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Chapter 1

Introduction

The main focus of this thesis, as the title suggests, regards nonlinearities in
dynamic systems which describe economic phenomena. The term nonlinearity
evokes the appearance of complex dynamics, such as multiple equilibria, cycles,
path dependence, global and local bifurcations. In economics, nonlinear dynam-
ics represents an interesting issue in order to provide a theoretical framework
for the analysis of phenomena such as economic cycles, financial bubbles, popu-
lation dynamics, etc. Since the works of Goodwin (1947), Hicks (1950) and Day
(1982), nonlinear dynamics emerged within economic modelling. One of the
breakthroughs in this research area has been to understand if nonlinear dynam-
ics may occur when explicit behaviours of the agents are considered, defining
the decision making either through optimisation or decisional heuristics.
The aim of this thesis is to show how the emergence of nonlinear phenomena
may take place in different economic frameworks. To this purpose, we will pro-
pose different models, related to different themes of economic and social interest,
which are common in being formalised as dynamic systems. This tool allows
to model the expectations formation of the economic agents involved, that is
to describe their expectations on the consequences of their actions and the fu-
ture state of the economy in which they operate. In addition, the approach
of dynamic systems allows considering agents that do not homogeneously be-
have. Indeed, we will see how such heterogeneity may be associated to different
decision-making mechanisms or to heterogeneous beliefs, which may switch as
a result of changes in the state of the system that the (heterogeneous) agents
consider as relevant. Finally, dynamic systems make it possible to analyse the
different scenarios that may appear in the evolution of the system as (i) the
initial conditions associated to the system change and (ii) the parameters, ex-
ogenous or endogenous, that govern the heuristics associated with the agents
vary.1

A first theme that we want to address in this work is the coevolution be-
tween economic activity and the environment. The recent literature on eco-

1See Cressman and Ansell (2003); Xepapadeas (2005); Bischi et al. (2009a) for complete
surveys on the use of the dynamic systems approach on several economic frameworks.
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nomic growth and the developments on the implementation of environmental
policies have made studies on short and long term trends in the coevolution
between economic and environmental variables a central theme of crucial in-
terest. In particular, the literature, through overlapping generations models,
has highlighted the existence of different interpretations. On the one hand,
the paradigmatic work of John and Pecchenino (1994) described the economic
agents as subjects able to internalise the environmental problem (seen only as a
consumption good) and therefore devolve a share of their resources for defensive
environmental expenditures; on the other hand, the work of Antoci et al. (2009)
has assumed the existence of agents who do not internalise the environmental
problem (exclusively taken into account by the consumers) and where therefore
the environmental dynamics are exogenously determined. A third approach (see
Bovenberg and Heijdra, 1998) has been to assume the government intervention,
which considers the environment as a public good, and then finances the en-
vironmental maintenance by using a share of the general taxation revenue. In
order to bring together the different strands of the literature concerning the
dynamic coevolution between economic and environmental systems, and to in-
troduce the assumption that the environment can be seen also as a productive
input, the second chapter of this work has a twofold aim: (i) to review the
crucial dynamic models of the economic theory and some relevant discrete time
dynamic models; (ii) to analyse a discrete time overlapping generations model
in which economic activity depends on the exploitation of a free-access natural
resource and, in addition, public expenditures for environmental maintenance
are assumed, as economic agents are assumed to be unable to internalise the
problem of environmental maintenance. By characterising some properties of
the map and performing numerical simulations, we investigate long run con-
sequences of the interplay between environmental public expenditures and the
private sector. In particular, we identify different scenarios in which multiple
equilibria, as well as complex dynamics, may arise and conditions under which
an unbounded growth path for both economic activity and the environmental
resource may exist.
A second theme we deepen in this thesis concerns the emergence of complex
dynamics in duopolistic markets where (heterogeneous) firms interact. By re-
calling the seminal work of Cournot (1838), some paradigmatic contributions
have shown how, depending on the assumption made on demand functions, firms
decisional mechanisms and substitutability between goods, complex behaviours
may appear in the dynamics of a duopoly market. In this regard, Rand (1978),
Dana and Montrucchio (1986) and Puu (1991) have been the first in showing
how complex dynamics may emerge in duopolies where some of the classical as-
sumptions are replaced. Afterwards, the focus has shifted to investigate duopoly
models in which assumptions on the firms’ knowledge of the market demand are
relaxed. Indeed, models in which decisional mechanisms which are based on a
reduced degree of rationality have been developed and analysed. In particu-
lar, the literature has focused on models in which firms adjust their decisions
through a gradient-rule (see Bischi et al., 2007) or, as shown in Bischi et al.
(2007), adopt the so called Local Monopolistic Approximation. By adopting
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such decisional mechanisms, nonlinearities in duopoly dynamics deriving from
the interaction of homogeneous firms (i.e., adopting the same decision-making
mechanism) have been analysed. The more recent works have then begun to
consider the existence of heterogeneity in the duopoly market. Indeed, several
works have focused on heterogeneity in the decisional mechanisms of firms (see
Cavalli et al., 2015); different works have instead analysed the effects of hetero-
geneity in the products placed on the market by the two firms (see Agliari et al.,
2016). The aim of the third chapter is then to propose a discrete time duopoly
model in which firms (i) are heterogeneous in decision-making mechanisms and
(ii) produce heterogeneous goods (i.e. we assume a degree of differentiation be-
tween goods). In particular, we assume that a firm adopts the local monopolistic
approximation (LMA) approach, while the rival adjusts its output level accord-
ing to the gradient rule (see Bischi et al., 1999). By analysing the resulting
two-dimensional map, we derive conditions for the stability of the Nash equilib-
rium and investigate some bifurcations scenarios as parameters vary. Moreover,
we show that different from Agliari et al. (2016), both a high and a low level in
goods differentiation may have a destabilising role in the system.
A third theme on which this thesis wants to focus on is the role of women in
society and, in particular, how their role in the family and in the work activity
may evolve. Indeed, the extent of female contribution to market activities (e.g.
work) and non-market activities (e.g. family) continue to occupy a central role
in public opinion and in decades-long debates among social scientists. In or-
der to investigate this complex and really deep social issue, we have decided to
start approaching it by investigating how women decide to allocate their time
between family and work. In particular, we want to analyse how the interaction
with other women in the workplace and the perception that society has about
their short run decisions (the so called social norms) may affect the long run
behaviour of such women. By adopting the lenses of the Preference Theory (see
Hakim, 2000) and following the insights of Fernández et al. (2004); Fogli and
Veldkamp (2011) and Fernández (2013), in which the effects of interaction and
social norms in affecting women’s decisions are discussed, the aim of the fourth
chapter is to propose an evolutionary model (see Bischi et al., 2009b) in which
women with different and adaptive inclinations may coexist and socially inter-
act. More specifically, we assume a population composed by family-oriented and
career-oriented women. The preferences of both types of women are assumed to
be affected by extrinsic benefits (e.g. a Pay-for-Performance contract at work),
intrinsic costs (i.e. their innate inclination toward spending time at work or
with the family) and by social norms. According to word of mouth dynamics
(Dawid, 1999), women socially interact and compare their different positions,
learning about possible payoff differentials. Social interaction, therefore, sparks
the evolution of the distribution women types in the population. The analysis
allowed us to show that (i) both scenarios in which the two (different) types of
women coexist and scenarios in which one of the two types tends to disappear
from the population are achievable; and (ii) due to the destabilising role of the
intensity of choice parameter (assumed to be a constant), periodic cycles, as
well as, chaotic regime may appear.

7



Chapter 2

Nonlinearities in dynamic
coevolution of economic
and environmental systems

2.1 Introduction

The literature on economic growth has so far focused on highly stylized models.1

More recently, an increasing attention has been paid to the analysis of models
which consider more realistic interplays among variables and the possible emer-
gence of non-trivial dynamics. In this regard, one of the branches of the recent
literature on economic growth has then focused on exploring particular connec-
tions between economic activity and the environment. In particular, several
models, able to highlight both the long-term trends of the variables as well as
the emergence of short or medium-term phenomena, have been proposed.
The aim of this chapter is twofold. First, we review the crucial dynamic models
of the economic theory, such as the Solow model, the Ramsey-Cass-Koopmans
model, and the overlapping generations (OLG hereafter) structure in which en-
vironmental variables are introduced and through which we show how different
approaches and assumptions, may affect both the resultant short and long run
dynamics. Indeed, the choice of considering the environment as productive input
or as a consumption good, the different hypotheses on the agents’ rationality
(and then the different allocative problems) may have relevant consequences
on the models’ dynamics. For example, depending on alternative assumptions,
the productivity in the private sector as well as the complementarity or sub-
stitutability between environmental and private good could be effective or not
in defining the complexity of the system. Nevertheless, cyclical dynamics or
multistability seem to be likely results whenever models take into account the
interaction between economic and environmental systems. Second, in order to

1See Barro and Sala-i Martin (2003) for a survey.
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bring together different strands of this literature and following the suggestions
resulting from several empirical studies2, we propose a discrete time dynamic
model in which, in an OLG framework, we discuss the dynamic effects of the in-
teraction between the economic activity and a free-access natural resource when
the latter is assumed to be a production input.
The remainder of the chapter is organised as follows: In Section 2, we analyse
two seminal models on this issue. In Section 3, we review several relevant mod-
els in a discrete time framework. In Section 4, we present and discuss the local
and global dynamics of an OLG model in which the environmental resource is
considered as a productive factor. Finally, Section 5 will conclude.

2.2 Two general frameworks

In this section, we review two milestone models in the literature on interactions
between economic and environmental systems.

2.2.1 The Green Solow model

One of the first models which highlights the possible existence of nonmono-
tonic relationships3 between economic activity and the environment has been
proposed by Brock and Taylor (2010).4 Specifically, the authors consider an
extended version of the Solow model in which savings5 and environmental in-
vestment choices are fixed.
In the model, the output Y is generated by a strictly concave production func-
tion F with constant returns to scale and where the inputs are the effective
labour BL, where B is the labour-augmenting technological progress, and the
capital K. Capital accumulates via savings, sY , with s ∈ (0, 1) and depreciates
at δ > 0. The rate of labour-augmenting technological progress, gB > 0, deter-
mines the growth rate of labour efficiency:

Y = F (K,BL), K̇ = sY − δ K, L̇ = nL, Ḃ = gBB. (2.1)

The impact of pollution has been modelled assuming that each unit of eco-
nomic activity, F , generates Ω units of pollution. Then, the amount of pollution
differs from the amount generated by the economic activity only when abate-
ment occurs. Moreover, abatement is considered as a constant returns to scale
activity and the pollution abated is assumed as an increasing and strictly con-
cave function of both the total economic activity F and the economy’s ecological
effort, FA. Then, pollution is defined as

2See, for example, Kozluk and Zipperer (2015).
3See Aghion and Howitt (1999) for a complete review.
4This work has been circulated as a working paper for many years and it was a sort of

milestone for the literature of the 2000s on the relationship between growth and the environ-
ment.

5This assumption is commonly used to simplify the analysis.
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P = ΩF − ΩA(F, FA) (2.2)

where A is the abatement level. The specification can be rewritten also as

P = ΩFa(θ) (2.3)

where a(θ) ≡
[
1 − A

(
1, F

A

F

)]
and θ = FA

F . Combining environmental assump-

tions with the Solow model, the output Y becomes Ỹ = (1−θ)F and, assuming
also an exogenous technological process in abatement at the rate gA > 0, it is
derived

ỹ = f(k)[1− θ] (2.4)

k̇ = sf(k)[1− θ]− [δ + n+ gB ]k (2.5)

p = f(k)Ω a(θ) (2.6)

where k = K
BL , ỹ = Ỹ

BL , p = P
BL and f(k) = F (k, 1).

From a dynamic point of view, the model presents a differential equation in k
from which, by assuming that Inada conditions6 hold for F and θ fixed, the
unique interior fixed point k∗ attracts every initial condition k(0) > 0.
Moreover, it can be noticed that, as k → k∗, the aggregate output, consumption
and capital approach the same growth rate gB + n and, consequently, their per
capita levels grow at the rate gB > 0.
At the steady state level k∗, the growth rate of emissions gP is given by

gP = gB + n− gA. (2.7)

In order to describe the dynamic relationship between capital accumulation
and emissions level, the authors introduce a definition of sustainable growth in
these terms: a balanced growth path7 is sustainable if it is associated to both
rising consumption per capita and an improving environment. In mathematical
terms, it is characterised by the following conditions

gB > 0, gA > gB + n. (2.8)

By differentiating the equation (2.6) and assuming f(k) = kα, the dynamics
of the model are described by the following system:{

k̇
k = skα−1(1− θ)− (δ + n+ gB)
Ṗ
P = gB + n+ α k̇k .

(2.9)

Therefore, the system (2.9) allows to capture the evolution of emissions along
time, as k → k∗. By assuming sustainable growth (that is, gP < 0), the value kT

6In economic literature, the Inada conditions are assumptions introduced in order to guar-
antee the stability of an interior equilibrium (see Barro and Sala-i Martin (2003)).

7In dynamic modelling, a balanced growth path is a trajectory such that all variables grow
at constant (but potentially different) rates.
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(called turning point), ensuring Ṗ
P = 0, is lower than k∗ and this implies that the

time profile of emissions depends on the position of the initial value k0 related
to the turning point. In particular, if the economy starts with an initial capital
stock such that k0 < kT , emissions first rise and then fall. Hence, an inverted U-
shaped profile, recalling the environmental Kuznets curve, is obtained. Instead,
if an initial capital stock k0 > kT is assumed, emissions monotonically fall as k
moves towards its steady state value k∗.
Finally, when the sustainable growth is not assumed, emissions grow for all t
even as k approaches the steady state value.

2.2.2 The Ramsey-Cass-Koopmans model with environ-
mental pollution

The model in Xepapadeas (2005) represents a natural evolution of the approach
proposed in the previous subsection. In this context, consumption-investment
choices are derived in a decentralized framework composed by intertemporal
utility maximising agents and perfectly competitive profit maximising firms.
The individual utility function depends on the per capita consumption flow c(t)
and the pollution stock P (t).
The representative consumer considers the pollution level as fixed and solves
the problem:

max
c(t)

∫ ∞
0

e−ρ tU(c(t), P (t))dt

subject to

∫ ∞
0

e−R(t)c(t)dt = k(0) +

∫ ∞
0

e−R(t)w(t)dt

where ρ is the discount rate in the utility function, k(0) is the initial capital

and R(t) =
∫ t
τ=0

r(τ)dτ , with r(τ) real interest rate at time τ and e−R(t) an
appropriate discount factor. Under standard assumptions of concavity on U
and imposing that lim

c→+∞
Uc(c, P ) = 0, the solution of the optimisation problem,

obtained with the use of the maximum principle, is interior (that is, c(t) > 0
for every t) and the consumption path is defined by

ċ

c
=

1

η

[
r − ρ+

UcP
Uc

Ṗ

]
(2.10)

where η = −UccUc c.
8 By assuming that (i) the production function f(k)

satisfies the Inada conditions, (ii) markets are competitive and firms are profit
maximizers (which imply f

′
(k) = r+ δ), the economic dynamics is described by

the following system:

8In order to simplify the notation, the subscripts denote partial derivatives. Therefore, the

general equality Vx(x, y) =
∂ V (x,y)
∂ x

= Vx henceforth holds.
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ċ
c = 1

η

[
f
′
(k)− ρ− δ + UcP

Uc
Ṗ

]
k̇ = f(k)− c− δ k
Ṗ = φ f(k)−mP.

(2.11)

By analysing the model, a unique steady state (c∗, k∗, P ∗) exists and the
dynamics, generated by an optimisation process, evolve on the stable manifold
of (c∗, k∗, P ∗) and converge to it. As explained in Xepapadeas (2005), by con-
sidering that pollution evolves, it can be noted that the coordinates (c∗, k∗) are
generally not affected by the stationary state value of P ∗, although the approach
path to the steady state is affected (due to the presence of UcP

Uc
Ṗ in the first

equation of system (2.11)).

2.3 Discrete time models

If, on the one hand, the aforementioned models are suitable to describe long run
trends, on the other hand they are not able to capture the occurrence of short
or medium run nonlinear phenomena.
Regarding this point, the work of Day (1982) provides an example of how com-
plex phenomena may emerge from the dynamic analysis of a simple economic
framework.

2.3.1 The Day’s (1982) model

In this work, the author considers a neoclassical growth model à la Solow (1956)
in discrete time. Indeed, assuming no capital depreciation, it can be expressed
by a first order difference equation in the capital-labour ratio kt = Kt

Lt
, that is

kt+1 =
σ f(kt)

1 + λ
(2.12)

where σ is the saving ratio assumed as constant, f(·) is the production
function and λ is the natural growth rate of population.
By assuming that productivity is reduced by a so called pollution effect, Day
introduces the following specification for f :

f(k) = Akβ(m− k)γ (2.13)

where A > 0 is a productivity parameter, β > 0 is the elasticity of capital,
m > 0 is the state of environment if private production is not performed and
γ > 0 weighs the effects of pollution.
Then, the map that describes the dynamics of the model becomes

kt+1 =
σ Akβt (m− kt)γ

1 + λ
. (2.14)
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The map in (2.14) is unimodal, C1, and admits a unique maximum point

k =

(
βm
β+γ

)
, from which it can be obtained the maximum capital-labour ratio

km = f(k), that is

km =
Aσ

1 + λ
ββγγ

(
m

β + γ

)β+γ
. (2.15)

In particular, note that the slope of the production function indefinitely
grows as k approaches zero and consequently, for sufficiently small initial con-
ditions k0 > 0, growth is positive.
For values of A sufficiently small, the stationary state is monotonically achieved
either from above or below. As A increases, the steady state capital stock in-
creases until verify the equality km = k = ks, where ks is the steady state
capital-labour ratio. This represents the bifurcation point from which oscilla-
tions in levels of k occur for even higher values of A.
The condition km ≤ m is assumed to prevent negative values of k. Then,
the author derives the following sufficient condition for the existence of growth
cycles, that is

β

β + γ
m <

Aσ

1 + λ
ββγγ

(
m

β + γ

)β+γ
≤ m. (2.16)

Indeed, for a parameterisation satisfying such condition, the capital-labour
ratio exhibits bounded oscillations (perhaps after a period of growth).
In order to determine if such cycles can be chaotic, Day shows the existence of
a parameter set for the map such that the theorem in Li and Yorke (1975) is
satisfied. For example, when β = γ = m = 1, the map (2.14) becomes

kt+1 =
σ A

1 + λ
kt(1− kt) (2.17)

from which, following Yorke and Yorke (1981), the existence of a parameter set
such that

3.57 ≤ σ A

1 + λ
≤ 4 (2.18)

implies that irregular growth cycles appear (See panels (a), (b), (c) and (d) in
Figure 2.1).
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(a) (b)

(c) (d)

Figure 2.1: Parameter set: σ = 0.5, λ = 0.02, Al = 5, Aint = 6.5, Ah = 7.5. (a)
Changes in the shape of the map, as A varies. (b) Convergence to the fixed point for
A = Al (k0 = 0.3). (c) Convergence to a 2-cycle for A = Aint (k0 = 0.21). (d) Chaotic
regime for A = Ah (k0 = 0.3).

2.3.2 The Zhang’s (1999) model

In this model, the author considers an economy à la John and Pecchenino (1994),
in which at every period t there are two overlapping generations of individuals.
The representative agent of each generation gets utility from consumption, ct+1,
and environmental quality, Et+1, when old. The utility function U(ct+1, Et+1)
is assumed to be increasing with respect to each argument and strictly concave.
Furthermore, some Inada like conditions are satisfied, in order to get an optimal
boundle with strictly positive values for c and E.
The individual supplies inelastically a unit of labour only in the first period,
earning a real wage wt, and optimally allocate wt between private savings st

9

9Savings are inelastically supplied to the firms.
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for the old age consumption and environmental improvement expenditures, mt.
In the old age, the agent earns (1 + rt+1 − δ)st, where r and δ are the real rate
of return and the capital depreciation rate, respectively. Then, the individual
life-cycle budget constraints are given by:

wt = st +mt; ct+1 = (1 + rt+1 − δ)st. (2.19)

The environmental quality evolves according to the following rule, staken
from John and Pecchenino (1994):

Et+1 = (1− b)Et − β ct + γ mt (2.20)

where b ∈ (0, 1) represents the degree of autonomous evolution of environ-
mental quality, β ct measures the consumption degradation of the environment,
and γ mt measures the environmental improvement (β and γ are assumed to be
positive). The production function f(kt) : R+ → R+ is assumed to be C2 and
strictly concave with respect to kt (the capital-labour ratio). Firms maximise
profits and then

wt = f(kt)− ktf
′
(kt), rt = f

′
(kt). (2.21)

The representative agent maximises his utility with respect to (2.19) and
(2.20). Then, the first order necessary and sufficient condition for the maximi-
sation problem reads as

(1 + rt+1 − δ)Uc(ct+1, Et+1)− γ UE(ct+1, Et+1) = 0. (2.22)

Hence, a perfect foresight competitive equilibrium is characterised by the
equation (2.21), the condition (2.22) and the market clearing condition kt+1 =
st.
To simplify the analysis, the author assumes a constant elasticity of substitution
between consumption and environment, ηE , defined as:

ηE ≡
E

c

UE
Uc

> 0, (2.23)

and this allows to rewrite equation (2.22) as

ct+1 =
Et+1[1 + f

′
(kt+1)− δ]

ηEγ
. (2.24)

From the market clearing condition, the author gets the following relation-
ship between capital and environment

kt+1 =
Et+1

ηEγ
(2.25)

and then the study of the dynamics can be reduced to the analysis of the
following first-order difference equation:
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Et+1 =
ηE

1 + ηE

([
1− b− β(1− δ)

ηEγ

]
Et + [γ(1− α(kt))− βα(kt)]f(kt)

)
(2.26)

where α(k) ≡ kf
′
(k)

f(k) is the capital share of output. In order to simplify

the analysis, α is assumed as constant. Therefore, by considering f(kt) = Akαt
(where A > 0 represents the productivity parameter), Zhang gets the expression

Et+1 = a0Et +

[
Aη1−αE [γ(1− α)− βα]

γα(1 + ηE)

]
(Et)

α ≡ G(Et) (2.27)

where a0 ≡ (1−b)ηEγ−β(1−δ)
γ(1+ηE) . It can be noticed that this parameter is less

than 1 and it is independent with respect to α.
About the dynamics of the model, an interior fixed point exists if and only if
γ(1 − α) − βα > 0. In particular, Zhang shows that, when a0 ≥ 0, the unique
stationary equilibrium is given by

E∗ =

[
Aη1−αE [γ(1− α)− βα]

(1− a0)γα

] 1
1−α

(2.28)

and the following proposition holds:

Proposition 1 Suppose γ(1 − α) − βα > 0. Then, if a0 ≥ 0, map G is
monotonically increasing; for all E0 ∈ (0,+∞), lim

t→+∞
Gt(E0) = E∗. That

is, there exists a unique and asymptotically stable (attracting) positive steady
state.

When a0 < 0, dynamics may exhibit complexity. By assuming −α
− α

1−α

1−α <

a0, Zhang proves that if a0 ∈ [− 1+α
1−α , 0), E∗ is stable. Instead, if a0 decreases

in the interval

(
− α

− α
1−α

1−α ,− 1+α
1−α

)
, the map G exhibits the classical period-

doubling sequence, summarised by the bifurcation diagram in Figure 2.2. It
can be noticed that A does not play any role in the dynamic properties of the
model: it only influences the level of E at the stationary state.
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Figure 2.2: Occurrence of a period-doubling sequence as a0 decreases.

2.3.3 The Naimzada-Sodini (2010) model

In the case of discrete time unidimensional models with overlapping generations,
a variation of the model proposed in Zhang (1999), with a more general pro-
duction function, has been provided by Naimzada and Sodini. Remaining close
to the paradigm introduced by John and Pecchenino, the authors propose a
model in which a population of individuals is characterised by a utility function
depending on the stock of an environmental good, Et, and on the consumption
of the private good, ct. It is also assumed that Et is negatively affected by the
consumption but it is improved by specific environmental expenditures.
Differently from Zhang (1999), Naimzada and Sodini consider allocations in a
decentralised economy. In this case, the choices of each agent between con-
sumption and environmental expenditure generate externalities on the others.
A consequence of this assumption is that the environmental maintenance, be-
cause of the environment is considered as a public good, is characterised by the
classic free-riding problem. In particular, the functional form described by the
authors is the following:

Et+1 = (1− b)Et − β
N∑
i=1

cit + γ

N∑
i=1

mi
t + bE (2.29)

where b ∈ (0, 1) measures the autonomous evolution of environmental qual-
ity, β > 0 measures the consumption effect on environment, γ > 0 weighs
the environmental expenditures efficiency, N is the number of the agents, and
E > 0 represent the long run value of the environmental index in absence of
anthropic activity. Individual preferences are described by the utility function
U(ct+1, Et+1), with U assumed as twice continuous and differentiable. Also in
this case, Inada like conditions are also assumed to avoid corner solutions in the
optimisation problem.
On the production side, compared with Zhang (1999), the model considers a
more general specification, that is a CES-technology:
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Y = Af(kt) = A
(
αk−ρt + (1− α)

)− 1
ρ (2.30)

where kt is the physical capital level at t, A > 0 is a scaling parameter,
α ∈ (0, 1) measures the degree of capital intensity of production, and θ = 1

1+ρ
represents the elasticity of substitution between labour and capital, with ρ > 0.
From the optimality conditions, equilibrium expressions of wage rate wt, and
interest rate rt are derived as

wt = A(1− α)
(
αk−ρt + (1− α)

)− 1+ρ
ρ , (2.31)

rt = Aαk
−(1+ρ)
t

(
αk−ρt + (1− α)

)− 1+ρ
ρ . (2.32)

By assuming that agents are identical, the problem faced by the individual
born at t is:

max
ct+1,mt+1

U(ct+1, E
e
t+1)

in which

Eet+1 = (1− b)Et − β Nct + γ(mi
t + (N − 1)me

t ) + bE (2.33)

represents the expected environmental quality at time t + 1 (depending on
me
t , that is, the expectation of agent i about strategies of others N −1 identical

agents) and the following constraints apply:

wt = st +mt, (2.34)

ct+1 = (1 + rt+1 − δ)st, (2.35)

where st is the saving and δ represents the depreciation rate of capital.
By assuming that the young individual at t is able to perfectly foresee the envi-
ronmental index Et+1 and recalling the equations(2.31)-(2.32), the equilibrium
conditions for all t become:

−Uct+1
(·, ·)(1 + rt+1 − δ) + γ UEet+1

(·, ·) = 0, (2.36)

me
t = m∗t , (2.37)

Et+1 = (1− b)Et − β Nc∗t + γ Nm∗t + bE, (2.38)

kt+1 = si∗t . (2.39)

In order to analyse dynamics of the model, the authors, as in Zhang (1999),
introduce a constant elasticity of substitution between consumption and envi-
ronment, defined as
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ηE ≡
EUE
cUc

> 0. (2.40)

Hence, they characterise the intertemporal equilibrium conditions by means
of a nonlinear difference equation in Et:

Et+1 =
ηE

N + ηE

[(
(1− b)− Nβ(1− δ)

γηE

)
Et +NA

[
γ(1− α)− βα

[
Et
γηE

]−ρ]
×
[
α

(
Et
γηE

)
+ 1− α

]− 1+ρ
ρ

+ bE

]
≡ Z(Et).

(2.41)
Therefore, Naimzada and Sodini describe the dynamics distinguishing be-

tween two possible cases, depending on the sign of ρ: (i) ρ < 0 and (ii) ρ > 0.
In the case (i), the authors show that the map admits a unique positive fixed
point and highlights that qualitative results similar to the ones in Zhang (1999)
are achievable. Then, the unique fixed point E∗ could be attracting or repelling
and, in the latter case, limit cycles or a chaotic attractor arises. However, dif-
ferently from Zhang (1999), the scaling parameter A affects the stability of E∗.
Indeed, by starting from the parameterisation α = 0.831, β = 0.55, γ = 1.56, δ =
0.001, ηE = 5, ρ = −0.4, A = 3, b = 0.52, E = 1, N = 2000, an increase in A
generates a loss of stability of E∗ through a period-doubling bifurcation. In
addition, for A ' 6, the map exhibits chaotic dynamics.
In the case (ii), the map admits an odd number of fixed points and the ones
with even index are unstable. Then, differently from (i), multiple equilibria
may exist. In particular, the authors prove that, for ρ >> 0, three steady states
exist.
An other interesting phenomenon shown by the authors is the following. By con-
sidering a parameter set for which a unique fixed point E∗1 exists, an increase
of A is able to generate, through a fold bifurcation, two new steady states E∗2
and E∗3 , where E∗2 < E∗3 is repelling and separates the basins of attraction of
the two attracting fixed points E∗1 and E∗3 . Then, a change in A may be engine
of a poverty trap (see Azariadis and Drazen (1990)).
Considering another configuration of parameters (see the parameter set in Fig-
ure 2.3), the authors provide another example in which a different sequence of
dynamic phenomena occurs, as A varies.
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Figure 2.3: Parameter set: α = 0.07, β = 0.1, ηE = 11, ρ = 12, N = 100, δ = 0.4, γ =
0.04, b = 0.58, E = 22. The part of the bifurcation diagram depicted in black is
generated starting from E0 = 0.6. The part depicted in red shows the existence of a
second attractor for A ∈ [0.83, 0.88] (the initial condition is E0 = 0.29).

For A low, a unique repelling fixed point E1, enclosed in an attracting limit
2-cycle, exists; by increasing A, the map undergoes the classic period-doubling
sequence until a fold bifurcation generates two new fixed points, E2 (repelling)
and E3 (attracting) with E3 < E2 < E1. When A further increases, first E∗3
loses its stability through a flip bifurcation and then a cascade of flip bifurcations
appears. Moreover, there exists a region of parameters for which coexistence of
attractors occurs (see Figure 2.3). For larger values of A, the lower attractor
dies and all the feasible trajectories are attracted by the remaining attractor
that lives at the right of the repelling steady state E2.
Figure 2.4 shows an interesting global phenomenon analysed by the authors, for
even higher values of A: the remaining attractor enlarges and invades the space
before occupied by the other attractor.

Figure 2.4: Merger of the attractors, A = 1.21.
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Finally, an uncommon phenomenon analysed in the work is the following
one. By fixing α = 0.07, β = 0.1, ηE = 11, ρ = 12, N = 100, δ = 0.4, γ =
0.04, b = 0.58, E = 22, the second iterate of the map is characterised by two
humps or more precisely by a maximum and a minimum point. By investigating
the second iterate G2, it can be noticed that an increase of A may lead to a fold
bifurcation of G2 inducing a stable 2-cycle and an unstable 2-cycle. In this case,
the fold bifurcation arises far from the fixed point that maintains its instability
for the whole process (see Figure 2.5).

Figure 2.5: Figure reproduced with the permission of the authors. Source:
Naimzada and Sodini (2010). Evolution of the second iterate of G (drawn at the
bifurcation value A = 0.132). For A = 0.10, G2 has no intersections with the main
diagonal (dashed line); for A = 0.132, G2 creates 2 tangent points (solid line) and for
A = 0.16, two fixed points for G2 are born (dotted line).
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2.4 Global dynamics in an OLG model with pro-
ductive open-access resources

In the OLG model proposed below, we assume that the economic activity de-
pends on the exploitation of a free-access natural resource.10Models with a sim-
ilar hypothesis on the productive sector are, for example, the aforementioned
seminal work of Day (1982) or Le Kama (2001) that assumes, in a Ramsey
model11, a technology à la Day and characterises dynamics of the social plan-
ner’s solution. In particular, the author detects the existence of a unique sta-
tionary equilibrium point, which is saddle-path stable.
Similarly to the approach that we propose, although in a continuous time frame-
work, Antoci et al. (2011) analyse the dynamics of a decentralised Ramsey econ-
omy with a productive environment and where individuals do not consider how
their own choices affect environmental dynamics, although they perfectly fore-
see its evolution. Both the work of Day (1982) and the work of Antoci et al.
(2011) show that the saddle-path stability is not guaranteed, but the simulta-
neous presence of environmental dynamics and non-Pareto optimal allocations
may generate fluctuations in both economic and environmental variables.
Surprisingly, the literature on the OLG framework developed a completely dif-
ferent paradigm. Indeed, it has focused on the analysis of models in which
the environmental variable directly enters agents’ utility function. This is the
case, for instance, of the work of John et al. (1995), where agents behave as
short-lived governments that devote a share of their resources to environmental
defensive expenditures, and the work of Antoci and Sodini (2009), where the
environmental dynamics is taken as exogenously determined and no positive en-
vironmental expenditures are introduced, although agents foresee the evolution
of environmental quality.
As compared with the aforementioned works, another strand of literature as-
sumed that the government takes charge of environmental expenditures, accord-
ing to the idea that the environment is a public good. The government finances
such expenditures through a share of a general taxation, as studied by Boven-
berg and Heijdra (1998) and Heijdra et al. (2006).12

In the present model, we focus on the role of the environment as a productive
input in a decentralised OLG framework and, in order to get readable results,
we neglect the role of environment in providing free-access environmental goods
for households.
With regard to the dynamics of the free-access natural resource, on one hand, we
assume that production activity damages such resource and that agents consider
it only as an externality (that is, no environmental expenditures are performed),
as in Antoci et al. (2011). However, on the other hand, we assume that a gov-
ernment imposes a wage taxation to finance environmental maintenance, as in

10See Clark, 1976 for an in-depth discussion about how different kinds of natural resources
may interact with economic activities.

11Saving is endogenous and the capital accumulation is bounded.
12See also Fodha and Seegmuller, 2012 for a paper that addresses the possible crowding-out

effect between public and private expenditures for environmental maintenance.
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Raffin and Seegmuller (2014).
In the analysis of the following model, we show how multiple equilibria may
arise as well as complex dynamics, consistent with results provided in Zhang
(1999), Lines (2005) and Naimzada and Sodini (2010) where the focus is on
non-productive environmental goods. In addition, we prove the robustness of
these results if a technology able to generate unbounded growth is assumed.13

2.4.1 The model

Individuals

We consider an overlapping generations economy characterised by individuals
who live for two periods, young and old age. The time horizon is indexed by
the discrete variable t = 0, 1, 2, ...,∞. We assume no population growth and the
size of each generation is normalised to one (Diamond, 1965). In his youth, each
individual supplies inelastically the time endowment to the productive sector,
remunerated at the real wage wt, and shares his labour income between current
consumption ct and saving st for the old age.
Individual’s preferences are defined on the consumption in young and old age, ct
and dt+1, respectively, and on the level of basic services provided by public sector
to individuals St. In particular, as in Naimzada et al. (2013) and Naimzada and
Pireddu (2016), the utility function of the representative agent is given by:

U(ct, dt+1, St) = ln(ct) + ln(St) + φ ln(dt+1) (2.42)

where φ > 0 is the given discount factor. In addition, the government levies a
tax on wage at the rate 0 < τ < 1. Saving, remunerated at the real interest
factor Rt+1, is used to consume the final good in the old age. Hence, the con-
sumer faces the following budget and feasibility constraints:

(1− τ)wt = st + ct (2.43)

dt+1 = stRt+1 (2.44)

ct > 0, dt+1 > 0 (2.45)

By using (2.43) and (2.44) one yields the life-cycle budget constraint

(1− τ)wt =
dt+1

Rt+1
+ ct (2.46)

The maximisation of the utility function (2.42) under the intertemporal budget
constraint (2.46) and the ex-post conditions ct = ct, dt+1 = dt+1 define the

13This last result represents a novelty. Indeed, literature assessing the possibility of un-
bounded growth for capital (with an environmental productive input) has analysed models
characterised by the existence of a unique saddle-path stable balanced growth path (see Gupta
and Barman, 2009; Barman and Gupta, 2010).
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following choices for the consumer, at the aggregate level:

ct =
(1− τ)wt

1 + φ
(2.47)

dt+1 =
φRt+1(1− τ)wt

1 + φ
(2.48)

By using (2.44) and (2.48), we obtain the following saving function:

st =
φ(1− τ)wt

1 + φ
. (2.49)

We can notice that, due to the use of a logarithmic specification for the
utility function (2.42), the income and substitution effects cancel each other
out. Therefore, saving does not depend on the interest rate.

Production

A unique material good is produced by a representative firm using a Cobb-
Douglas technology:

Yt = F (kt, kt, Et) = Akαt k
β

t E
γ
t , with α, β, γ > 0 and α+ β ≤ 1 (2.50)

where kt is the physical capital, kt represents the economy-wide average level

of physical capital stock generating the production externality k
β

t , A > 0 is a
productivity scaling parameter and Et is the stock of an open-access renewable
natural resource (see Day, 1982; Antoci et al., 2011). Similar assumptions on
production are considered both in growth models, such as the works of Smulders
and Gradus (1996) and Brock and Taylor (2010), and in models regarding the
optimal allocation and the use of natural resources (exaustible or renewable),
such as fisheries economics (See Clark, 1976).
Concerning the inclusion of Et in the production function, also many empirical
studies have stressed the importance of the environment in affecting productiv-
ity. Environmental inputs are for example some kinds of natural resources, sink
functions for pollution or land use (see Kozluk and Zipperer, 2015).
We note that, in one-sector growth models, the alternative assumptions on the
elasticy of capital α + β < 1, α + β = 1 characterise the impossibility or the
possibility of unbounded growth (that is, a positive growth rate in the long
run), respectively. In our work, the presence of an environmental sector may
dramatically change the dynamic properties of the model, as it will be shown
in the next sections.
In addition, by following the approach proposed in the literature on indetermi-
nacy (see Cazzavillan, 2001),14 we assume that the aggregate level kt generates
a positive production externality at time t.

14See John and Pecchenino (1994) for a different approach.
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By assuming that the representative firm operates under perfect competition,
it maximises the profit function

π(kt) := Akαt k
β

t E
γ
t − wt −Rtkt (2.51)

taking kt, Et, wt and Rt as exogenously given. The maximisation yields the
following equilibrium equations for wage and interest rate:

wt = A(1− α)kαt k
β

t E
γ
t (2.52)

Rt = Aαkα−1t k
β

t E
γ
t . (2.53)

Environmental Resource Dynamics

Taking into account that the production negatively affects the environmental
resources15 index Et+1 whereas the environmental public spending Gt increases
its level, we introduce the following specification

Et+1 =
E +Gθt
1 + yλt

(2.54)

similar to the one introduced by Smulders and Gradus (1996)16, and used by
Antoci et al. (2016) in an OLG framework.17

In the equation (2.54), E > 0 represents the value of the index when productive
activity and public expenditures are null. The positive parameter λ weights the
environmental influence of production whereas θ weights the positive impact of
the public intervention on the free-access natural resource dynamics.
This specification, as compared with the linear form assumed by John and
Pecchenino (1994), presents two advantages: first, from a mathematical point
of view, it is effective to avoid negative values for the index in (2.54) (this is not
consistent with the specification of the production function); second, it allows
to consider possible nonlinear relations among economic activity, environmental
dynamics and public expenditures (Rosser, 2001). This last point seems to be
consistent with evidence of empirical analyses, as stated by Kozluk and Zipperer
(2015).

15In the environmental literature both models with pollution dynamics and with environ-
mental dynamics are considered. The choice between these two different approaches seems
to be not crucial and therefore, according to the majority of works in OLG literature, we
introduce an index measuring the quality of natural resources.

16The Smulders and Gradus (1996) specification, introduced to define the pollution stock

Pt in continuous time, in our notation reads as Pt =
yλt
Gθt

. We prefer to use the expression in

(2.54), rather than Et+1 =
Gθt
yλt

, in order to avoid the possibility that some parameterisations

lead to two undesirable cases, that is (a) if production tends to zero, then the index (2.54)
tends to +∞; or (b) if environmental expenditures are zero, then production is equal to zero.

17Even if they neglect the existence of improving environmental expenditures.
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Public Sector

The government aims to improve the stock of free-access environmental re-
sources through investments intended for its maintenance and protection. This
action is financed by a fixed share δ ∈ [0, 1] of the general labour income taxation
τwt, that is:

Gt = δ · (τwt), (2.55)

whereas the residual part St = (1 − δ) · (τwt) is earmarked for providing basic
services for agents.
The assumption that environmental maintenance is performed by the govern-
ment is in line with other theoretical works (see also Barman and Gupta, 2010).
Moreover, it appears to be preferable to the two different frameworks provided in
the literature: on one hand, the approach introduced by John and Pecchenino,
in which the economy is not affected by externalities among contemporaries and
agents are able to internalise the problem of optimizing environmental defensive
expenditures;18 on the other hand, the approach proposed in several works by
Antoci and co-authors, in which no defensive expenditures are assumed.

2.4.2 Equilibrium Dynamics

This section is devoted to define and characterise the equilibrium dynamics of
the model.
By considering the saving in (2.49); the market clearing condition in the capital
market

kt+1 = st; (2.56)

the production in (2.50); the wage in (2.52); the environmental public spending
in (2.55); the aggregate consistency condition kt = kt and the dynamics of
the free-access environmental resource in (2.54), we obtain the following two-
dimensional system:

M :

k
′

= φ(1−τ)(1−α)Akα+βEγ

1+φ

E
′

=
E+(δτ(1−α)Akα+βEγ)

θ

1+(Akα+βEγ)λ

(2.57)

where ′ is the unit time advancement operator.
In order to avoid trivial dynamics on E, we introduce the following assumption:

Assumption 1 If λ = θ, then we assume

∣∣∣∣ E (δτ(1− α))
θ

1 1

∣∣∣∣ 6= 0

Indeed, we note that if λ = θ and E = (δτ(1− α))
θ
, the previous deter-

minant is equal to zero, E = (δτ(1− α))
θ

for any iteration and the dynamic

18Equilibrium dynamics are not Pareto optimal only because of the lack of coordination
between generations.
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equation for k boils down to k
′

= Bkα+β , where B := φ(1−τ)A(1−α)1+γθ(δτ)γθ
1+φ

and whose dynamical properties are well known.19

Proposition 2 If θ > λ (resp. θ < λ), then E′ is U-shaped (resp. inverted
U-shaped) with respect to Y .

Proof. Taking into account the first derivative of E′

dE
′

dY
=

(Y θ((θ − λ)Y λ + θ)(δτ(1− α))θ − λEY λ)

((1 + Y λ)2Y )
(2.58)

By direct calculations, we obtain that

sign

(
dE
′

dY

)
= sign(O) (2.59)

where O := δτ(1− α)θY θ+λ(θ − λ) + (δτ(1− α))θY θθ − EY λλ and

sign(O) = (δτ(1− α))θY λθ(θ − λ) + (δτ(1− α))θ(θ − λ)θ. (2.60)

It follows that E′ may change its monotonic character at most one time.

By introducing the next change of variable:

Y = Akα+βEγ (2.61)

we obtain the following one-dimensional map:

N : Y ′ = A
(
k
′
)α+β

(E′)
γ

= H(Y ) (2.62)

where H(Y ) is defined as follows

H(Y ) := A

(
φ(1− τ)(1− α)Y

1 + φ

)α+β (
E + (δτ(1− α)Y )

θ

1 + Y λ

)γ
(2.63)

Remark 1 We underline that alternative hypotheses on some characteristics
of the model, such as (a) assuming a direct taxation on firms (that is, post-tax

disposable income is (1 − τ)Akαt k
β

t E
γ
t and wt = A(1 − α)(1 − τ)kαt k

β

t E
γ
t ) or

(b) assuming that environment is negatively affected by comsumption (that is,

Et+1 =
E+Gθt
1+cλt

) and that agents behave as in Antoci et al. (2016) (that is, without

considering effects of their action on environmental dynamics) lead to the same
specification of map M , up to parameters rescaling.

19If α+ β < 1, there exists a unique positive stationary equilibrium attracting every initial
condition k0 > 0. If α+β = 1 and B < 1(resp. B > 1), dynamics starting from positive initial
values of k converge to zero (positively diverge). If α + β > 1, there exists a unique positive
repulsive fixed point k∗ and, for the initial condition k0 < k∗(resp. k0 > k∗), dynamics
converges to zero (diverges to +∞).
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Remark 2 We note that starting from a positive value of Y , the map generates
positive (that is, economically relevant) values of Y for every iteration and for
all the parameter sets.

In what follows, we will characterise some properties of the map N . First of
all, we can infer the relationship between fixed points of N and fixed points of
the system M .

Proposition 3 Let M,N be maps, defined in (2.63) and (2.57), respectively.
Then, 0 is a fixed point for N if and only if (0, E) is a fixed point for M .

Proof. Let 0 be a fixed point for N . In order to obtain the result it is sufficient
to notice that, by substituting Akα+βEγ = 0 in the map M , we get k

′
= k = 0

and E
′

= E = E for any iteration. The converse implication follows trivially.

Proposition 4 Let M,N be maps, defined in (2.63) and (2.57), respectively.
Then, Y ∗ > 0 is a fixed point for N if and only if there exist k∗, E∗ such that
(k∗, E∗) is a fixed point for M .

Proof. Let Y ∗ be a fixed point for N . In order to obtain the result it is sufficient
to notice that, by considering that Akα+βEγ = Y ∗ for any iteration, we obtain

k
′

= k = φ(1−τ)(1−α)Y ∗
1+φ , E

′
= E = E+(δτ(1−α)Y ∗)θ

1+(Y ∗)λ
. The converse implication

follows trivially.

Corollary 1 An attracting positive fixed point for N corresponds to an attract-
ing positive fixed point for M , and vice-versa.

Proposition 5 Let M,N be maps, defined in (2.63) and (2.57), respectively.
Then, we have the following cases:

(a) If λ < θ, +∞ is a fixed point for N if and only if (+∞,+∞) is a fixed point
for M ;

(b) If λ = θ, +∞ is a fixed point for N if and only if (+∞, (δτ(1− α))
θ
) is a

fixed point for M .

Proof. (a) Let +∞ be a fixed point for N . For λ < θ, we note that by consider-
ing Akα+βEγ = +∞ for any iteration, we obtain k

′
= k = +∞, E′ = E = +∞.

Let us now assume that (+∞,+∞) is a fixed point for M . Thus, from equations
(2.61) and (2.63) we obtain Y

′
= Y = +∞.

(b) Let +∞ be a fixed point for N . For λ = θ, from Akα+βEγ = +∞
we get k

′
= k = +∞, E′ = E = (δτ(1− α))

θ
. Let us now assume that

(+∞, (δτ(1− α))
θ
) is a fixed point for M . Thus, from equations (2.61) and

(2.63) we obtain Y
′

= Y = +∞.

Remark 3 In the previous Proposition, we avoided to discuss the case λ > θ
since it would imply that +∞ could not be a fixed point, as it will be shown in
what follows.
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Definition of M in (2.57) implies that a n-period cycle for Y induces a
cycle for k and E of periodicity less or equal to n. In particular, the following
propositions can be stated:

Proposition 6 If there exists a 2-period cycle for N , then there exists a 2-
period cycle for E.

Proof. Assume for contradiction that there exists a 1-period cycle for E and
let Y1 and Y2 be values of a 2-period cycle for N . By writing Y

′
as

Y
′

= m(Y )g(Y )γ , with g(Y ) = E (2.64)

We have that {
Y2 = m(Y1)g(Y1)γ = m(Y1)Eγ

Y1 = m(Y2)g(Y2)γ = m(Y2)Eγ
(2.65)

By solving both equations for Eγ , we obtain the following equality

Y2
Y1

=
m(Y1)

m(Y2)
. (2.66)

By considering that m is an increasing monotone function, we obtain a contra-
diction. Then, the result follows.

Proposition 7 If there exists a l − period cycle for N , then the trajectory of
E associated with the cycle for N contains at least l

2

(
l+1
2 , respectively

)
values,

if l is even (odd, respectively).

Proof. From Proposition 2 we may have that two different values of Y are
associated with the same value of E. Then, the result directly follows.

The following subsections will focus on existence, multiplicity and stability
of stationary equilibria. For both economic and mathematical reasons, we will
consider cases α+ β < 1 and α+ β = 1 separately.

The case α+ β < 1

In this subsection, we consider the case α + β < 1. In order to investigate
whether unbounded trajectories exist or not, we have to take into account both
the productivity of capital and evolution of E. In other words, the only condition
α+β < 1 is not sufficient to guarantee a capital accumulation process converging
to a finite value.
As far as this is concerned, the following Proposition holds:

Proposition 8 If α + β + γ(θ − λ) < 1, then +∞ is not an attractor and all
the attractors of the system are at finite distance.
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Proof. For Y high enough, we have:

H(Y ) ' A
(
φ(1− τ)(1− α)

1 + φ

)α+β (
(δτ(1− α))

θ
)λ
Y α+β+γ(θ−λ) (2.67)

If α + β + γ(θ − λ) < 1, H(Y ) definitely lies below the 45-degree line. By
considering that the map is well-defined and continuous on the interval [0,+∞),
we get the result.

Remark 4 Note that, if the weight of public expenditure on the resource dy-
namics, θ, is lower than the impact of production, λ, the capital accumulation
is always bounded. On the contrary, a sufficiently high value of the difference
θ − λ may lead to an unbounded growth of k and E.

Proposition 9 If α+ β < 1, then 0 is a repulsive steady state.

Proof. If Y is small enough, we have

H(Y ) ' A
(
φ(1− τ)(1− α)

1 + φ

)α+β
E
γ
Y
α+β

(2.68)

Therefore, lim
Y→0+

H
′
(Y ) = +∞ and the graph of H(Y ) starts above the

45-degree line.
Essentially, Proposition 9 states that, in the presence of decreasing social

returns to scale with respect to the capital input, the economy cannot tend to
an equilibrium with no positive activity.
In order to study the existence and multiplicity of positive stationary equilibria,
we introduce the following function:

V (Y ) =
H(Y )

Y
− 1.

Stationary equilibria for H(Y ) are characterised by zeros of V (Y ). Function
V (Y ) is continuous for Y > 0 and lim

Y→0+
V (Y ) = +∞ while lim

Y→+∞
V (Y ) = −1

if α+ β − 1 + (θ− λ)γ < 0 and lim
Y→+∞

V (Y ) = +∞ if α+ β − 1 + (θ− λ)γ > 0.

Therefore, a positive fixed point always exists if α+β−1+(θ−λ)γ < 0 whereas
if α + β − 1 + (θ − λ)γ > 0 it is possible that a positive fixed point does not
exist.

By direct calculation, we get

sign(V ′(Y )) = sign(J(Y )) (2.69)

where

J(Y ) =
[
(α+ β − 1 + (θ − λ)γ) (τ (1− α))

θ
Y θ+λ + (α+ β − 1 + θ γ) (τ (1− α))

θ
Y θ+

+ (α+ β − 1− γ λ)Y λE + (α+ β − 1)E
]

The following Lemmas classify some properties of J(Y ).
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Lemma 1 Assume λ < θ. Then, the following cases arise:

(a) If α+ β < 1− θγ, then J(Y ) is always negative;

(b) If 1 − θγ < α + β < 1 − (θ − λ)γ, then the equation J(Y ) = 0 generically
has (b1) zero or (b2) two solutions Y 1 and Y 2 with Y 2 > Y 1. In the case
(b2) it follows that J(Y ) < 0 for Y ∈ (0, Y 1) ∪ (Y 2,+∞) and J(Y ) > 0 for
Y ∈ (Y 1, Y 2);

(c) If 1− (θ − λ)γ < α+ β < 1, then there exists a threshold value Y such that
J(Y ) < 0 for Y ∈ (0, Y ) and J(Y ) > 0 for Y > Y .

Proof. First, note that lim
Y→0+

J(Y ) = (α+β−1)E < 0 and if (θ−λ)γ+α+β−1 <

0 (resp. (θ − λ)γ + α + β − 1 > 0 ) it follows that lim
Y→+∞

J(Y ) = −∞ (resp.

lim
Y→+∞

J(Y ) = +∞). Then, by direct calculation we have that sign(J ′(Y )) =

sign(X(Y )) where

X(Y ) = ((θ − λ)γ + α+ β − 1)(δτ(1− α))θY θ(θ + λ)+

+ (γθ + α+ β − 1)(δτ(1− α))θY θ−λθ + (α+ β − 1− γλ)λE

and

X ′(Y ) =
((θ − λ)γ + α+ β − 1)(δ τ (1− α))θY θθ(θ + λ)

Y
+

+
(α+ β − 1 + θ γ)(δ τ (1− α))θY θ−λ(θ − λ)θ

Y
.

The following cases arise: (a) If α+ β < 1− θγ, we have that J(Y ) is a sum of
negative terms for Y > 0. Therefore, J(Y ) < 0 ∀Y > 0; (b) if 1− θγ < α+ β <
1− (θ − λ)γ, we have that there exists a point

Ỹ =

(
(λ− θ) (α+ β − 1 + θ γ)

(θ + λ) (θ γ − γ λ+ α+ β − 1)

)1/λ

(2.70)

such that X ′(Y ) is positive for Y ∈ [0, Ỹ ) and negative for Y > Ỹ . This implies
that X(Y ) may change its sign at most two times and the same result follows
for J(Y ); (c) if 1 − (θ − λ)γ < α + β < 1, we have that X ′(Y ) > 0 for Y > 0.
Since X(0) = λE (α+ β − 1− γλ) < 0, X(Y ) can change its sign at most one
time and the same result follows for J(Y ).

Lemma 2 Assume λ > θ. Then, the following cases arise:

(a) If α+ β < 1− θγ, then J(Y ) is always negative;

(b) If 1− θγ < α+ β < 1, then generically J(Y ) = 0 has (b1) zero or (b2) two

solutions, Ŷ 1 and Ŷ 2 with Ŷ 2 > Ŷ 1. In the case (b2) it follows that J(Y ) < 0

for Y ∈ (0, Ŷ 1) ∪ (Ŷ 2,+∞) and J(Y ) > 0 for Y ∈ (Ŷ 1, Ŷ 2).
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Proof. First, note that lim
Y→0+

J(Y ) = (α+β−1)E < 0 and lim
Y→+∞

J(Y ) = −∞.

Then, we observe that sign(J ′(Y )) = sign(X(Y )) where

X(Y ) = (α+ β − 1− (λ− θ)γ)(δ τ (1− α))θY λ(θ + λ) + (γθ + α+ β − 1)(δ τ (1− α))θθ+

+ (α+ β − 1− γ λ)Y λ−θλE

and

X
′
(Y ) =

(α+ β − 1− (λ− θ)γ)(δ τ (1− α))θY λλ (θ + λ)

Y
+

+
(α+ β − 1− γ λ)Y λ−θ(λ− θ)λE

Y
.

Therefore, (a) if α+β < 1−θγ, we have that J(Y ) is a sum of negative terms for
Y > 0. It follows that J(Y ) < 0 ∀Y > 0; (b) If 1−θγ < α+β < 1, we have that

X ′(Y ) < 0 for Y > 0, because X(0) = (α+ β − 1 + γθ) (δ τ (1− α))
θ
θ > 0.

Then, X(Y ) can change its sign at most one time and J(Y ) changes its sign at
most two times.

Based on results of previous Lemmas, we have the following Propositions:

Proposition 10 Assume λ < θ. Then, the following cases arise:

(1) If α+β < 1− θγ, then there exists a unique positive stationary equilibrium;

(2) If 1 − θγ < α + β < 1 − (θ − λ)γ and the hypothesis in the case (b1) of
Lemma 1 is satisfied, then there exists a unique positive stationary equilibrium;

(3) If 1−θγ < α+β < 1−(θ−λ)γ and the hypothesis in the case (b2) of Lemma
1 is satisfied, then there exist threshold values A,A, with A < A such that for
A < A or A > A the map admits a unique positive stationary equilibrium. For
A < A < A the map admits three positive stationary equilibria;

(4) If 1− (θ − λ)γ < α+ β < 1, then there exists a threshold value Ã such that

for A < Ã the map admits two positive stationary equilibria. For A > Ã the
map does not admit any positive stationary equilibrium.

Proof. From results in Lemma 1, we can deduce that: (1) If α + β < 1 − θγ,
then V (Y ) is always decreasing and then the map H(Y ) admits a unique positive
stationary equilibrium; (2) If 1− θγ < α+β < 1− (θ−λ)γ and the case (b1) of
Lemma 1, V (Y ) changes its sign one time and the map H(Y ) admits one positive
stationary equilibrium; (3) if 1− θγ < α+β < 1− (θ−λ)γ and the case (b2) of
Lemma 1, V (Y ) changes its sign at most three times and the map H(Y ) admits
at most three positive stationary equilibria; (4) If 1 − (θ − λ)γ < α + β < 1,
V (Y ) changes its sign at most two times and the map H(Y ) admits at most
two positive stationary equilibria.

Proposition 11 Assume λ < θ. Then, the following cases arise:

(a) If there exist three positive stationary equilibria Y ∗1 < Y ∗2 < Y ∗3 , Y ∗2 is always
unstable;
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(b) If α+ β > λγ and there exists a unique positive stationary equilibrium, it is
globally asymptotically stable for every initial condition Y > 0;

(c) If α+ β > λγ and there exist three positive stationary equilibria Y ∗1 < Y ∗2 <
Y ∗3 , Y ∗1 and Y ∗3 are locally asymptotically stable while Y ∗2 is unstable.

Proof. The result in (a) follows by considering the behaviour of the map when
Y approaches 0 and +∞, implying that, at Y ∗2 , the map intersects the 45-degree
line from below. Results in (b) and (c) follow by the monotonicity of the map
under the hypothesis α+ β > λγ.

Remark 5 We note that the required hypothesis α + β > λγ in case (c) of
Proposition 11 is not always verified when multiple equilibria exist. Failure of
this hypothesis leads to a more complex situation which will be illustrated in
section 4.

Figure 2.6 shows coexistence of three stationary equilibria under the hypoth-
esis (a) in Proposition 11. In this case, the map is monotone and, by starting
from initial conditions lower or higher than Y ∗2 , dynamics of N are captured by
Y ∗1 and Y ∗3 , respectively. Moreover, from the associated time series of k and E,
we note that the route to Y ∗3 (starting from an initial value Y ∈ (Y ∗2 , Y

∗
3 )) is

associated with a growth in physical capital accumulation and in the stock of
environmental resources.
By investigating further properties of the relationship between M and N , it can
be observed that starting from a positive stationary equilibrium Y ∗ for N , an

invariant set in the plane (k,E), defined by E = ( Y ∗

Akα+β )
1
γ , is identified (see

panel (d) in Figure 2.6). In particular, for this parameter set, E = ( Y ∗

Akα+β )
1
γ

describes the stable manifold on the saddle-point Y ∗2 which separates the basins
of attraction of Y ∗1 and Y ∗3 .
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(a) (b)

(c) (d)

Figure 2.6: Parameter set: α = 0.32, β = 0.6, γ = 0.4, δ = 0.7, θ = 3, λ = 2.87, τ =
0.2, φ = 0.6, E = 0.0007, A = 48.6. The map N has the following stationary equilibria:
Y ∗
1 = 1, Y ∗

2 = 1.2, Y ∗
3 = 2.2. The map is monotone and then the unstable fixed point

Y ∗
2 separates the basins of attraction of the two stable fixed points Y ∗

1 and Y ∗
3 . (a)

Time series of Y converging to Y ∗
1 or to Y ∗

3 for different initial conditions; (b) Time
series of k, (c) Time series of E; (d) Dashed lines describe iso-product curves in the
plane (k,E) associated with stable fixed points of N , Y ∗

1 = 1 and Y ∗
3 = 2.2. The

iso-product curve for the unstable Y ∗
2 = 1.2 (solid line) describes the stable manifold

and divides the basin of attraction for Y ∗
1 (green region) and Y ∗

3 (yellow region),
respectively.

By considering this parameter set and the results in Proposition 10, a de-
crease in A from Ah = 48.6 to Al = 48.3 generates the disappearance of sta-
tionary equilibria Y ∗2 and Y ∗3 . Then, Y ∗1 becomes the unique attractor of the
system. In this case, a subsequent recovery of A to its original value Ah may
not allow the restoration of the previous path, because the value of Y may have
passed the threshold value Y ∗2 . Figure 2.7 provides a numerical example of this
occurrence, in terms of k and E:
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(a) (b)

Figure 2.7: Parameter set: α = 0.32, β = 0.6, γ = 0.4, δ = 0.7, θ = 3, λ = 2.87, τ =
0.2, φ = 0.6, E = 0.0007, Ah = 48.6, Al = 48.3. (a) Evolution of capital accumulation
over time when a shock in A occurs; (b) Evolution of the stock of environmental
resources over time when a shock in A occurs. The red pointed vertical line represents
the temporary (exactly 10 iterations) time series generated by Al.

Proposition 12 Assume λ > θ. Then, the following cases arise:

(1) If α+β < 1− θγ, then there exists a unique positive stationary equilibrium;

(2) If 1 − θγ < α + β < 1 and the hypothesis in the case (b1) of Lemma 2 is
satisfied, then there exists a unique positive stationary equilibrium;

(3) If 1 − θγ < α + β < 1 and the hypothesis in the case (b2) of Lemma 2
is satisfied, then there exist threshold values A,A, with A < A such that for
A < A or A > A the map admits a unique positive stationary equilibrium. For
A < A < A the map admits three positive stationary equilibria.

Proof. From results in Lemma 2, we can deduce that: (1) if α + β < 1 − θγ,
V (Y ) is always decreasing and then the map H(Y ) admits a unique positive
stationary equilibrium; (2) If 1 − θγ < α + β < 1 and the case (b1) of Lemma
2, V (Y ) changes its sign one time and the map H(Y ) admits one positive
stationary equilibrium; (3) If 1− θγ < α+β < 1 and the case (b2) of Lemma 2,
V (Y ) changes its sign at most three times and the map H(Y ) admits at most
three positive stationary equilibria.

Figure 2.8 graphically shows the different results for the map N stated in
Proposition 12, as A varies. In particular, it emphasises the role of A in inducing
birth or disappearance of positive stationary equilibria.
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Figure 2.8: Parameter set: α = 0.3, β = 0.4, γ = 0.3, δ = 0.1, θ = 2.2, λ = 25.92, τ =
0.31, φ = 0.6, E = 0.00001, Al = 28.6, Aint = 38.6, Ah = 58.6. Changes in the map
shape as A varies. The enlargement highlights the behaviour of the map in a neigh-
borhood of zero. For Al = 28.6, the map admits a unique stationary equilibrium
Y ∗ = 0.0235, for Aint = 38.6 the map admits three stationary equilibria Y ∗

1 = 0.067,
Y ∗
2 = 0.676 and Y ∗

3 = 0.97, for Ah = 58.6 the map admits a unique stationary equi-
librium Y ∗ = 1.067.

Proposition 13 Assume λ > θ. Then, the following cases arise:
If there exist three stationary equilibria Y ∗1 < Y ∗2 < Y ∗3 , Y ∗2 is always unstable.

Proof. The result follows by considering the behaviour of the map when Y
approaches 0 and +∞, implying that over Y ∗2 , the map intersects the 45-degree
line from below.

Remark 6 By considering results of Proposition 12 and Proposition 13, we
observe that the existence of a unique stationary equilibrium for H(Y ) does not
guarantee its asymptotic stability.

The case α+ β = 1

This paragraph is devoted to deepen the particular instance of constant social
returns to scale with respect to capital input. In this case, the map N becomes

H(Y ) := A

(
φ(1− τ)(1− α)Y

1 + φ

)(
E + (δτ(1− α)Y )

θ

1 + Y λ

)γ
(2.71)

Let

A∗ =
1 + φ

Eγφ(1− τ)(1− α)
(2.72)
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As far as the existence and stability of stationary equilibria are concerned,
the following propositions can be stated:

Proposition 14 If A < A∗, then 0 is locally asymptotically stable; if A > A∗,
then 0 is unstable.

Proof. The result follows by considering that for Y → 0+ the map behaves as(
Eγ Aφ(1−τ)(1−α)1+φ

)
Y .

Proposition 15 If λ < θ, +∞ is an attractor; if λ > θ, no unbounded trajec-
tories for Y exist.

Proof. The result follows by considering that Y → +∞ the map behaves as

A
(
φ(1−τ)(1−α)

1+φ

)
Y 1+γ(θ−λ).

Proposition 16 (existence of positive stationary equilibria)

(1) If λ < θ , there exist A and A where A := A∗ < A such that (i) for A < A,
a unique positive stationary equilibrium exists; (ii) for A < A < A, there exist
two positive stationary equilibria and (iii) for A > A, no positive stationary
equilibria exist;

(2) If λ > θ, there exist A and A where A := A∗ > A such that (i) for A <
A, no positive stationary equilibria exist; (ii) for A < A < A, there exist two
positive stationary equilibria and (iii) for A > A, there exists a unique positive
stationary equilibrium.

Proof. By specializing V (Y ) in the case α + β = 1, it is straightforward to
obtain the result.

Some results on stability properties of interior stationary equilibria are de-
rived as follows.

Proposition 17

(a) If λ < θ and there exists a unique positive stationary equilibrium Y ∗, then
Y ∗ is always unstable;

(b) if λ > θ and there exist two positive stationary equilibria Y ∗1 and Y ∗2 with
Y ∗1 < Y ∗2 , then Y ∗1 is always unstable.

Proof. By considering the way in which the map crosses the 45-degree line, we
get the result.

Panels (a) and (b) in Figure 2.9 show the different scenarios in case (1)
of Proposition 16. In particular, panel (a) shows that, given an initial value
Y0 < Y ∗, in the long run, we obtain the destruction of the productive system
and the environment returns to its pre-production state E. Conversely, given an
initial value Y0 > Y ∗, the path generated for Y induces an unbounded growth
for both k and E. In panel (b), for A = Al (numerical values of this exercise
can be found in the caption), we show two increasing trajectories leading to
(i) a finite value of Y (and then to a finite value of k and E) and (ii) +∞,
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respectively. Therefore, in the case α + β = 1, two different initial conditions
may lead to more dramatic differences in the economic growth path, compared
with the case α+β < 1. For A = Ah, we obtain the result that, for every initial
condition Y > 0, the economy unboundedly grows.

(a) (b)

Figure 2.9: (a) Parameter set: α = 0.6, β = 0.4, γ = 0.4, δ = 0.1, θ = 1.12, λ =
0.92, τ = 0.21, φ = 0.19, E = 0.000001, A = 355. For every initial condition Y > 0, the
positive stationary equilibrium Y ∗ = 0.153 is unstable. Indeed, as shown by red and
black arrows, the map admits only trajectories converging to 0 or +∞. (b) Parameter
set: α = 0.6, β = 0.4, γ = 0.4, δ = 0.1, θ = 3.12, λ = 1.92, τ = 0.21, φ = 0.19, E =
0.1, Al = 650, Ah = 850. For A = Al, the map admits two stationary equilibria
Y ∗
1 = 36.04 and Y ∗

2 = 133.62. Blue arrows underline the convergence to Y ∗
1 while

red arrows highlight the presence of an unbounded growth path for the economy. For
A = Ah, no positive stationary equilibria are admitted (see the graph in grey) and all
the trajectories (not depicted) positively diverge.

Figure 2.10 shows a numerical example of the case (2) in Proposition 16.
In particular, (i) for A = Al, the map does not admit any positive stationary
equilibria and for every positive initial condition Y > 0 dynamics converge to 0;
(ii) for A = Ah, the map admits two positive stationary equilibria Y ∗1 (unstable)
and Y ∗2 (locally asymptotically stable). Therefore, an unbounded growth of the
economy is not allowed because of the productive activity, that causes environ-
mental damages excessive to be balanced by the public intervention. In other
words, the economic growth path is bounded by the environmental depletion.
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Figure 2.10: Parameter set: α = 0.6, β = 0.4, γ = 0.4, δ = 0.1, θ = 1.12, λ =
2.92, τ = 0.21, φ = 0.19, E = 0.000001, Ah = 225, Al = 125. For A = Ah, the
map admits two stationary equilibria Y ∗

1 = 0.461 and Y ∗
2 = 1.458. Two trajectories

converging to zero or to the positive stationary equilibrium Y ∗
2 are depicted in red

and black, respectively. For A = Al, positive stationary equilibria disappear (see the
graph in blue).

Panels (a) and (b) in Figure 2.11 show the associated time series of k and
E: we note that the economic growth path leading to Y ∗2 is associated with a
growth in the physical capital accumulation as well as to an inverted U-shaped
evolution in the stock of environmental resources.
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(a) (b)

Figure 2.11: Parameter set: α = 0.6, β = 0.4, γ = 0.4, δ = 0.1, θ = 1.12, λ =
2.92, τ = 0.21, φ = 0.19, E = 0.000001, A = 225. (a) Time series of k is monotonic
increasing; (b) inverted U-shaped evolution of E.

In Figure 2.12, for A = Aint, we show another dynamic phenomenon gener-
ated by the map N when λ > θ. In this context, the map is unimodal (different
from the example in Figure 2.10 where N is monotone). This property, associ-
ated with the local stability of 0, induces the birth of a non-connected basin of
attraction for 0 (grey lines on the x-axis highlight a portion of the basin of at-
traction). In particular, by choosing very high initial values, dynamics converge
to 0.
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Figure 2.12: Parameter set:α = 0.6, β = 0.4, γ = 0.4, δ = 0.1, θ = 1.12, λ = 8.92, τ =
0.21, φ = 0.19, E = 0.000001, Ah = 5000, Aint = 250, Al = 150. For A = Aint, the
map admits two stationary equilibria Y ∗

1 = 0.444 (unstable) and Y ∗
2 = 1.057 (stable).

In the previous subsections, we analysed some properties of the map N
assuming a given initial level Y0. It is important to recall that a production level
Y0 can be generated by infinite combinations (k0, E0). This simple observation
becomes relevant when multiple attractors exist, since for a given level k0, two
different levels E1

0 and E2
0 may lead to two different Ω−limit set. Moreover,

this property can have several consequences: for example, in Figure 2.6, for a
given level k0, a sufficiently low value of E0 leads the economy to the stationary
equilibrium Y ∗1 , in which both E and Y assume low values, while a sufficiently
high value of E0 leads the economy to Y ∗3 , in which both E and Y assume high
values. On the contrary, in Figure 2.12, due to the non-invertibility of the map,
for a given k0, a sufficiently high value of E0 generates dynamics leading to a
stationary equilibrium with a lower value of Y .

Finally, it is worth to stress that an unbounded growth path of Y , associated
with a permanent decrease of E, is possible only in the case λ = θ.
Panel (a) in Figure 2.13 shows a numerical example with λ = θ in which Y
positively diverges. Nonetheless, E decreases towards its stationary value (see
panel (b)).
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(a) (b)

Figure 2.13: Parameter set: α = 0.6, β = 0.4, γ = 0.2, δ = 1.1, φ = 0.19, λ =
2.12, θ = 2.12, τ = 0.21, E = 1.1, A = 150. (a) The blue trajectory describes the
diverging dynamics of N starting from an initial condition Y0 = 10; (b) time series of
E converges to the value E ' 0.00003976.

2.4.3 The role of τ in the interplay between production
and environment

By considering the parameter set α = 0.3, β = 0.2, γ = 5, δ = 0.1, φ = 0.19, λ =
2, ρ = 0.8, σ = 0.7, θ = 0.4, τ = 0.01, E = 1, A = 1, we let τ varies. The nu-
merical exercise allows to observe the following phenomena: (i) for τ < 0.25,
an increase in general taxation is positively correlated with an increase in the
production level and this is due to the positive effect of τ on the environmental
variable E (that is a production input); (ii) for τ sufficiently high, a further
increase in its value (and therefore the amount of public expenditure for envi-
ronment) may decrease the level of environmental resources, due to the decrease
of the total amount G devoted to the environmental defense (see Figure 2.14).
Therefore, there exist values of τ for whom an increase in general taxation may
increase (decrease) the stationary value of production (stock of environmental
resources).
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(a) (b)

Figure 2.14: Parameter set: α = 0.3, β = 0.2, γ = 5, δ = 0.1, φ = 0.19, λ = 2, ρ =
0.8, σ = 0.7, θ = 0.4, τ = 0.01, E = 1, A = 1. Inverted U -shaped behaviour of Y and
E with respect to the taxation rate τ .

2.4.4 Global Analysis

In the previous sections, we focused on (i) changes in the number of stationary
equilibria as parameters vary (through saddle-node bifurcations) or (ii) changes
in stationary equilibria levels and respective stability properties.
This section is devoted to investigating some economically relevant dynamic
phenomena, which are related to the non-invertibility of the map.
More specifically, panels (a) and (b) of Figure 2.15 describe the case in which
λ > θ and α + β < 1 (the parameter set is specified in the caption). As the
bifurcation diagram in Figure 2.15 (a) shows, for A ∈ (0.47, 2.57) there exists
a unique global attractor for any positive initial condition of Y . For A ' 2.57,
the stationary equilibrium undergoes a flip bifurcation and an attracting 2-
period cycle appears. By considering larger values of A, the classical sequence of
period doubling bifurcations occurs until a chaotic attractor arises. According to
Remark 2 and different from other OLG models (see Zhang, 1999)20, trajectories
are well-defined (stay positive) for all the parameter sets and for all the initial
conditions. In panel (b), depicted for A = 9.5 we have highlighted the absorbing
area, bounded by the critical point (in the Julia-Fatou sense) and its first three
iterates, where long-run dynamics occur.
Therefore, the analysis shows that interplays between economic activity and
productive environmental resources may cause complex dynamics.

20In this work, the initial value of the map cannot be taken too far from the stationary
equilibrium.
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(a) (b)

Figure 2.15: Parameter set: α = 0.25, β = 0.6, γ = 0.8, δ = 0.5, θ = .84, λ = 4, τ =
0.1, φ = 0.19, E = 4. (a) Bifurcation diagram of N with respect to A; (b) Absorbing
area bounded by critical point and its first three iterations (A = 9.5).

Figure 2.16 stresses the ambiguous role of τ in modifying the dynamic prop-
erties of the model (the parameter set is specified in the caption). In particular,
starting from the stable configuration of the system for τ = 0, a rise in τ may
induce a destabilization of the positive stationary equilibrium and a further in-
crease in τ may be a source of complex dynamics. Nonetheless, for τ > τ , the
stationary equilibrium becomes stable again.
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Figure 2.16: Parameter set: α = 0.3, β = 0.2, γ = 20, δ = 0.1, φ = 0.19, λ = 2, θ =
0.4, E = 1, A = 1. For τ < τ < τ , the stationary equilibrium is unstable; for τ > τ or
τ < τ the stability is achieved.

Let us now consider the case α + β = 1. Figure 2.17 shows a numerical
example for which the map is bimodal (the parameter set is specified in the
caption). For this parameterisation, the bifurcation diagram in Figure 2.17 (a)
shows that the stationary equilibrium undergoes a flip bifurcation at A = 2.67
and an attracting 2-period cycle appears. By increasing A, we note a period
doubling sequence leading to a chaotic regime, followed by a period halving se-
quence generating an attracting 2-period cycle for A ∈ (26.34, 28.18). A further
increase of A over the value 28.18 makes the interval (0, Y ∗2 ) to lose its invari-
ance property and then almost all trajectories positively diverge. Moreover, the
graph highlights a phase of coexistence of two chaotic attractors (see also the
basins of attraction in the plane (k,E) depicted in panel (b) of Figure 2.17).
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(a) (b)

Figure 2.17: Parameter set: α = 0.4, β = 0.6, γ = 1.1, δ = 0.9, φ = 0.45, λ =
2.92, θ = 12, τ = 0.21, E = 5. (a) The bifurcation diagram with respect to A shows
also the coexistence of two attractors for A ∈ (20.92, 21.45); (b) basins of attraction
(in light grey and dark grey, respectively) in the plane (k,E) when two attractors,
depicted in red and black respectively, coexist (A = 21.42).

If the previous case shows that, as A varies, the change from a bounded to an
unbounded growth for the economy arises after a phase of relative regularity of
the dynamics (2-period cycle), the following example (see Figure 2.18) highlights
that, as A increases, a direct transition from the chaotic regime to an unbounded
growth for Y may occur.
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(a) (b)

(c) (d)

Figure 2.18: Parameter set: α = 0.3, β = 0.7, γ = 0.8, δ = 0.4, φ = 0.57, λ =
2.92, θ = 15.12, τ = 0.3, E = 3. (a) The graph describes the chaotic regime for A = 40,
by starting from an initial condition Y0 = 14; (b) the graph shows the image of the
critical point Y ∗

2 . After a long transient, the trajectory positively diverges (A = 43);
(c) time series of k associated to panel (b); (d) time series of E associated to panel
(b).
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The result dramatically changes when we assume λ > θ. With regard to
Figure 2.19, the parameter A plays a peculiar role: first, for A ∈ (0, 536), 0
is the unique attractor of the system; second, for A ∈ (536, 595), there exists
an interior positive equilibrium for Y ; third, an increase of A over the stability
threshold (A = 595) induces a destabilization of the equilibrium and the birth of
a chaotic attractor; finally, a further increase of A makes 0 the unique attractor
of the system again.

(a) (b)

(c) (d)

Figure 2.19: Parameter set: α = 0.82, β = 0.18, γ = 0.4, δ = 0.07, φ = 0.29, λ =
15.92, θ = 1.12, τ = 0.11, E = 0.000001. (a) Bifurcation diagram with respect to A;
(b) behaviour of the map for A = 920. The set defined by the critical point (in the
Julia-Fatou sense) and its first iterate has just lost its invariance property and all the
trjectories converge to zero; (c) time series of k associated to panel (b); (d) time series
of E associated to panel (b).
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2.5 Conclusions

In this chapter, we have discussed the complex phenomena that the interplay
between economic activity and the environment may generate. By reviewing
the reference literature, we have shown how the dynamic systems governing the
evolution of both economic and environmental variables are able to exhibit the
occurrence of cyclical dynamics as well as multistability. The analysis of the
model proposed in the previous section confirms the possible emergence of such
phenomena and, in particular: (i) we noted that multiple attractors and chaotic
dynamics may arise both in the case of efficient environmental expenditures and
in the case of the dominant negative impact of production activity; (ii) we pro-
vided the condition under which an unbounded growth path for both production
and environment may exist.
In order to describe possible further researches on nonlinear dynamics in the
coevolution of economic and environmental systems, the heterogeneity in the
modelling of environmental resources has not been investigated yet. These het-
erogeneities may concern the introduction of environmental variables affecting
the system both as a production input and a consumption good, or the inclusion
of a multiplicity of environmental resources both in the utility and production
functions. The effects of this kind of heterogeneities on the dynamic properties
in models such as those proposed in this chapter still represent open questions
on which a scholar’s agenda may concentrate upon.
Finally, a fruitful research question may concern the introduction of strategic
interactions between agents. In particular, it could be relevant to analyse the
dynamics driven by the recognition and the achievement of environmental tar-
gets, at the international level. Indeed, as described in Biancardi and Villani
(2014), the decision process related to international environmental agreements
may generate complex relationships (multistage games) which deserves further
investigations.
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Chapter 3

Nonlinear dynamics and
global analysis of a
heterogeneous Cournot
duopoly model with
differentiated products

3.1 Introduction

The purpose of this chapter is to discuss the role of horizontal product differen-
tiation in a nonlinear Cournot duopoly in which firms adopt different decisional
mechanisms.
Based on the pioneering work of Cournot (1838), in the last decades, several
works have shown that oligopoly models may lead to complex behaviours, as
described in Rand (1978), who analysed a simple Cournot duopoly in which
nonlinear and non-monotonic firm reaction functions are assumed and discussed
the arise of multiple equilibria as well as the possible emergence of random-like
exotic effects in the resultant dynamics, in Shaffer (1984), who argued that
chaotic duopoly dynamics depend on the assumption of sophisticated reaction
functions1, and in Puu (1991, 1996, 1998). In particular, Puu (1991) proposed a
duopoly model with unimodal reaction functions obtained by solving the profit
maximisation problem for the two firms. In the case of constant marginal costs,
Cobb-Douglas preferences and isoelastic demand function, the author showed
that the outputs of each firm can evolve through a sequence of period doubling

1In particular, Shaffer (1984) showed that chaotic behaviours may appear if firms account
for phenomena such as inter-firm externalities. Instead, naive behaviours without such aware-
ness rules out the emergence of chaotic phenomena.
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bifurcations leading to chaos. Puu (1996, 1998) then extended such model to
the case of three oligopolists and considered the problem of Stackelberg leader-
ship where one of the firms, by taking into account the reaction functions of the
rivals, becomes the leader.
As the firms have a perfect knowledge of the market demand, the decision mech-
anism analysed by Puu (1991) is the myopic best reply. By assuming that the
rival does not change its decisions on the production, the firm solves its profit
maximisation problem. Following these seminal works, the focus has shifted to
less demanding requirements on the ability of firms in exploring the demand
side of the market. In this regard, some works discussed the interaction be-
tween firms that have a biased knowledge of demand and that do not learn from
such bias, continuing to systematically exploit, at every time period, the same
strategy. Leonard and Nishimura (1999) considered a discrete time duopoly
model with decreasing reaction functions in which the players have a misspec-
ified knowledge of the demand function. They showed that, in this case, (i)
a best replies process converges to a unique steady state that differs from the
Nash equilibrium (obtained with full information) and (ii) this steady state may
lose its stability as the bias in the knowledge of the demand function increases.
The same dynamic results were confirmed by Bischi et al. (2004), in which the
authors proposed a duopoly model à la Leonard and Nishimura (1999) where
the assumption of decreasing reaction function is relaxed. Afterwards, several
models in which duopolists are assumed to know their lack of information about
the market demand and the decisions of the rival were developed. In this mod-
els, bounded rational firms adjust the previous decision through a decisional
mechanism different from the classical best reply rule and, in particular, the lit-
erature has greatly deepened two mechanisms: (i) the gradient-like mechanism
and (ii) the local monopolistic approximation (LMA hereafter).
The gradient-like approach describes firms that do not have a complete knowl-
edge of demand and cost functions (see Bischi et al., 1999; Bischi and Naimzada,
2000). They use a local estimation of the marginal profit to update the pro-
duction level. In particular, the output increases (decreases, respectively) if the
marginal profit is positive (negative, respectively). A crucial role in defining
the stability is then played by the parameter measuring the magnitude of this
deviation in production, called speed of adjustment (see Cavalli and Naimzada,
2014; Cavalli et al., 2015).
In the LMA approach, proposed for the first time in Silvestre (1977), firms con-
jecture a linear demand function and estimate it through the current knowledge
of the market in terms of quantities and price. Based on this estimate and as-
suming that competitors do not vary their production levels, the firm chooses
the output that maximises the conjectured profit function (see Tuinstra, 2004;
Bischi et al., 2007).
Recently, several authors have started to investigate the effects generated by
the interaction of heterogeneous firms. Assuming firms that produce a homoge-
neous good, their analysis focused on the heterogeneity in the supply side of the
market. In particular, Zhang et al. (2007) considered a duopoly model where
(i) one firm has incomplete information and adopts the gradient-like mechanism
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whereas the rival has complete information and adopts the best reply and (ii)
a nonlinear cost function is assumed. Tramontana (2010) discussed a duopoly
model considering the same heterogeneous firms of Zhang et al. (2007) and in-
troduced a nonlinearity in the demand function, instead of the cost function. In
this work, the author showed how, by introducing a microfounded nonlinearity
into the demand function, different routes to chaotic regimes may appear, de-
pending on the value assumed by marginal costs and the speed of adjustment
for the bounded rational firm. Cavalli and Naimzada (2014) and Cavalli et al.
(2015)2 then characterised the dynamic properties of a duopoly model in which
firms are heterogeneous in decisional mechanisms and they both have restricted
information on market demands (gradient-like approach vs. LMA).
Unlike the works mentioned above, whose analysis focuses on the supply side
of the market, a strand of the literature focused on the study of the effects
generated by product differentiation, or how the features related to the con-
sumers’ perception of goods may affect the duopolistic dynamics. To this pur-
pose, this analysis has been carried out especially in Bertrand models where
the product differentiation allows to overcome the so-called Bertrand paradox.3

In particular, Ahmed et al. (2015), Brianzoni et al. (2015) and Gori and So-
dini (2017) analyse the dynamics of a Bertrand duopoly where homogeneous
decisional mechanisms and horizontal product differentiation are considered. In
such models, the authors showed that the degree of product differentiation may
play a destabilising role when it is set at too high or too low levels. Instead,
Agliari et al. (2016) discussed the effects of product differentiation in a Cournot
framework where firms adopt the same decisional mechanism (the gradient-rule)
and showed that, unlike the literature on Bertrand models, only high levels of
differentiation may have a destabilising effect on the system.
By removing the assumption that firms adopt the same decisional mechanism
and remaining in a not overly demanding framework in terms of rationality and
information, we consider a duopoly with nonlinear market demands for prod-
ucts of both varieties where firms (i) adopt respectively the gradient-rule and
the LMA approach, and (ii) produce heterogeneous goods. In the analysis, we
discuss how some relevant parameters (such as the speed of adjustment, the
degree of differentiation and the marginal costs ratio) affect the stability of the
Nash equilibrium and we show how the assumption of heterogeneous decisional
mechanisms induces a partial change in the role played by the differentiation on
the stability. Indeed, our investigation confirms the result shown in Agliari et al.
(2016). Indeed, starting from a situation of stability for the Nash equilibrium,
an increase in the differentiation destabilises the system, but we further show
that also a low extent of product differentiation may be destabilising. From a
dynamic point of view, we notice that a destabilisation may occur through Flip

2In Cavalli and Naimzada (2014) the authors consider the speed of adjustment as exoge-
nous, i.e. independent on the level of production, while in Cavalli et al. (2015) it is taken as
endogenous.

3The Bertrand paradox describes the situation in which a price war is waged between firms,
leading the system on a state of perfect competition where the extra-profits of both firms are
zero
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and/or Neimark-Sacker bifurcations. Finally, we prove the existence of complex
dynamics and the coexistence of attractors.
The economic intuition behind our analysis is the following: (i) if the degree
of product differentiation is high, then the goods will tend to be independent
and consequently, competition is less. In a context of isoelastic demands this
implies that prices will react little to changes in quantities produced and are not
able to bring the market back to a stationary equilibrium; on the other hand,
(ii) if the degree of product differentiation is low, then the goods will tend to
be indistinguishable and consequently, competition is high. this implies that
prices will react excessively to changes in quantities produced and are not able
to bring the market back to a stationary equilibrium.
The remainder of the chapter is organised as follows: Section 2 shows the main
features of the static duopolistic game and proves the existence of the Nash
equilibrium; Section 3 describes the decisional mechanisms of the firms; Sec-
tion 4 refers to the local and global analysis of the model. Finally, Section 5
concludes.

3.2 The static model

We consider a duopoly market in which every firm i produces a differentiated
good, whose prices and quantities are denoted by pi and qi, respectively, with
i ∈ {1, 2}. Moreover, a continuum of identical consumers with preferences
towards the two commodities q1 and q2 is assumed.
In particular, following Agliari et al. (2016), we determine the nonlinear demand
functions from a monotonic transformation of a CES utility function (Mas-
Colell et al., 1995) where the exponent is associated to the degree of product
differentiation. Then, the utility function of the agents is

U(q1, q2) = qα1 + qα2 , (3.1)

where 0 < α ≤ 14 represents the degree of substitutability (differentiation)
among the commodities. This utility function is maximised subject to the bud-
get constraint

p1q1 + p2q2 = 1, (3.2)

in which the consumers’ income is assumed to be constant and equal to 1.
From the agents’ allocative problem, the following inverse demand functions are
derived:

p1 = g1(q1, q2) :=
qα−11

qα1 + qα2
(3.3)

4For α = 0, we notice that, from the consumer problem, any pair on the budget constraint
is a solution of the optimization problem. This causes problems in defining demand functions.
Ultimately, in a static context, this phenomenon generates a not interesting problem from an
economic point of view, in the sense that the definition of supplies is irrelevant in the utility
of the agents.
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p2 = g2(q1, q2) :=
qα−12

qα2 + qα1
. (3.4)

We notice that if α = 1 the commodities are indistinguishable and consumers
regard them as identical. Lower values of α makes the commodities as inter-
changeable and; furthermore, as α tends to zero, they become independent.
On the production side, the two duopolistic firms are characterised by a linear
cost function given by

Ci(qi) = ciqi with i = 1, 2 (3.5)

where ci represent the positive constant marginal costs. Then, the expected
profit function for the i-th firm is

πi(qi, q
e
j ) = pi(qi, q

e
j )qi − ciqi with i, j = 1, 2; i 6= j (3.6)

in which qej is the expected output level of the rival.
Therefore, the unique Nash equilibrium of the Cournotian game can be derived
(see Agliari et al., 2016):

Proposition 18 The Nash equilibrium of the static Cournotian game is unique
and it is given by

E∗ =

(
αcα−11 cα2

(cα1 + cα2 )2
,
α cα1 cα−12

(cα1 + cα2 )2

)
.

3.3 LMA vs gradient learning

In an oligopolistic competition, the Nash equilibrium notion is based on the
assumption that each firm knows what the rivals decide to do. In particular,
each firm is assumed to know the entire demand curve for the good it produces.
Then, the Nash equilibrium turns out to be highly demanding in terms of ra-
tionality and information. Indeed, it becomes interesting to investigate if the
Nash equilibrium describes the long run behaviour of the market, that is if there
exist mechanisms that, although they do not allow to achieve such equilibrium
in one shot, lead to the Nash equilibrium at least asymptotically. In this case,
we consider two different adjustment mechanisms requiring a low degree of ra-
tionality: the LMA approach and the gradient adjustment process.
To be precise, we assume that the firm 1 adopts the LMA approach, that is
a bounded rational adjustment process based on the assumption that the firm
has only a limited knowledge of the demand function (see Bischi et al., 2007;
Naimzada and Tramontana, 2009; Cavalli et al., 2015). We assume that the
firm 1 knows the market price, the output produced by the firm and the output
produced by the rival at time t, that is p1,t, q1,t and q2,t respectively. Moreover,

the firm is able to get a correct estimate of the partial derivative
∂ g1(q1,t,q2,t)

∂ q1,t
.

As in Bischi et al. (2007), the firm 1 conjectures that q2,t+1 = q2,t and a linear
price function. Therefore, the expected price at time t+ 1 is
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pe1,t+1 = p1,t +
∂ g1(q1,t, q2,t)

∂ q1,t
(q1,t+1 − q1,t) (3.7)

from which, by considering the expression in (3.3), we get the following:

pe1,t+1 =
qα−11,t

qα1,t + qα2,t
−
(
(1− α) qα−21,t qα2,t + q2α−21,t

)(
qα1,t + qα2,t

)2 (q1,t+1 − q1,t) . (3.8)

The output to produce at t + 1 can be determined as the solution of the
maximisation problem for the expected profit:

q1,t+1 = arg max
q1,t+1

[pe1,t+1q1,t+1 − c1q1,t+1], (3.9)

which leads to the equation5

q1,t+1 =
1

2

[( qα−1
1,t

qα1,t+q
α
2,t
− c1

)
(qα1,t + qα2,t)

2

qα−21,t

[
(1− α)qα2,t + qα1,t

] + q1,t

]
(3.10)

Differently, we assume that the firm 2 adopts the gradient rule. In particular,
we assume that the firm 2 does not have a global knowledge of the demand
function, and tries to investigate how the market responds to its production
changes through an empirical estimate of the marginal profit. This estimate
may be obtained by market researches carried out at the beginning of the period
t and then we assume that, although the firm is unaware of the market demand,
it can obtain a correct empirical estimate of the marginal profit, ∂π2

∂q2
. With this

type of information, the firm increases (decreases, respectively) its production if
it perceives a positive (negative, respectively) marginal profit. We assume that
the dynamic adjustment mechanism for the firm 2 reads as

q2,t+1 = q2,t + k
∂π2(q1,t, q2,t)

∂q2,t
, (3.11)

where k > 0 represents the coefficient measuring the speed of adjustment of
the output for firm 2 at time t + 1 with respect to the marginal profit at time
t.6

By taking into account expressions in (3.10) and (3.11), the two-dimensional
system characterising the dynamics of the Cournot duopoly with differentiated
products is the following:

5We notice that, for α = 0, Equation 3.10 becomes q1,t+1 = q1,t(1 − c1q1,t), that defines
dynamics converging to zero. This paradoxical result, typical of isoelastic demands, can be
overcome by considering bounded demand functions (see Agliari et al., 2002).

6Trajectories of (3.11) may become negative. However, the analysis focuses only on initial
values and parameters for which q2,t assumes a positive value.
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M :


q
′

1 = 1
2

[(
q
α−1
1

qα1 +qα2
−c1
)
(qα1 +qα2 )2

qα−2
1 [(1−α)qα2 +qα1 ]

+ q1

]
q
′

2 = q2 + k

(
α qα−1

2 qα1

(qα1 +qα2 )
2 − c2

) (3.12)

where the symbol ′ is the unit-time advancement operator and, as aforemen-
tioned, α ∈ (0, 1] while k, c1, c2 > 0. Due to the presence of a denominator with
q1 and q2, we focus on dynamics which stay in the set FS for any iterations,
where

FS =
{

(q1, q2) : q1 > 0, q2 > 0}. (3.13)

Analogously to Agliari et al. (2016), we have the following result:

Proposition 19 The Nash equilibrium E∗ is a steady state of the system M
described in (3.12). Contrariwise, the unique steady state of (3.12) is the Nash
equilibrium.

3.4 Dynamic properties of the model

In order to investigate the local stability of the Nash equilibrium, we consider
the Jacobian matrix of the system (3.12), evaluated at E∗, JE∗ =

=

 − 1
2

(α2−3α+2)c2α1 −cα2 (α+4)(α−1)cα1 +2 c2α2
((α−1)cα1 −cα2 )(cα1 + cα2 )

1
2

cα1 c2 (cα1 −cα2 )α2

((α−1)cα1 −cα2 )(cα1 +cα2 )c1

kc1 c2 (cα1 −cα2 )(cα1 +cα2 )

cα1 c
α
2

− c
2
2k(α+1)c2α1 +(2 c22k−α)c

α
2 c
α
1 −c2α+2

2 k(α−1)

cα2 α c
α
1

 .
The Nash equilibrium is locally asymptotically stable if the following Jury

conditions (Elaydi, 2007) are satisfied:
1− Tr(JE∗) +Det(JE∗) > 0

1 + Tr(JE∗) +Det(JE∗) > 0

1−Det(JE∗) > 0.

(3.14)

We can notice that the first condition in (3.14)

1− Tr(JE∗) +Det(JE∗) =
1

2

[
c2

2k(c1
α + c2

α)2

c2α((1− α)c1α + c2α)

]
> 0 (3.15)

is always fullfilled.

In order to determine the stability region of the Nash equilibrium in the
space of parameters, in what follows we will characterise the boundary of such
a region, defined by the equations

1 + Tr(JE∗) +Det(JE∗) = 0, (3.16)
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and
1−Det(JE∗) = 0. (3.17)

By introducing the change of variable x :=
(
c1
c2

)α
, if

h(α, x) =
(
α2 +

1

4
α− 1

)
x2 −

(
α2 − 5

4
α+ 2

)
x+ α− 1, (3.18)

z(α, x) =
(
α2 +

1

2
α− 1

)
x2 −

(
α2 − 3

2
α+ 2

)
x+ α− 1 (3.19)

are different from zero, both the relationships in (3.16) and (3.17) define
k as function of α, c1 and c2, namely Fl(α, c1, c2) with l = 1, 2, respectively.
Since these functions are both homogeneous of degree −2 with respect to c1 and
c2, without loss of generality, (3.16) and (3.17) define the following functions

fl : (α, x)→ k̃ with l = 1, 2, respectively:7

f1(α, x) :=
1

2

(
αx

(x+ 1)2

)
−(α2 − 5α+ 4)x2 + (α2 + 5α− 8)x− 4

h(α, x)
; (3.20)

f2(α, x) :=
1

2

(
αx

x+ 1

)2
(1− α)x+ (α+ 1)

z(α, x)
(3.21)

where k̃ = k
c22

. We note that x is increasing with respect to c1
c2

and it varies

in the interval (0 +∞).
The (i) shape of the graphs of these functions, (ii) their intersection points and
(iii) the study of inequalities in (3.14) allow characterising the different dynamic
properties of the Nash equilibrium and the local bifurcations around it in terms
of k and x. It is worth noting that, since α appears in the definition of x, the
analysis will be set in terms of the original parameters of the model, by fixing
α. This investigation will then allow us to define the dynamic properties of the
model in terms of marginal costs’ ratio and the speed of adjustment, for a fixed
level of α.

Remark 7 The case in which both denominators in (3.20) and (3.21) are equal
to zero simplifies the analysis and such occurrence will be discussed at the end
of the section.

Remark 8 The expressions in (3.20) and (3.21) do not allow to obtain a func-
tional relation binding α to k and the marginal costs’ ratio. Because of the
crucial role of differentiation, we will discuss through numerical analysis how
the parameter α is decisive in defining the dynamics of the model.

7We note that, because of the homogeneity of degree −2 of functions Fl, the relations

Fl(α, c1, c2) =
fl(α,x)

c22
with l = 1, 2 holds.
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3.4.1 Shapes of graphs of f1 and f2

In order to describe the behaviour of the graphs of the functions defined in
(3.20) and (3.21), we can first notice that (i) lim

x→ 0
f1(α, x) = lim

x→ 0
f2(α, x) = 0,

that is both curves approach the origin of the axes in the plane (x, k̃) and
(ii) lim

x→+∞
fl(α, x) = 0 with l = 1, 2, that is the x-axis represents a horizontal

asymptote for both curves. By a direct inspection of h(α, x) and z(α, x), we get
the following Lemma:

Lemma 3 Let h(α, x), z(α, x), f1(α, x) and f2(α, x) defined in (3.18), (3.19),
(3.20) and (3.21), respectively.
(a) If α2 + 1

4 α−1 > 0, then there exists a unique x1 ∈ (0,+∞) such that h = 0.
Therefore, f1 is not defined in x = x1. Otherwise, f1 is defined for every x in
(0,+∞);
(b) if α2 + 1

2 α−1 > 0, then there exists a unique x2 ∈ (0,+∞) such that z = 0.
Therefore, f2 is not defined in x = x2. Otherwise, f2 is defined for every x in
(0,+∞).

Proof.
(a) Consider the function h(α, x), defined in (3.18). We have that α2− 5

4 α+
2 > 0. Being the ∆ of h(α, x) always positive, we can notice that the potential
changes of sign for h(α, x) depend on the sign assumed by α2 + 1

4 α − 1. In
particular, for α2 + 1

4 α − 1 > 0, we have that h(α, x) changes its sign at most
one time and then there exists a unique positive value x1 such that h(α, x1) = 0;
for α2 + 1

4 α − 1 = 0, h(α, x) becomes a polynomial of degree 1 w.r.t. x and
it assumes only negative values; for α2 + 1

4 α − 1 < 0, h(α, x) is the sum of
three negative terms, then it assumes always negative values. Finally, the result
follows.
(b) Analogously, consider the function z(α, x), defined in (3.19). We have that
α2 − 3

2 α + 2 > 0. Being the ∆ of z(α, x) always positive, we can notice that
changes of sign in z(α, x) depend on the sign assumed by α2 + 1

2 α − 1. In
particular, for α2 + 1

2 α − 1 > 0, the sign of z(α, x) changes at most one time
and there exists a unique positive x2 such that z(α, x2) = 0; for α2+ 1

2 α−1 = 0,
z(α, x) becomes a polynomial of degree 1 w.r.t. x and it assumes only negative
values; for α2 + 1

2 α− 1 < 0, z(α, x) is the sum of three negative terms and then
it assumes only negative values. Therefore, the result follows.

On the basis of the previous Lemma, we can state the following Proposition:

Proposition 20 Let α1 = 1
8 (
√

65− 1) and α2 = 1
4 (
√

17− 1). Then,
(a) For α ∈ (0, α2), x1 and x2 do not exist;
(b) for α ∈ (α2, α1), x2 exists while x1 does not exist;
(c) for α ∈ (α1, 1), x1 and x2 exist.

Proof. By solving α2 + 1
4 α− 1 = 0 and α2 + 1

2 α− 1 = 0, we obtain the values
of α1 and α2,respectively. Therefore, the relation α2 < α1 is straightforward.
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(a) From Lemma 3, we can deduce that, in the interval (0, α2), x2 does not exist
and then the inequality α2 < α1 guarantees that also x1 does not exist. (b)
The same inequality implies that there exists a range (α2, α1) in which only x2
exists and then the asymptote for f2 is the unique admitted. (c) Finally, at the
right of α1 both x1 and x2 exist.

Remark 9 In the previous Proposition we analyse the conditions for which
x1 and x2 exist. We notice that both values are exclusively dependent on α
(x1 = x1(α), x2 = x2(α)). Regarding the original parameters of the model,
given α, we have that positive values of c1 and c2 exist such that(

c1
c2

)α
= xi, i = 1, 2

holds. In particular, being α ∈ (0, 1], if xi > 1 we have c1
c2
> 1 while if xi < 1

we have c1
c2
< 1.

In order to have a graphical insight into what is shown above, we refer the
reader to Figure 3.1.

3.4.2 Intersections between graphs of f1 and f2

The existence of intersection points between f1 and f2 can be analysed in the
plane (x, k̃), as α varies. As far as this is concerned, the following proposition
holds:

Proposition 21 There exists a unique intersection point (x∗, k̃∗) =
(

4
5α−4 ,

8(5α−4)
25α

)
between the curves k̃ = f1 and k̃ = f2 in the plane (x, k̃). It is feasible, that is

x∗, k̃∗ > 0 , if and only if α > α∗ = 4
5 .

Proof. Solving the equation

f1(α, x) = f2(α, x) (3.22)

in terms of x, we have that a unique solution x∗ = 4
5α−4 .

Therefore, x∗ ∈ (0,+∞) if and only if α > 4
5 . By evaluating f1 (or f2) at x∗,

the positive value k̃∗ = 8(5α−4)
25α is derived.

Corollary 2 The positive intersection point (x∗, k̃∗) =
(

4
5α−4 ,

8(5α−4)
25α

)
exists

if and only if x2 exists, where x2 is defined in Lemma 3.

Proof. Recalling the definition of x2 in Lemma 3 and that α2 = 1
4 (
√

17 − 1),
the proof is straightforward because α2 < α∗.
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Remark 10 The equation (
c1
c2

)α
=

4

5α− 4

has a solution in terms of α in the interval ( 4
5 , 1] only if c1

c2
> 1. The equation

has no solutions when c1
c2
< 1.

Remark 11 The previous Propositions allow to deduce that (i) in the interval
(0, α2), f1 assumes only positive values while f2 assumes only negative ones and
(ii) in the interval (α2, α

∗), both f1 and f2 assumes only positive values but f2
assumes higher values that f1.

3.4.3 Local stability of the Nash Equilibrium

In the light of the results discussed above, we can formulate the following Propo-
sition on the local stability of E∗:

Proposition 22 (a) If (i) α ∈ (0, α∗), then E∗ is locally asymptotically stable

for k̃ < f1(α, x); (ii) for α = α∗, E∗ loses its stability through a Flip bifurcation;
(iii) otherwise, E∗ is unstable.
(b) If (i) (0, x∗) the following cases arise: for α = α∗, E∗ loses its stability
through a Flip bifurcation while, for α ∈ (α∗, 1), E∗ is locally asymptotically

stable for k̃ < f1(α, x). (ii) If (x∗,+∞), the following cases arise: for α =
α∗, E∗ loses its stability through a Neimark-Sacker bifurcation while, for α ∈
(α∗, 1), E∗ is locally asymptotically stable for k̃ < f2(α, x). (iii) Otherwise, E∗

is unstable.

Proof. (a) By recalling Remark 11, in the interval (0, α∗) we have that E∗ is

stable for every k̃ < f1(α, x). On the contrary, for every k̃ > f1(α, x) E∗ loses
its stability due to a Flip bifurcation, generated in the geometric place of the
points (x, k̃) such that k̃ = f1(α, x).
(b) In the interval (α∗, 1), the positive intersection point x∗ exists. By consid-
ering that lim

x→ 0
fl(α, x) = lim

x→+∞
fl(α, x) = 0 with l = 1, 2, we have that E∗ is

stable for k̃ < f1 in the interval (0, x∗) and for k̃ < f2 in the interval (x∗,+∞).

On the contrary, the couples (x, k̃) such that k̃ = f1 define the geometric place
of points in which the fixed point is destabilised through a Flip bifurcation
in the interval (0, x∗), while the couples (x, k̃) such that k̃ = f2 the geometric
place of points in which the fixed point is destabilised through a Neimark-Sacker
bifurcation in the interval (x∗,+∞).

For the sake of completeness, the following proposition discusses the stability
of E∗ in such cases where h(α, x) or z(α, x) vanish:

Proposition 23 (a) If h(α, x) = 0 and α ∈ (α1, 1), then E∗ may lose its
stability via Neimark-Sacker bifurcation;
(b) if z(α, x) = 0 and α ∈ (α2, 1), then E∗ may lose its stability via Flip
bifurcation.
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Proof. (a) h(α, x) is equal to zero if and only if x = x∗1 or x = x∗2 where

x∗1,2 =
1

2

4α2 − 5α+ 8±
√

137α2 − 104α3 + 16α4

4α2 + α− 4
.

We have that x∗1 > 0 for α ∈ (α1, 1) while x∗2 < 0 for every α. By sub-
stituting x∗1 in the second condition of (3.14), we have that the inequality
1 + Tr(JE∗) + Det(JE∗) > 0 is fulfilled by every α ∈ (α1, 1). This implies
that, in the interval (α1, 1), the Jury conditions are satisfied if and only if the
condition 1 −Det(JE∗) > 0 is satisfied; (b) z(α, x) is equal to zero if and only
if x = x∗3 orx = x∗4 , where

x∗3,4 =
1

2

2α2 − 3α+ 4±
√

33α2 − 28α3 + 4α4

2α2 + α− 2
.

We have that x∗3 > 0 for α ∈ (α2, 1) while x∗4 < 0 for every α. By substituting x∗3
in the third condition of (3.14), we have that the inequality 1−Det(JE∗) > 0 is
fulfilled by every α ∈ (α2, 1). This implies that, in the interval (α2, 1), the Jury
conditions are satisfied if and only if the condition 1 + Tr(JE∗) +Det(JE∗) > 0
is satisfied.

Remark 12 Proposition 22 allows to deduce that a destabilisation via Neimark-
Sacker with respect to the parameter k̃ may occur only for really high values of α
(α ∈ (α∗, 1)). In addition, by combining Propositions 21 and 22, it must hold:

c1
c2
>

(
4

5α− 4

) 1
α

. (3.23)

The inequality in (3.23) implies that, for α ∈ (α∗, 1), E∗ may be destabilised
via Neimark-Sacker only if c1 is at least the quadruple of c2.
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(a) (b)

(c) (d)

Figure 3.1: Different stability regions (areas in green) of E∗ in the plane (x, k̃),
defined by the bifurcation curves f1 (depicted in black) and f2 (depicted in red). (a)
The fixed point may lose its stability only through a Flip bifurcation, α = 0.55; (b)
both the bifurcations curve are in the positive plane, but E∗ may destabilise itself
only through a Flip bifurcation, α = 0.798; (c) the stability region when both the
bifurcation curves are in the positive plane and intersect each other in x∗, α = 0.83;
(d) the stability region when there exist both the intersection point (x∗, k̃∗) and the
asymptotes x1 and x2, α = 0.95.

The graphs in Figure 3.1 represent a numerical confirmation of the results
shown in Propositions 20, 21 and 22. In particular, Panels (a) and (b) of Figure
3.1 numerically confirm the case (a) in Proposition 22 while Panel (c) of Figure
3.1 shows a numerical example of case (b) in Proposition 22. Finally, Panel (d)
in Figure 3.1 describes the stability region for a value of α such that (i) f1 and
f2 are not defined at a point (x1 and x2, respectively), as stated in Proposition

20 and (ii) f1 and f2 have an intersection point (x∗, k̃∗), as stated in Proposition
21. Moreover, with regard to the results shown in Proposition 23, Panel (d) in
Figure 3.1 allows to notice that, at x1 and x2, the Nash equilibrium is stable
if the configuration of the parameters defines a point in the region depicted in
green.8

Considering the results of the local analysis, in what follows we will discuss some

8The configurations in Panels (c) and (d) of Figure 3.1 can be obtained only when c1 > c2.
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dynamic scenarios.

3.4.4 Bifurcations and stability

The stability conditions provided in Proposition 22 allow us to deduce relevant
information on the effect of both the speed of adjustment and the marginal
costs ratio. In particular, starting from a parameter configuration for which the
equilibrium is stable, an increase of k, leaving all the other parameters as fixed,
imply a destabilisation of E∗ through a Flip or Neimark-Sacker bifurcation, in
line with the results of Agliari et al. (2016) and the majority of literature. The
hump-shaped behaviour of the graph of f1 induces a twofold role for x. Indeed,
as suggested by the Panel (a) in Figure 3.1, we observe that for a fixed value of
the speed of adjustment, the Nash equilibrium is first unstable, then stable and
finally unstable again.
The bifurcation diagrams in Figure 3.2, performed with respect to the speed of
adjustment k, numerically confirm the theoretical results proved in Proposition
22. In Panel (a) of Figure 3.2, we can notice that the Nash equilibrium is locally
stable for low values of k and it undergoes a Flip bifurcation at k = kFlip '
0.18859649 generating a stable 2-period cycle. As the speed of adjustment
further increases, a sequence of period doubling bifurcations generates cycles
of a higher period leading to chaos. Differently, Panel (c) of Figure 3.2 shows
an example in which, as k varies, a Neimark-Sacker bifurcation takes place for
k = kns ' 0.036752. Finally, Panel (d) of Figure 3.2 describes a numerical
example of how instability and complex phenomena may occur regardless of
marginal costs ratio. Indeed, the graph shows that, for both c1 < c2 and
c1 > c2, chaotic regimes may arise. From an economic point of view, we can
then observe that scenarios of instability may occur both if the largest impact
on the market is held by the firm adopting the LMA (case c1 < c2) and if the
largest impact is held by the firm adopting the gradient-like mechanism (case
c1 > c2).

63



(a) (b)

(c) (d)

Figure 3.2: (i) Bifurcation diagrams of strategy q2 as k varies: (a) Parameter set:
α = 0.4, c1 = 0.064, c2 = 1. The Nash equilibrium loses its stability through a Flip
bifurcation; (b) Largest Lyapunov exponent with respect to k associated to Panel
(a); (c) Parameter set: α = 0.97, c1 = 10, c2 = 1. E∗ undergoes a Neimark-Sacker
bifurcation. (d) Parameter set: α = 0.19, c2 = 1, k = 0.13. Bifurcation diagram of
strategy q2 as c1 varies in the interval [0.002, 3], where E∗ is destabilised in both cases
c1 < c2 and c1 > c2.

The following bifurcation diagrams emphasise the peculiar role played by the
differentiation parameter α.9 In particular, we can observe that the adoption of
different parameter sets affects the manner in which α alternatively destabilises
and stabilises the fixed point. Indeed, the following scenarios arise: in Panel (a)
of Figure 3.3, assuming that c1 > c2, an increase in the product differentiation
(that is, a decrease in the value of α) destabilises the Nash equilibrium via a
flip bifurcation and a stable 2-cycle appears around the unstable E∗. Then, as
α reduces, a sequence of flip bifurcations occurs leading to chaos. Panel (b) of
Figure 3.3 confirms the result in (a) by assuming c1 < c2. In Panel (c) of Figure
3.3, the phenomenon described in (a) is only partially confirmed. Indeed, al-
though a decrease in α to low values implies the same result of (a), we can notice
that for high values of α a further destabilisation occurs via flip bifurcation and
as α tends to 1 another cascade of flip bifurcations leading to chaos appears.

9In dynamic exercises, we have considered values of α values such as to avoid negativity
problems.
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Panel (d) of Figure 3.3, in line with (c), shows the dual role of α but highlights
the occurrence of a destabilisation, for high values of α, via Neimark-Sacker bi-
furcation. These examples reveal that the degree of differentiation may have an
ambiguous role and as a consequence, given an appropriate parameter set, both
low and high values of α may induce instability. In particular, the numerical
exercises show that (i) α is destabilising when it assumes low values, regardless
of the marginal costs’ ratio (as in Agliari et al., 2016) and (ii) how, differently
from Agliari et al. (2016), the fixed point may be destabilised also for high levels
of α (that is, when goods are increasingly perceived as indistinguishable) via
Flip bifurcation or via Neimark-Sacker bifurcation, if c1 is sufficiently larger
than c2 (see Remark 12). From an economic point of view, these results induce
interesting conclusions. The result (i) suggests that for α → 0 goods are ba-
sically independent and in fact firms operate in distinct markets, characterised
by isoelastic demands with elasticity close to 1, where they are considered as
monopolists. In such a case, prices react little to changes in the amount of goods
placed on the market and are not able to bring the market back to a stationary
equilibrium.10 Instead, The result (ii) suggests that, for a low degree of product
differentiation, the goods start to be perceived as indistinguishable and compe-
tition is high. In such a case, prices excessively react to changes in the amount
of goods and are not able to bring the market back to a stationary equilibrium.
In the case of α → 1, we can note also that instability scenarios may occur
even when the largest impact on the market is held by the firm who adopt the
LMA (the case c1 > c2), which is usually stabilising. The latter represents a re-
ally counterintuitive result both compared with those presented in Agliari et al.
(2016), where homogeneous gradient-like decisional mechanisms are considered,
and the possible scenario in which the market is composed of two firm adopting
LMA, for whom there is stability as α increases. Therefore, we can conclude
that the instability is due to the interaction between heterogeneous decisional
mechanisms, namely the gradient-like mechanism and LMA.

10In this context, the marginal profit that drives the decision-making mechanism is such
as to induce strong fluctuations in the decisions of firm 2. Indeed, in order to maintain the
nonnegativity of the produced quantities, Equation (3.11) (and therefore also the first equation

in the map M), should be rewritten as q2,t+1 = max

(
0, q2,t + k

∂π2(q1,t,q2,t)

∂q2,t

)
.

65



(a) (b)

(c) (d)

Figure 3.3: (a) Parameter set: c1 = 0.65, c2 = 0.25, k = 3. A cascade of period-
doubling bifurcations occurs as α decreases, in the case c1 > c2; (b) Parameter set:
c1 = 0.08, c2 = 0.25, k = 3. A cascade of period-doubling bifurcations occurs as α
decreases, in the case c1 < c2; (c) Parameter set: c1 = 0.97, c2 = 0.05, k = 45. From
the left to the right, first a sequence of period-halving bifurcations occurs, then a phase
of stability arises for α ∈ (0.3167, 0.5510) and at the end a sequence of period-doubling
bifurcation appears; (d) Parameter set: c1 = 0.97, c2 = 0.05, k = 15. From the left
to the right, first a sequence of period-halving bifurcations occurs, then a phase of
stability arises for α ∈ (0.0775, 0.8969) and at the end a Neimark-Sacker bifurcation
appears.

Remark 13 Numerical experiments performed above suggest that the Flip bi-
furcation has always a supercritical nature. Differently, The Neimark-Sacker
bifurcation may experience a switch from a supercritical nature to a subcritical
one.

Figure 3.4 furnishes another interesting numerical example. More in depth,
the graph shows that starting from the initial condition (q01 , q

0
2) = (0.0016, 0.1)

and varying the speed of adjustment k, a Neimark-Sacker bifurcation takes
place at k = k̂ns ' 0.02924342. Passing the critical value k̂ns, a quasi-period
behaviour starts and lasts until k ' 0.03254934 from which such regime is
replaced by a sequence of frequency-locking intervals. In these intervals, the
motion along the stable closed invariant curve becomes captured by a periodic
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cycle therein contained. As the graph suggests, for values of k sufficiently high
the system falls in a chaotic regime.

Figure 3.4: Bifurcation diagram with respect to k for α = 0.985, c1 = 10, and c2 = 1.

Regarding the role of k, in Figure 3.5 we provide some phase plane dia-
grams, which show (i) the initial quasi-periodic dynamics with an attracting
invariant closed curve (see Panels (a) and (b)), (ii) the successive period-46 cy-
cle generated by one of the frequency-locking intervals (see Panel (c)) and (iii)
the unconnected cyclical areas after the frequency-locking (Panels (d)). As the
speed of adjustment further increases, (iv) a 9-pieces chaotic attractor appears
(see Panel (e)). For k ' 0.03449750, a final bifurcation occurs and almost all
trajectories become unfeasible.
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(a) (b)

(c) (d)

(e)

Figure 3.5: Parameter set: α = 0.985, c1 = 10, c2 = 1. From left to right, top to bot-
tom. Phase plane diagrams for different values of the parameter k. (a) k = 0.0303597;
(b) k = 0.0335548; (c) k = 0.0336313 (d) k = 0.0336568; (e) k = 0.03449750.
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Finally, Figure 3.6 shows that starting from two different initial conditions
for q1 (given the same initial value for q2), after the transient phase, dynamics
settle down to different periodic cycles. Then, the coexistence of two attractors
appears.

Figure 3.6: Parameter set: α = 0.88, c1 = 5, c2 = 1, k = 0.22857. The stable 4-cycle,
represented by the time series depicted in blue (q1(0) = 0.018606), coexists with the
stable 12-cycle described by the time series depicted in red (q1(0) = 0.02).

3.5 Conclusions

In this chapter, we analysed the dynamics of a Cournot duopoly with differ-
entiated goods and boundedly rational firms adopting heterogeneous decisional
mechanisms to adjust the quantity of output produced. We showed that the dif-
ferentiation parameter has an ambiguous role because both high and low levels
of product differentiation may destabilise the Nash equilibrium, leading to cycli-
cal behaviours and chaotic dynamics as well. This is a really counterintuitive
result both compared with those presented in Agliari et al. (2016), where both
firms adopt a gradient-like decisional mechanism, and the possible scenario in
which the market is composed of two firms adopting LMA, for whom stability
persists as the degree of differentiation varies. Therefore, we can conclude that
the main element generating instability is specifically the interaction between
heterogeneous decisional mechanisms, namely the gradient-like mechanism and
LMA. With regard to this destabilising role of product differentiation, we also
provided different parameter configurations for which the equilibrium loses its
stability through Flip and/or Neimark-Sacker bifurcations. In addition, we have
described, for appropriate ranges of parameters, the occurrence chaotic dynam-
ics and coexistence of attractors.
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Chapter 4

The influence of social
norms and the effects of
intrinsic costs on the labour
force participation of
women

4.1 Introduction

The role that women have in society and, in particular, the extent of their con-
tribution to market activities (e.g. work) and non-market activities (e.g. family)
continue to occupy a central role in public opinion and in decades-long debates
among social scientists, with some professions more under scrutiny than others.1

Female labour participation and, in particular, gender gap (See O’Neill, 2003)
are ultimately a very widespread issue (https://www.ft.com/gender-pay-gap).
Economists have attempted to contribute to the debate. Some contributions
in the field have considered gender issues mostly as a special case, an exten-
sion to the standard framework, allowing for example a generic individual (or a
household) to allocate time not just between work and leisure, but among work,
leisure and family. Other contributions, recognising that female labour may have
different characteristics and comparative dis/advantages compared to male sup-
ply, explain female labour participation as the result of technological structural
change. When societies move from manufacturing to service economies the de-
mand for female labour supply may increase and gender gaps worldwide can
be interpreted as the result of different elasticities of substitution among male

1Recently the magnifying glass has been pointed to the economics professions. See for
examples Hengel (2017), Wu (2017) and related debates.
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and female labour input (see Olivetti and Petrongolo, 2014). Other contribu-
tions argue that, because of family commitments, female labour may be seen by
employers as riskier compared to male labour, even if men and women may be
equally productive. It follows that the way household tasks are allocated in the
family affects the way the input of a woman is assessed by employers. Similarly,
the fact that a household may decide to let the man be the first earner in the
family is also the result of the fact that the labour market internalises unequal
involvement in family matters between man and woman and therefore the gen-
der pay gap. In other words, inequality in the family produces inequality in the
market place and viceversa. Similar forces are at play in those contributions
that consider human capital accumulation and life cycle models (see Attanasio
et al., 2008; Park, 2018). The approach of the contributions considered so far
is based on a unitary perspective of the household, where women are assumed
to have a comparative advantage in taking care of home matters and a family
decides rationally how to allocate the time of men and women. In this sense,
gender inequality is the result of rational economic decisions, similar to the key
messages provided by international trade theory.
Other contributions have moved away from this unitary model of the household
to consider more in detail the decision dynamics in the family. Contributions
have considered forms of non-cooperative bargaining, cooperative bargaining,2

and a collective approach (Chiappori, 1992). These contributions highlight the
fact that women have individual preferences and consider possible sources of
inequality (possibly also created by social norms) in the bargaining.3

To sum up, in general economic models assume that all women have (and want)
a family and their contribution to society, both in the household and in the
workplace, is a result on their interaction with men. Specifically women contri-
bution is the result of bargaining and specialisation with men in the household
(where it is often the case in which are assumed to have a comparative advan-
tage in caring for children and housework) and competition with men in the
workplace. This approach also implicitly assumes that women are essentially a
rather homogenous group and that, if given proper support by society (including
employers and partners) they would be naturally inclined to have a family and
satisfy an innate need for motherhood. The approach looks at women as fully
altruistic, rational economic agents who do not experience utility outside of the
household. This is obviously not necessarily true and does not come without
consequences. Assuming that women form a homogenous group implies that
policy intervention can be targeted at all women without side effects or unin-
tended consequences. Also, given that the actions of women tend to be seen
as a product of social constraints, mostly created by male behaviour, another
implication is that much of the policy intervention should directed at employers
and male behaviour (for example ensuring equal opportunities in the workplace

2In this regard, see McElroy and Horney (1981), Lundberg and Pollak (2003) and Basu
(2006).

3Identity theory explains that women’s preferences and decisions may be affected by social
costs/rewards for conforming to a behaviour expected by society. See Akerlof and Kranton
(2000).
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and at home). This approach unavoidably tends to suffer from a male bias and
a patriarchal way to look at society in general, where all individuals are assumed
to aspire to the highest positions in society, and at women in particular, where
women are assumed to be a homogenous group with identical preferences and
characteristics. Moreover, the theoretical framework of economic models that
have studied the decision of women to participate in the labour market has been
in general based on the assumption that economic agents, men and women, are
rational. The decision to contribute to work in the household and the market
has been framed as the result of a rational bargaining process in the family or
as the rationally far sighted investment decision in human capital of men and
women.
While the behaviour and attitude of men in the workplace and at home undoubt-
edly can play an important role in explaining some of the evidence observed by
social scientists regarding the role of women in society and the workplace, assum-
ing that the behaviour of women is defined by what the society (and especially
men) allow them to do is rather limited, at least when discussing societies in
developed countries, and potentially harmful if assumed when devising policy.
In sociology, the framework of Preference Theory (PT) offers an alternative
way to look at the problem, at least in developed countries. PT assumes that
women (differently than men) are a rather heterogeneous group. Specifically,
the theory is based on four key principles derived from empirical observation:
society, at least in most developed countries, has changed to provide women
with more opportunities; women are not a homogenous group, but have hetero-
geneous preferences and priorities; heterogeneity of preferences among women
potentially may create conflicting interests; because of their heterogenous pref-
erences, women may react differently to the same policy. PT classifies women in
three groups:4 work centred, family centred and adaptive. Women who belong
to the first group prioritise work and career; they choose to postpone (and even
avoid) motherhood, not because of financial necessity, but because of their pref-
erence toward a professional career. Women who belong to the second group,
instead, prioritise family and motherhood and do not consider contributing to
the work market; they do not access the labour market, not because their finan-
cial conditions necessarily allow them to do so, but because they see a benefit
in raising children and not in spending time in the workplace. Of course, in
the general the majority of women tend to belong to the last group. Adaptive
women are those whose preferences include both work and motherhood and they
need to choose how to allocate their time between these two activities.
An important implication of PT is that, since women may have heterogeneous
preferences and react differently to policies, it becomes essential for policymak-
ers to develop a clear understanding of the preferences of different groups of
women so that gender policies can be carefully targeted and assessed. In par-
ticular, when studying female labour participation and gender gaps, it is often
important to take a dynamic perspective. If women have specific preferences

4This is clearly a simplification. The framework of PT, however, provides a coherent way
to look at women’s behaviour in a way rarely adopted by social scientists.
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and these preferences may be influenced by social norms and culture, it follows
that long run labour participation and gender gaps can be the result of cul-
tural change and evolution of social norms (see Bowles, 1998; Bisin and Verdier,
2000). Contributions in the literature that consider cultural transmission and
the long run choices of women assume that women are married, with children
and concerned about the costs of pursuing a professional career. Such costs
may be linked to the way society sees employed women or could be related to
the fact that women may internalise the effect that time spent at work may
have on the education of their children. Socially interacting with women em-
ployed in previous generations, women can learn of these costs, update their
believes and intertemporally optimise their time allocation, allowing cultural
transmission and evolution of social norms (Fernández et al., 2004; Fogli and
Veldkamp, 2011; Fernández, 2013). These contributions, therefore, still tend to
frame women to the role of wife/mother who can (similar to the human capi-
tal/life cycle literature mentioned above) rationally take complex decisions.
In this paper we want to move away from the idea that all women have the
innate desire to be wives and mothers, that their utility includes time spent at
work only as a (financial and social) costs and that female labour participation
and gender gaps are the result of rational economic choices, often constrained by
patriarchal societies and families. Adopting the lenses of PT, this paper provides
an economic model that studies the way women’s role in society may evolve;
specifically we shall focus on the group of adaptive women and see how their al-
location of effort between family and work is affected by payment schemes in the
workplace, various intrinsic costs they have depending on their inclinations and,
importantly, by social interaction with other women, who may have different
innate preferences. We are indeed expanding the PT framework and assuming
that there may be heterogeneity among adaptive women too. Some of them will
be more naturally inclined to contribute in the labour market while other will
find more rewarding to contribute in the household. We are deliberately leav-
ing men out of the picture. This is clearly a simplification, but it allows us to
stress the fact that many decisions of women are the result of voluntary actions
based on heterogeneous preference and not necessarily the result of behaviour
imposed by men. We shall however allow social norms to play a role in our
model in which they will influence (but not determine) the long run decisions
of women. In other words, adopting some economics jargon, social norms will
be an important element of the utility function of women, but not a binding
constraint that will define their actions.
Considering an evolutionary game (Weibull, 1995) allows us to study how dif-
ferent types (in terms of their inclination toward work or family) of women
decide to allocate their effort in the short run and how women can revise their
preferences (“evolve”) in time. Our evolutionary game approach introduces a
realistic degree of bounded rationality in the decision of women on how and
how much to contribute to society. Their behaviour is essentially imitative and
the spreading of a type of inclination (career orientation and family orienta-
tion) in the population of women is ultimately defined by social interaction and
learning. Specifically, in line with word of mouth dynamics (see Dawid, 1999),
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we assume that women socially interact and, from these interactions, they can
learn about the utility of other women, in particular those who with different
preferences. Social interaction, therefore, plays an important role in allowing
women over time to learn and change inclination, evolving their preferences in
the long run. Our findings show that both scenarios in which the population
converges to monomorphic configurations and scenarios where the population
converges to a polymorphic composition (that is, a stable inner equilibrium for
the system may exist) are achievable. Moreover, due to the willingness to switch
inclination and the interplays between social norms and intrinsic costs may lead
to the emergence of periodic cycles as well as chaotic regimes.
The rest of the chapter is organised as follows. In Section 2 we describe the
mathematical model and the static analysis; in Section 3 we depeen the dynam-
ics generated by the model and the particular role played by crucial parameters;
Section 4 concludes.

4.2 The Model

Let us consider a population of women who are not a priori deciding to be child-
less (i.e. those called work-centred by PT) or voluntarily unemployed (i.e. those
called home-centred by PT). Instead, we are considering a group of women (PT
would call them adaptive) who are employed in the same firm and all equally
willing to have a family; however, differently to the PT approach and in contrast
to previous contributions that tend to equalise all women to wives/mothers, we
assume that a woman has a family (case M) with probability ρ ∈ (0, 1) and
with probability (1 − ρ) she does not have one (case NM). In other words,
the willingness to have a family does not necessarily imply that all women are
married and with children. All women are employed and provide a fixed level of
time, denoted by l, contractually necessary to perform standard tasks required
in their occupation. In addition to time spent in standard tasks, women have an
additional unit of time that they can voluntarily spend at work or, if they have
one, with their family. If they decide to take on additional projects and tasks,
women can receive a financial reward that is increasing in the time (assumed
observable) spent at work. Of course, if a woman decides to take on additional
work projects, she will have less time to spend with the family, if she has one.
We further expand the PT classification of adaptive women assuming that there
are two types of women in our population: family-oriented (FO hereafter) and
career-oriented (CO hereafter). Family-oriented women are employed and expe-
rience a positive utility from market activities, however they are naturally more
inclined to spend additional time with the family. Career-oriented women may
have a family and experience a positive utility from spending time at home, but
are more naturally inclined to spend time performing additional work tasks.5

5Notice that we are assuming that the probability of having a family ρ is independent of
the particular type of woman considered. This is clearly a simplification. However, it is not
obvious whether one type or the other should be assumed to be more likely to have a family.
Indeed, the fact that a woman may be family-oriented does not necessarily imply that she will
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Let us assume that a fraction r ∈ [0, 1] of the population is composed by family-
oriented women (f), while the fraction (1 − r) represents the group of career-
oriented women (c). We denote by lf ∈ [0, 1] and (1− lf ) respectively the extra
time spent at work and with the family of a family-oriented woman. Similarly,
a career-oriented woman will allocate time choosing lc ∈ [0, 1] and (1− lc).
Let us suppose that the firm that employes these women offers a remuneration,
Ri, i = f, c, made by a fixed part a and a bonus Pli6 that depends on the time
employees spend performing additional tasks. Then,

Ri = al + Pli. (4.1)

For each type (f or c) depending whether she has a family or not, a woman
will incur different costs related to the tasks that she decides to perform during
her additional time. In particular, as in Lamantia and Pezzino (2016), we
assume quadratic cost functions and with probability ρ (case M) costs are as
follows:7

CfM (lf ) =
α (lfM )2 + (1− lfM )2 + lfM (1− lfM )

2
;

CcM (lc) =
(lcM )2 + δ (1− lcM )2 + lcM (1− lcM )

2
, (4.2)

otherwise, in the case NM , women face the following costs:

CfNM (lf ) =
α (lfNM )2

2
; CcNM (lc) =

(lcNM )2

2
(4.3)

where α, δ > 1 are sensitivity parameters representing the different magni-
tude of the costs for each type of woman. Because of parameters α and δ a
family-oriented woman has a comparative advantage in home related activities,
while the career-oriented woman has a comparative advantage in work related
tasks.

In addition, we assume that all women have some professional vocation (i.e.
they experience a positive utility from spending time at work doing non-standard
task)8 and altruism to family members (i.e. they experience a positive utility
from spending time at home performing home related tasks). The way women
experience the utility of spending time at work or with the family, however, may
be distorted by social interactions and, in particular, the way society rewards
or punishes the choice of women to allocate time between work and family.
We assume that social norms will depend on r, the particular composition of
the two types of women in the population. In other words, a society with a

have a higher probability to have a partner and maybe children compared to a career-oriented
woman.

6P can be interpreted as the financial incentive in a pay for performance scheme. This is
assumed to be public knowledge.

7Note that we are implicitly assuming that the cost of providing standard effort at work,
l, is the same for all women and, for simplicity, normalised to zero.

8See Goldin (2006).
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large proportion of family-oriented women (high r) will reward the choice of
spending time with family and will judge negatively the decision of married
woman to spend additional time at work. We assume that the two types of
women are likewise affected by society and both family-oriented and career-
oriented women tend to conform to society. Then, the larger is r (i.e. the more
women in the population are family-oriented) the larger is the utility they obtain
from spending time with the family and the lower is the utility from spending
additional time at work.
Thus, we define the following utility functions:

ρ :

{
UfM = al + lfMP + (1 + r)(1− lfM ) + (2− r)lfM − C

f
M

U cM = al + lcMP + (1 + r)(1− lcM ) + (2− r)lcM − CcM
(4.4)

1− ρ :

{
UfNM = al + lfNMP − C

f
NM

U cNM = al + lcNMP − CcNM
(4.5)

where (1 + r)(1− lfM ) represents the utility (increasing with r) of spending

time with family for a family-oriented while (2 − r)lfM represents the utility
(decreasing with r) of spending additional time at work for the same woman.
Similarly, (1 + r)(1 − lcM ) represents the utility of spending time with family
for a career-oriented woman with (2 − r)lcM represents the utility of spending
additional time at work for the same woman.9 Notice that women who have no
family do not experience the effects of a social stigma. This is in line with the
analysis of the data, based on a series of international surveys and the reports
of the Eurobarometer10, analysed in Hakim (2000).

The maximisation of the utility functions in (4.4) and (4.5) defines the fol-
lowing optimal choices for women in terms of time to devote working:

(lfM )∗ =
3 + 2P − 4r

2α
; (lcM )∗ =

1 + 2P − 4r + 2δ

2δ
; (lfNM )∗ =

P

α
; (lcNM )∗ = P.

(4.6)
The optimal times in scenario (NM) are positive for every parameterisation,

while the optimal times in the case (M) are positive under the conditions 1 +
2P < 4r < 3 + 2P and 0 < P < 3

2 .11

Notice that, not surprisingly, career-oriented women allocate more time at work
than family-oriented women. Moreover, we have that:

∂(lfM )∗

∂α
< 0,

∂(lcM )∗

∂δ
> 0

Intuitively, an increase in the pay-for-performance payment P has a positive
effect on the time spent at work for all women. An increase in α increases the

9The amount (2 − r) is assumed for simplicity in describing the role of social norms in
the definition of utility functions. Indeed, such form allows to avoid negative values in the
positive component of the utility.

10See http://ec.europa.eu/commfrontoffice/publicopinion/index.cfm
11These conditions will be taken into account in the following Propositions.
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cost of spending time at work for the family-oriented woman and consequently
reduces lfM ; an increase in δ increases the comparative advantage in work related
activities of the career-oriented woman and therefore has a positive effect on lcM .

In addition
∂(lfNM )∗

∂α < 0 and
∂(lcNM )∗

∂δ = 0 for every parameterisation. The
intuition of the effect of α on lNM is the same as for the women with family. Not
having a family, however, implies that career-oriented women do not experience
a comparative disadvantage in spending time at home.

4.2.1 Static analysis

By substituting the optimal time values of each type of woman in (4.4) and
(4.5), we can derive the expected utility of family oriented women, at time t, as:

E[Uf ] = ρUfM

(
(lfM )∗

)
+ (1− ρ)UfNM

(
(lfNM )∗

)
, (4.7)

while career oriented women, at time t, has the following expected utility

E[Uc] = ρU cM ((lcM )∗) + (1− ρ)U cNM ((lcNM )∗) . (4.8)

The assumption of identical agents allow us to meaningfully define the so
called score function, i.e. the difference between the two expected utilities, as
follows.

y(r) = E[Uf ]− E[U c]. (4.9)

Expected utilities from the two behaviours become equal for a fraction r∗,
when y(r) = 0, from which we derive the set of possible equilibria for the system

r∗ =

{
0, 1,

1

4

± 2
√
A+ ((2 δ + 1 + 2P )α− (2P + 3) δ) ρ

ρ (−δ + α)

}
(4.10)

where A = ρ (α− 1) δ
(((

α− P 2
)
ρ+ P 2

)
δ +

((
P 2 − 1

)
ρ− P 2

)
α
)
.

The non-trivial inner equilibria r∗1,2 = 1
4
± 2
√
A+((2 δ+1+2P )α−(2P+3)δ)ρ

ρ (−δ+α) are de-

fined if and only if A > 0 and they have to belong to the interval (0, 1). Then,
by introducing the following threshold values

α1 = (3+2P )2δ
(1+2P )2+8(1+P )δ ;

α2 = (1−2P )2δ
(3−2P )2+8(−1+P )δ ;

ρ1 = 4P 2(α−1)δ
−(1+2P )2α+(9−8α+4P (3+(P−2)α))δ ;

ρ2 = 4P 2(α−1)δ
−(3−2P )2α+δ−4Pδ+4(2+(−2+P )P )αδ ,

(4.11)

the following Proposition holds:

Proposition 24 Let consider the inner equilibria called r∗1,2. Then, the follow-
ing cases arise:
(a) If α < δ, then there exist one or two inner equilibria. In particular, we have
that:

77



• (a1) there exists r∗1 ∈ (0, 1) if 1 < α < α1 and ρ1 < ρ < 1;

• (a2) there exists r∗2 ∈ (0, 1) if 1 < α < α2 and ρ2 < ρ < 1;

• (a3) there exist both r∗1 ∈ (0, 1) and r∗2 ∈ (0, 1) if 1 < α < min(α1, α2)
and max(ρ1, ρ2) < ρ < 1.

(b) If α > δ and B < ρ < 1, then no or a single (r∗2) inner equilibrium exists.
In particular, we have that r∗2 ∈ (0, 1) exists if 1 < α < α2 and ρ2 < ρ < 1.

Before investigating the dynamic stability of the system, it may be interest-
ing to discuss some results deriving from simple comparative statics analysis.
First, by studying the variation of the value assumed by r∗1,2 as α or δ vary, we

get some counter-intuitive results. Indeed, we have that (i)
∂r∗1
∂α < 0 and (ii)

∂r∗1
∂δ > 0, while (iii)

∂r∗2
∂α > 0 and (ii)

∂r∗2
∂δ < 0. Then, although an increase in

the intrinsic cost of working for a FO woman induces a decrease in her optimal
working time, The result (i) implies that when α increases the probability to
be a family-oriented woman decreases. Symmetrically, even though an increase
in the intrinsic cost of staying with family for a CO woman induces an increase
in her optimal working time, The result (ii) implies that when δ increases the
probability to be a family-oriented woman increases. In addition, we have that
∂r∗1
∂ρ > 0 (

∂r∗2
∂ρ < 0) and this means that, intuitively, the probability to have a

family (that is the case M) positively affects the probability to be a family ori-
ented woman. Finally, we get that the interior equilibrium has a non-monotonic
relationship with the payment released by the firm for the bonus (P ). Indeed,

we have that
∂r∗1
∂P < 0 if and only if P >

√
A

δ(α−1)(1−ρ) .

4.3 Evolutionary analysis (word of mouth)

In this section we endogenise r assuming that, at time t, the probability to be a
FO woman is given by the fraction r of family-oriented women in the population
at that time. Therefore, the probability to be family-oriented or career-oriented
is updated according to the expected utilities from the two possible positions.
We model the dynamics of the probability of being family oriented by the word
of mouth evolutionary framework (see Dawid, 1999). Indeed, we suppose that
at each t two women working in the company (at the same salary conditions)
meet and compare their positions (or inclinations). Clearly, if both women
have the same inclination (either both are FO or CO) they have the same
utility (payoff) and no switching mechanism arises. Differently, if a family-
oriented woman meets a career-oriented one (the opposite is equivalent), they
may reconsider their position (and then the behaviour until time t+1) according
to the utility achieved by the other. Thus, a FO woman may change her mind
if she meets a CO woman or viceversa. Obviously, the higher the difference is
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between FO and CO’s payoff, the more likely one of the two womem will be
inclined to switch to the other position.
In order to describe the switching mechanism behind the model, we define as Φ
the probability to switch from being CO to FO, given that Uf ≥ Uc. Then, we
have:

Φ(Uf − Uc) = P(c→ f |Uf ≥ Uc) (4.12)

where Φ : R → [0, 1], being a probability distribution function, is non de-
creasing in y, with y = Uf − Uc. Moreover, it holds that

lim
y→−∞

Φ(y) = 0; lim
y→+∞

Φ(y) = 1.

Therefore, we can rewrite the probability that a CO woman becomes a FO
as

pc→ f = rΦ(y) (4.13)

where r represents the probability that a CO woman meets a FO and Φ(y)
the probability to change inclination.
Differently, being (1 − r) the probability that a FO woman meets a CO and
Ψ(−y) = 1−Φ(y) the probability to change inclination, the overall probability
that a FO woman becomes CO is given by

pf→ c = (1− r)(1− Φ(y)) (4.14)

Assuming that the matching between women in the company (our popula-
tion) is uniform and that a sufficiently large number of sampling is taken into
account, the average payoff difference of the two inclinations is approximated
by the expression in (4.9).
We consider from now that the fraction of FO is denoted by rt and assume that
the expected payoff (or utilities) are functions of rt (consequently, y = y(rt)),
the dynamics of rt is defined by the following map:

rt+1 = rt + (1− rt)pc→ f − rtpf→ c (4.15)

where (1− rt)pc→ f represents the share of career oriented women becoming
family oriented while rtpf→ c denotes the share of women making the reverse
path.
By substituting expressions (4.13) and (4.14) in the equation (4.15) and alge-
braic manipulation, we can rewrite the map as:

F := rt+1 = rt[1 + (1− rt)G(y(rt))] (4.16)

where G(y(rt)) = 2
π arctan(λ2π y(rt)) (see Bischi et al., 2009b). In this spec-

ification, λ represents the positive parameter governing the intensity of choice,
that is the willingness to change behaviour from being family oriented to career
oriented.
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According to Lamantia and Pezzino (2017), the function G that derives from a
distribution function as described above, gets the following properties:

lim
y→−∞

G(y) = −1;

lim
y→+∞

G(y) = 1.

In addition, assuming unimodality and symmetry of the density function
associated to Φ, the following assumptions on G(y) hold:

• G(0) = 0;

• G is symmetric with respect to 0;

• G is increasing;

• G is convex in the range (−∞, 0) and concave in the range (0,+∞);

• G is differentiable at least in y = 0.

The map (4.16), modelling how the fraction of family-oriented women changes
over time, admits the two boundary trivial fixed points 0, 1 and up to two inte-
rior equilibria r∗1,2 ∈ (0, 1), such that y(r∗) = 0. As described in Lamantia and
Pezzino (2017), we can notice that the function G is monotone and then the
sign of G and y(rt) coincides. This means that an increase in the level of the
share r occurs if and only if y > 0 and then the map represent an example of
monotone selection dynamics (see Cressman and Ansell, 2003; Weibull, 1995).

4.4 Dynamic analysis

In this section, we focus on analysing the dynamic properties of the discrete time
map (4.16), which describes the evolution over time of the fraction of family-
oriented women. The map admits two types of equilibria: boundary equilibria
rc = 0 and rf = 1 and inner equilibria r∗ which satisfy the equality y(r∗) = 0.
The boundary equilibria exist for all parameterisations and describe monomor-
phic configurations of the population in which all women are career-oriented
(rc = 0) or family-oriented (rf = 1). Instead, the inner equilibria correspond
to polymorphic configurations of the population in which both family-oriented
and career-oriented exist. By recalling the statement in Proposition 24, we have
that zero, one or two inner equilibria (r∗1 and r∗2 , respectively) may exist. Then,
the analysis moves on the investigation about the convergence to the trivial
equilibria when no inner equilibria exist and the stability of the inner equilibria
when they exist. In this regard, the following proposition holds:

Proposition 25 Let consider the map defined in (4.16) and the conditions
stated in Proposition 24 on the existence of the inner equilibria.

The inner fixed point r∗1 is asymptotically stable if λ ∈
(

0, αδ
r∗1 (1−r∗1 )

√
A

)
. Con-

trariwise, the inner fixed point r∗2 is always unstable.
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Proof. Evaluating the first derivative of F in the interior fixed point r∗int, we
have

F
′
(r∗1) = (1 + (1− r∗1)G(0)) + r∗1((1− r∗1)G

′
(0)−G(0)) (4.17)

From the property G(0) = 0, we have that the first derivative in the fixed
point reduces to be

F
′
(r∗1) = 1 + r∗1((1− r∗1)G

′
(0) (4.18)

By calculating the value of G
′
(0), we obtain that G

′
(0) = − 2λ

√
A

αδ . Then,
by substituting such value in (4.18) and recalling that the fixed point loses its
stability when |F ′(r∗1)| = 1, we derive that F

′
(r∗1) = 1 for λ = 0 and F

′
(r∗1) = −1

for λ = αδ
r∗1 (1−r∗1 )

√
A

. Then, the result follows. Analogously, evaluating the first

derivative of the map in r∗2 , it is straightforward to show that an interval in
which such fixed point is locally stable does not exist.

Remark 14 At λ = αδ
r∗1 (1−r∗1 )

√
A

, the inner equilibrium r∗1 looses its stability

through a period doubling bifurcation and then, as the parameter λ increases,
cyclic or chaotic regimes appear.

The following Panels in Figure 4.1 furnish a numerical confirmation of the
scenarios described by Proposition 24 and 25. Panel (a) in Figure 4.1 shows a
scenario in which only the boundary equilibria are admitted and, for all initial
conditions r0, almost all trajectories (an example is given by the red line) con-
verge to the equilibrium 0. This means that, in this case, every initial condition
on the fraction of FO women leads to a final state in which the population
is monomorphic and composed only by CO women. Panel (b) in Figure 4.1
describes the case in which only the trivial equilibria and the unstable inner
equilibrium r∗2 are admitted. As the graph suggests, an initial condition on the
left of r∗2 leads to the final state with all CO women (red line) while an initial
condition on the right of r∗2 leads to the final state with all FO women (blue
line). Hence, the unstable fixed point r∗2 separates the basins of attraction of
the boundary equilibria. Panel (c) in Figure 4.1 show a numerical example in
which, in addition to the boundary equilibria, both r∗1 and r∗2 exist. In the
graph we can notice that both initial conditions on the left and on the right
of r∗1 (see red and green lines) lead to the final state r∗1 while initial conditions
on the right of the unstable equilibrium r∗2 leads to the boundary equilibrium 1
where only FO women are present. Finally, Panel (d) in Figure 4.1 shows the
case in which every initial condition leads to the stable equilibrium r∗1 .
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(a) (b)

(c) (d)

Figure 4.1: Different behaviours of the map for different parameter sets. (a) Pa-
rameter set: P = 1.45, α = 1.45, δ = 2.16, ρ = 0.75, λ = 12. The map ad-
mits only the boundary equilibria 0 (stable) and 1 (unstable). (b) Parameter set:
P = 0.65, α = 1.25, δ = 2.16, ρ = 0.75, λ = 12. The map admits a unique inner
equilibrium r∗2 (unstable) and the stable boundary equilibria. In this case r∗2 divides
the basins of attraction of 0 and 1. (c) Parameter set: P = 0.65, α = 1.1, δ =
2.16, ρ = 0.75, λ = 20. The map admits the boundary equilibria (0 is unstable while
1 is stable) and two inner equilibria r∗1 (stable) and r∗2 (unstable). (d) Parameter
set: P = 1.05, α = 1.128, δ = 2.1, ρ = 0.75, λ = 45. The map admits the boundary
equilibria (they are both unstable) and the inner equilibria r∗1 (stable).
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4.4.1 The crucial role of the intensity of choice

From a dynamic point of view, a crucial role is played by the intensity of choice
parameter λ. Indeed, we can notice how, as λ varies, the nature of the fixed
point r∗1 changes and more complex regimes may arise.
Cobweb plots in Panels of Figure 4.2 describe different scenarios as the intensity
of choice parameter varies. By assuming the following Parameter set P =
1.45, α = 1.18, δ = 3.16, ρ = 0.75 and leaving to vary the parameter λ, in Panel
(a) we notice that, starting from an initial condition r0 and λ = λst = 10,
after some iterations the system converges to the stable r∗1 . By increasing λ to
λcy = 60, Panel (b) describes the case in which a period doubling bifurcation
is occurred and a stable 2-cycle appears. Finally, a really larger value for λ,
λ = λch = 210, Panel (c) depicts the arise of a chaotic regime for the system.

(a) (b)

(c) (d)

Figure 4.2: Different scenarios as λ varies, starting from r0 = 0.38. (a) Convergence
to the stable r∗1 when λ = λst = 10. (b) Convergence to a stable 2-cycle when
λ = λcy = 60. (c) Presence of a chaotic regime for λ = λch = 210.
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The destabilising role of λ can be described also by the bifurcation diagram in
Figure 4.3. Indeed, the graph confirms the observation in the Remark 14 and we
can notice that as λ increases until its value violates the stability condition (see
Proposition 25), a period doubling bifurcation occurs and a 2-cycle appears.
Then, as the intensity of choice further increases, a period doubling cascade
occur and finally a chaotic regime arises. The scenarios described by the Figures
confirm what is mentioned in the literature. Indeed, several works on different
topics, show how the assumption of a high value of the intensity of choice,
that is a high willingness of the agents to change their beliefs (in our model we
define them as inclinations) (see Brock and Hommes, 1997). With regard to our
model, this means that as the willingness of women in changing their inclination
between being family-oriented and career-oriented increases, the composition
of the population will first tend to converge towards an inner equilibrium in
which FO and CO women coexist. Then, as the intensity of choice assumes
higher values, the fraction of FO women in the population cyclically reach
values around the inner equilibrium and at the end, when λ is sufficiently high,
it becomes unpredictable and complex regimes arise in the system.12

Figure 4.3: Parameter set: P = 1.45, α = 1.18, δ = 3.16, ρ = 0.75. Bifurcation
diagram with respect to λ, starting from the initial condition r0 = 0.38.

12The analysis performed in this section has regarded the case in which a unique interior
fixed point exists. This choice allowed us to show some socially relevant dynamic phenomena
related to how the parameter affects the nature of the unique interior equilibrium. The analysis
of the effects of λ in cases in which both the inner equilibria exist represents one the strands
of the investigation that may be furtherly deepened.

84



4.4.2 The effect of intrinsic costs

A fundamental role in defining the dynamics of the population considered in
our model is then played by the parameters of intrinsic costs that the different
types of women experience, α and δ, respectively. In the previous sections, we
have seen how social norms homogeneously affect the utility functions of the
two types of women. In this section, we can notice that the variation of some of
these intrinsic costs can be able to dominate the effect of social norms. Indeed,
although the social norms act in favour of family-oriented women, an increase
in the value of α, and therefore in the intrinsic cost attributed by being family-
oriented to the extra working time, along time ends up in reducing the fraction
of FO women. This means that they will then prefer to radically change their
inclinations because they consider excessively inconvenient, in the society that
surrounds them, to have an inclination towards creating or taking care of the
family.
Figure 4.4 shows a numerical example of this phenomenon and the connection
between the role of α and the increase in the willingness to change inclinations
(defined by λ). When λ is sufficiently low (that is, λl = 20), the graph in Panel
(a) allows us to notice that, as α increases, (i) the value of the stable inner
equilibrium decreases until αpd ' 1.033 where it undergoes a period doubling
bifurcation; (ii) a stable 2-cycle arises in the system until αph ' 1.223 where it
undergoes a period halving bifurcation allowing to recover the stability of the
inner equilibrium. When λ is fixed as sufficiently high (λh = 70), an increase of
α may allow observing periodic cycles and the emergence of chaotic behaviours,
as depicted in Panel (b).

(a) (b)

Figure 4.4: (a) Parameter set: P = 1.45, δ = 3.16, ρ = 0.75, λl = 20. The Bifurcation
diagram with respect to α depicts (i) the loss of stability for the inner equilibrium
through a period doubling bifurcation and then (ii) the recover of the stability through
a period halving bifurcation, as α increases. (b) Parameter set: P = 1.45, δ = 3.16, ρ =
0.75, λh = 70. The bifurcation diagram depicts the occurrence of period cycles and
then windows of chaotic behavior, as α increases.

In the opposite way, (i) the positive effect of social norms on the time spent
at home and (ii) an increase in the value of δ, that is in the intrinsic cost at-
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tributed by being career-oriented to the time spent at home, along time ends up
in increasing the fraction of FO women. This means that some CO women will
then prefer to radically change their inclinations because they consider exces-
sively inconvenient, in the society that surrounds them, to have an inclination
towards preferring commitment to work.
Figure 4.5 numerically shows this phenomenon and the arise of complexity when
an increase in δ is associated with high levels in the willingness to change in-
clinations (defined by λ). Indeed, for a low value of λ (that is, λl = 20), we
can notice that, as δ increases, (i) the value of the stable inner equilibrium in-
creases until δpd ' 8.04 where it undergoes a period doubling bifurcation and,
for δ > δpd, a 2-cycle arises in the system. When λ is fixed as sufficiently high
(λh = 70), an increase of δ may allow to observe the occurrence of periodic
cycles and then the arise of chaotic behaviours, as depicted in Panel (b).

(a) (b)

Figure 4.5: (a) Parameter set: P = 1.45, α = 1.18, ρ = 0.75, λl = 20. The Bifurcation
diagram with respect to δ depicts the loss of stability for the inner equilibrium through
a period doubling bifurcation and the occurrence of a 2-cycle, when λ is sufficiently
low. (b) Parameter set: P = 1.45, α = 1.18, ρ = 0.75, λh = 70. Occurrence of periodic
cycles and arise of chaotic behaviours, for a high value of λ.
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4.5 Conclusions

In this chapter, by adopting the point of view described by the PT, we have em-
ployed an evolutionary framework to study the short and long run decisions of
women concerning the allocation of time between work and family. Specifically,
we have assumed a population with two types of women: family-oriented (FO),
and career-oriented (CO). The preferences of both types of women are affected
by extrinsic benefits (e.g. a Pay-for-Performance contract at work), intrinsic
costs (i.e. their inclination toward spending time at work or with the family)
and by social norms. We have assumed in addition that women socially interact
(according to word of mouth dynamics) and compare their different positions,
learning about possible payoff differentials. , therefore, sparks the evolution of
the distribution of types of women (and corresponding behaviour) in the popu-
lation.
Our findings show that the social interaction of women in the workplace and
the intrinsic costs they have being family-oriented or career-oriented may lead
to both scenarios in which the population converges to monomorphic configura-
tions and scenarios where the population converges to a polymorphic composi-
tion (that is, a stable inner equilibrium for the system may exist) are achievable.
Moreover, due to the highly destabilising role of the intensity of choice param-
eter and the interplays between social norms and intrinsic costs, both periodic
cycles and chaotic regimes may emerge. The latter therefore make the fluctua-
tions in the composition of the female population erratic and unpredictable over
time.
Clearly, the model proposed in this chapter represents a strong stylisation of
the possible approaches with which the role of women in society, in work as well
as in the family, can be modelled and analysed. By maintaining (i) the idea
that the female population is composed of women with different but adaptive
inclinations and (ii) that social norms and interactions with other subgroups of
the population may generate switching in the inclinations, possible future exten-
sions and research may go in different directions. One of the future researches
will be the analysis of how the effects of social norms and interaction on the
women’s short and long term decisions may reflect possible policies aimed at the
one hand at encouraging female labour participation and on the other hand at
fostering women in spending time with family. Another research question will
concern the matching of the female population (with its different inclinations)
with the male population (with its different inclinations) and then (i) the anal-
ysis of how the interaction, in the workplace, of agents with different sex and
then with different inclinations can affect the long-term composition of the two
populations and (ii) the investigation of how it can be managed the problem of
gender salary gap between male and female workers.
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