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This work provides a framework to analyze the role of financial development as a source of
endogenous instability in emerging economies subject to moral hazard problems. We propose
and study a dynamic model describing a small open economy with a tradeable good produced
by internationally mobile capital and a country specific input, using Leontief technology. We
demonstrate that emerging markets could be endogenously unstable since large capital inflows
increase risk and exacerbate asymmetric information problems, according to empirical evidences.
Using bifurcation and stability analysis, we describe the properties of the system attractors, we
assess the plausibility for complex dynamics and, we find out that border collision bifurcations
can emerge due to the fact that the state space is piecewise smooth. As a consequence, when a
fixed or periodic point loses its stability, the final dynamics may become suddenly chaotic. This
fact may explain how financial crises occurred in emerging economies.
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1. Introduction

The facts leading to the financial crisis in the emerging markets of South-East Asia in summer
1997 have shown how a crisis can emerge after a boom in the fundamentals, therefore they
open new theoretical approaches to financial crises and a need for new explanations. In the
case of emerging markets, we witness a new phenomenon because, differently from past
crises (like Mexico 1994 or European Monetary System 1992), such crisis was characterized
by a large capital inflows with borrowing excess in a financial liberalizationcontext, a fast
economic growth driven by fundamentals with poverty reduction (Asian miracle) and
an increase in the financial risk assumed without a prudential regulation and a financial
supervision system.(The fact that macroeconomic factors, especially a boom in lending,
played a key role in the vulnerability of emerging markets to financial crises, has been
discussed in World Economic Outlook [1]. Furthermore Corsetti et al. [2], state that in
Thailand the boom in lending caused problems in its financial sector. In Hong Kong and
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Singapore, the development has been accompanied by strong risk supervision and control,
so the financial crisis was prevented.)

According to such considerations, a model that can explain such financial crisis must
prove that an inversion in the real aggregates with a fall in investment and save, is not only
possible but can also appear in an unpredictable and sudden way when the economy goes
through financial development.

In this work, we present a framework that provides an explanation to these peculiar
events according to the balance-sheet view to crises.(Contributions to this line of research are
in Aghion et al. [3–5], Caballero and Krishnamurthy [6], Cespedes et al. [7] and Krugman
[8].) Using the discrete dynamic system theory, we prove that economies are endogenously
unstable when going through a phase of financial development if the entrepreneurs face
credit constraint due to moral hazard problems, as proved by Bernanke and Gertler [9]. (The
relevance of asymmetric information problems in such crises has been largely recognized
by Furman and Stiglitz [10] and Mishkin [11]. The fact that the level cash flow of the firm
plays an important role in the investment is widely recognized in Hubbard [12] and in
Bernanke et al. [13].)

Many authors considered that financial constraints on firms due to asymmetric
information considerations can play a role in the propagation of the business cycle. For
instance, in Azariadis and Smith [14] and Kiyotaki and Moore [15], the authors studied a
closed economy and they showed that credit constraints can lead to oscillations. Differently,
considering open economies, in Aghion et al. [4], the authors studied a credit-constrained
model where firms have debt both in domestic and foreign currency, and they prove that
the economy can easily suffer a financial crisis. A revised version of this monetary model is
offered in a later work of the same authors, Aghion et al. [16], where they proved that the
existence of nominal price rigidities can lead to multiple equilibria.

While the models in Aghion et al. [4, 16] focused on the monetary sector, we study a
real economy model of the kind considered in Aghion et al. [17], in Aghion et al. [18], and in
Caballé et al. [19].

In Aghion et al. [17], the authors developed a simple macroeconomic model where
the combination between moral hazard problems in capital markets and unequal access
to investment opportunities across individuals generates endogenous and permanent
fluctuations in aggregate GDP, investment, and interest rates. In their work, the endogenous
cycles are the product of two separate forces: high investment begets high profits and high
investment but, at the same time, high investment pushes up interest rates and reduces future
profits and investment. We will consider a similar mechanism in which high investment
pushes up the price of the constant country-specific input and reduces future profits and
investment.

Similarly, in Aghion et al. [18], the authors developed a dynamic, open, credit-
constrained, real economic model to conclude that financial underdeveloped or very
developed economies are stable while at an intermediate level of financial development,
economies may be unstable. Anyway in that work the authors only provide numerical
simulations showing the existence of a stable 2-period cycle. However, the existence of either
cycles of higher period or chaotic dynamics is not proved from their work.

In this paper, we prove instead the existence of a noncanonical route to chaos due
to border collision bifurcations. Border collision bifurcations occur in piecewise smooth
maps when a fixed point collides with a borderline separating two smooth regions.
The discontinuous change in the Jacobian elements results in many atypical bifurcation
phenomena, like a periodic orbit turning directly into a chaotic orbit, or multiple attractors
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coming into existence or going out of existence as the parameter is varied across some critical
value, and so forth. (About such kinds of noncanonical route to chaos, see Nusse and Yorke
[20].)

Finally, in Caballé et al. [19], the authors studied the dynamics exhibited by an
economic model based on the real side describing a small open economy subject to credit
constraint due to moral hazard problems using a Cobb-Douglas production function. They
proved that complex dynamics are exhibited at intermediate level of financial development to
conclude that economies experiencing a process of financial development are more unstable
than both very underdeveloped and very developed economies. We present a similar model
to that proposed in Caballé et al. [19] while assuming Leontief technology, and consequently
the macroeconomic model here studied is a piecewise-linear dynamic system.

The main results of the study herewith conducted are that economies with very
developed or very undeveloped financial markets have a unique globally structurally
stable, fixed point; while emerging markets could be endogenously unstable. In fact, we
prove that an intermediate level of financial development does exist such that the system
exhibits a border collision bifurcation that opens a two-piece chaotic region. When entering
in the aperiodic region, the chaotic properties of the attractor make the evolution of the
system sensitively depending on the initial condition, the dynamics are unpredictable and
structurally unstable, so perturbations on the parameters (exogenous shocks) produce large
and persistent effects. In the chaotic region, we observe also periodic windows so that the
dynamics are predictable even though the period of the periodic orbit could be so high as to
make impossible the distinction between such a cycle and a proper aperiodic orbit.

The properties we demonstrate allow us to argue that when going through a phase
of financial development, the dynamics shown by the system could drastically change and
pass from a stable fixed point to chaotic, aperiodic, unpredictable behavior. A similar result
has been reached by Caballé et al. [19] only for economies characterized by a Cobb-Douglas
technology, while we show that their results still hold also in the case of Leontief technology,
that is, if there is no substitutability between production factors.

The basic mechanism we describe is a combination of two opposite forces deriving
from an increase in the investment level. Firstly, a greater investment leads to greater output
and profits. Higher profits improve credit worthiness and fuel borrowing thus leading to
greater investment. Simultaneously, this boom increases the demand for country-specific
input and rises its relative price. This rise in input prices leads to lower profits and reduces
credit worthiness, borrowing and investment with a subsequent fall in aggregate output. So
we will be able to conclude that financial development may destabilize economies that start
from an intermediate level of financial development according to the experience documented
in a number of countries. (E.g., in the years leading up to the crisis of the early 1980’s
in Southern Cone countries, there is evidence that profits in the tradeable sector sharply
deteriorated due to a rise in domestic input prices. See Galvez and Tybout [21], Petrei and
Tybout [22], and De Melo et al. [23].)

In fact, the endogenous explanation we pursue in this work is consistent with the
experience of several emerging markets where the liberalization process has taken place
(like South-East Asia) where, as a result of a rapid financial liberalization process, capital
inflowed in large quantities allowing rapid growth in lending and a boom in investment.
When large capital inflows are associated with growing imbalances, the crisis came, and
most of these forces got reversed: capital flowed out, currency collapsed, real-estate prices
dropped, lending stopped, and investment collapsed. (See World Bank [24] for a description
of the link between capital-flow reversal and currency crises.) It is however important to
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emphasize that the aim of this paper is not to explain exactly what happened in some specific
country but rather to propose and study a unified, dynamic, macroeconomic model that
awards a central role to financial constraints and financial development.

The paper is organized as follows. In Section 2 we present the model. In Section 3 we
study the qualitative dynamics of the model: we prove the global stability of economies with
low- or high-financial development and we assess the plausibility for instability of economies
at an intermediate level of financial development. In Section 4 we present numerical
simulations that enforce the results we proved in Section 3. We give our conclusions in
Section 5.

2. The model

We consider a small open economy that produces a single tradeable good using capital K
and a country-specific input Z (like land or real estate) whose price p is expressed in terms
of produced goods. We assume that the supply of Z is constant.

In such an economy, there are two categories of individuals: first the lenders who can
lend their wealth to the entrepreneurs or invest in the international capital market given the
international equilibrium interest rate r = 1 + R > 1 but they cannot invest directly in the
production, second the borrowers that are the entrepreneurs investing in the production or
in the international capital market. The total output, in time t, produced in the economy is
given by using the following Leontief technology which prevents any kind of substitution
among the different inputs:

yt = min
{
Kt

a
,Z

}
, (2.1)

where 1/a > r is the capital productivity. (This hypothesis is necessary because otherwise
the entrepreneurs have no incentive to invest in the production.) The tradeable good can be
consumed or accumulated as productive capital for the production in the next period. We
assume that capital fully depreciates after one period.

Asymmetric information considerations generate moral hazard so, according to the
results reached by Bernanke and Gertler [9], entrepreneurs can borrow at most a proportional
amount μ ≥ 0 of their own wealth at time t, Wt, that is μWt. Let L be the amount that
entrepreneurs can borrow then, in time t, Lt ≤ μWt. The parameter μ represents the level
of financial development reached by the economy. As a limit case, when μ = 0, entrepreneurs
can invest only their own wealth, while the bigger μ is, as the more possibility they have to
borrow from the capital market, and so the financial system is well developed. (Holmstrom
and Tirole [25] also consider the direct relationship between capital market rules and the
level of the financial development due to moral hazard considerations.) Since the maximum
amount entrepreneurs can borrow from capital markets is fixed, the total investment It in
each time is upper bounded by

It = (1 + μ)Wt. (2.2)

At each period, entrepreneurs maximize their profits and this program determines
their optimal demand zt of the input Z. Given the production function (2.1), the profit
maximization implies that the entrepreneurs’ optimal demand of the country-specific input
is zt = Kt/a, where

Kt = It − ptzt, (2.3)
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that is, the difference between the total amount invested and the cost of the production factor
demanded.

In an equilibrium situation, it must be (It − ptzt) = azt so we reach the following
equation:

It − ptzt = azt. (2.4)

Since Z is constant, each of the following cases can be verified.

(Z > Kt/a). There is an excess in the supply of Z, so its price (in terms of
produced goods) is equal to zero. In this case, production is given by sub-
stituting (2.3) in (2.1), placing pt = 0, and considering that the credit con-
straint holds with (2.2). So we have that

yt =
1
a
(1 + μ)Wt. (2.5)

(Z ≤ Kt/a). There is an excess in the demand of Z (its price is positive)
and production in bounded by yt = Z. In case we can derive the equilibrium,
price pt of the production factor Z considering that both relation (2.4) and
the credit constraint (2.2) hold and placing zt = Z. Finally we have

pt =
(1 + μ)Wt − aZ

Z
. (2.6)

Relation (2.6) states a positive relationship between pt and Wt. It depends on the existence
of the credit constraint (2.2) in the sense that greater wealth implies greater investment via
credit constraint and so greater demand of Z and, consequently, its price increases.

Now we can derive the dynamic model describing the economy. Considering that the
price of the country-specific production factor pt, the investment, It, and the production, yt,
are all expressed in terms of entrepreneurs wealth Wt, the dynamic system is the net wealth
produced by entrepreneurs and saved by consumers, available for the next period, that is
given by

Wt+1 = (1 − α)
(
e + yt − rμWt

)
, (2.7)

where α ∈ (0, 1) is the consumption rate, so (1 − α) is the constant fraction the consumers
save of their own wealth, and e ≥ 0 is an exogenous income. This relation can be understood
considering that at time t entrepreneurs borrow, invest, produce, and pay their debt rμWt

while consumers save.
Now we have to consider the role played by the credit constraint. To do this, we need

to study three different cases.

(1) If the financial system is well developed, entrepreneurs invest in the production
only up to the point in which the productive investment return is equal to the
capital market return so

(
yt − rμWt

)
= rWt. (2.8)

In this case, there is no pure profit, and substituting (2.8) in the dynamic equation
(2.7), we obtain the following increasing function of the entrepreneurs’ wealth:

Wt+1 = (1 − α)
(
e + rWt

)
(2.9)

that holds for well-developed economies.
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(2) If the financial system is underdeveloped, the investment—which is constrained—
does not absorb the total supply of the country specific factor Z so its relative price
is zero. Greater current wealth implies greater investment, and therefore greater
production and because of p = 0, greater profits and future wealth. In this case, the
dynamic system is given by substituting (2.5) in the wealth dynamic equation (2.7)
so we obtain the following increasing function:

Wt+1 = (1 − α)
[
e +

(
1 + μ
a
− rμ

)
Wt

]
(2.10)

that holds for less-developed economies.

(3) Finally, if the financial system is at an intermediate level of development, the
investment absorbs the supply of the country-specific production factor Z and,
according to the Leontief production function, the production yt = Z. Substituting
such equation in the dynamic relation (2.7), we have the following decreasing
function:

Wt+1 = (1 − α)
[
e + Z − rμWt

]
(2.11)

that holds for intermediate financial developed economies.

Equations (2.10), (2.11), and (2.9) describe the dynamic system for low, intermediate,
and high level of financial development of the economy respectively and, similarly, low,
intermediate, and high level of entrepreneurs’ wealth.

From the previous considerations, we derive the map Wt+1 = f(Wt) that is given by
(2.10) for Wt ∈ [0,WM), by (2.11) for Wt ∈ [WM,Wm), and by (2.9) for Wt ∈ [Wm,+∞),
where the turning points WM and Wm are given by

WM =
Za

1 + μ
, (2.12)

Wm =
Z

r(1 + μ)
. (2.13)

The dynamic model we want to study is given by the following continuous first-order
piecewise linear map, whose iterates describe the dynamics of entrepreneur wealth we
investigate:

f
(
Wt

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1
(
Wt

)
= (1 − α)

[
e +

(
1 + μ
a
− rμ

)
Wt

]
, 0 ≤Wt < W

M;

f2
(
Wt

)
= (1 − α)

[
e + Z − rμWt

]
, WM ≤Wt < W

m;

f3
(
Wt

)
= (1 − α)

(
e + rWt

)
, Wm ≤Wt,

(2.14)

where α ∈ (0, 1), μ ≥ 0, 1/a > r > 1, e ≥ 0, and Z > 0 are the economically plausible
definition domains of the parameters.
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3. Qualitative dynamics

In this section, we study the qualitative dynamics of the continuous bimodal piecewise linear
map given by (2.14) when varying its parameters. In particular we consider the case of e > 0
and (1 − α)r < 1. (The study of the special case e = 0 needs a partially different approach
because the system would also have a fixed point at the origin even if it is always unstable.
The hypothesis (1−α)r < 1 is economically plausible considering that α� 0 while r = 1+ε, ε
is sufficiently low.) It must be remembered that f is increasing on D1 = [0,WM) and on
D3 = [Wm,+∞) while it is decreasing on D2 = [WM,Wm). (Note that if μ = 0, f2 is constant
on D2.) Furthermore, its constant slopes in each of such pieces are, respectively, given by

f ′1
(
Wt

)
= (1 − α)

(
1 + μ
a
− rμ

)
, (3.1)

f ′3
(
Wt

)
= (1 − α)r, (3.2)

f
′

2
(
Wt

)
= −(1 − α)rμ. (3.3)

The following proposition gives sufficient conditions on the parameter μ with respect to the
other parameters of the model such that the fixed point lies on each of the three linear pieces
of map (2.14).

Proposition 3.1. Let f be given by (2.14) and let e > 0 and (1 − α)r < 1. Then:

(a) for all μ ∈ [0, μm), f has a unique positive fixed pointW�
1 ∈ D1;

(b) for all μ ∈ [μm, μM), f has a unique positive fixed pointW�
2 ∈ D2;

(c) for all μ ∈ [μM,+∞), f has a unique positive fixed pointW�
3 ∈ D3;

where μm = (Za − (1 − α)(Z + e))/(1 − α)(e + Z + Zar), μM = (Z(1 − (1 − α)r))/(1 − α)er − 1,
and μM > μm > 0.

Proof. Let g(Wt) = f(Wt) −Wt.
To prove part (a) we consider that g(0) = (1 − α)e > 0, while g(WM) = (μ(1 − α)(e +

Z − rZ) + [(1 − α)(e + Z) − Za])/(1 + μ), where g(WM) < 0, for all μ < μm. So f has at least
one fixed point in D1. The uniqueness in D1 follows because f is linear in D1 with slope other
than one because we are assuming (1 − α)r < 1. In this case, the fixed point is given by

W�
1 =

(1 − α)e
1 − (1 − α)

[(
(1 + μ)/α

)
− rμ

] . (3.4)

Furthermore, it is the unique fixed point of f in R+ because f is continuous, f2 is a decreasing
function and f3 is an increasing function with slope less than one for the hypothesis (1 − α)r
< 1.

To prove part (b) we first consider that if μ = μm then g(WM) = 0 so the existence of
the fixed point inD2 is proven. Otherwise, if μ ∈ (μm, μM), then the same arguments we use to
prove part (a) show that g(WM) > 0 while g(Wm) = (μ[re(1−α)]+[r(1−α)(e+Z)−Z])/(1+μ),
where g(Wm) < 0 for all μ ∈ (μm, μM). So f has at least one fixed point in D2. The uniqueness
in D2 follows because f is decreasing in D2. In this case, the fixed point is given by

W�
2 =

(1 − α)(e + Z)
1 + (1 − α)rμ . (3.5)
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Furthermore, it is the unique fixed point of f in R+ because f is continuous, f1 is an increasing
function with positive intercept for the hypothesis e > 0, and f3 is an increasing function with
slope less than one for the hypothesis (1 − α)r < 1.

To prove part (c) we first consider that if μ = μM, then g(Wm) = 0 so the existence
of the fixed point in D3 is proven. Otherwise, if μ ∈ (μM,+∞), then the same arguments we
use to prove part (b) show that g(Wm) > 0 while it does have a value of Wt, for instance,
W = (1 − α)e/(1 − (1 − α)r), where W > Wm because μ > μM, such that g(W) < 0. So f has at
least one fixed point in D3. The uniqueness in D3 follows because f is linear in D3 with slope
lesser than one for the hypothesis (1 − α)r < 1. In such a case, the fixed point is given by

W�
3 =

(1 − α)e
1 − (1 − α)r . (3.6)

Furthermore, it is the unique fixed point of f in in R+ because f is continuous and piecewise
linear and f1 is an increasing function with positive intercept for the hypothesis e > 0.

Cases (a), (b), and (c) are depicted in Figure 1.

The following proposition states the global stability of economies at high- or low-
financial development levels.

Proposition 3.2. Let f be given by (2.14) and let e > 0 and (1 − α)r < 1. Then

(a) for all μ ∈ [0, μm), W�
1 is a globally stable fixed point;

(b) for all μ ∈ [μM,+∞), W�
3 is a globally stable fixed point.

Proof. To prove statement (a) we first consider that for all μ ∈ [0, μm), the map f has a unique
fixed point W�

1 such that W�
1 ∈ D1, as proved in Proposition 3.1 part (a). Furthermore f is

a linear increasing function in D1 and f(0) > 0 (because of e > 0) while f(WM) < WM, so
its multiplier is given by (3.1), f ′1 ∈ (0, 1), for all Wt ∈ D1. Then the fixed point W�

1 ∈ D1 is
asintotically stable inD1. Considering that this case setD1 is globally attractive and positively
invariant, then we conclude that W�

1 is globally stable.
To prove statement (b) we first consider that for all μ ∈ [μM,+∞), the map f has a

unique fixed point W�
3 ∈ D3 as proved in Proposition 3.1, part (c). Now we have to consider

two different cases. First, if μ ∈ (μM,+∞), thenW�
3 ∈ D′3, whereD′3 = D3\{Wm}. Furthermore,

its multiplier is given by (3.2), f ′3 ∈ (0, 1) for the hypothesis (1 − α)r < 1, so the fixed point
W�

3 is asintotically stable in the set D′3. The global stability is trivially proved. Secondly, if
μ = μM, then W�

3 =Wm that is a no-differentiable point, so we cannot calculate its eigenvalue.
However, Wm is asintotically stable from the right in the sense that for all W0 ∈ D′3, the
sequence of the iteratives converges to Wm. Furthermore, D′3 is positively invariant and
globally attractive. So we conclude that W�

3 ∈ D3 is globally stable for all μ ∈ [μM,+∞).
About such cases see, Figures 2 and 3.

As we proved, the dynamics exhibited by economies at high or low levels of financial
development are tame: the generic orbit converging to the unique positive fixed point
is definitively monotone. Furthermore, the economy is structurally stable, because of the
hyperbolicity of the fixed point, so its behavior is predictable.

Now we have to consider the case of μ ∈ [μm, μM), that is, the case of economies at an
intermediate level of financial development. First, we consider that in such a case the generic
orbit that eventually converges to the fixed point (or to another attractor) is not monotone. In



C. Mammana and E. Michetti 9

50

W
t+

1
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Wt
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t+

1

0 30
Wt

(b)

15

W
t+

1

0 15
Wt

(c)

Figure 1: Scheme of f as defined in (2.14) in the three cases of localization of the fixed point: in (a), μ = 1.5,
in (b), μ = 6, and in (c), μ = 60.

30

W
t+

1

0 15 30
Wt

(a)

30

W
t+

1

0 1 30
Wt

(b)

Figure 2: Koenigs Lemerary staircase diagram for two different initial conditions: in (a), W0 = 15 ∈
(W�

1 ,W
M) while in (b), W0 = 1 < W�

1 . In both cases μ = 1.5.
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20

W
t+

1

0 15 20
Wt

(a)

20

W
t+

1

0 1 20
Wt

(b)

Figure 3: Koenigs Lemerary staircase diagram for two different initial conditions: in (a), W0 = 15 > W�
3

while in (b), W0 = 1 < W�
3 . In both cases μ = 60.

fact, the only fixed point W�
2 belongs to the decreasing piece of f , that is, the set D2, so every

point at the right of W�
2 is mapped to its left and vice versa. So, even though the fixed point is

stable, the dynamics of the trajectory is definitively oscillating and economic fluctuations are
observed.

The following proposition proves the stability of economies at an intermediate level of
financial development when μ is small enough (see Figure 4 panel (a)).

Proposition 3.3. Let f be given by (2.14) and let e > 0 and (1 − α)r < 1. Then the fixed pointW�
2 is

globally stable for all μ ∈ [μm, μ�), where μ� = 1/(1 − α)r ∈ [μm, μM).

Proof. As we proved in Proposition 3.1, part (b), if μ ∈ [μm, μM), then the unique fixed point
W�

2 belongs to D2 so its multiplier is given by (3.3) that belongs to (−1, 0) ⇔ μ < μ�. It is
straightforward to conclude that the fixed point is also globally stable.

Now we have to study the case of μ ∈ [μ�, μM). A previous consideration is that if
μ = μ�, then the unique fixed point W�

2 is not hyperbolic: its multiplier, given by (3.3) is in
fact f ′2(W

�
2)|μ=μ� = −1. So, when μ = μ�, the map exhibits a bifurcation: its fixed point becomes

unstable and we have to identify the new attractor that is eventually born.
Before studying this case, we consider that the map f is piecewise linear so it is only

piecewise smooth and it can exhibit noncanonical bifurcation phenomena. While in the well-
known period-doubling route to chaos when a fixed point becomes unstable, we observe a
period-two stable orbit; in such a case this does not happen even if we find out a cycle-2
owned by the map as proved in the following proposition.

Proposition 3.4. Let f be given by (2.14) and let e > 0 and (1 − α)r < 1. Let also μ = μ�. Then
there exists a period-2 orbit, say O2, that involves the maximum point, given by (2.12), that is, O2 =
{WM, f(WM)}.

Proof. The proof is straightforward as it is only based on the computation that f2(WM)|μ=μ� =
WM|μ=μ� .
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30

W
t+

1

0 20 30
Wt

(a)

30

W
t+

1

0 30
Wt

f2

(b)

30

W
t+

1

0 5 30
Wt

(c)

Figure 4: Repelling period-2 orbits for μ 	 4.9. In (a), we have a first cycle two for the initial condition
W0 = 20 that is different from the one in (c) forW0 = 5. In (b), the fixed invariant interval of f2 is illustrated.

Once known that f has a cycle-2 involving the maximum point for the bifurcation
value μ = μ�, we are interested in knowing if such invariant set is stable. However, since the
map is not differentiable in WM, we cannot compute its multiplier so we cannot study its
stability in the typical way.

The discontinuity in the first derivative of the map implies that it can jump without
crossing the bifurcation value −1, so an attractor could die without a double-period one
being born. Furthermore, as proved in Nusse and Yorke [20], border collision bifurcations
are possible so that the map could pass from a stable fixed point to a variety of attractors like
a period-m attractor (m ≥ 2), or a 2m-piece chaotic attractor, or a m-piece chaotic attractor or
finally a one-piece chaotic attractor.

In order to study the stability of the cycle-2, O2, we found out for μ = μ�, we have
to consider that the point WM that belongs to O2 has no derivative (it has two one-sided
derivatives). However, the following proposition proves that the bifurcation parameter value
μ� opens a chaotic region via a border collision bifurcation.

Proposition 3.5. Let f be given by (2.14) and let e > 0 and (1− α)r < 1. Let also μ = μ�. ThenWM

is a Misiurewicz point. (A preperiodic point is usually called a Misiurewicz point.)
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Figure 5: (a) The generic aperiodic orbit covers two disjoint invariant sets. (b) The trajectory with respect
to time. In both cases μ = 5.5 and W0 = 5.

Proof. For all Wt ∈ [WM, f(WM)], we have that f2(Wt) = Wt (it can be verified by simple
calculations, that is, f2(Wt) = f2 ◦ f2|μ=μ� =Wt) as a consequence of the fact that f ′(W�

2) = −1.
So each point in the set I2 = [WM, f(WM)] is a fixed point for the second iterate, f2. Then
each point in I2, except W�

2 , is involved by a cycle-2 and each of such periodic orbits must be
unstable, so also O2 is an unstable period-two orbit. Because O2 involves the maximum WM,
as we proved in Proposition 3.4, then the critical point is attracted by an unstable orbit so it is
a Misiurewicz point.

Since the topological entropy at the Misiurewicz point is greater than 1, it reveals
that we have entered into a (aperiodic) chaotic region. (At the preperiodic point, we have
no attracting cycles since they cannot capture the critical point, which is preperiodic.) In
particular, after the bifurcation occurred at μ�, the map is 2-piece chaotic.

Here we cannot prove other results with respect to all the parameters of the system
however, since other qualitative dynamics that could eventually emerge strictly depend on
the fixed values of the parameters, in Section 4 we use the numerical analysis to support
the results we derived in this section and we present numerical simulations fixing all the
parameters but μ at economically plausible values. In such a way, we pursue numerical
results about the dynamics exhibited by the model. The quantitative analysis allow us to
show the dynamic evolution of the system and to conclude about its properties.

4. Quantitative dynamics

In this section, we provide some numerical simulations by fixing the values of all the
parameters of the model but μ. In such a way, we are able to prove quantitatively the
qualitative results reached in Section 3 and also to pursue other results that cannot be proved
rigorously. Let α = 0.8, r = 1.02, a = 0.5 so 1/a = 2, e = 10, and Z = 100. (As it can be
proved, the chosen value of Z only affects the quantitative dynamics, that is, the width of
the invariant interval where the dynamics are exhibited, but not the qualitative dynamics,
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that is, the bifurcation sequence occurs at the same parameter values of μ. We choose these
parameter values according to what is considered in Aghion et al. [3].)

In Figure 1, we present the scheme of f for different values of μ. As we proved in
Proposition 3.1, the fixed point can belong to each of the pieces of f depending on μ, where
μm 	 2.37 while μM 	 39.02. (We are approximating an error less than 10−2.)

As we proved in Proposition 3.2 the economy is globally stable for 0 ≤ μ < μm and μ ≥
μM and the generic orbit definitively converges monotonically to W�

1 or W�
3 , as determined in

(3.4) and (3.6), that are points in which f is increasing. In fact, the Koenigs Lemerary staircase
diagram in Figures 2 and 3 shows the converging trajectory for an arbitrary initial condition.

As we proved in Proposition 3.1, the fixed point W�
2 belongs to the decreasing piece

when μm ≤ μ < μM that is the case of economies going through a phase of financial
development. Furthermore, because of the bimodality of f , there is a stretching and folding
action that could generate complex dynamics like cycles of every period and chaos. However,
as we stated in Proposition 3.3, if μ < μ�, where μ� 	 4.9, the fixed point is still globally stable
even if the generic orbit is asymptotically oscillating.

In case μ = μ� the map exhibits a bifurcation and it gives rise to an infinite number
of repelling period-2 cycles. In fact, Propositions 3.4 and 3.5 show such evidence. Note that
for such value of μ, the fixed point is not hyperbolic while each point Wt ∈ [WM, f(WM)] is
fixed for the second iterate of f , as it is clear when looking at Figure 4(b). So all the period-2
orbits are unstable. Furthermore, the set [WM, f(WM)] is positively invariant, so every initial
condition will converge to one of such repelling periodic orbit.

Numerical computations also show that all these cycles-2 are of the kind O2 = {W�
2 +

γ,W�
2−γ}, for all γ ∈ (0, (f(WM)−WM)/2], whereW�

2 is given by (3.5). Two of such orbits are,
for example, the ones in Figure 4(a) and 4(c). The bifurcation occurring at μ� is not canonical:
one of the repelling cycle-2 involves the maximum point WM that is a Misiurewicz point.
Therefore, such border-collision bifurcation opens a chaotic region in which the generic orbit
covers two disjoint invariant sets. Figure 5 shows the trajectory for an initial condition once
the bifurcation happens; the trajectory is also represented versus time.

As we said, after the bifurcation at μ�, the dynamics are suddenly chaotic so the map
has the properties of density of the periodic orbits, topological transitivity, and sensitively
dependence on the initial condition. (We are referring to the definition of chaotic set given in
Devaney [26].)
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Figure 8: Bifurcation diagram for μ ∈ (22, 32).

Figure 6 shows the bifurcation diagram of the map for different values of μ. The
black intervals are those in which the dynamics is chaotic or periodic with very high period.
Furthermore, we observe both large intervals of μ where the asymptotic behavior is a cycle-2
(if μ ∈ (μ1, μ2) with μ1 	 8.39 and μ2 	 23.5) or a cycle-3 (if μ ∈ (μ′1, μ

′
2) with μ′1 	 29.1 and

μ′2 	 39.02). (In such a case, the chaotic properties could also be proven by the well-known
Li and Yorke Theorem, see Li and Yorke [27].) In this case, the dynamics are still predictable
even in the long run.

However, inside the two chaotic regions, that are visible in the following Figures 7
and 8, the dynamics are both chaotic and periodic with eventually a very high period. So,
while in the first case the asymptotic behavior is not predictable, in the second case it is still
predictable even though the attractor could be nonhyperbolic, and so the system would be
structurally unstable. Some small intervals of μ that are periodic windows inside the chaotic
region are visible in such figures.

5. Conclusions

In this work, we studied a piecewise linear dynamic system describing a small open
economy where the reached level of financial development plays a central role as a source
of endogenous instability.
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By analyzing the qualitative dynamics, we proved rigorously the global stability of
economies at a low or high level of financial development. On the contrary, the economies
at an intermediate level of financial development could not converge to the steady state.
Consequently, we assess the existence of chaotic behavior in the patterns. In this case, we
have been able to prove by qualitative and also quantitative study the following results.

(i) Economies at an intermediate level of financial development eventually converge
to the fixed point by oscillations or they fluctuate indefinitely.

(ii) They can be unstable but predictable if the attractor is a stable periodic orbit, even
with high period, that can also belong to a window in the chaotic region.

(iii) They can be unstable and unpredictable if we are in a proper chaotic region because
of the sensitivity to the initial conditions.

(iv) Economies can be structurally unstable when going trough regions governed by
different asymptotic dynamics because of the lack of hyperbolicity.

(v) The bifurcation phenomenon is atypical because of the presence of no differentiable
points.

The instability of economies that are financially developing can be understood
according to the hypothesis of the model studied. In fact, during a boom, the investment
expands and so does the demand for the country-specific factor. It increases its price and
pushes down future profits. Less profits lead to less creditworthiness because of the presence
of the credit constraint and consequently less investments. Finally, the country-specific factor
will not be completely exhausted so its prices will fall down with high future profits and a
new possible economic boom.
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