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1. INTRODUCTION  

A well-known method for estimating the size, N , of a certain population 

is the capture-recapture method (for a review see Yip et al., 1995a and 

Schwarz and Seber, 1999). The first motivations to the development of these 

methods arose in biology where researchers were interested in estimating the 

number of animals of a certain species (see, for instance, Schnabel, 1938, 

and Darroch, 1958). Subsequently, this methodology was also applied in 

medical and social contexts where it is important to estimate the number of 

subjects with a certain disease or in a particular situation (Yip et al., 1995b).  

A typical capture-recapture study consists in capturing and somehow 

marking subjects at different occasions so that a capture configuration, 

1( )Jr r=r L , may be associated to each subject captured at least once, 

where J  is the number of capture occasions (or lists) and jr  is equal to 1 if 

the subject has been captured at the j -th occasion and 0 otherwise. The 

population is estimated on the basis of the resulting data that may be 

arranged in an incomplete contingency table with, at most, 2 1J −  not empty 

cells, as the entry corresponding to the subjects never captured is 

systematically empty. Estimation is usually carried out through a conditional 

maximum likelihood approach: the multinomial distribution is assumed for 

the (hypothetical) contingency table including also the missing cell, while 

the parameters of the model are estimated on the basis of the incomplete 
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table (Sanathanan, 1972). Consequently, N  is estimated as ˆ/[1 ( )]n p− 0 , 

where ˆ ( )p 0  is the estimated probability of the missing configuration and n  

is the sample size. Since a saturated model may not be used for these data, a 

variety of restricted models has been proposed. Many of these models are of 

the log-linear type (Fienberg, 1972, Darroch et al., 1993), but a more recent 

approach is based on the Latent Class (LC) model; Agresti (1994) was one 

of the first to use the LC approach in this context. This model assumes that 

the population may be divided into k  classes so that the subjects within each 

class have the same degree of “catchability” with respect to the same list. 

Moreover, given the latent class, the conditional probability of being 

captured in a certain list is independent of that of being captured in other 

lists. This allows to account for heterogeneity between individuals; 

furthermore, the parameters of the model may be easily interpreted. This 

model has also many variants as a finite-mixture version of the Rasch model 

(Lindsay et al., 1991) that has been applied with success in the capture-

recapture context by Bartolucci and Forcina (2001).  

Bayesian literature on capture-recapture data has had some developments 

only in the last two decades. One of the first important contributions seems 

to be that of Castledine (1981) who developed a model in which capture 

probabilities may vary between sampling occasions and provided an 

approximation to the posterior distribution of N  under the proposed model. 

His approach has been refined by Smith (1991) who derived the exact 

posterior distribution of N . Later, George and Robert (1992) dealt with 

Bayesian inference for several capture-recapture models, while Madigan and 

York (1997) proposed the use of a class of decomposable Bayesian graphical 

models which can incorporate covariates. More recent papers are those of 

Fienberg et al. (1999), who dealt with a continuous-trait version of the Rasch 

model, and Basu and Ebrahimi (2001) and Tardella (2002) who proposed 

alternative ways for dealing with population heterogeneity. However, we 

believe that Bayesian inference for the LC model, which represents one of 

the most sensible ways to account for hetorogeneity between individuals, can 

be successfully used for capture-recapture data. Thus, our aim is to develop 

this type of inference using Markov chain Monte Carlo (MCMC) methods 

(Tierney, 1994) for estimation purposes. In particular, we consider models 

with a varying number of latent classes and take advantage of the Reversible 

Jump (RJ) strategy (Green, 1995), which allows joint inference about the 

model and the parameters. The RJ algorithm has recently been employed in 

Bayesian log-linear models for estimating population size by King and 

Brooks (2001). We improve the efficiency of the estimators obtained via RJ 

by using the Delayed Rejection (DR) strategy (Tierney and Mira, 1999, 

Green and Mira, 2001).  

From the MCMC output, we can easily obtain a point estimate as well as 

a credibility interval for N . Furthermore, as a result of the simulation, we 



2. Bayesian model for capture-recapture data 3

 
also get the estimated probability of the number of classes, given the data at 

hand, and the estimated posterior distribution for the model parameters, 

conditional to the number of classes.  

The paper is organized as follows. In Section 2 we illustrate the LC 

model and the prior distributions on the parameters that we shall use for 

inference. In Section 3 we present the MCMC estimation approach based on 

the RJ and the DR algorithm. Finally, in Section 4, we analyse two real data 

sets, the first concerning the number of snowshoe hares in a certain region 

and the second concerning cases of diabetes in Casale Monferrato, Italy.  

2. BAYESIAN LATENT CLASS MODEL  

The basic assumption of the LC model is that the population is made of 

k  homogeneous classes, in the sense that the subjects in any class share the 

same probability of being caught in the J  lists. So, the probability of the 

capture configuration r  is given by  

1

( ) ( | ),
k

c

c

p cπ λ
=

=∑r r  (1) 

where 
cπ  is the weight of the latent class c  and ( | )cλ r  is the conditional 

probability of r  for the subjects in the same class that, under the assumption 

of local independence, is given by  

1

| |

1

( | ) (1 ) ,j j

J
r r

j c j c

j

cλ λ λ −

=

= −∏r  (2) 

where |j cλ  is the conditional probability of being caught at the j -th 

occasion; the latter parameters will be collected into the vector λ  by letting 

the index j  run faster than c . Note that the model above is invariant to 

permutation of the class labels ( 1,2,...,c k= ) therefore we adopt a unique 

labeling in which the 
cπ  are in increasing order.  

We assume the following prior distributions for the parameters of the 

model above:  

• the number of latent classes, k , has Uniform distribution between 1 and 

maxk ; 

• the vector 1( )kπ π ′=π L  has Dirichlet distribution with parameter 

1( )kν ν ′=ν L , restricted to the set 1 2 kπ π π< < <L ;  
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• for any j  and c , |j cλ  has Beta distribution with parameters 

1 2(    )β β β ′= . 
Moreover, given the parameters, we assume that the frequencies of the 

hypothetical table, including also the missing cell, follow the multinomial 

distribution with parameters N and { ( )}p r . According to Sanathanan 

(1972), this implies that the likelihood of the observed frequencies, collected 

in the column vector { ( ), }y= ≠y r r 0 , is  

( )
( )

( )

0 0

( | )

y

r r

p
L

p≠ ≠

 
=  

  
∏ ∑

r

r
y p

r
, 

with { ( ), }p= ≠p r r 0 . 

3. BAYESIAN ESTIMATION  

Our main aim is estimating the posterior distribution of N . For this 

purpose, we construct a Markov chain that has the posterior distribution of 

interest as its unique stationary and limiting distribution. Since the number 

of latent classes is not a priori fixed, we use the RJ algorithm (Green, 1995) 

to construct such a Markov chain. At any step of the algorithm, a candidate 

move is proposed and accepted with a probability that preserves reversibility 

with respect to the target posterior. As we show in the remaining part of this 

section, some of the moves try to jump between models with a different 

number of latent classes; the others simply update the parameters within the 

current model and so are of standard Metropolis-Hastings type. In order to 

improve the efficiency of the algorithm, we adopt the DR strategy (Green 

and Mira, 2001) for the moves of the first type, that is, upon rejection of a 

candidate move, instead of retaining the same position as done in a standard 

Metropolis-Hastings algorithm, we attempt a second stage move whose 

acceptance probability is appropriately computed. This strategy leads to an 

algorithm that dominates the standard RJ in the sense of the Peskun ordering 

(Peskun, 1973); thus, all the resulting MCMC estimates have a smaller 

asymptotic variance.  

3.1 Updating the parameters of the current model 

When we do not change the number of latent classes, a Metropolis-

Hastings step is performed to update the parameters of the model. As 
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proposal distribution for the weights of the latent classes we use the 

distribution  

Dirichlet 
( )

,
min

σ
 
  
 

π

π
 

where π  denotes the current value of the weights and σ  is a positive 

constant suitably chosen. If the entries of the proposed parameter vector, ′π , 

are not in increasing order, such a vector is discarded and a new one is 

drawn. Then, ′π  is accepted with probability  

( ) ( ) ( )
( ) ( ) ( )

| | | ,
min 1,

| | | ,

L p k q k

L p k q k

′ ′ ′  
 ′  

y p π π π

y p π π π
, 

where p′′′′  is the proposed vector of joint probabilities whose entries are 

computed according to (1), ( )|p kπ  denotes the density of the prior 

distribution of π  and ( )| ,q k′π π denotes that of the proposal distribution. 

Note that, because of the constraint 1 2 ,kπ π π< < <L  these densities are 

equal to !k  times the corresponding Dirichlet densities. 

The conditional probabilities of being caught, |j cλ ’s, are updated 

independently. For any j  and c , we propose |j cλ ′  from the distribution 

Beta( , )υ ω , where ( ) ( )| |2 1 / 1j c j cυ λ ω λ = − + −   and cbω α π= + , with 

1α >  and 0b > ; note that υ  and ω  are chosen so that the proposal 

distribution has mode equal to the current value of 
|j cλ  and variance 

proportional to 1/ cπ . The proposed |j cλ′  is then accepted with probability  

( ) ( ) ( )
( ) ( ) ( )

| | |

| | |

| | | ,
min 1,

| | | ,

j c j c j c

j c j c j c

L p k q k

L p k q k

λ λ λ

λ λ λ

 ′ ′ ′ 
 

′  

y p

y p
, 

where ( )| |j cp kλ  again denotes the density of the prior distribution and 

( )| || ,j c j cq kλ λ′  that of the proposal distribution. 

3.2 Changing the number of latent classes 

Updating the value of k  implies a change of dimensionality for the 

parameters of the model. The approach we follow consists in a random 

choice between splitting an existing latent class into two and combining two 

existing latent classes into one. Using the standard notation (see, for 
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instance, Green, 1995), we denote the probabilities of these alternatives by 

kb  and 1k kd b= − , respectively, where k  is the current number of latent 

classes. Of course, 1 1b =  and 
max

0kb = ; otherwise, we choose 0.5k kb d= = , 

for max2,3,..., 1k k= − . 

The combine proposal consists in randomly choosing a pair of adjacent 

latent classes 1 2( , )c c  that we try to merge into a new one, labelled *c , 

whose parameters are chosen as follows  

* 1 2c c cπ π π′ = +  

*
2||
,j cj c

λ λ′ =             1,...,j J= . 

The split proposal starts by choosing a latent class *
c  at random that we 

try to split into two new ones, labeled 1c  and 2c , augmenting k  by 1. The 

corresponding parameters are chosen as follows. We generate u  and 

, 1,...,jv j J= , from Beta(2,4)  and Beta(1,1) , respectively; then, we set  

1 *c c uπ π′ = ,      ( )
2 * 1c c uπ π′ = − , 

1|j c jvλ′ = ,        
2| | *j c j cλ λ′ = ,      1,...,j J= . 

Obviously, we need to check that the constraints on the weights are satisfied. 

According to the RJ recipe, the acceptance probability for the split move 

is 

{ } { }( ) ( )1 1, , , min 1, Aπ λ π λα ′ ′ = , 

where  

( )
( )

( )
( )

( )
( ) ( )1 2

1 2

*
*
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| 1
1

|

c c

c

v v
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v

c
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π

− −

−

′ ′′ +
= × × +
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1

1 21 2
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| || |
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, 1

J
j c j cj c j c

j j c j cB

ββ
λ λλ λ

β β λ λ

−−

=

 ′ ′− −′ ′ 
 ×    −    

∏
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1

1
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J
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jk

d
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π

−

+

=

 
× × × 

 
∏ , (3) 
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( ),B r q  is the Beta function and ( ), ,f x r q  denotes the Beta( , )r q  density. 

The first two lines of (3) are the product of the likelihood ratio ant the prior 

ratio for the parameters of the model. The third line is the product of the 

proposal ratio and the Jacobian of the transformation from ( ),λ π  to ( ),λ π′ ′ . 

The acceptance probability for the combine move is ( )1

1min 1, A − , with 

some obvious adjustments in the expression for 1A . 

3.2.1 Delayed Rejection strategy 

When a rejection decision is taken in either a split or a combine move, 

instead of advancing the simulation time and retaining the same position, we 

make another attempt to move according to the DR strategy of Tierney and 

Mira (1999). This second attempt is done also in the case in which a split or 

a combine move is rejected due to mis-ordering of the weights. If at the first 

stage we rejected a combine move, at the second stage we try again to 

combine two classes but with a more “timid” move, that is we merge the 

latent class 
2c , chosen at the first stage of the RJ, with the latent class 1, i.e. 

the one with the smallest weight. We then chose the parameters of the new 

latent class as follows 

2* 1c cπ π π′′ = +  

2| * |j c j cλ λ′′ = ,     1,...,j J= . 

If, instead, at the first stage we rejected a split proposal, at the second 

stage we try again to split the latent class *c , chosen at the first stage, but 

now into the latent classes 1 and 2c . The corresponding parameters are 

chosen as at the first stage, namely as 

1 * ,c uπ π′′= %     ( )
2 * 1 ,c c uπ π′′ = − %  

|1 ,j jvλ′′ = %      
2| | * ,j c j cλ λ′′ =       1,..., ,j J=  

but in this case, the random number u%  is generated from Beta(1,8) , while 

jv% , 1, ,j J= K , is still generated from Beta(1,1) . As before we need to check 

that the constraints on the weights ′′π  are satisfied. 

Following Green and Mira (2000), the second stage proposal is then 

accepted with probability equal to 
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{ } { }( ) ( )2 2, , , min 1, ,Aα ′′ ′′ =π λ π λ  

where 

( )
( )

( )
( )

( )
( ) ( ) 21

2

*
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1

2 1

*

| 1
1
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c

c
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c

v

c
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−
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1
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=

 ′′ ′′− −′′ ′′ 
 ×    −    

∏

( ) ( )
1

1
*

1

,1,8 ,1,1
J

k
j c

jk

d
f u f v

b
π

−
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=
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{ } { }( )
{ } { }( )

† †

1

1

1 , , ,

1 , , ,

α

α

′′ ′′−
×

′ ′−

π λ π λ

π λ π λ
 (4) 

and { }† †,π λ  represents the first stage proposal in the reverse path from 

{ },′′ ′′π λ  to { },π λ ; this is given by 

1 2

†

*c c cπ π π′′ ′′= +  

2

†

| * | ,j c j cλ λ′′=      1,..., .j J=  

The last line in (4) is now the ratio between the rejection probabilities of the 

first stage moves (for the forward path at the denominator and for the 

hypothetical reverse path at the denominator). 

The acceptance probability for the second stage combine move is 

( )1

2min 1, A− , with some obvious adjustments in the expression for A2 and 

with 

1

†

*c c uπ π ′′= ,    ( )
2

†

* 1c c uπ π ′′= − , 

1

†

| ,j c jvλ =       
2

†

| | * ,j c j cλ λ′′=     1, ,j J= K . 

Green and Mira (2001) showed that this second stage acceptance probability 

preserves reversibility (and thus stationarity) of the Markov chain with 

respect to the posterior distribution of interest.
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3.3 Inference from the MCMC output 

At the end of the algorithm, we obtain a sample drawn from the joint 

posterior distribution of ( )kπ λ ; we denoted  this sample by 
( )( ) ( )

( )
tt t

kπ λ , 1, ,t T= K , where T  is the number of sweeps. From this 

output, we can estimate the posterior probability of k  as the ratio between 

the number of times the algorithm visited the model with k  latent classes 

and the total number of sweeps. 

For any sweep t we also have that the ratio ( )/( ' )tn 1 p  is an estimate of 

the population size. Averaging these estimates across all the MCMC sweeps 
gives an "overall" point estimate of the population size, i.e.: 

( )
1

1ˆ
T

t
t

n
N

T =

=
′

∑
1 p

. 

Credibility intervals can also be easily obtained. Notice that overall 

estimates are calculated without choosing a specific number of latent classes 
and, in this sense, they take into account the uncertainty existing about the 

model. In addition, it is possible to obtain "with-in" model estimates, by 

averaging across the MCMC sweeps, conditional on fixed values of k . 

Even if the focus of our analysis is on estimating the population size, 
evaluation of the marginal probability of appearing in any list can also be of 

interest; this is particularly useful when different capturing sources need to 

be compared on the basis of their effectiveness. Let jλ  denote such 

probability for the j -th list; a natural MCMC estimator for this quantity is 

( ) ( )
( )

|

1 1

1ˆ
t

T k
t t

j j c c

t cT
λ λ π

= =

= ∑∑ . 

4. APPLICATIONS 

The method for estimating the population size illustrated so far is applied 
to two different capture-recapture data sets. In the RJ sampler with DR, the 

following settings were used for previously unspecified constants: 
max 10k = , 

=ν 1 , =β 1 , 10σ = , 2a =  and 10b = . Simulation studies not reported 

here indicate that results are quite robust to reasonable perturbations of these 

values. 
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4.1 Rabbits Redux 

The first data set refers to a population of snowshoe hares. The study 

reported by Cormack (1992) is based on 6J =  consecutive trapping days. 

The data set has also been analysed by Agresti (1994). The data on the 68 

observed animals are presented in Table 1. The 63 observable cells are given 

in the standard order 000001, 000010, 000011, … by rows in the table. 

Table 2-1. Results of capture-recapture of snowshoe hares and estimated probabilities of 

capture configurations (in italic). 

 

 

The results reported here correspond to 100 000 sweeps of the MCMC 

algorithm, including a burn-in of 50 000 sweeps. The algorithm seems to 

mix well over the parameter space, with an acceptance rate of the 

split/combine move approximately equal to 15% at the first stage and to 20% 

at the second stage. A plot of the changes in k  against the number of sweeps 

is presented in Figure 1(a) (for sake of clarity, data are plotted every 100 

sweeps). It shows that the MCMC algorithm mixes well over k , excursions 

into very high values being short-lived. A useful check on the stationarity is 

given by the plot of the cumulative occupancy fractions for different values 

of k  against the number of sweeps. This is presented in Figure 1(b), where it 

can be seen that the burn-in is more than adequate to achieve stability in the 

occupancy fractions.  

Estimated posterior probabilities for k  are given in Figure 1(c). It is 

immediately apparent that there are a number of competing explanations of 

the data which are tenable. The posterior for k  favors 2 to 4 latent classes. 

Agresti (1994) also found the ordinary LC model, as well as the quasi-
symmetric model, with two classes to fit the data quite well. However, in our 
context, we do not need to choose a specific number of latent classes, and we 

can take into account the uncertainty existing about the model, overcoming 
the model-dependence problem of the classical approach. 
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Figure 1. Example of trace of k for 50 000 sweeps after burn-in (a), cumulative occupancy 

fractions for complete run including burn-in (b) and posterior distribution of k (c). 

Overall point estimates for the probability of each capture configuration 
are given in Table 1. Cellwise inspection reveals a good fit of the model to 

the observed data. Table 2 provides the posterior model probabilities for the 
a posteriori most probable models, together with the corresponding with-in 

model estimates and 95% credibility intervals for N . Overall estimates are 

also presented, as well as the results obtained by Agresti (1994) with 

different classical LC models. The overall estimate for N  that we obtain  is 

77.7, suggesting that only 10 snowshoe hares were missed by all 6 trapping 

occasions. Agresti (1994) obtains a very similar result using a quasi-

symmetric LC model with 2 classes. Our overall credibility interval is (72.2, 
87.3), which is larger than the confidence interval found by Agresti (1994) 

for the quasi-symmetric model, but smaller than those he found for ordinary 
models with 2 or 3 latent classes. It is probably worthwhile to spend a few 
words on this result. Agresti (1994) stresses that for such sparse data, quite 

different models can appear to fit adequately yet can provide highly diverse 

point and interval estimates of N . Particularly with small sample sizes, a 

model selection procedure may suggest a model that is much simpler than 
the one that truly represents reality well, leading to confidence intervals for 

N  that tend to be too narrow. We believe, therefore, that the overall 

credibility interval we estimated, properly reflecting our uncertainty on the 

"true" model, is not affected by this problem. For this reason it is not as 

"optimistic” as the one for the simple quasi-symmetric model. On the other 
side, it has the advantage of being narrower than the confidence intervals 

found by Agresti for models more complicated than the quasi-symmetric 
one. 

The estimates of the probability of being caught at the j-th occasion are 

presented in Table 3. In the present case there are no relevant differences 

between the capture occasions, i.e. between the six consecutive trapping 
days, revealing that the captures were likely performed under the same 
conditions. 
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Table 2-2. Posterior model probabilities for most probable models, together with point and 

interval estimates of population size. 

 

Table 2-3. Point and interval estimates of the probabilities of being caught at different 

occasions. 

Table 2-4. Data from prevalent cases of known diabetes for resident of Casale Monferrato, 

Piemonte, Italy, and estimated probabilities of capture configurations (in italic). 

 

4.2 Diabetes study 

The data in Table 4 are taken from Bruno et al. (1994) and refer to 2069 

cases of diabetes in a small town in northern Italy recorded in October 1988 
on the basis of four different lists: (i) clinics (all patients diagnosed as 

diabetics by the local clinic and/or family physicians); (ii) hospitals (all 

patients discharged with a primary or secondary diagnosis of diabetes in all 

private and public hospitals in the region); (iii) prescriptions (a computerized 
list of insulin and hypoglycemic prescriptions); (iv) reimbursement (all 
patients who requested reimbursement for insulin and reagent strips). The 
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same dataset is also analysed by Yip et al. (1995a), Biggeri et al. (1999), 

Fienberg et al. (1999), and Bartolucci and Forcina (2001). 

For this dataset, the MCMC algorithm mixes slightly slower than for the 

previous one. This is is due to the fact that now the cell counts are larger, the 
posterior densities under the different models are more picked and, therefore, 

it is slightly harder to jump from a model to another one. For this reason, we 
allowed for a longer burn-in: we run 200 000 sweeps of the algorithm and 

discarded the first 150 000 as burn-in. The slower mixing also determined a 

high autocorrelation in the MCMC output, with an integrated 
autocorrelation time (see Section 5) equal to 3118.2. In order to reduce this 

autocorrelation and, consequently, the variance of the estimates, we sub-
sampled from the MCMC output and considered only one every 10 sweeps 

for estimating purpose. This reduced the integrated autocorrelation time to 

311.5. 

Looking at the changes in k  (Figure 2(a)) and cumulative occupancy 

fractions (Figure 2(b)), it can be seen that the mixing is still satisfactory 

(with an acceptance rate of the split/combine move approximately equal to 

4% at the first stage and to 8% at the second stage) and the algorithm 

eventually converges. For this dataset, the posterior density for k  is more 

concentrated than for the previous one. The three most probable models, i.e. 

those with 3, 4 and 5 latent classes, have a total posterior density equal to 

0.97. Moreover, models with 1, 2 and 10 latent classes are never visited. The 

most probable model seems to be the one with 3 latent classes. Notice that 

both Biggeri et al. (1999) and Bartolucci and Forcina (2001) consider 

models with only 2 latent classes. However, given the latent class, they allow 

for interactions between the different lists while we do not. This is likely the 

reason why we found  models with a larger number of latent classes to fit the 

data better. 

 

Figure 2. Example of trace of k for 50 000 sweeps after burn-in (a), cumulative occupancy 

fractions for complete run including burn-in (b) and posterior distribution of k (c). 

 

Table 5 shows with-in model and overall estimates and credibility 

intervals for N , compared with the results obtained by Biggeri et al. (1999) 

and Bartolucci and Forcina (2001). Note that the with-in model estimates 
and credibility intervals are based on the whole MCMC run, without sub-
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sampling, to avoid the risk of calculating estimates on a too small number of 

runs. 

Both the with-in model and the overall estimates of N  we obtained are 

in between the one obtained by Bartolucci and Forcina (2001) and the one 
obtained by Biggeri et al. (1999). Moreover our credibility intervals include 

both the confidence intervals in Bartolucci and Forcina (2001) and in Biggeri 
et al. (1999). It is also interesting to notice that, as the number of latent 

classes considered increases, the estimate of N  decreases and the credibility 

interval gets larger and larger. 

Table 2-5. Posterior model probabilities for most probable models, together with point and 

interval estimates of population size. 

 
In Table 6 the estimated probabilities of being caught by the different 

lists are reported. For this dataset, a considerable heterogeneity between lists 
is evident. The list clinics in the one with the highest “catchability” followed 

by prescriptions, hospitals and reimbursements. This ordering of the lists 
with respect to their catchability is completely consistent with that found in 
Bartolucci and Forcina (2001). 

Table 2-6. Point and interval estimates of the probabilities of being caught by the different 

lists. 
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5. COMPARING DELAYED REJECTION AND 

STANDARD REVERSIBLE JUMP SAMPLER 

In general, comparing the performance of MCMC samplers is not an easy 
task. Following Green and Mira (2001), we define ‘performance’ as the 

efficiency of estimating the expectation, under the stationary distribution of 

the Markov chain, of a given function φ  on the state space, ( )E φ . For our 

comparisons we focus on the estimating the population size (this specifies 

indirectly the function φ ). 

There are two quantities to take into account when comparing the 

performance of the MCMC samplers: the running time R  needed to obtain a 

fixed number of sweeps T  plus a fixed number of burn-in steps, and 

the integrated autocorrelation time, kk
τ ρ

∞

=−∞
=∑  where 

( ) ( )[ ] 2

0
Cov ,

k k
X Xρ φ φ σ= / , is the lag-k autocorrelation, Xi being the 

value of the Markov chain at time i, and 2σ  is the variance of φ  under the 

stationary distribution (assumed to be finite). The product of τ and R gives a 

reasonable measure of the efficiency of an MCMC algorithm: it estimates 

the running time needed to obtain the same precision in estimating ( )E φ  as 

from T independent draws from the stationary distribution.  

In our comparison it is reasonable to believe the two codes developed are 

similarly efficient (and thus an average of the running times of a few 

simulations is a good estimate of R) since a two stage DR algorithm is 
compared with a one-stage algorithm (i.e. a standard RJ), which actually 

forms the first stage of the DR, therefore the DR code is a superset of the 
other. 

To estimate τ we used Sokal’s adaptive truncated periodogram estimator 

(Sokal, 1989), 
| |

ˆ
kk M

ρ
≤∑  where the window width M is chosen adaptively 

as the minimum integer such that ˆ3M τ≥ . We used the fast Fourier 

transform to estimate the autocorrelations ˆ
kρ . 

The value in the column named ‘ratio’ is the ratio of R times τ̂  for the 

standard RJ method and the DR algorithm. Thus values greater than one 
indicate how much more efficient the DR strategy is. We know that by the 
Peskun-Tierney theorem (Peskun, 1973; Thierney, 1998) the DR algorithm 

will always give smaller values of τ than a regular Metropolis-Hastings 

algorithm, for every function of interest φ . 

Table 7 and 8 are obtained by averaging 10 simulations and refer to the 

examples studied in Section 4.1 and 4.2 respectively. 
Typically, for a given number of steps, a DR algorithm has a running 

time which is larger than the corresponding one stage MCMC algorithm, 
since the DR strategy consists in trying harder to move away from the 
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current position (and this takes simulation time). Still, in both tables the 

value in the column named ratio shows that the gain in terms of asymptotic 

efficiency due to the DR strategy more than compensates for the extra 

computational time needed to run the DR algorithm. 

The high value of τ̂  in Table 8 has motivated the much larger sample 

size and burn-in used in Section 4.2 to draw our inference and the need for 

subsampling. 

Table 2-7. Rabbits: T = 10 000 burn-in = 5 000 

Table 2-8. Diabetes: T = 100 000 burn-in = 50 000 
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