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Abstract This paper proposes a three-parameter statistical model ofincome distribution by exploiting recent developments

on the use of deformed exponential and logarithm functions as suggested by Kaniadakis (2001, 2002, 2005). Formulas for

the shape, moments and standard tools for inequality measurement are given. The model is shown to fit remarkably well

the personal income data for Great Britain, Germany and the United States in different years, and its empirical performance

appears to be competitive with that of other existing distributions.
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1 Introduction

In the analysis of income distribution, analysts have foundit useful to have a mathematical description for the size distribution

of income based on estimates of functional forms. Indeed, a parametric model of the way the empirical distributions looklike

enables to get an easier grip upon particular features of theincome distribution and can be useful in a variety of applications,

from the comparison of distributions in different populations and/or over time, to the measurement of inequality and the

elaboration of income redistribution policies, up to the characterization of the solution to economic models of the income

distribution process.

In applied work, the principal functional forms used as descriptors of the distribution of income have been the lognormal

or Pareto densities. Both distributions arise from stochastic models of income growth. For example, Gibrat (1931) demon-

strated that if income growth rates are random and independent on the initial size, then lognormality of incomes occurs
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irrespective of the initial distribution. Variations on this theme are able to generate Pareto distributions instead (e.g. Cham-

pernowne 1953). However, these simple models are evidentlylimited in the variety of shapes of income distribution that

they can be expected to describe. The problem is that neitherthe lognormal nor the Pareto density provides an adequate fitto

actual data. The former does not adequately fit the tails of the distribution, while the latter only fits the very top of the distri-

bution. Moreover, both densities are outperformed in termsof goodness-of-fit by parsimonious alternatives (e.g. the gamma

distribution proposed by Salem and Mount 1974). Subsequentwork indicated that still further improvements could be made

by considering families of densities flexible enough to be able to capture the prominent features of the observed income

distributions. For instance, McDonald and Xu (1995) proposed the generalized beta, a quite general family of probability

density functions that nests most of the income distributions introduced in the econometrics literature as special or limiting

cases. Of these, the Singh-Maddala (1976) and Dagum (1977) distributions have shown them to be a good compromise

between parsimony and goodness-of-fit in many instances.

In this paper we introduce a new three-parameter distribution based on the generalization of the exponential and logarithm

functions proposed by Kaniadakis (2001, 2002, 2005) and defined as

expκ (x) =
(

√

1+κ2x2+κx
)

1
κ
, x ∈ R, (1a)

logκ (x) =
xκ − x−κ

2κ
, x ∈ R+, (1b)

which lead to the standard exponential and logarithm whenκ → 0 and exhibit a power-law behavior at the boundaries of

their support, i.e.

expκ (x) ∼
x→±∞

∣

∣2κx
∣

∣

± 1
|κ | , (2a)

logκ (x) ∼
x→0+

− 1
2|κ |x

−|κ |, (2b)

logκ (x) ∼
x→+∞

1
2|κ |x

|κ |. (2c)

Formally, the distribution can be obtained by maximizing according to Jaynes (1957a,b) maximum entropy principle the

Shannon (1948) information measure

S ≡−
∞
∫

0

f (x) log f (x)dx (3)

under the natural constraint that normalizes the density,

∞
∫

0

f (x)dx = 1, (4)

and the three characterizing moments

∞
∫

0

logx f (x)dx = logβ − 1
α

[

γ +ψ
(

1
2κ

)

+ log(2κ)+κ
]

, (5a)

∞
∫

0

log

[

1+κ2
(

x
β

)2α
]

f (x)dx = 2κ −ψ
(

1+
1

4κ

)

+ψ
(

1
2
+

1
4κ

)

, (5b)
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∞
∫

0

log





√

1+κ2

(

x
β

)2α
−κ

(

x
β

)α


 f (x)dx =

∞
∫

0

sinh−1
[

−κ
(

x
β

)α]

f (x)dx = κ . (5c)

The solution to the variational problem (3)–(5), obtainable using the method of Lagrange multipliers,1 is given by what we

call theκ-generalized distribution

f (x;α,β ,κ) =
α
β

(

x
β

)α−1 expκ
[

−(x/β )α]

√

1+κ2 (x/β )2α
, x ≥ 0, (6)

whereα > 0 is a shape parameter,β > 0 is a scale andκ ∈ [0,1) measures the heaviness of the right tail.2

In a previous work of us (Clementi et al. 2010) the above functional form was adopted successfully in modelling the

personal income distribution in Italy. However, one may imagine that income in other countries is distributed differently.

By using sets of data for three developed economies (Great Britain, Germany and the United States) across several years,

in this paper we draw conclusions about the quality of the proposed model in describing the distribution of income more

generally than just the Italian characteristics. The basicproposition is that the density (6) provides a very good description

of the observed income distributions, ranging from the low region to the middle region, and up to the right tail.

The plan of the paper is as follows: Section 2 proposes the newdistribution and examines its theoretical properties.

Section 3 studies its empirical performance and makes comparisons with other existing distributions. Section 4 summarizes

the paper.

2 The distribution and its properties

2.1 Definitions and interrelations

A random variableX is said to have aκ-generalized distribution if it has the probability density function (6). The corre-

sponding cumulative distribution function reads

F (x;α,β ,κ) = 1−expκ
[

−(x/β )α] , (7)

and the quantile function equals

F−1 (u;α,β ,κ) = β
[

logκ

(

1
1−u

)]
1
α
, 0< u < 1. (8)

As κ → 0, the distribution tends to the Weibull distribution; it can be easily verified that

lim
κ→0

F (x;α,β ,κ) = 1−exp
[

−(x/β )α] (9)

and

lim
κ→0

f (x;α,β ,κ) =
α
β

(

x
β

)α−1

exp
[

−(x/β )α] . (10)

1 See Appendix A of Clementi et al. (2010).
2 Notice that the use of the entropy formalism in the analysis ofincome distribution is not new. For example, Ord et al. (1981),Kapur (1989) and Leipnik

(1990) pointed out that several income distributions might beselected if one uses a criterion of maximum entropy. On the inequality side, the entropy-based
measure of inequality proposed by Theil (1967) naturally contributed to the development of a general information-theoretic approach to the measurement
of inequality (Cowell 1980a,b; and Cowell and Kuga 1981a,b)



4

For x → 0+ the distribution behaves similarly to the Weibull model (9)and (10), whereas for largex it approaches a

Pareto distribution with scaleβ (2κ)−
1
α and shapeακ , i.e.

F (x;α,β ,κ) ∼
x→+∞

1−
[

β (2κ)−
1
α

x

]

α
κ

(11)

and

f (x;α,β ,κ) ∼
x→+∞

α
κ

[

β (2κ)−
1
α
]

α
κ

x
α
κ +1

, (12)

thus satisfying the weak Pareto law (Kakwani 1980)

lim
x→∞

x f (x;α,β ,κ)
1−F (x;α,β ,κ)

=
α
κ
. (13)

From (8) the median is

xmed= β [logκ (2)]
1
α . (14)

The distribution is unimodal, the mode being at

xmode= β
[

α2+2κ2 (α −1)
2κ2 (α2−κ2)

]

1
2α

{
√

1+
4κ2 (α2−κ2)(α −1)2

[α2+2κ2 (α −1)]2
−1

}

1
2α

(15)

if α > 1; otherwise, the distribution is zero-modal with a pole at the origin.

2.2 Moments and other properties

Therth-order moment about the origin of theκ-generalized distribution equals

µ
′
r =

∞
∫

0

xr f (x;α,β ,κ)dx = β r (2κ)−
r
α

Γ
(

1+ r
α
)

1+ r
α κ

Γ
(

1
2κ − r

2α
)

Γ
(

1
2κ + r

2α
) , (16)

whereΓ (·) denotes the gamma function, and exists forα < r < α
κ . Specifically,µ ′

1 = m is the mean of the distribution and

σ2 = µ
′
2−m2 = β 2 (2κ)−

2
α







Γ
(

1+ 2
α
)

1+2κ
α

Γ
(

1
2κ − 1

α
)

Γ
(

1
2κ + 1

α
) −

[

Γ
(

1+ 1
α
)

1+ κ
α

Γ
(

1
2κ − 1

2α
)

Γ
(

1
2κ + 1

2α
)

]2






(17)

is the variance. Hence, the coefficient of variation equals

CVκ =

√

2
(α +κ)2

α +2κ
Γ
(

2
α
)

Γ 2
(

1
α
)

Γ
(

1
2κ − 1

α
)

Γ
(

1
2κ + 1

α
)

Γ 2
(

1
2κ + 1

2α
)

Γ 2
(

1
2κ − 1

2α
) −1. (18)

It is also possible to define the standardized measures of skewness and kurtosis, respectively given by

γ1 =
µ3

σ3 =
µ ′

3−3µ ′
2m+2m3

σ3 (19)

and

γ2 =
µ4

σ4 =
µ ′

4−4µ ′
3m−6µ ′

2m2−3m4

σ4 , (20)
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whereµr = ∑r
j=0

(r
j

)

(−1)r− j µ ′
jm

r− j is the moment about the mean.

2.3 Lorenz curve and inequality measures

The Lorenz (1905) curve of theκ-generalized distribution is available in terms of the first-moment distributionL(F (x)) =

m−1∫ x
0 x

′
p
(

x
′
)

dx
′
, namely

Lκ (u) =1− 1+ κ
α

2Γ
(

1
α
)

Γ
(

1
2κ + 1

2α
)

Γ
(

1
2κ − 1

2α
)

{

2α (2κ)
1
α (1−u)

[

logκ

(

1
1−u

)]
1
α
+BX

(

1
2κ

− 1
2α

,
1
α

)

+BX

(

1
2κ

− 1
2α

+1,
1
α

)

}

, 0≤ u ≤ 1,

(21)

whereBX (·, ·) is the incomplete beta function withX = (1−u)2κ . Clearly, the curve exists if and only ifακ > 1. The use of

(21) can be done analytically.

As regards scalar measures of inequality, the well-known Gini (1914) coefficient can be derived using the representation

in terms of order statistics due to Arnold and Laguna (1977),i.e. G = 1−m−1∫ ∞
0 [1−F (x)]2dx, yielding

Gκ = 1− 2α +2κ
2α +κ

Γ
(

1
κ − 1

2α
)

Γ
(

1
κ + 1

2α
)

Γ
(

1
2κ + 1

2α
)

Γ
(

1
2κ − 1

2α
) .3 (22)

Furthermore, the generalized entropy (GE) class of inequality measures (Cowell 1980a,b; and Cowell and Kuga 1981a,b)

is defined as

GEκ (θ) =
1

θ 2−θ

{

(

β
m

)θ
[

(2κ)−
θ
α

1+ θ
α κ

Γ
(

1
2κ − θ

2α
)

Γ
(

1
2κ + θ

2α
)Γ

(

1+
θ
α

)

]

−1

}

, θ 6= 0,1. (23)

The mean logarithmic deviation index is

MLDκ = lim
θ→0

GEκ (θ) =
1
α

[

γ +ψ
(

1
2κ

)

+ log(2κ)−α log

(

β
m

)

+κ
]

, (24)

whereγ = −ψ (1) is the Euler-Mascheroni constant andψ (z) = Γ ′
(z)/Γ (z) is the digamma function. The Theil (1967)

index is

Tκ = lim
θ→1

GEκ (θ) =
1
α

[

ψ
(

1+
1
α

)

− 1
2

ψ
(

1
2κ

− 1
2α

)

− 1
2

ψ
(

1
2κ

+
1

2α

)

− log(2κ)

+α log

(

β
m

)

− ακ
α +κ

]

.

(25)

Expressions for each GE index other than for the casesθ = 0,1 can be derived by straightforward substitution. In particular,

the bottom-sensitive index is given by

GEκ (−1) =−1
2
+

Γ
(

1+ 1
α
)

Γ
(

1− 1
α
)

2
[

1+
( κ

α
)2
] , (26)

3 Using Stirling approximation for the gamma function,Γ (z) ≈
√

2πzz− 1
2 exp(−z), and taking the limit asκ → 0 in Equation (22), one arrives after

some simplification atG0 = 1−2−
1
α , which is the explicit form of the Gini coefficient for the Weibull distribution (e.g. Kleiber and Kotz 2003, p. 177).

Since the exponential distribution is a special case of the Weibull with shape parameter equal to 1, one directly determines that forκ → 0 andα = 1 the
exponential law is also a special limiting case of theκ-generalized distribution, with a “true” value of the Gini coefficient equal to one half (e.g. Drăgulescu
and Yakovenko 2001).
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whereas the expression for the top-sensitive index is

GEκ (2) =
1
2

{

2
(α +κ)2

α +2κ
Γ
(

2
α
)

Γ 2
(

1
α
)

Γ
(

1
2κ − 1

α
)

Γ
(

1
2κ + 1

α
)

Γ 2
(

1
2κ + 1

2α
)

Γ 2
(

1
2κ − 1

2α
) −1

}

=
1
2

CV 2
κ . (27)

Finally, the Atkinson (1970) class of inequality indices for inequality aversion parameterε = 1− θ , ε > 0 andε 6= 1,

can be easily computed fromGEκ (θ) by exploiting the relationshipAκ (ε) = 1− [ε (ε −1)GEκ (1− ε)+1]
1

1−ε (e.g. Cowell

1995); this yields

Aκ (ε) = 1−
{

(

β
m

)1−ε
[

(2κ)−
1−ε

α

1+ 1−ε
α κ

Γ
(

1
2κ − 1−ε

2α
)

Γ
(

1
2κ + 1−ε

2α
)Γ

(

1+
1− ε

α

)

]}

1
1−ε

. (28)

The limiting form asε → 1 of the equation above isAκ (1) = 1−exp(−MLDκ).4

3 Estimation and comparison of alternative distributions

To test the performance of the proposed new statistical distribution we use data from the 2008 release of the Cross-National

Equivalent File (CNEF), a commercially available databasecompiled by researchers at Cornell University (Burkhauseret al.

2001). The CNEF includes data for Great Britain, Germany andthe United States, and provides cross-nationally comparable

information about income, employment and a number of demographic characteristics.5 The surveys used to build the CNEF

are the British Household Panel Study (BHPS), the German Socio-Economic Panel (GSOEP) and the US Panel Study of

Income Dynamics (PSID). The sample period is 1991–2004 for the BHPS, 1984–2007 for the GSOEP6 and 1980-2005

for the PSID (which switched to biennial data collection after 1997). All calculations are based on the household post-

government income expressed in nominal local currency unit. This variable represents the combined income after taxes and

government transfers of the head, partner and other family members. Since the PSID stopped estimating household taxes

in survey year 1992, from that year onward we use the analogueCNEF variable for which taxes were estimated using the

National Bureau of Economic Research TAXSIM model (Feenberg and Coutts 1993). Observations with zero or negative

incomes have been removed from the samples of each country. This exclusion has affected only a tiny fraction of the data.

Furthermore, incomes have been adjusted for differences inhousehold size using the “modified OECD” equivalence scale

(Hagenaars et al. 1994)7 and weighted by the provided sampling weights.

Estimates by maximum likelihood of the parameters for each country and year are shown in Table 2.8 Also displayed

are the log-likelihood and selected distributional statistics implied by the model parameter estimates, i.e. the mean, Gini

coefficient and Theil index, reported to facilitate a comparison with their corresponding empirical estimates in Table1. The

model fit varied slightly across years and countries but was generally excellent. This is demonstrated by the probability plots

4 Notice that all the measures considered here are functions ofthe distribution moments, whose existence depends on some conditions guaranteeing the
convergence of relevant integrals. As a matter of example, theGini coefficient (22) exists provided the mean of the distribution m =

∫ ∞
0 x f (x;α,β ,κ)dx

converges, which is true whenακ > 1. As shown by Kleiber (1997), the problem of existence of popular inequality measures is common to various parametric
models of income distribution.

5 The CNEF also includes some data for Australia, Canada and Switzerland. They are not used in this paper.
6 Before the reunification of Germany, the GSOEP samples only include households living in the western states of the Federal Republic of Germany.

The first wave of the East German sample was collected in June 1990, before the currency, economic and social union came into force on July 1.
7 The “modified OECD” equivalence scale allocates points to each person in a household by taking the first adult as having a weight of 1 point, whereas

each additional person who is 14 years or older is allocated 0.5 points, and each child under the age of 14 is allocated 0.3 points. Equivalized household
income is derived by dividing total household income by a factor equal to the sum of the equivalence points allocated to the household members. Unlike
the old OECD scale, the modified one gives less weight to any additional household member, allowing for higher economies of scale.

8 The model parameters have been estimated by minimizing the negative of the log-likelihood function via a PORT routine as supplied by theR function
nlminb (R Development Core Team 2011). Convergence was achieved easily within several iterations.
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Table 1Selected standard distributional summary measures for CNEF data, 1980–2007a

Wave
Great Britain (BHPS-CNEF) Germany (GSOEP-CNEF) United States (PSID-CNEF)

Obs Mean
Gini Theil

Obs Mean
Gini Theil

Obs Mean
Gini Theil

Households Individuals (GBP) Households Individuals (EUR) Households Individuals (USD)

1980 — — — — — — — — — — 6,524 18,972
9,788 0.320 0.186
(122) (0.006) (0.017)

1981 — — — — — — — — — — 6,603 18,953
10,848 0.341 0.254

(215) (0.012) (0.043)

1982 — — — — — — — — — — 6,723 19,204
11,473 0.331 0.204

(149) (0.007) (0.020)

1983 — — — — — — — — — — 6,816 19,416
12,401 0.349 0.239

(212) (0.009) (0.037)

1984 — — — — — 5,603 15,372
10,459 0.256 0.120

6,880 19,498
13,210 0.350 0.216

(105) (0.005) (0.006) (170) (0.006) (0.013)

1985 — — — — — 5,045 13,865
10,810 0.270 0.141

7,000 19,729
14,520 0.368 0.275

(123) (0.006) (0.011) (293) (0.012) (0.038)

1986 — — — — — 4,826 13,221
10,969 0.257 0.121

6,984 19,543
15,071 0.362 0.241

(118) (0.005) (0.009) (219) (0.007) (0.018)

1987 — — — — — 4,764 12,986
11,589 0.255 0.116

7,028 19,583
15,737 0.361 0.236

(119) (0.005) (0.006) (231) (0.007) (0.017)

1988 — — — — — 4,569 12,392
11,858 0.256 0.116

7,073 19,603
16,924 0.372 0.278

(118) (0.005) (0.005) (370) (0.013) (0.041)

1989 — — — — — 4,441 11,965
12,348 0.258 0.123

7,091 19,626
18,171 0.381 0.298

(131) (0.005) (0.009) (408) (0.012) (0.040)

1990 — — — — — 4,396 11,825
12,868 0.269 0.138

7,299 19,883
18,858 0.376 0.268

(149) (0.006) (0.010) (311) (0.008) (0.021)

1991 5,485 13,732
8,691 0.281 0.134

4,423 11,822
13,683 0.266 0.127

7,338 19,905
19,219 0.370 0.248

(71) (0.004) (0.004) (150) (0.005) (0.007) (261) (0.006) (0.012)

1992 5,218 13,139
9,342 0.289 0.147

6,320 16,964
13,198 0.281 0.138

7,529 20,275
18,939 0.359 0.241

(90) (0.005) (0.007) (131) (0.005) (0.007) (258) (0.007) (0.015)

1993 5,069 12,684
9,604 0.290 0.141

6,293 16,684
14,062 0.280 0.139

7,817 21,340
20,148 0.358 0.232

(87) (0.004) (0.004) (153) (0.005) (0.008) (260) (0.006) (0.011)

a Numbers in parenthesis: standard errors obtained via 1,000 bootstrap replications
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Table 1continueda

Wave
Great Britain (BHPS-CNEF) Germany (GSOEP-CNEF) United States (PSID-CNEF)

Obs Mean
Gini Theil

Obs Mean
Gini Theil

Obs Mean
Gini Theil

Households Individuals (GBP) Households Individuals (EUR) Households Individuals (USD)

1994 5,039 12,625
9,879 0.286 0.139

6,434 16,976
14,590 0.280 0.139

8,585 23,475
20,291 0.388 0.293

(90) (0.004) (0.005) (164) (0.005) (0.007) (314) (0.007) (0.018)

1995 4,942 12,317
10,407 0.292 0.153

6,598 17,411
14,860 0.287 0.150

8,503 23,055
20,918 0.376 0.271

(112) (0.005) (0.009) (179) (0.006) (0.010) (297) (0.007) (0.016)

1996 5,014 12,588
10,804 0.286 0.139

6,518 17,009
15,224 0.280 0.140

8,464 22,952
21,933 0.371 0.258

(99) (0.004) (0.005) (176) (0.006) (0.008) (302) (0.006) (0.015)

1997 6,044 14,951
11,431 0.284 0.138

6,439 16,673
15,458 0.274 0.134

6,278 17,422
24,174 0.357 0.232

(110) (0.004) (0.005) (183) (0.006) (0.008) (314) (0.006) (0.010)

1998 5,946 14,680
11,878 0.294 0.161

7,261 18,315
15,622 0.276 0.136

— — — — —
(131) (0.005) (0.011) (209) (0.007) (0.011)

1999 8,693 21,313
12,364 0.284 0.146

7,012 17,605
16,161 0.274 0.132

6,947 19,553
23,817 0.395 0.308

(122) (0.005) (0.008) (172) (0.005) (0.006) (379) (0.008) (0.035)

2000 8,594 21,230
13,180 0.279 0.139

12,575 30,771
16,889 0.275 0.134

— — — — —
(130) (0.005) (0.008) (178) (0.005) (0.006)

2001 10,354 25,923
13,965 0.276 0.140

11,338 27,791
17,262 0.275 0.134

7,357 20,434
29,178 0.393 0.299

(138) (0.005) (0.007) (131) (0.004) (0.005) (476) (0.008) (0.017)

2002 8,706 21,951
13,190 0.305 0.161

12,050 29,644
17,658 0.293 0.155

— — — — —
(136) (0.004) (0.005) (150) (0.004) (0.006)

2003 8,699 21,756
15,126 0.268 0.130

11,458 27,873
18,151 0.290 0.144

7,749 21,103
29,260 0.382 0.280

(147) (0.005) (0.007) (147) (0.004) (0.004) (456) (0.008) (0.022)

2004 8,424 21,007
15,810 0.276 0.141

11,202 27,027
18,041 0.291 0.146

— — — — —
(184) (0.006) (0.009) (164) (0.004) (0.005)

2005 — — — — — 10,868 25,863
18,230 0.299 0.154

7,960 21,588
32,079 0.413 0.367

(192) (0.005) (0.006) (658) (0.011) (0.047)

2006 — — — — — 11,888 27,668
18,345 0.316 0.177

— — — — —
(243) (0.006) (0.010)

2007 — — — — — 11,119 25,729
18,865 0.312 0.176

— — — — —
(206) (0.005) (0.009)

a Numbers in parenthesis: standard errors obtained via 1,000 bootstrap replications
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Table 2Estimatedκ-generalized parameters for CNEF data, 1980–2007

Wave
Parametersa − logLb Meanc Ginid Theile

α̂ β̂ κ̂

Great Britain (BHPS-CNEF)

1991 2.584 (0.027) 8,971 (45) 0.650 (0.020) 131,812 8,701 0.284 0.139
1992 2.518 (0.026) 9,604 (49) 0.643 (0.020) 128,916 9,324 0.290 0.145
1993 2.400 (0.025) 10,057 (53) 0.565 (0.019) 124,676 9,609 0.292 0.144
1994 2.483 (0.026) 10,259 (53) 0.606 (0.019) 124,508 9,876 0.288 0.142
1995 2.504 (0.027) 10,633 (56) 0.656 (0.020) 122,031 10,367 0.293 0.149
1996 2.525 (0.027) 11,162 (58) 0.635 (0.020) 124,901 10,807 0.288 0.142
1997 2.539 (0.027) 11,822 (61) 0.628 (0.020) 124,295 11,419 0.285 0.140
1998 2.497 (0.026) 12,141 (63) 0.644 (0.019) 123,158 11,800 0.292 0.147
1999 2.622 (0.029) 12,588 (66) 0.686 (0.021) 121,336 12,309 0.285 0.141
2000 2.617 (0.029) 13,533 (70) 0.656 (0.021) 120,871 13,129 0.282 0.136
2001 2.670 (0.029) 14,285 (72) 0.670 (0.020) 119,903 13,881 0.278 0.133
2002 2.046 (0.020) 14,124 (80) 0.399 (0.017) 113,616 13,127 0.313 0.162
2003 2.784 (0.031) 15,481 (77) 0.694 (0.021) 116,036 15,070 0.271 0.126
2004 2.759 (0.031) 16,033 (82) 0.715 (0.021) 113,404 15,709 0.276 0.132

Germany (GSOEP-CNEF)

1984 3.276 (0.001) 10,378 (1) 0.894 (3e-04) 596,373,508 10,436 0.257 0.118
1985 2.981 (5e-04) 10,783 (1) 0.800 (3e-04) 604,491,927 10,707 0.268 0.126
1986 3.003 (5e-04) 11,154 (1) 0.743 (3e-04) 610,107,762 10,911 0.258 0.116
1987 3.083 (5e-04) 11,742 (1) 0.779 (3e-04) 615,237,096 11,557 0.256 0.115
1988 3.020 (5e-04) 12,044 (1) 0.765 (3e-04) 622,455,192 11,837 0.260 0.117
1989 2.984 (5e-04) 12,578 (1) 0.733 (3e-04) 629,596,037 12,282 0.258 0.116
1990 2.745 (4e-04) 13,147 (1) 0.671 (3e-04) 643,844,471 12,741 0.271 0.126
1991 2.830 (4e-04) 13,991 (1) 0.705 (3e-04) 655,533,950 13,635 0.268 0.124
1992 2.545 (3e-04) 13,663 (1) 0.618 (3e-04) 827,719,391 13,160 0.283 0.137
1993 2.547 (3e-04) 14,499 (1) 0.628 (2e-04) 837,914,115 14,001 0.285 0.139
1994 2.596 (3e-04) 14,961 (1) 0.662 (3e-04) 848,064,767 14,549 0.284 0.140
1995 2.474 (3e-04) 15,292 (1) 0.617 (2e-04) 850,741,479 14,768 0.291 0.145
1996 2.564 (3e-04) 15,662 (1) 0.640 (2e-04) 853,700,688 15,160 0.285 0.139
1997 2.651 (3e-04) 15,881 (1) 0.663 (2e-04) 859,137,399 15,413 0.279 0.134
1998 2.606 (3e-04) 16,110 (1) 0.638 (2e-04) 861,601,716 15,562 0.280 0.134
1999 2.721 (4e-04) 16,453 (1) 0.715 (3e-04) 865,437,108 16,144 0.280 0.136
2000 2.653 (4e-04) 17,285 (1) 0.677 (3e-04) 869,878,074 16,839 0.281 0.136
2001 2.713 (4e-04) 17,657 (1) 0.691 (3e-04) 868,448,331 17,225 0.277 0.133
2002 2.497 (3e-04) 18,026 (1) 0.658 (3e-04) 874,399,292 17,592 0.294 0.150
2003 2.540 (3e-04) 18,574 (1) 0.672 (3e-04) 876,321,686 18,163 0.292 0.148
2004 2.412 (3e-04) 18,733 (1) 0.591 (2e-04) 875,663,423 18,013 0.294 0.148
2005 2.418 (3e-04) 18,717 (1) 0.639 (3e-04) 875,106,299 18,239 0.301 0.156
2006 2.308 (3e-04) 18,592 (1) 0.651 (2e-04) 874,183,908 18,310 0.316 0.174
2007 2.417 (3e-04) 18,918 (1) 0.706 (3e-04) 878,491,225 18,826 0.311 0.171

United States (PSID-CNEF)

1980 2.223 (0.005) 10,022 (12) 0.595 (0.004) 2,920,908 9,750 0.318 0.174
1981 2.200 (0.005) 10,775 (13) 0.627 (0.004) 2,917,591 10,609 0.326 0.186
1982 2.108 (0.004) 11,802 (14) 0.544 (0.004) 2,942,808 11,386 0.325 0.181
1983 2.035 (0.004) 12,488 (17) 0.583 (0.004) 2,952,852 12,277 0.342 0.204
1984 1.945 (0.004) 13,538 (17) 0.532 (0.004) 3,204,164 13,175 0.347 0.208
1985 1.987 (0.004) 14,248 (19) 0.622 (0.004) 3,217,831 14,287 0.357 0.226
1986 1.922 (0.004) 15,143 (20) 0.568 (0.004) 3,184,868 14,972 0.357 0.223
1987 1.928 (0.004) 15,853 (21) 0.567 (0.004) 3,168,692 15,660 0.356 0.222
1988 1.924 (0.004) 16,709 (23) 0.588 (0.004) 3,157,653 16,649 0.361 0.230
1989 1.962 (0.004) 17,463 (23) 0.658 (0.004) 3,581,257 17,841 0.369 0.246
1990 1.956 (0.004) 18,308 (24) 0.656 (0.004) 3,601,127 18,704 0.369 0.247
1991 1.925 (0.004) 18,966 (25) 0.620 (0.004) 3,584,341 19,152 0.367 0.241
1992 1.980 (0.004) 18,875 (23) 0.602 (0.004) 3,623,369 18,795 0.354 0.221
1993 1.912 (0.004) 20,313 (26) 0.559 (0.004) 3,425,653 20,039 0.357 0.223
1994 1.842 (0.004) 19,605 (26) 0.617 (0.003) 3,515,388 20,004 0.382 0.262
1995 1.901 (0.004) 20,387 (26) 0.623 (0.004) 3,665,639 20,677 0.372 0.248
1996 1.956 (0.004) 21,337 (28) 0.655 (0.004) 3,658,714 21,787 0.369 0.246
1997 2.013 (0.005) 23,796 (37) 0.650 (0.005) 2,386,326 24,072 0.359 0.230
1999 1.760 (0.004) 23,101 (37) 0.589 (0.004) 2,787,289 23,563 0.391 0.275
2001 1.978 (0.005) 27,085 (41) 0.760 (0.005) 2,906,628 28,981 0.389 0.288
2003 1.815 (0.004) 28,704 (42) 0.584 (0.004) 3,183,241 28,962 0.380 0.256
2005 1.774 (0.003) 30,029 (38) 0.637 (0.003) 4,440,930 31,299 0.400 0.293

a Numbers in parenthesis: estimated standard errors
b Negative of the log-likelihood function corresponding to the best set of parameters found
c Analytic value obtained by substituting the estimated parameters into Equation (16) withr = 1
d Analytic value obtained by substituting the estimated parameters into Equation (22)
e Analytic value obtained by substituting the estimated parameters into Equation (25)
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shown in Figure 1 for the most recent data available (for brevity, we do not report plots for each year and country but they are

available from the authors on request). These are plots of the cumulative probabilities of income expected given the estimated

κ-generalized parameters against the cumulative probabilities of income observed in the data. Excellent goodness-of-fit is

demonstrated by the fact that every plot lies extremely close to the 45◦-ray from the origin, and much closer than is typically

observed in plots of this type.

For comparison, the results of fitting other existing three-parameter distributions able to accommodate sufficient flexibil-

ity to model heterogeneous income data are given in Tables 3 and 4. Namely, these models are the Singh-Maddala (1976)

distribution

F (x;a,b,q) = 1−
[

1+
( x

b

)a]−q
, x > 0, a,b,q > 0, (29)

and the Dagum (1977) type I distribution

F (x;a,b, p) =

[

1+
( x

b

)−a
]−p

, x > 0, a,b, p > 0, (30)

which are closely related (Kleiber 1996). The corresponding densities are

f (x;a,b,q) =
aqxa−1

ba
[

1+
(

x
b

)a]1+q (31)

and

f (x;a,b, p) =
apxap−1

bap
[

1+
(

x
b

)a]p+1 . (32)

In order to decide which distribution better models the data, we adopt the Vuong (1989) testing approach to model

selection for non-nested hypothesis. This approach sets the model selection criterion in a hypothesis testing framework. More

specifically, it tests whether the models under consideration are equally close to the “true” model. The null hypothesisstates

that both models are equivalent against the alternative that H f is better thanHg or Hg is better thanH f . The proposed statistic

is asymptotically normal under the null hypothesis and is quite straightforward to compute. Tables 5 and 6 report the results

of the comparison for the three candidate models. As can be seen, if one takes the 5% as the relevant significance level only

in two cases (i.e. when comparing to the Dagum type I distribution for Great Britain and Germany) the present distribution

is selected by the Vuong test as the worse model a high percentage of times. However, if one lowers the significance level at

1% the test concludes that the competing models are always atleast observationally equivalent.

To further explore the performance of the above theoreticaldensities, we carry out a detailed goodness-of-fit analysis

by using six waves of GSOEP-CNEF data for the years 2002 through 2007. Due to the inclusion of a special sample for

high-income households (“Sample G”), these waves are likely to offer a more reliable picture of the distribution of income,

especially for the top percentiles that are usually under-represented in sample surveys.9 More specifically, we run a battery

of widely-used goodness-of-fit tests based on empirical distribution function (EDF) statistics: Kolmogorv-Smirnov (KS),

9 Sample G surveyed since 2002 is the so-called “high-income sample”, selected independently from all other subsamples from the population of private
households (see Haisken-DeNew and Frick 2005 for a more detailed description of the various subsamples in the GSOEP). The original selection scheme
required that the responding household had a monthly income ofat least DM 7,500 (EUR 3,835) in 2001. Starting in 2003, the selection scheme was
changed in such a way that only households with a net monthly income of at least EUR 4,500 were followed. Sample G represents about 7.3% individuals
in private households with the highest income, with a small number of them belonging to the top 1% of the income distribution. Nevertheless, none of
these individuals would belong to the “economic elite” as defined in Bach et al. (2009), where the GSOEP data have been integrated by official income tax
statistics to shed more light on very high German incomes.
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[a] Great Britain (BHPS-CNEF) 2004
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[b] Germany (GSOEP-CNEF) 2007
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[c] United States (PSID-CNEF) 2005

Fig. 1 Probability plots forκ-generalized estimates



12

Table 3Estimated Singh-Maddala parameters for CNEF data, 1980–2007

Wave
Parametersa − logLb Meanc Ginid Theile

â b̂ q̂

Great Britain (BHPS-CNEF)

1991 2.797 (0.033) 10,406 (219) 1.851 (0.073) 131,840 8,679 0.282 0.133
1992 2.729 (0.032) 11,193 (237) 1.859 (0.072) 128,959 9,303 0.288 0.139
1993 2.583 (0.031) 12,759 (328) 2.209 (0.101) 124,695 9,591 0.291 0.140
1994 2.669 (0.032) 12,542 (293) 2.053 (0.087) 124,548 9,854 0.287 0.137
1995 2.717 (0.032) 12,254 (258) 1.808 (0.070) 122,090 10,344 0.292 0.143
1996 2.735 (0.033) 13,106 (294) 1.894 (0.079) 124,927 10,781 0.286 0.137
1997 2.752 (0.033) 13,897 (306) 1.907 (0.078) 124,330 11,396 0.284 0.135
1998 2.712 (0.032) 14,041 (293) 1.828 (0.070) 123,223 11,778 0.291 0.142
1999 2.856 (0.035) 14,055 (282) 1.701 (0.065) 121,388 12,280 0.283 0.135
2000 2.835 (0.034) 15,588 (327) 1.827 (0.073) 120,921 13,101 0.280 0.130
2001 2.894 (0.035) 16,206 (318) 1.771 (0.068) 119,979 13,855 0.277 0.128
2002 2.107 (0.024) 26,666 (1,100) 4.177 (0.269) 113,688 13,123 0.314 0.161
2003 3.010 (0.037) 17,295 (332) 1.718 (0.067) 116,107 15,039 0.269 0.121
2004 3.010 (0.037) 17,398 (319) 1.604 (0.059) 113,483 15,679 0.274 0.127

Germany (GSOEP-CNEF)

1984 3.674 (0.001) 9,987 (2) 1.170 (0.001) 596,498,624 10,408 0.254 0.111
1985 3.309 (0.001) 10,885 (2) 1.348 (0.001) 604,921,936 10,688 0.266 0.120
1986 3.322 (0.001) 11,660 (3) 1.486 (0.001) 610,341,874 10,894 0.256 0.110
1987 3.404 (0.001) 12,092 (3) 1.421 (0.001) 615,479,419 11,533 0.254 0.109
1988 3.285 (0.001) 12,772 (3) 1.519 (0.001) 622,769,488 11,807 0.257 0.111
1989 3.274 (0.001) 13,350 (3) 1.539 (0.001) 629,954,047 12,263 0.257 0.111
1990 2.957 (5e-04) 15,008 (4) 1.802 (0.001) 644,533,135 12,726 0.270 0.121
1991 3.084 (0.001) 15,316 (4) 1.648 (0.001) 655,882,675 13,610 0.266 0.118
1992 2.768 (4e-04) 16,133 (4) 1.933 (0.001) 827,915,291 13,137 0.282 0.132
1993 2.735 (4e-04) 17,429 (5) 1.986 (0.001) 838,404,571 13,974 0.283 0.133
1994 2.795 (4e-04) 17,435 (5) 1.858 (0.001) 848,448,940 14,513 0.282 0.133
1995 2.645 (4e-04) 18,806 (5) 2.058 (0.001) 851,342,940 14,741 0.289 0.139
1996 2.738 (4e-04) 18,891 (5) 1.991 (0.001) 854,223,939 15,126 0.282 0.132
1997 2.824 (4e-04) 18,790 (5) 1.921 (0.001) 859,740,228 15,376 0.277 0.127
1998 2.773 (4e-04) 19,563 (5) 2.030 (0.001) 862,119,987 15,527 0.278 0.128
1999 2.924 (4e-04) 18,576 (5) 1.729 (0.001) 865,792,915 16,090 0.276 0.127
2000 2.838 (4e-04) 20,179 (5) 1.861 (0.001) 870,375,877 16,793 0.278 0.129
2001 2.937 (4e-04) 19,820 (5) 1.727 (0.001) 868,844,526 17,183 0.275 0.126
2002 2.705 (4e-04) 20,896 (5) 1.824 (0.001) 874,735,648 17,546 0.292 0.143
2003 2.772 (4e-04) 20,960 (5) 1.735 (0.001) 876,470,237 18,113 0.290 0.141
2004 2.602 (4e-04) 23,161 (7) 2.089 (0.001) 875,876,862 17,977 0.293 0.142
2005 2.635 (4e-04) 21,826 (6) 1.846 (0.001) 875,165,918 18,189 0.298 0.149
2006 2.540 (4e-04) 21,095 (6) 1.732 (0.001) 874,325,246 18,262 0.314 0.167
2007 2.668 (4e-04) 20,518 (5) 1.579 (0.001) 878,598,598 18,762 0.309 0.163

United States (PSID-CNEF)

1980 2.443 (0.006) 11,961 (63) 1.913 (0.017) 2,920,987 9,729 0.317 0.169
1981 2.449 (0.006) 12,162 (58) 1.719 (0.014) 2,918,058 10,593 0.326 0.181
1982 2.308 (0.006) 14,944 (85) 2.115 (0.019) 2,943,232 11,371 0.325 0.177
1983 2.236 (0.006) 15,314 (90) 1.955 (0.017) 2,952,943 12,246 0.341 0.198
1984 2.133 (0.005) 17,629 (110) 2.154 (0.020) 3,204,171 13,153 0.347 0.204
1985 2.209 (0.005) 16,403 (87) 1.740 (0.014) 3,218,064 14,252 0.357 0.220
1986 2.099 (0.005) 19,294 (113) 2.041 (0.017) 3,185,647 14,937 0.357 0.217
1987 2.119 (0.005) 19,791 (117) 1.987 (0.017) 3,169,123 15,629 0.357 0.217
1988 2.126 (0.005) 20,221 (115) 1.882 (0.015) 3,158,121 16,614 0.361 0.224
1989 2.181 (0.005) 19,499 (95) 1.635 (0.012) 3,582,061 17,785 0.368 0.237
1990 2.171 (0.005) 20,584 (103) 1.652 (0.012) 3,601,690 18,637 0.369 0.237
1991 2.123 (0.005) 22,394 (120) 1.792 (0.014) 3,584,913 19,089 0.367 0.232
1992 2.169 (0.005) 22,924 (117) 1.893 (0.014) 3,624,536 18,747 0.354 0.214
1993 2.066 (0.005) 27,022 (158) 2.172 (0.018) 3,427,034 19,986 0.357 0.216
1994 2.002 (0.004) 24,253 (129) 1.887 (0.014) 3,517,721 19,932 0.381 0.251
1995 2.069 (0.005) 24,935 (128) 1.871 (0.013) 3,667,720 20,599 0.371 0.237
1996 2.147 (0.005) 24,807 (126) 1.732 (0.013) 3,659,886 21,685 0.367 0.233
1997 2.187 (0.006) 28,364 (175) 1.810 (0.017) 2,387,432 23,961 0.356 0.218
1999 1.917 (0.005) 29,854 (209) 2.000 (0.018) 2,788,055 23,454 0.389 0.262
2001 2.203 (0.006) 27,915 (143) 1.402 (0.010) 2,907,491 28,780 0.386 0.268
2003 1.963 (0.005) 37,841 (242) 2.079 (0.018) 3,184,520 28,838 0.377 0.244
2005 1.945 (0.004) 35,903 (180) 1.773 (0.012) 4,442,936 31,148 0.398 0.279

a Numbers in parenthesis: estimated standard errors
b Negative of the log-likelihood function corresponding to the best set of parameters found
c Analytic value obtained by substituting the estimated parameters into Equation (6.47) of Kleiber and Kotz (2003, p. 201)
d Analytic value obtained by substituting the estimated parameters into Equation (6.69) of Kleiber and Kotz (2003, p. 206)
e Analytic value obtained by substituting the estimated parameters into the relevant expression given by Kleiber and Kotz (2003, p. 206)
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Table 4Estimated Dagum type I parameters for CNEF data, 1980–2007

Wave
Parametersa − logLb Meanc Ginid Theile

â b̂ p̂

Great Britain (BHPS-CNEF)

1991 4.171 (0.059) 9,608 (98) 0.584 (0.015) 131,801 8,683 0.283 0.137
1992 4.134 (0.059) 10,405 (107) 0.567 (0.015) 128,903 9,293 0.288 0.142
1993 4.184 (0.065) 11,059 (119) 0.532 (0.015) 124,669 9,618 0.292 0.145
1994 4.240 (0.063) 11,270 (115) 0.538 (0.014) 124,490 9,849 0.287 0.140
1995 4.109 (0.060) 11,584 (121) 0.562 (0.015) 122,015 10,308 0.291 0.145
1996 4.129 (0.062) 12,011 (129) 0.575 (0.016) 124,893 10,792 0.287 0.141
1997 4.209 (0.063) 12,811 (135) 0.562 (0.015) 124,284 11,395 0.284 0.138
1998 4.160 (0.062) 13,306 (138) 0.550 (0.015) 123,143 11,734 0.290 0.144
1999 4.154 (0.061) 13,491 (142) 0.590 (0.016) 121,322 12,241 0.283 0.137
2000 4.275 (0.063) 14,643 (149) 0.566 (0.015) 120,849 13,063 0.279 0.133
2001 4.376 (0.064) 15,557 (152) 0.556 (0.015) 119,878 13,774 0.275 0.129
2002 4.699 (0.080) 17,565 (162) 0.360 (0.009) 113,489 13,031 0.309 0.161
2003 4.468 (0.066) 16,722 (162) 0.571 (0.015) 116,017 14,952 0.267 0.122
2004 4.347 (0.065) 17,254 (174) 0.583 (0.016) 113,394 15,567 0.272 0.126

Germany (GSOEP-CNEF)

1984 4.218 (0.001) 10,215 (2) 0.796 (3e-04) 596,407,810 10,373 0.253 0.110
1985 4.307 (0.001) 11,223 (2) 0.657 (2e-04) 604,538,125 10,600 0.263 0.119
1986 4.467 (0.001) 11,586 (2) 0.646 (2e-04) 610,066,211 10,856 0.256 0.112
1987 4.461 (0.001) 12,115 (2) 0.668 (3e-04) 615,219,922 11,487 0.253 0.109
1988 4.498 (0.001) 12,643 (2) 0.632 (2e-04) 622,412,402 11,748 0.256 0.112
1989 4.559 (0.001) 13,279 (2) 0.614 (2e-04) 629,558,310 12,198 0.255 0.111
1990 4.644 (0.001) 14,563 (2) 0.522 (2e-04) 643,563,082 12,582 0.267 0.121
1991 4.446 (0.001) 14,935 (2) 0.592 (2e-04) 655,455,299 13,545 0.265 0.120
1992 4.218 (0.001) 14,724 (2) 0.567 (2e-04) 827,593,618 13,140 0.283 0.137
1993 4.350 (0.001) 16,021 (2) 0.529 (2e-04) 837,628,474 13,901 0.282 0.135
1994 4.247 (0.001) 16,248 (2) 0.563 (2e-04) 847,863,227 14,457 0.282 0.136
1995 4.330 (0.001) 17,142 (2) 0.508 (2e-04) 850,369,478 14,635 0.288 0.141
1996 4.362 (0.001) 17,327 (2) 0.529 (2e-04) 853,386,810 15,034 0.281 0.135
1997 4.450 (0.001) 17,520 (2) 0.534 (2e-04) 858,836,472 15,262 0.275 0.129
1998 4.447 (0.001) 17,812 (2) 0.527 (2e-04) 861,260,138 15,432 0.277 0.130
1999 4.248 (0.001) 17,597 (2) 0.596 (2e-04) 865,237,809 16,021 0.276 0.130
2000 4.342 (0.001) 18,854 (2) 0.556 (2e-04) 869,602,555 16,691 0.277 0.131
2001 3.920 (0.001) 17,262 (2) 0.726 (2e-04) 868,608,351 17,089 0.279 0.135
2002 4.069 (0.001) 19,544 (2) 0.570 (2e-04) 874,260,376 17,500 0.292 0.146
2003 3.983 (0.001) 19,655 (3) 0.611 (2e-04) 876,263,599 18,127 0.291 0.146
2004 4.131 (0.001) 20,542 (3) 0.540 (2e-04) 875,539,021 17,989 0.293 0.147
2005 3.869 (0.001) 19,885 (3) 0.601 (2e-04) 875,061,125 18,249 0.300 0.156
2006 3.657 (0.001) 19,768 (3) 0.607 (2e-04) 874,169,722 18,304 0.316 0.173
2007 3.635 (0.001) 19,664 (3) 0.651 (2e-04) 878,459,102 18,791 0.310 0.168

United States (PSID-CNEF)

1980 3.649 (0.012) 10,725 (29) 0.587 (0.004) 2,921,084 9,793 0.320 0.178
1981 3.523 (0.012) 11,467 (33) 0.603 (0.004) 2,917,761 10,635 0.327 0.188
1982 3.687 (0.013) 13,079 (35) 0.535 (0.003) 2,943,118 11,441 0.327 0.185
1983 3.376 (0.011) 13,500 (40) 0.579 (0.004) 2,953,037 12,348 0.345 0.210
1984 3.369 (0.011) 14,910 (45) 0.550 (0.003) 3,204,765 13,303 0.352 0.217
1985 3.167 (0.010) 15,156 (48) 0.611 (0.004) 3,218,086 14,361 0.360 0.231
1986 3.344 (0.011) 17,063 (48) 0.532 (0.003) 3,185,001 15,002 0.358 0.225
1987 3.289 (0.011) 17,552 (53) 0.553 (0.003) 3,169,086 15,747 0.359 0.227
1988 3.211 (0.011) 18,309 (56) 0.570 (0.003) 3,157,932 16,727 0.363 0.234
1989 3.082 (0.009) 18,690 (56) 0.614 (0.003) 3,581,518 17,836 0.368 0.244
1990 3.059 (0.009) 19,492 (59) 0.620 (0.004) 3,601,377 18,726 0.370 0.246
1991 3.127 (0.010) 20,600 (61) 0.588 (0.003) 3,584,550 19,197 0.368 0.243
1992 3.355 (0.010) 21,068 (55) 0.548 (0.003) 3,623,421 18,772 0.353 0.220
1993 3.442 (0.011) 23,466 (60) 0.501 (0.003) 3,425,215 19,985 0.356 0.221
1994 3.201 (0.009) 22,743 (59) 0.516 (0.003) 3,514,866 19,775 0.376 0.250
1995 3.251 (0.009) 23,292 (59) 0.530 (0.003) 3,665,156 20,488 0.368 0.239
1996 3.146 (0.009) 23,352 (64) 0.585 (0.003) 3,658,546 21,683 0.367 0.240
1997 3.322 (0.012) 26,535 (82) 0.557 (0.003) 2,386,023 23,869 0.354 0.222
1999 3.014 (0.010) 26,203 (87) 0.541 (0.003) 2,787,106 23,541 0.391 0.275
2001 2.860 (0.009) 28,096 (99) 0.678 (0.004) 2,906,850 28,703 0.384 0.271
2003 3.187 (0.010) 33,079 (94) 0.517 (0.003) 3,182,711 28,817 0.377 0.252
2005 2.947 (0.008) 33,959 (91) 0.555 (0.003) 4,440,792 31,052 0.396 0.283

a Numbers in parenthesis: estimated standard errors
b Negative of the log-likelihood function corresponding to the best set of parameters found
c Analytic value obtained by substituting the estimated parameters into Equation (6.91) of Kleiber and Kotz (2003, p. 214)
d Analytic value obtained by substituting the estimated parameters into Equation (6.103) of Kleiber and Kotz (2003, p. 217)
e Analytic value obtained by substituting the estimated parameters into Equation (11) of Jenkins (2009, p. 395) withq = 1
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Table 5Vuong model selection test for CNEF data, 1980–2007a

Year
Great Britain (BHPS-CNEF) Germany (GSOEP-CNEF) United States (PSID-CNEF)

κ-gen vs. SM κ-gen vs. D κ-gen vs. SM κ-gen vs. D κ-gen vs. SM κ-gen vs. D
Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value

1980 — — — — — — — — 0.258 0.398 1.486 0.069
1981 — — — — — — — — 1.147 0.126 1.696 0.045∗

1982 — — — — — — — — 1.465 0.071 2.194 0.014∗

1983 — — — — — — — — 0.300 0.382 1.490 0.068
1984 — — — — 1.647 0.050∗ 0.687 0.246 0.026 0.489 3.263 0.001∗∗

1985 — — — — 4.324 1e-05∗∗ 0.702 0.241 0.648 0.258 2.264 0.012∗

1986 — — — — 2.423 0.008∗∗ -1.082 0.140 2.614 0.004∗∗ 1.028 0.152
1987 — — — — 2.960 0.002∗∗ -0.443 0.329 1.542 0.062 3.125 0.001∗∗

1988 — — — — 3.543 2e-04∗∗ -0.772 0.220 1.292 0.098 2.483 0.007∗∗

1989 — — — — 3.571 2e-04∗∗ -0.645 0.260 2.133 0.016∗ 3.398 3e-04∗∗

1990 — — — — 5.572 1e-08∗∗ -1.779 0.038∗ 1.743 0.041∗ 3.350 4e-04∗∗

1991 2.413 0.008∗∗ -2.429 0.008∗∗ 3.560 2e-04∗∗ -1.285 0.099 1.661 0.048∗ 2.038 0.021∗

1992 3.147 0.001∗∗ -2.235 0.013∗ 1.862 0.031∗ -2.661 0.004∗∗ 3.636 1e-04∗∗ 0.453 0.325
1993 1.917 0.028∗ -1.182 0.119 4.155 2e-05∗∗ -2.575 0.005∗∗ 4.511 3e-06∗∗ -2.092 0.018∗

1994 3.444 3e-04∗∗ -2.576 0.005∗∗ 3.376 4e-04∗∗ -2.499 0.006∗∗ 6.907 2e-12∗∗ -1.983 0.024∗

1995 4.107 2e-05∗∗ -2.224 0.013∗ 4.424 5e-06∗∗ -2.871 0.002∗∗ 5.915 2e-09∗∗ -1.965 0.025∗

1996 2.052 0.020∗ -1.845 0.033∗ 3.932 4e-05∗∗ -2.235 0.013∗ 3.320 5e-04∗∗ -1.178 0.119
1997 2.743 0.003∗∗ -1.616 0.053 4.511 3e-06∗∗ -2.067 0.019∗ 4.091 2e-05∗∗ -1.581 0.057
1998 4.635 2e-06∗∗ -1.819 0.034∗ 3.029 0.001∗∗ -2.185 0.014∗ — — — —
1999 3.525 2e-04∗∗ -1.862 0.031∗ 2.893 0.002∗∗ -2.534 0.006∗∗ 2.957 0.002∗∗ -1.309 0.095
2000 3.472 3e-04∗∗ -2.505 0.006∗∗ 3.500 2e-04∗∗ -1.735 0.041∗ — — — —
2001 5.089 2e-07∗∗ -2.151 0.016∗ 5.020 3e-07∗∗ 2.373 0.009∗∗ 3.276 0.001∗∗ 2.079 0.019∗

2002 6.801 1e-11∗∗ -5.649 1e-08∗∗ 3.905 5e-05∗∗ -2.667 0.004∗∗ — — — —
2003 4.943 4e-07∗∗ -1.605 0.054 2.126 0.017∗ -3.469 3e-04∗∗ 4.247 1e-05∗∗ -2.829 0.002∗∗

2004 5.035 2e-07∗∗ -0.890 0.187 2.570 0.005∗∗ -2.301 0.011∗ — — — —
2005 — — — — 0.749 0.227 -2.272 0.012∗ 5.270 1e-07∗∗ -0.772 0.220
2006 — — — — 1.281 0.100 -0.516 0.303 — — — —
2007 — — — — 1.233 0.109 -1.569 0.058 — — — —

a κ-gen =κ-generalized; SM = Singh-Maddala; D = Dagum type I. The null hypothesis is that the compared models are equivalent. Star codes for
significance:∗∗ = 1%,∗ = 5%

Kuiper (KUI), supremum class Anderson-Darling (AD), Cramér-von Mises (CVM) and quadratic class Anderson-Darling

(AD2).10 We also compute the so-called “upper tail” Anderson-Darling statistic, both in its supremum (ADup) and quadratic

(AD2up) version, which is convenient to use when it is necessary to test the goodness-of-fit of a distribution in the righttail

of the data, while the fit in the left tail or around the median is of less importance (see Chernobai et al. 2005). Allp-values

are derived by making use of a nonparametric bootstrap method (Efron and Tibshirani 1993).11 That is, given ourn-vector

of incomes, we generate 1,000 synthetic datasets by drawingnew sequences ofn observations uniformly at random from the

original data. We then fit each synthetic dataset individually to the three distributions and calculate the test statistics for each

one relative to its own models. Then we simply count what fraction of the time each resulting statistic is larger than the value

for the empirical data. This fraction is thep-value for each fit, and can be interpreted in the standard way: if it is larger than

the chosen significance level, then the difference between the empirical data and the model can be attributed to statistical

fluctuations alone; if it is smaller, the model is not a plausible fit to the data.12

Table 7 reports the goodness-of-fit results for the six sets of data.P-values are always larger than 0.05, meaning that

(if one takes 5% as the relevant significance level) in all cases the data can be statistically described by the three densities.

10 For more formal definitions see Stephens (1986). Notice, however, that within the class of supremum-type statistics for goodness-of-fit the KS distance
tends to be more sensitive near the center of the distributionwith respect to the tails, whereas the KUI and AD tests provide equal sensitivity at the tails as
at the median. Similarly for the quadratic-type goodness-of-fit statistics, the AD2 distance places more weight on observations in the tails of the distribution
than the CVM criterion. Again, the KS test is known to be less powerful than all the other tests in all practical situations(e.g. Thode 2002).

11 One of the features of the EDF statistics is that their distributions are known for datasets truly drawn from any given distribution. This allows one to
write down an explicit expression in the limit of largen for the p-value. Unfortunately, this expression is only correct so long as the underlying distribution
is fixed (see e.g. Stephens 1986). If, as in our case, the underlying distribution is itself determined by fitting to the dataand hence varies from one dataset to
the next, we can not use this approach, which is why the procedure described here is instead recommended.

12 Note crucially that for each synthetic dataset we compute thetest statistics relative to the best-fit models for that dataset, not relative to the distributions
fitted to the original data. In this way we ensure that we are performing for each synthetic dataset the same calculations that we performed for the real data,
a crucial requirement if we wish to get unbiased estimates of the p-values.
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Table 6Conclusions drawn from Vuong testing approach to model selectiona

Country Conclusion
Comparison at the 5% significance level Comparison at the 1% significance level
H f = κ-gen H f = κ-gen H f = κ-gen H f = κ-gen
Hg = SM Hg = D Hg = SM Hg = D

Great Britain
H f better 1.000 0.000 0.857 0.000
Hg better 0.000 0.714 0.000 0.286

(BHPS-CNEF)
H f andHg equivalent 0.000 0.286 0.143 0.714

Germany
H f better 0.875 0.042 0.750 0.042
Hg better 0.000 0.583 0.000 0.292

(GSOEP-CNEF)
H f andHg equivalent 0.125 0.375 0.250 0.667

United States
H f better 0.636 0.455 0.500 0.227
Hg better 0.000 0.182 0.000 0.045

(PSID-CNEF)
H f andHg equivalent 0.364 0.364 0.500 0.727

a κ-gen =κ-generalized; SM = Singh-Maddala; D = Dagum type I. The numbers denote the (relative) frequency of times that a given
conclusion is reached for each pairwise model comparison. Figures might not add up because of rounding

However, fitting theκ-generalized distribution results both in lower values of the test statistics and higherp-values, thus

offering superior performance over the Singh-Maddala and Dagum type I models. In particular, this conclusion is strongly

supported by the “upper tail” Anderson-Darling tests.

The above evidence holds vis-à-vis a further check involving a class of fit criteria havinga distributional interpretation

that is close to the GE inequality indices (Bandyopadhyay etal. 2009). Members of this class are given by

Jα (x,y) =
1

n(α2−α)

n

∑
i=1

[

(

xi

µ1

)α (

yi

µ1

)1−α
−1

]

, (33)

wherex is the sample vector of incomes,y the vector of the corresponding quantiles for the theoretical distribution,µ1 and

µ2 the means of the marginal distributions ofx andy, andα ∈ R a sensitivity parameter that can be calibrated according

to which part of the distribution one wants the goodness-of-fit criterion (33) to be particularly sensitive: choosing a large

positive value forα would put a lot of weight on discrepancies between the proposed model of income distribution and the

data in the upper tail, whereas choosing a substantial negative value would put more weight on lower-tail discrepancies.13

Formally, we test the hypothesisH0 : Jα (x,y) = 0 against the alternativeH1 : Jα (x,y) 6= 0, wherey is the vector of quantiles

yi = F−1
∗

(

i
n+1

)

, i = 1, . . . ,n, derived from the three models under scrutiny.14 Table 8 reports the estimated values ofJα for

α = −1,0,1,2 along with the associatedp-values computed by performing 1,000 bootstrap samplings (see the discussion

above). Observe that all the three distributions provide a satisfactory fit to the data (highp-values), but the discrepancy with

them is always larger in the case of the Singh-Maddala and Dagum type I models independently of the part of the distribution

one is interested in testing for goodness-of-fit. In particular, theκ-generalized density still results in a superior fit at the upper

end of the distribution according to the “top-sensitive” goodness-of-fit criterionJ2.

Our statistical findings are also detectable through graphical analysis. Figure 2 presents for all GSOEP-CNEF waves

under study the relationship between the income log-rank and log-size. This double-logarithmic framework, known as the

Zipf plot, has been used rarely in economics, but is more common in physics (see e.g. Takayasu 1990).15 In particular, it is

13 Like the GE class of inequality measures, expression (33) is not defined forα = 0 andα = 1, as the denominatorn
(

α2−α
)

= 0 in both cases.
Expressions for these values ofα (the “middle-sensitive” goodness-of-fit criteria) are therefore calculated by using L’Ĥopital rule, by which the limit of an
undefined ratio between two functions of the same variable is equal to the limit of the ratio of their first derivatives. Expressions for eachJα index other
than for the casesα = 0,1 can be, instead, derived by substitution.

14 Note that we use i
n+1 rather thani

n . Had we usedi
n then it would automatically be set to 1 wheni = n and the inversion ofF∗ would return an infinite

value—see e.g. expression (8).
15 Let x = (x1, . . . ,xn) be a set ofn incomes for which the cumulative distribution function isF̂ (xi) =

i
n , i = 1, . . . ,n, and suppose that the observations

are ordered from largest to smallest so that the indexi is the rank ofxi. The Zipf plot of the sample is the graph of logi against logxi. Because of the ranking,
i
n = 1− F̂ (xi), so logi = log

[

1− F̂ (xi)
]

+ logn. Thus, the log of the rank is simply a transformation of the cumulative distribution function.
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Table 7Goodness-of-fit tests based on the EDF for GSOEP-CNEF data, 2002–2007a

Wave Model KS KUI AD ADup CVM AD2 AD2up

2002
κ-gen 1.474 (0.594) 2.565 (0.719) 365.950 (0.486) 224.245 (0.667) 0.465 (0.615) 3.682 (0.633) 28.655 (0.693)
SM 2.066 (0.534) 3.572 (0.653) 1,037.865 (0.491) 882.540 (0.654) 0.919 (0.573) 5.982 (0.576) 81.677 (0.551)
D 2.132 (0.553) 3.800 (0.650) 500.319 (0.491) 1,221.453 (0.660) 1.113 (0.563) 7.272 (0.572) 134.325 (0.554)

2003
κ-gen 1.090 (0.865) 2.102 (0.821) 567.808 (0.489) 357.853 (0.494) 0.300 (0.650) 2.381 (0.651) 23.093 (0.723)
SM 1.529 (0.597) 2.649 (0.756) 1,710.225 (0.491) 1,552.215(0.485) 0.527 (0.580) 3.618 (0.596) 33.167 (0.548)
D 1.513 (0.672) 2.807 (0.701) 836.219 (0.485) 1,712.478 (0.501) 0.569 (0.580) 3.936 (0.577) 43.227 (0.553)

2004
κ-gen 1.222 (0.740) 2.088 (0.871) 6,022.054 (0.491) 4,728.169 (0.440) 0.349 (0.633) 2.953 (0.638) 166.113 (0.502)
SM 1.664 (0.683) 2.941 (0.730) 23,144.977 (0.489) 27,474.108 (0.429) 0.681 (0.570) 4.666 (0.581) 876.692 (0.493)
D 1.669 (0.690) 3.021 (0.715) 7,356.811 (0.476) 30,271.160(0.458) 0.719 (0.568) 5.110 (0.569) 976.230 (0.495)

2005
κ-gen 0.918 (0.909) 1.826 (0.824) 144.364 (0.480) 2,530.707 (0.469) 0.243 (0.660) 1.938 (0.669) 72.351 (0.501)
SM 1.241 (0.691) 2.280 (0.717) 382.472 (0.477) 13,912.534 (0.435) 0.313 (0.618) 2.073 (0.652) 303.558 (0.479)
D 1.116 (0.824) 2.203 (0.743) 220.179 (0.482) 13,292.489 (0.443) 0.315 (0.622) 2.106 (0.639) 294.161 (0.481)

2006
κ-gen 0.742 (0.974) 1.448 (0.944) 65.163 (0.595) 3,045.142 (0.443) 0.138 (0.727) 1.193 (0.742) 59.764 (0.526)
SM 1.181 (0.779) 2.131 (0.809) 145.467 (0.600) 15,625.518 (0.441) 0.324 (0.606) 2.087 (0.654) 285.903 (0.504)
D 1.121 (0.782) 2.070 (0.803) 88.641 (0.597) 16,889.356 (0.447) 0.289 (0.608) 1.897 (0.648) 315.304 (0.500)

2007
κ-gen 1.124 (0.751) 2.138 (0.712) 86.756 (0.587) 376.259 (0.608)0.247 (0.654) 1.924 (0.653) 25.336 (0.630)
SM 1.546 (0.607) 2.613 (0.782) 198.295 (0.560) 1,451.253 (0.642) 0.444 (0.603) 3.016 (0.615) 95.369 (0.531)
D 1.547 (0.586) 2.776 (0.641) 111.898 (0.569) 1,533.487 (0.634) 0.446 (0.598) 3.046 (0.614) 106.879 (0.539)

a KS = Kolmogorov-Smirnov; KUI = Kuiper; AD = supremum class Anderson-Darling; ADup = supremum class “upper tail” Anderson-Darling; CVM =
Craḿer-von Mises; AD2 = quadratic class Anderson-Darling; AD2up = quadratic class “upper tail” Anderson-Darling. The nullhypothesis is that data
come from the fittedκ-generalized (κ-gen), Singh-Maddala (SM) or Dagum type I (D) distributions. P-values (in round brackets) have been computed
via 1,000 bootstrap replications. Boldface entries denotethe best fitting model

natural to use when focusing on the top part of the distribution because it accentuates the upper tail, making it easier todetect

deviations in that part of the distribution from the theoretical prediction of a particular model. The lines shows the predicted

Zipf plots obtained from the fit of the models considered. As the figure reveals, all of them are in good agreement with

the actual data in the low-middle range of the income distributions. However, there is a systematic departure of empirical

observations from the Singh-Maddala and Dagum type I predictions at the top tail, whereas in the same part of the income

distributions the theoretical Zipf plot for theκ-generalized distribution lies much closer to the empirical one.

To assess more robustly whether theκ-generalized distribution provides a statistically better fit in the high-income range

of German data from 2002 to 2007 as compared to the Singh-Maddala and Dagum type I, we repeat our hypothesis-testing

exercises by fitting each model to observations in the richest 50% of the income distribution only (to ensure that model

fit is maximized at the top of it)16 and then running goodness-of-fit tests with appropriate corrections for left-truncation.17

Specifically, we determine the ultimate best fit on the basis of the ADup, AD2up andJ2 statistics, which assign a higher

weight to observations in the upper tail of the distribution. As can be seen from Table 9, these measures still suggest a

superior fit of theκ-generalized density in the upper tail of the left-truncated samples for all cases, thus confirming that

our model does a better job than the Singh-Maddala and Dagum type I in the top part of the income distribution. This is of

particular relevance in the current context, since the upper tail of the three densitites is heavy in that it decays like apower

function as income increases.18

16 We chose the 50th percentile as the left-truncation point after experiments balancing goodness-of-fit with ease of estimation, since the numerical
optimization routine implemented inR’s nlminb command did not converge with higher truncation levels. The sample log-likelihood for each year’s data
was specified as logL = ∑n

i=1{log f∗ (xi)− log[1−F∗ (z)]}, wherei = 1, . . . ,n indexes each individual sample observation andz is the level of income
corresponding to the left-truncation point. We do not report estimates for each year but they are available upon request.

17 See Chernobai et al. (2005). Corrections concerned the cumulative distribution and quantile functions of the three models considered. Nadarajah and
Kotz (2006) provide formulas andR programs for computing several quantities of interest for thetruncated versions of any given distribution.

18 See Clementi et al. (2010) on the upper tail behaviour of theκ-generalized. For the other distributions, see Kleiber (1996, 2008) and Kleiber and Kotz
(2003).
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Table 8 Jα statistics for GSOEP-CNEF data, 2002–2007a

Wave Model
Jα ×102

α =−1 α = 0 α = 1 α = 2

2002
κ-gen 0.149 (0.620) 0.134 (0.577) 0.137 (0.572) 0.145 (0.564)
SM 0.286 (0.540) 0.289 (0.513) 0.332 (0.514) 0.398 (0.518)
D 0.321 (0.541) 0.345 (0.523) 0.406 (0.520) 0.498 (0.518)

2003
κ-gen 0.104 (0.740) 0.087 (0.705) 0.089 (0.661) 0.094 (0.619)
SM 0.146 (0.565) 0.129 (0.524) 0.150 (0.517) 0.186 (0.516)
D 0.143 (0.549) 0.137 (0.516) 0.161 (0.514) 0.200 (0.512)

2004
κ-gen 0.681 (0.541) 0.710 (0.477) 0.971 (0.474) 1.463 (0.476)
SM 0.918 (0.544) 0.963 (0.469) 1.441 (0.469) 2.482 (0.470)
D 0.858 (0.521) 0.980 (0.471) 1.479 (0.470) 2.568 (0.467)

2005
κ-gen 0.338 (0.482) 0.414 (0.476) 0.548 (0.468) 0.784 (0.459)
SM 0.435 (0.484) 0.571 (0.479) 0.835 (0.470) 1.375 (0.459)
D 0.430 (0.484) 0.567 (0.476) 0.830 (0.473) 1.366 (0.464)

2006
κ-gen 0.346 (0.486) 0.430 (0.478) 0.577 (0.470) 0.842 (0.458)
SM 0.520 (0.481) 0.669 (0.478) 0.959 (0.467) 1.560 (0.454)
D 0.529 (0.480) 0.686 (0.475) 0.987 (0.471) 1.613 (0.457)

2007
κ-gen 0.153 (0.551) 0.154 (0.525) 0.170 (0.529) 0.193 (0.527)
SM 0.278 (0.522) 0.305 (0.504) 0.371 (0.503) 0.474 (0.504)
D 0.277 (0.521) 0.313 (0.511) 0.384 (0.512) 0.493 (0.514)

a The null hypothesis is that the discrepancy between the fitted κ-generalized (κ-gen),
Singh-Maddala (SM) or Dagum type I (D) distribution and the data is zero.P-values (in
round brackets) have been computed via 1,000 bootstrap replications. Boldface entries
denote the best fitting model

4 Summary

We have derived a function to describe the size distributionof incomes starting from a generalization of the maximum entropy

method that follows from Kaniadakis (2001, 2002, 2005). Expressions for the shape, moments and various tools for inequality

measurement that are functions of the parameters in the model have been given. The performance of the distribution has been

checked against real data on personal income for Great Britain, Germany and the United States in different years and has

been found to fit remarkably well. Furthermore, we have foundthat in a satisfactory number of cases the model is not to be

considered statistically inferior when compared to other existing functional forms that have been considered successful in

describing the income size distribution. In particular, the new proposed model suggests a statistically superior fit inthe right

tail of data with respect to the others in many instances.
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[f] 2007

Fig. 2 Zipf plot (double-logarithmic plot of income vs. rank) for GSOEP-CNEF data, 2002–2007. The lines are the predicted
Zipf plots obtained from the fit of the models under scrutiny
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Table 9 Goodness-of-fit tests on sub-samples of GSOEP-
CNEF data obtained by truncating the lower 50% of the dis-
tributions, 2002–2007a

Wave Model ADup AD2up J2×102

2002
κ-gen 440.321 (0.664) 49.524 (0.555) 0.399 (0.518)
SM 447.491 (0.661) 50.720 (0.558) 0.402 (0.509)
D 472.309 (0.576) 53.957 (0.504) 0.420 (0.478)

2003
κ-gen 853.236 (0.472) 21.972 (0.524) 0.201 (0.484)
SM 914.227 (0.477) 23.820 (0.521) 0.209 (0.482)
D 965.152 (0.347) 25.251 (0.444) 0.218 (0.423)

2004
κ-gen 8,069.806 (0.497) 374.807 (0.549) 2.696 (0.499)
SM 8,362.094 (0.443) 387.498 (0.483) 2.713 (0.440)
D 9,134.727 (0.439) 421.817 (0.480) 2.784 (0.440)

2005
κ-gen 7,402.94 (0.525) 229.861 (0.564) 1.746 (0.510)
SM 7,839.985 (0.458) 242.191 (0.519) 1.763 (0.453)
D 8,141.219 (0.426) 251.549 (0.469) 1.793 (0.442)

2006
κ-gen 4,334.116 (0.454) 113.217 (0.540) 1.549 (0.477)
SM 4,535.821 (0.426) 118.336 (0.514) 1.571 (0.456)
D 5,372.537 (0.444) 139.648 (0.511) 1.666 (0.457)

2007
κ-gen 552.449 (0.630) 42.479 (0.559) 0.432 (0.506)
SM 580.253 (0.631) 45.263 (0.563) 0.445 (0.494)
D 613.266 (0.635) 48.426 (0.552) 0.461 (0.496)

a ADup = supremum class “upper tail” Anderson-Darling test; AD2up =
quadratic class “upper tail” Anderson-Darling test;J2 = “top-sensitive”
Bandopadhyay-Cowell-Flachaire test. The null hypothesisis that data come
from the fitted left-truncatedκ-generalized (κ-gen), Singh-Maddala (SM)
or Dagum type I (D) distributions.P-values (in round brackets) have been
computed via 1,000 bootstrap replications. Boldface entries denote the best
fitting model
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