678 0.0140 ∗ 0.0180 0.9680 ∗∗

4 NT 0.6583 1.0000 0.0030 ∗∗∗ 0.0730 ∗∗∗ 0.9240 ∗∗∗ 0.6239 1.0000 0.0070 ∗∗∗ 0.0190 0.9740 ∗∗∗

4 P 0.6603 1.1290 0.0050 ∗∗∗ 0.0630 ∗∗∗ 0.9320 ∗∗ 0.6230 1.0692 0.0120 ∗∗ 0.0190 0.9690 ∗∗

4 BC 0.6611 1.1290 0.0040 ∗∗∗ 0.0610 ∗∗∗ 0.9350 ∗ 0.6237 1.0678 0.0120 ∗∗ 0.0190 0.9690 ∗∗

4 BCa 0.6598 1.1187 0.0030 ∗∗∗ 0.0630 ∗∗∗ 0.9340 ∗ 0.6232 1.0613 0.0120 ∗∗ 0.0190 0.9690 ∗∗
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4 NS 0.6595 0.8904 0.0000 ∗∗∗ 0.0840 ∗∗∗ 0.9160 ∗∗∗ 0.6253 0.9339 0.0040 ∗∗∗ 0.0200 0.9760 ∗∗∗

4 S 0.6462 1.1343 0.0050 ∗∗∗ 0.0670 ∗∗∗ 0.9280 ∗∗ 0.6146 1.0694 0.0160 0.0190 0.9650 ∗

4 NT 0.6574 1.0000 0.0020 ∗∗∗ 0.0730 ∗∗∗ 0.9250 ∗∗∗ 0.6222 1.0000 0.0080 ∗∗∗ 0.0180 0.9740 ∗∗∗

4 P 0.6595 1.1231 0.0040 ∗∗∗ 0.0630 ∗∗∗ 0.9330 ∗ 0.6253 1.0708 0.0130 ∗ 0.0190 0.9680 ∗∗

4 BC 0.6592 1.1261 0.0040 ∗∗∗ 0.0630 ∗∗∗ 0.9330 ∗ 0.6270 1.0644 0.0120 ∗∗ 0.0190 0.9690 ∗∗

4 BCa 0.6586 1.1151 0.0040 ∗∗∗ 0.0640 ∗∗∗ 0.9320 ∗∗ 0.6265 1.0565 0.0120 ∗∗ 0.0190 0.9690 ∗∗
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4 NS 0.6624 0.8655 0.0000 ∗∗∗ 0.0840 ∗∗∗ 0.9160 ∗∗∗ 0.6280 0.9198 0.0030 ∗∗∗ 0.0190 0.9780 ∗∗∗

4 S 0.6410 1.1394 0.0060 ∗∗∗ 0.0680 ∗∗∗ 0.9260 ∗∗∗ 0.6083 1.0729 0.0160 0.0200 0.9640 ∗

4 NT 0.6597 1.0000 0.0030 ∗∗∗ 0.0730 ∗∗∗ 0.9240 ∗∗∗ 0.6256 1.0000 0.0080 ∗∗∗ 0.0200 0.9720 ∗∗

4 P 0.6624 1.1554 0.0040 ∗∗∗ 0.0570 ∗∗∗ 0.9390 0.6280 1.0872 0.0120 ∗∗ 0.0210 0.9670 ∗

4 BC 0.6633 1.1494 0.0040 ∗∗∗ 0.0580 ∗∗∗ 0.9380 0.6291 1.0744 0.0120 ∗∗ 0.0190 0.9690 ∗∗

4 BCa 0.6631 1.1388 0.0040 ∗∗∗ 0.0600 ∗∗∗ 0.9360 ∗ 0.6292 1.0677 0.0120 ∗∗ 0.0190 0.9690 ∗∗

Table 5: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals. Significance codes:

*** for p-value < 0.001; ** for p-value < 0.01; * for p-value < 0.05. Model simulated: heteroscedastic

MNL model arising from two populations with different scale parameters. N = 50. Parameter values:

β0 = 0.5, β1 = 1, β2 = 0.5, βC = −1.
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5.1. Data description

The first data set refers to a study of airport choice in a multi-airport region with the intent

of exploring competition within a specific catchment area (Marcucci and Gatta, 2012). Data

acquisition was based on a stated/revealed preference choice experiment describing a choice

situation among four regional airports. Each interview included a revealed preference choice

task and five hypothetical choice exercises in which respondents were asked to evaluate the

four airports and choose the preferred one. The study area considered includes two regions

in central Italy and four airports which are all located within the same catchment area. In

order to detect the effect of correlation between numerator and denominator estimates, in the

present study only revealed preference data are used, for a total of 176 binary responses16. The

structural variables used are: A MIN (access time in minutes); P AIRL (1 for the preferred

airline company and 0 otherwise); F EURO (ticket cost in euros); NONSTOP (1 when the

flight is non-stop and 0 otherwise); BAL M AV (absolute value of the difference between

desired and actual departure time in minutes).

The second data set refers to a study focusing on local public transportation quality in

five geographical areas of the Pesaro-Urbino province. The research produced quality indica-

tors to be included in service contracts (Gatta and Marcucci, 2007). The interviewees had

to choose, in eight stated preference exercises, among three options, the status quo and two

hypothetical alternatives. The following five attributes were used to characterize service qual-

ity: COST (bus fare); DELAY (amount of delay at bus stop); TRIP LENGTH (bus travel

time); FREQUENCY (number of buses per hour); AVAILABILITY (elapse of time between

service inception and closure). An orthogonal fractional factorial design was developed, en-

suring minimum attribute overlap. Overall, for the five geographical service segments, 2112

observations were gathered through paper-and-pencil interviews administered either on board

or at the bus stops associated with the main routes.

16Stated preference data are excluded since based on an orthogonal fractional factorial experimental design.
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5.2. WTP confidence intervals

Table 6 reports parameter estimates for the airport choice data set. All the coefficients are

statistically significant at the 5% level, with the only exception being P AIRL, and have the

expected sign.

Attribute Estimate Std. Error t-value p-value

A MIN -0.0133 0.0055 -2.4121 0.0159
P AIRL 0.9306 0.4938 1.8846 0.0595
NONSTOP 2.6298 0.4815 5.4612 0.0000
BAL M AV -0.0038 0.0017 -2.2626 0.0237
COST -0.0060 0.0019 -3.1428 0.0017

Table 6: Airport choice data: point estimate of attribute coefficients.

Table 7 reports CIs for the WTP obtained for all attributes, using the various methods.

A MIN P AIRL NONSTOP BAL M AV

Delta [−4.516; 0.057] [−15.041; 327.292] [120.402; 762.024] [−1.317; 0.036]

LRTI [−6.867;−0.476] [−1.108; 429.885] [232.286; 1202.873] [−1.929;−0.100]

Fieller [−6.906;−0.400] [−7.233; 449.617] [226.466; 1225.493] [−1.988;−0.084]
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TIB [−4.401;−0.197] [−16.963; 304.926] [118.441; 793.521] [−1.252; 0.175]

STIB [−7.262;−0.384] [−6.220; 376.290] [275.885; 1066.060] [−1.656;−0.150]

NS [−3.981; 1.972] [−93.774; 318.680] [−344.128; 646.919] [−1.182; 0.623]

S [−5.450;−0.932] [29.613; 362.006] [294.323; 922.741] [−1.540;−0.223]

NT [−6.243; 1.784] [−69.231; 381.483] [−231.720; 1114.146] [−1.785; 0.503]

P [−6.432;−0.478] [−6.429; 406.025] [235.507; 1226.554] [−1.904;−0.099]

BC [−6.703;−0.493] [4.684; 426.746] [238.254; 1272.613] [−1.987;−0.104]

BCa [−7.876;−0.643] [5.530; 430.836] [225.969; 1104.074] [−1.806;−0.088]
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NS [−94.952; 66.013] [−3511.334; 4599.439] [−15942.351; 18826.957] [−27.089; 22.905]

S [−19.210;−1.073] [62.899; 479.804] [295.250; 2445.603] [−4.547;−0.320]

NT [−877.451; 872.992] [−14528.753; 14841.004] [−187404.206; 188286.632] [−342.869; 341.588]

P [−70.472; 90.493] [−4287.188; 3823.585] [−17944.531; 16824.777] [−24.186; 25.807]

BC [−232.835; 27.868] [−172.023; 17291.169] [−5302.960; 43624.263] [−46.353; 10.631]

BCa [−572.818; 0.284] [−150.832; 17291.169] [−7461.532; 36338.675] [−34.700; 14.676]
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NS [−3.970; 2.008] [−113.276; 316.759] [−279.565; 661.569] [−1.183; 0.605]

S [−5.083;−0.899] [42.793; 338.492] [291.192; 931.942] [−1.449;−0.249]

NT [−6.769; 2.310] [−72.899; 385.150] [−375.465; 1257.891] [−2.149; 0.868]

P [−6.467;−0.489] [−4.508; 425.528] [220.857; 1161.991] [−1.887;−0.098]

BC [−6.518;−0.489] [1.256; 438.677] [217.984; 1150.518] [−1.861;−0.091]

BCa [−7.449;−0.624] [2.220; 446.446] [204.190; 994.023] [−1.709;−0.058]

Table 7: Airport choice data: 95% confidence intervals of WPT for the attributes of the service.

It shows the poor performance of all bootstrap methods making use of non parametric

sampling scheme. In fact, when a small sample size is involved, sampling some respondents

many times can produce non statistically significant coefficients and unstable estimates, which,

in turn, determines large CIs. These methods are, therefore, excluded from the graphical
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comparison in Figure 6. Pivotal bootstrap methods are also excluded, independently from the

sampling scheme used, since they confirm the poor performance emerged in the simulation

study. Fieller and LRTI produce, for all the attributes, very similar CIs, which reasonably

include 0 only for the WTP of P AIRL. Percentile methods perform similarly and deliver

intervals that are only slightly different from those obtained via Fieller and LRTI. TIB and

STIB produce, instead, quite different results in some cases, confirming the doubts already

arisen in the simulation study. A final remark concerns the CIs produced by Delta. These

are always shifted towards 0 and shorter than Fieller, LRTI and bootstrap methods. The

shift also provokes the inclusion of 0 for the WTP of A MIN and BAL M AV attributes,

whose coefficients are significantly different from 0. Delta CIs are, thus, less informative,

notwithstanding their shorter length. The shift observed could be due to a skewed ŴTP

distribution linked to a small sample size. The skewed ŴTP distribution of NONSTOP

attribute is strengthened by the correlation (approx. equal to 0.025) between F EURO and

NONSTOP estimates having the same sign of WTP .

On the basis of the simulation study, taking LRTI as benchmark, one can evaluate the

variations in CIs depending on the method used. The comparison is performed using three

indexes: 1) the good (G), 2) the bad (B), and 3) the ugly (U). G index measures the

percentage overlapping between the CI produced by the benchmark and the alternative17. B

index is calculated by adding the absolute value of the difference between the lower bounds to

that between the upper bounds of the benchmark and the alternative method. This represents

the total over- and under-estimation bias that is, for comparison purposes, normalized using

the length of the benchmark CI18. U index is binary. It is equal to 1 when the 0 value is

17For example, for the NON-STOP attribute one notices that the benchmark CI length is equal to 970 =

1202 (upper bound) - 232 (lower bound); while the corresponding result when using Delta is 642 = 762 (upper

bound) - 120 (lower bound). The absolute overlapping is 530 = 762 - 232 which represents 55% overlapping

between the two CIs.
18For example, for the NON-STOP attribute and for Delta, the difference between the two lower bounds is
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Figure 6: Airport choice data. Confidence intervals for WTP for the attributes (a) access time, (b)

preferred airline company, (c) non-stop flight, (d) departure time. Percentile bootstrap intervals are

obtained through parametric or Krinsky and Robb sampling (denoted with a prime). Dotted line

corresponds to WTP=0.

included in only one of the two CIs (benchmark and alternative method). It is equal to 0 if

the 0 value either falls within the two CIs or in none of them. The joint consideration of the

three indexes is needed for a performance evaluation of the methods considered.

The indexes calculated confirm the intuitions derived from simulations. Considering the

results for the three indexes, averaged over the four attributes, Fieller is the best performer

(G index=100%, B index=4%, U index=0), while also percentile bootstrap methods perform

well (G index=97%, B index=6%, U index=0.17). STIB (G index=88%, B index=14%, U

index=0) performs on average better than TIB, which produces unsatisfactory results (G

equal to 112 = 232 (benchmark) - 120 (Delta), while the difference between the two upper bounds is equal to

440 = 1202 (benchmark) - 762 (Delta). The sum is equal to 552 and the B index is 57% = 552 / 970.
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index=63%, B index=45%, U index=0.25). Finally, Delta, given the data characteristics,

performs poorly (G index=65%, B index=42%, U index=0.5). As an aside, please note that

the correlation between NONSTOP and F EURO provokes, on average, a lower G index and

a higher B index with respect to the other attributes where this correlation is not relevant.

Attribute Estimate Std. Error t-value p-value

DELAY -0.1317 0.0164 -8.0114 0.0000

TRIP LENGTH -0.0241 0.0035 -6.8991 0.0000

FREQUENCY 0.4015 0.0402 9.9756 0.0000

AVAILABILITY 0.0037 0.0003 11.4848 0.0000

COST -1.4651 0.0889 -16.4765 0.0000

Table 8: Local public transport data: point estimate of attribute coefficients.

In the second empirical example, with the data set characterized by far less problematic

features (e.g. large sample size, no attribute correlated with cost, low coefficient of variation

for the cost parameter estimate), all various methods produce very similar CIs for WTP .

Table 8 provides attribute coefficient estimates for the local public transport data. All the

coefficients are highly significant and have the expected sign. Table 9 reports the upper and

lower bounds of the WTP intervals for all attributes. The three indexes indicate a generalized

overall good performance for all the methods. In fact, BC, the relative worst performer, is

characterized by G index=87%, B index=15%, U index=0, that is comparable to the higher

performing methods for the first data set. This suggests that, whenever confronted with

potentially problematic data sets, the analyst should carefully consider which method to use

when calculating CIs for WTP . Such cautiousness is not needed when using large and well-

behaved data sets.

6. Conclusions

This paper compares alternative methods to compute CIs for WTP . Monte Carlo simula-

tions are used to assess the performance of the methods considered under different scenarios.

More in detail, the paper investigates: 1) correct model specification with cost coefficient
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DELAY TRIP LENGTH FREQUENCY AVAILABILITY

Delta [−0.1140;−0.0658] [−0.0213;−0.0115] [0.2118; 0.3363] [0.0020; 0.0030]

LRTI [−0.1161;−0.0670] [−0.0215;−0.0116] [0.2157; 0.3412] [0.0020; 0.0031]

Fieller [−0.1154;−0.0668] [−0.0216;−0.0117] [0.2150; 0.3406] [0.0021; 0.0031]
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TIB [−0.1155;−0.0638] [−0.0210;−0.0130] [0.2038; 0.3349] [0.0022; 0.0030]

STIB [−0.1184;−0.0650] [−0.0206;−0.0122] [0.2009; 0.3430] [0.0021; 0.0032]

NS [−0.1111;−0.0623] [−0.0213;−0.0113] [0.2062; 0.3321] [0.0020; 0.0030]

S [−0.1137;−0.0661] [−0.0216;−0.0117] [0.2153; 0.3396] [0.0021; 0.0031]

NT [−0.1140;−0.0658] [−0.0213;−0.0116] [0.2115; 0.3366] [0.0020; 0.0030]

P [−0.1175;−0.0686] [−0.0216;−0.0116] [0.2160; 0.3419] [0.0021; 0.0031]

BC [−0.1175;−0.0686] [−0.0216;−0.0116] [0.2143; 0.3383] [0.0021; 0.0031]

BCa [−0.1176;−0.0688] [−0.0216;−0.0116] [0.2143; 0.3383] [0.0021; 0.0031]
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NS [−0.1127;−0.0651] [−0.0214;−0.0113] [0.2060; 0.3327] [0.0020; 0.0030]

S [−0.1153;−0.0683] [−0.0217;−0.0115] [0.2163; 0.3400] [0.0021; 0.0031]

NT [−0.1136;−0.0662] [−0.0214;−0.0115] [0.2114; 0.3367] [0.0020; 0.0030]

P [−0.1147;−0.0671] [−0.0215;−0.0115] [0.2154; 0.3421] [0.0021; 0.0031]

BC [−0.1139;−0.0664] [−0.0216;−0.0115] [0.2150; 0.3414] [0.0021; 0.0031]

BCa [−0.1140;−0.0665] [−0.0215;−0.0115] [0.2150; 0.3414] [0.0021; 0.0031]
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NS [−0.1127;−0.0651] [−0.0214;−0.0113] [0.2060; 0.3327] [0.0020; 0.0030]

S [−0.1153;−0.0683] [−0.0217;−0.0115] [0.2163; 0.3400] [0.0021; 0.0031]

NT [−0.1136;−0.0662] [−0.0214;−0.0115] [0.2114; 0.3367] [0.0020; 0.0030]

P [−0.1147;−0.0671] [−0.0215;−0.0115] [0.2154; 0.3421] [0.0021; 0.0031]

BC [−0.1139;−0.0664] [−0.0216;−0.0115] [0.2150; 0.3414] [0.0021; 0.0031]

BCa [−0.1140;−0.0665] [−0.0215;−0.0115] [0.2150; 0.3414] [0.0021; 0.0031]

Table 9: Public transport data: 95% confidence intervals of WPT for the attributes of the service.

approaching 0; 2) correct model specification with correlation between attribute and cost co-

efficient estimates having the same sign of ŴTP and 3) incorrect model specification due to

neglected heteroscedasticity. The main findings are summarized below.

1. Most of the scenarios considered reveal some skewness in ŴTP distribution which should

result in asymmetric CIs, especially for small sample sizes. Delta and NT produce,

by construction, symmetric CIs thus failing to account for skewness. This translates

in a WTP undervaluation. In fact, as suggested by Armstrong et al. (2001), ŴTP

distribution is generally positively skewed and thus the CI’s mid-point should be greater

than WTP point estimate.

2. ŴTP skewness is particularly relevant in case of correlation between attribute and cost

coefficient estimates having the same sign as ŴTP , or for values of the cost parameter

approaching 0. This phenomenon decreases as the sample size increases, so that using

symmetric CIs becomes less problematic if the sample is of a reasonable size. Bolduc

et al. (2010) underline that very large sample sizes are needed to compensate for cost
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parameter estimates approaching 0.

3. Bootstrap methods belonging to the pivotal family are not too accurate, often produc-

ing, CIs with poor coverage rates in comparison to nominal levels. Additionally, NT

sometimes produces large CIs since it relies on a bootstrap sample estimate of ŴTP

standard error, whose adoption might be very misleading (Daly et al., 2012a).

4. Percentile bootstrap methods prove more accurate and generally perform well. In par-

ticular, BC and BCa relax some assumptions of P and seem more reliable given their

ability to account for asymmetric ŴTP distributions. However, percentile bootstrap

methods are characterized by coverage rates significantly different from what expected

when the cost parameter approaches 0. Nevertheless, as also shown by Bolduc et al.

(2010), smaller cost parameter estimates are necessary to make percentile bootstrap

methods unreliable than those sufficient to undermine Delta ones.

5. Bootstrap methods belonging to the test inversion family require careful convergence

monitoring, which is not easy to guarantee in a simulation context, thus explaining their

sometimes unsatisfactory performance. Nevertheless, positive results encourage future

research aimed at determining an appropriate stopping rule.

6. Parametric, non-parametric and Krinsky and Robb resampling schemes do not produce

substantially different results. However, non-parametric sampling shows its limits when

dealing with small sample sizes and, in general, produces slightly larger CIs, due to

the efficiency loss ascribable to repeated sampling of the same individuals. When using

bootstrap methods, the smaller the sample size the wiser it is to resample parametrically.

7. Approximation methods belonging to the test inversion family have good performances,

are robust to cost parameter approaching 0, simple to calculate and not particularly

time-consuming. Monte Carlo simulations confirm the intuition in Armstrong et al.

(2001) concerning the inclusion of LRTI CIs in Fieller ones. In fact, for N = 10,

depending on the scenario considered, this happens between 33% and 74% of the times.

These percentages shrink as N increases and, for all scenarios, they get close to 25% for
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N = 50 suggesting an asymptotic convergence. LRTI thus seems preferable to Fieller, at

least when small sample sizes are involved. Additionally, LRTI performs slightly better

than Fieller when the cost parameter approaches 0, since its LRP moves faster towards

its nominal value as N rises.

In summary, the simulation study suggests using LRTI since it: 1) produces not necessarily

symmetric CIs; 2) is not affected by cost parameter close to 0; 3) provides good coverage rates

with a correctly specified model; 4) is robust to small departures from correct specification.

Fieller represents a valid alternative but when sample sizes are small, might render larger

CIs. One could use percentile bootstrap methods, given a cost parameter not too close to

0, since they produce the entire simulated ŴTP distribution as a byproduct. This might

be of interest for policy evaluation, notwithstanding the higher computational time required.

On the other hand, Delta, despite its simplicity, rapidity of calculation and diffusion in the

literature, proved very sensitive to any departure from normality, either due to skewness or

kurtosis. Moreover, due to symmetry, Delta produces CIs systematically shifted towards 0.

The conclusions drawn in the simulation study are pertinent to the real applications inves-

tigated. In the first data set, characterized by a small sample size, Delta confirms its limits,

while LRTI, Fieller and, to a less extent, percentile bootstrap methods produce similar results.

In the second, less problematic data set, all the methods produce fairly similar CIs. In this

case, the choice of the method has no substantial implications.

To conclude, notice that some of the considerations emerged from the simulation study

retain their validity when building CIs for mixed logit models, in particular the possible

shortcomings of Delta. These are evident in the real data comparison between Delta and P,

based on Krinsky and Robb resampling, illustrated in Bliemer and Rose (2013), in the context

of mixed logit model. They fit seven different models to the same data assuming the following

combinations of distributions for the two attribute parameters intervening in the calculation

of WTP : 1) fixed divided by fixed (i.e., an MNL model), 2) normal divided by fixed, 3)
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normal divided by normal (independent), 4) normal divided by normal (dependent), 5) fixed

divided by lognormal, 6) triangular divided by fixed, and 7) normal distribution estimated

in WTP space. While the two methods provide very similar CIs when the denominator is

fixed, results change considerably in the other cases. Having the cost parameter normally

distributed is problematic, as a normal distribution has a positive probability mass at zero

and Delta performs poorly when βC approaches 0. As a result, Bliemer and Rose (2013) obtain

a suspiciously small Delta CI for the expected WTP , even smaller than the one obtained in

case 2), a counterintuitive finding due to the greater uncertainty induced by a random cost

coefficient in situations 3) and 4). In these two cases P correctly renders CIs larger than the

one resulting from case 2). Delta keeps showing its weakness also in cases 5) and 6), in which

the occurrence βC = 0 is given a null probability. In case 5), the lognormal probably induces

a skewed distribution for the expected WTP estimator, which the symmetric Delta CI cannot

capture. This determines a relevant shift of the Delta CI towards 0, compared to the CI

calculated through P, and even the inclusion of 0 within the interval. A similar shift can be

noticed also in case 6). The two methods produce, instead, close results in WTP space. In

summary, the examples in Bliemer and Rose (2013) show evidence in support of P, based on

Krinsky and Robb resampling, with respect to Delta, also in the mixed logit framework. It

would be interesting to evaluate the extensibility to mixed logit models of Fieller and LRTI,

which in our study outperformed all the other methods.
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