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Abstract. We illustrate the use of a mixture of multivariate Normal distribu-
tions for clustering genes on the basis of Microarray data. We follow a hierarchical
Bayesian approach and estimate the parameters of the mixture using Markov chain
Monte Carlo (MCMC) techniques. The number of components (groups) is chosen
on the basis of the Bayes factor, numerically evaluated using the Chib and Jelaizkov
(2001) method. We also show how the proposed approach can be easily applied in
recovering missing observations, which generally affect Microarray data sets. An
application of the approach for clustering yeast genes according to their temporal
profiles is illustrated.

1 Introduction

Microarray experiments consist in recording the expression levels of thou-
sands of genes under a wide set of experimental conditions. The expression
of a gene is defined as its transcript abundance, i.e. the frequency with which
the gene is copied to induce, for example, the synthesis of a certain protein.
One of the main aims of researchers is clustering genes according to sim-
ilarities between their expression levels across conditions. A wide range of
statistical methods (see Yeung et al. (2001) for a review) have been proposed
for this purpose. Standard partitioning or hierarchical clustering algorithms
have been successfully applied by a variety of authors (see, for instance, Spell-
man et al. (1998) and Tavazoie et al. (1999)) in order to identify interesting
gene groups and characteristic expression patterns. However, the heuristic
basis of these algorithms is generally considered unsatisfactory.

Microarray data are affected by several sources of error and often contain
missing values. Outcomes of standard clustering algorithms can be very sen-
sitive to anomalous observations and the way missing ones are imputed. A
second generation of studies (see, for example, Brown et al. (2000) and Hastie
et al. (2000)) sought further progress through more sophisticated and ad-hoc
clustering strategies, employing resampling schemes, topology-constrained
and/or supervised versions of partitioning algorithms, and “fuzzy” versions
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of partitioning algorithms that can perform particularly well in the absence
of clear-cut “natural” clusters. Recently, an increasing interest has been de-
voted to the model-based approach in which the data are assumed to be
generated from a finite mixture (Fraley and Raftery (1998)). The main ad-
vantage is represented by straightforward criteria for choosing the number of
components (groups) and imputing missing observations.

In this paper we show how Bayesian hierarchical mixture models may be
effectively used to cluster genes. As in Yeung et al. (2001), we assume that the
components of the mixture have multivariate Normal distribution with possi-
bly different shape, location and dimension. An important issue is the choice
of the number of components. We use the Bayes factor (Kass and Raftery
(1995)), numerically computed through the Chib and Jelaizkov (2001) ap-
proach, as a selection criterion. We also outline how our approach may be
used to recover missing data, which are frequent in Microarray datasets.
Details on the model are given in Section 2. In Section 3, we describe the
Bayesian estimation of the parameters, while in Section 4 we illustrate the
model selection problem. Finally, in Section 5, we present an application of
the proposed approach to the analysis of a Microarray study performed to
identify groups of yeast genes involved in the cell cycle regulation.

2 The model

Let S be the number of experimental conditions and x = (xl e xs)l be the
vector of the corresponding expression levels for a gene. We agsume that the
distribution of such a vector is a mixture of Normal distributions, that is

K

X ~ Z?TkN(uk,Ek)
k=1

where K is the number of components of the mixture, u;, is the mean of the
k-th component, X its variance-covariance matrix and my its weight. In a
Bayesian context, we also assume that:
e the number of components K is a priori unknown and uniformly dis-
tributed in the interval [1; Kmax], where Kmax is a suitable integer;
e the vector w = (771 7TK)I has Dirichlet distribution with parameters
617 ce 761(;
e the p;’s are independent and have Normal distribution N (v, £2);
e the ¥}’s are independent and have inverse Wishart distribution IW (2, v)
where = is an S x S symmetric, positive definite scale matrix, and v is
a precision parameter;
e v, 2, 5 and v have noninformative improper prior (Jeffreys (1939)) with
density f(r)=1, f(£2) =1, f(E)=1and f(v)=1,Y v, 2, E and v.

This setting gives rise to the hierarchical model presented in Figure 1, where
p and X denote, respectively, f41,...,px and X1,..., Y. We follow the
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Fig. 1. Directed acyclic graph for the hierarchical mixture model.

usual convention that square boxes represent fixed or observed quantities and
circles represent unknowns.

3 Bayesian estimation

3.1 Bayesian estimation without missing data

Let X be the n x S data matrix, where n is the number of genes. The com-
plexity of the mixture model presented here requires MCMC methods to
approximate the joint posterior distribution of the parameters. For compu-
tational reason, we introduce the latent allocation variables z = (z1 ‘e zn),
where z; indicates the component to which the i-th gene belongs; note that
p(z; = k) = 7 a priori. Conditionally on z, the observations x;’s are inde-
pendent with conditional distribution N(u,.,X,), given z, u, 3.

For a fixed number K of components, the sampler we consider performs
the following operations for a suitable number of times, T', after allowing for
a burn-in period:

e update v, £2, = and v, in turn, through separate Metropolis-Hastings
steps. For example, to update v we draw v* from an appropriate proposal
distribution ¢(v*|v) and accept it as the new value of the parameter
vector with probability

a(v,v*) = min {1 p(p|v*, 2)qv|v*) } _

" p(plv, 2)q(v*|v)
£2, = and v are updated in a similar way.

e update p, X, 7w and z, in turn, through separate Gibbs steps. For exam-
ple, to update u, we draw, independently for each k, a new value uj, from
the full conditional distribution of p, given all the other parameters:

il o~ N (5,2),
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where 2 = (2 'np+0271) " and v = 2(Z;* > iinimp Xi+827'v), with
ny being the number of genes currently allocated to the k-th group. The
new parameter value u; is accepted with probability 1. X, = and z are
updated in a similar way, drawing their values from the corresponding
full conditional distributions.

The main purpose of inference, here, is to estimate the posterior membership
probabilities p(z; = k|x;). These can be estimated from the MCMC output
as

Plai = klxi) = > 8(z{Y = k)/T

where zlgt) is the value of z; at sweep t and (-) denotes the indicator function.

Membership probabilities provide a soft or fuzzy partition in which genes may
not be univocally assigned to one component. However, it is possible to derive
a standard (hard) partition by assigning each gene to the component which
maximizes the membership probability. By averaging over the sweeps, we can
also obtain estimates of the parameters of the model. For instance, the means
of the clusters can be estimated as fi;, = Zthl ug) /T.

3.2 Bayesian estimation with missing data

In missing data problems, both the parameters and the missing values are
unknown. Since their joint posterior distribution is typically intractable, we
can simulate from it iteratively, through the data augmentation (DA) algo-
rithm: we sample from the distribution of the missing values, conditional on
the current value of the parameters, and then we sample from the distribution
of the parameters, conditional on the value imputed to the missing observa-
tions. Let us split x; into two subvectors, x¢ and x}, which refer, respectively,
to the observed and unobserved expression levels for gene i. Let also X, and
X, denote, respectively, the observed and unobserved expression levels for
all the n genes. The DA algorithm consists in iterating the following steps:

I-step (imputation step): given the current values z(®, u®, 3® of the pa-
rameters, draw a new value Xgﬂ) for the missing observations from
its conditional predictive distribution p(X,|X,,z®, u® 2®). This is
straightforward since, for each i, x} can be drawn independently from a
N(p,,,X;,;), conditioned on x3.

P-step (posterior step): given XY draw 28D, pt+D) and XD from
their complete data posterior p(z, p, X|X,, Xgﬂ)) as within the sampler
described in Section 3.1.

As before, estimates of the missing data, as well as of the parameters of
the model, can be obtained by averaging over the sweeps of the algorithm
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(Tanner and Wong (1987)), e.g.:
1z
X, = L3 x0.
T 2%

4 Model selection

To select the number of components we make use of the Bayes factor (BF).
Denote by Mg the mixture model at issue when K components are used and
by p(K) its prior probability. The BF between two models, say Mk and M,
is defined as

p(X|L)

) p(LIX)  p(L)
Brx = ——= or, equivalently, Brk = ——=
LK = DXIE) . B B = s m ) o(®)

where p(X|K) and p(K|X) are, respectively, the marginal likelihood and pos-
terior probability of model Mg (Kass and Raftery (1995)). The larger is Brk,
the greater is the evidence provided by the data in favor of My,.

Direct computation of the BF is almost always infeasible and different
algorithms have been proposed to estimate it. For example, the well-known
Reversible Jump (RJ) algorithm (Green (1995)), which draws samples from
the joint posterior distribution of the number of components and model pa-
rameters, allows to estimate p(K|X) as the proportion of times the algorithm
visited model Mg . However, when dealing with so many observations as in
a typical Microarray study, RJ is expected to perform badly as the posterior
distribution of the parameters is likely to be very peaked and this makes it
hard to jump from one model to another. Therefore, we follow the approach
of Chib and Jelaizkov (2001). They show that the marginal likelihood of each
model can be obtained as the product of the likelihood and the prior distri-
bution of the parameters, divided by the posterior distribution and this holds
for all parameter values, i.e.:

pX, 0k |K)
PIXIE) = L6k X, K) v0ic € Ox

where O is a short hand notation for the parameters z, pt, X under the model
with K components. So, by substituting an estimate to p(@x|X, K) for a
suitable chosen Ok, say 0 K, we can estimate the marginal likelihood of Mg,
p(X|K) and so the BF. Chib and Jelaizkov (2001) showed that a suitable
estimate of p(6x|X,K) may be obtained on the basis of the Metropolis-
Hastings output for sampling 8 g from its posterior distribution under model
Mk ; such an algorithm uses as acceptance probability for moving from O
to a proposed 6%

"p(X, 0k |K)q(0%|0k)



6 Scaccia and Bartolucci

where q(0%|0x) is the proposal distribution from which 8% is drawn. In fact,
we have
Jo. ®(0x,0k)a(0k|0x)p(0x|X, K)dOx
Jo. a(0k,0k)q(0k|0k)dOx
_ E{a(oKaé_K)q(éKloK)}
E{a(0k,0k)}

that, consequently, may be estimated through

7 S a(65”,8x)a(Bx 105 /Ny

p(0K|X7K) = N2 - (t2) ?

241 @O0k, 0 7) /N2

where 0%1), .. .,H%Vl’l) is a sample from p(@k|X, K) and 0%2), .. .,0%\]2’2)
is a sample from ¢(@k |0k, K). Chib and Jelaizkov (2001) also suggested to
split the parameters into blocks, which are updated separately (as illustrated
in Section 3.1), to increase the estimator efficiency. The point @k in practice

is chosen as a point of high posterior density, generally the posterior mean of
Ok, in order to maximize the accuracy of the approximation.

p(Ox|X, K) =

5 Application

We show an application of the proposed approach to a real Microarray experi-
ment on a yeast genome (the Saccharomyces cerevisiae), aimed at identifying
groups of genes involved in the cell cycle and, therefore, characterized by
periodic fluctuations in their expression levels. Data refer to n = 696 genes
observed at S = 12 consecutive times during the cell division cycle. A full
description of the experiment, carried out by Spellman et al. (1998), and
complete data sets are available at http://cellcycle-www.stanford.edu.

The results reported here correspond to 50,000 sweeps of the MCMC
algorithm described in Section 3, including a burn-in of 5,000 sweeps. The
algorithm seems to mix well over the parameter space and the burn-in seems
to be more than adequate to achieve stationarity. This can be seen, for ex-
ample, in Figure 2(a), which shows the traces of w against the number of
sweeps (for sake of clarity, data are plotted every 10 sweeps), for the model
with K = 3 components.

The estimated marginal loglikelihood is plotted in Figure 2(b) against
different values of K. It is immediately evident that the model with K =
3 components is favored. The BF of this model against the second most
favored model, the one with 4 components, is B3 4 = 98716, implying an
overwhelming evidence in favor of the model with K = 3, compared to any
other model.

The estimated weights we obtained for the 3 groups of genes are respec-
tively T = (0.012, 0.373, 0.615)', resulting in a large group including approx-
imately 428 genes, an intermediate group with 244 genes and a residual one
made of just 8 genes.
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Fig.2. (a) Traces of = against the number of sweeps for the model with three
components and (b) marginal loglikelihood for models with up to six components.

Figure 3 shows the estimated mean expression profiles for the three groups
of genes. The results we found are in accordance with those obtained by Holter
et al. (2000) using a standard value decomposition of the data matrix X. Two
dominant periodic patterns, corresponding to the two larger groups, can be
recognized. These periodic patterns are out of phase with respect to each
other and the maxima and minima in each of them occur at the same time
as the maxima and minima in the two main patterns found by Holter et al.

(2000).
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Fig. 3. Mean expression profiles for the three groups.
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