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DYNAMIC PROGRAMMING VIA MEASURABLE SELECTION

Roy CERGQUETI

Abstract: The aim of this paper is to provide an original step-by-step proof of the optimality principle, for
a certain class of stochastic contral problems with exit time. The presence of exit time is responsible of mea-
surability problems involving the control processes. Therefore, in order to prove the dynamic programming
principle, we proceed by measurable selection. The measurable selection theorem comes from an important
result in functional analysis due to Jankov and von Neumann, and it is also obtained by forrmalizing the
main properties of the admissible region and of the state variable.
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E Introduction

The name mathematical control theory has been introduced about half a century ago. Al-
though this fact, the nature of the optimal control problem has been the focus of research in
optimization since the fifteen century. The precursor of the technigues involved in optimal
control is commonly seen in calculus of variations. For a very interesting survey of the early
optimization problems, we suggest (Yong and Zhou, 1999, Historical Remarks, pp. 92). In
the 1940s and at the beginning of the 1950s, the theory of differential games has been devel-
oped in the U.S. and in the former Soviet Union for military purposes. The statements of the
Bellman Dynamic Programming Method (Bellman, 1952, 1957) and the Pontryagin Theory
(announced in 1956, see Pontryagin, 1839, 1986) are grounded in this scientific environment,
and rely on a deterministic framework. Beliman was among the first that pointed out the
necessity to introduce randomness in the optimal control theory, and mentioned the stochas-
tic optimal control theory (Bellman, 1958). Nevertheless, stochastic differential equations
and Ito’s Lemma were not involved in (Bellman, 1958), and the first paper dealing with
the diffusion systems, Markov processes and differential equations was (Florentin, 1961).
Nowadays, the literature on this field grows continuously, with applications in economics,
biology, finance, engineering and so on.

Several monographs give a complete survey on the mathematical control theory. For
the deterministic case, we remind the reader to (Bardi and Capuzzo Dolcetta, 1997). The
stochastic control theory is described in {Borkar. 1989; Fleming and Scner, 1993: Krylov,
1980: Yong and Zhou, 1999).

The kevpoint of the optimal control theory is represented by an optimization problem.
where the constraints are associated to some functions’ properties {called controls o). that
are olements of a cerrain funcrional space {ealled admissible region A Thus. the objective
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function J is a functional depending on the controls. The optimum with respect to the
controls of such objective functional is called value function V.

The stochastic framework is related to the analysis of cases with admissible region given
by stochastic processes spaces.

Starting from the objective functional and the definition of the admissible region, there
are basically two methods to proceed: the Stochastic Maximum Principle (strongly related
to the martingale theery) and the Dynamic Programming (that let intervene the theory of
differential equations). In the first case, a set of necessary conditions for stochastic optimal
controls are provided through forward-backward stochastic differential equations for adjoint
variables and related stochastic Hamiltonian systems. In the latter case, one hag to prove an
optimality principle, named Dynamic Programming Principle, and rely the value function to
the {classical) solution {if it exists, if it is unique) of a differential equation, named Hamilton
Jacobi Bellman (HJB) equation. The HJB equation states formally, in the sense that we
derive it by assuming the right regularity of the value function. Since the value function is
generally not regular enough, a weak solution definition is needed: the viscosity solution.
For the concept of viscosity solution, we remind to the seminal works (Crandall and Lions,
1081, 1983, 1987; Crandall et al., 1984; Lious, 1981, 1983). For a complete survey, we
remnind the reader to (Lions, 1982; Barles, 1994; Fleming and Soner, 2006, Chapter 2) and
the celebrated User's Guide (Crandall et al, 1992).

Several papers establish existence and uniqueness results for both the value function and
the optimal control. Among the others, we recall (Fleming, 1968; Ahmed and Teo, 1874,
1975; Davis, 1975; Fleming and Pardoux, 1982). Furthermore, the prove of the optimality
principle has been the focus of some important research works. In {Davis and Varaiya, 1973},
dynamic programming conditions for a certain class of stochastic optimal control problems
have been obtained using the martingale method. The Girsanov measure transformation
method has been applied to the solutions of the dynamical equations, in order to allow
weaker requirerments for the optimality principle. In (Haussmann, 1975) a different approach
is used, and the optimality principle has been proved by applying a result on extremals due to
Neustadt (Neustadt. 1969). In (Elliott. 1977) a semimartingale approach is adopted. Thus,
by invoking the unique decomposition of special semi-martingales, some strong hypotheses
required by Davis and Varaiya and Haussmann are avoided.

Different from the quoted papers, we show the validity of the optimality principle by using
analytical arguments. More precisely, our contribution on the literature on this topic is an
original step-by-step proof via Measurable Selection of a Dynamic Programming Principle,
for a certain class of stochastic control problems with exit time.

Tn presence of exit time, the objective functional is not easy to treat due to the difficulty

o prove the optimality principle. The main problems are due to the measurability questions
sssociated to the control processes in the stochastic intervals. Therefore, in order to prove
tynamic programming principle, we prove a measurable selection result, which has its
ar important result in functional analysis due to Jankov and von Neumann. The
anicovowvon Neumann's Lemma tmplies in our case, as we shall see, a regularity condition
rereain class of admissible controls, We report the statement of the result of Jankov
Vor Nepmeann, and we remind the reader to {Bertsekas and Shreve, 1978, pp. 182) for

further detalls.

This paper is organized as follows. In the next section, the optimal control problem is
farmalized. n the third section the Measurable Selection Theorem is proved. The fourth
section presents the Dynamic Programming Principle and its proof. Last section conciudes

the paper.
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@ The Optimal Control Problem

Consider a filtered probability space (Q,F, {Filiz0, ) on which we define a standard
Brownian motion W with respect 10 {Fi}i>0 under P Here {F:}i»o represents the -
augmentation of the natural filtration generated by W that is, 7 = o {W(wu € [0, HE AN,
where A is the collection of all Ponull sets or sets of measure zero under F.

Lot us denote with 7 the set of the (optional) stopping times in 0, +eol, 1o

f / Ir P T G Fa T wd 3 SOy
T o= {78 %t.*f'f)'\_,};{f <ire F,, iz 0) (2.1

RS PN by meed
irerential eQuanIon WO

The controlied systemn is described by the following stechastic d

initial data . o
AX(t) = p(X (), a(@))dl + o (X{L], a{t)dv (L),

e
ks

X{m=¢

where X is a Markovian process and

m

T,

s € {[n +oc), where ”[[” represents the lower bound of a stochastic interval

] T}

a it resuits
X [0, +o0) x 1 — B CR",

where B is the solvency region, and it is open and bounded;
fixed t € [0, +o0), X(t) is an F,-measurable and square integrable random variable
with respect to F;

o fxedw e Qand ne 7, define X(n)(w) = (X on){w), where ois the usual composition
operator.

Denote the usual euclidean norm as i - ||. Then

o Gxedne 7, o Aln, () that is the set of admissible Markov controls, and it is defined
as

An.¢) = {a Sl 4oy x Q= ACRY {Fi}rein w00y — Progressively measurable,

+OC o

such that E%L/ e llals)|lds| < +c>c}, (2.3)

- J
e ( is an integrable random variable measurable with respect to 7.

o it results
B x AR

g B x A= R

pir ool —piyay i <L — Y
T N R !
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o 2L, >0Vre B oae A

Remark 2.1. By the regularity hypothesis on the drift and diffusion coefficients and stan-
dard stochastic theory, we ensure the existence and uniqueness for the strong solation of the

stochastic differential equation (2.2},
Consider B C R"™ and define the exit thme 7 as

X(1) 2 B}. (2.4)

v ::inf{iﬁ >0

Remark 2.2. {7 <t} is measurable with respect to the o-field Fy, for each t = 0.

We define the cbjective functional of the control process c.
First of all, we infroduce the random variable Jo as

Jo [0+ x Bx Ax{—R, (2.5)

such that

Jott. z.al)(w) = L/'j%AXchws»e*%ds4vth(r»e~5f§ﬂajun. (2.6)

; (
where X (t) = z,
f:BxA—R
and
v B — R

are the running and the terminal reward, respectively, B is the closure of the set B, and J is
the discount factor. Furthermore, suppose that f satisfles a growth condition with respect
“5 both the state and the control. More precisely, there exists C > 0 and p 2 1 such that

Flra) <+

Now we have the instruments to introduce the objective functional as conditional expectation
ndom variable Jy under the measure F.

#ll + JlalP). ¥ (z0) € B x A

We agsume

r
R I S AR Y
= Rl x ol

St

/ FiX (s, u{%,‘c_am ~ h{X ()"

\astic elements, we are able to define the objective functional of the

ﬂd ‘n the case of random boundary data using the dynamics, i.e. for

in comlqrem with the definition of the iuncuonal J in (2.7), we define the objective
fnctional of our contral problem in the case of stochastic boundary data as

J{n. Sy o= EIJ}(UMQ(!)}Z& (:

[
[ ¢]
P
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Here we consider a maximization problem. The value function of the problem is

Vin.¢y= sup Jn.Call) (2.9)
e A{n.C)
Assume that ¥ (n, () < +sc. Now we want {0 provide the definition of a partic inss of
admissible controls, which is useful for later development.
Definition 2.3. Let us consider € > G
Consider the state equation (2.2) with initial condition X{n) = {. whers 0 & Toand Cis

an integrable random variable measurable with respect o Fy.

{
31 3
An admissible control & € A{n, () is said to be e-optimal for th

(n.C.al)) > V(ng —e P-as

St
)

Remark 2.4, Let us fix {7, () the random initial condition for (2.2}.
By definition of sup, there exists an ¢-optimal control for {n,C).

@ A Measurable Selection Theorem

To prove the Dynamic Programiming Principle, we need a measurable selection theorem. The
aim of this section is to develop the measurable selection for our class of optimal control
problems. To this end, we first need the description of the admissible region, with the main
features of the admissible controls, and the analysis of some interesting properties of the

solution of the state equation (2.2).
Let us fix (n,¢) the initial data of the (2.2).
Define the space of functions

=(n.¢) = {u i, o) x O — R™ Jul.) is {Fi}iny progressively measurable}.

We formalize the main properties of the admissible region. The following lemma is based
on a result due o {Soner and Touzi, 2003), that can be adapted to our setting.

Lemma 3.1. The set of admissible controls A(n, () is a Borel subset of 2(n, (} which satisfies
the following conditions.

o (40) Define o weighted norm on A(n,¢)

such that

elh=B] [ e ials)ias [ X () = ¢| (3.2)
n |

and consider Uy, -y the topology induced by the weighted norm (3.2) on A{n.C}. Then
(A 0Ty, o s a topological separable metric space.

s /A1) Closure under stopping fime concatenalion:

O N S
7T o= T 0t resuifs

Cotmmogh ], =T -‘_":_:\1. - e = ,vl: I \: . '.d. hLik = ,"‘. 1N .\"
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o [AZ) Stability under reasurable selection:

Denote as Bagy.cy the Borel o-field of A{n. ()

v w0, € T and any measurable map
o (0. Fp, ) — (A('f”?-.C)'BA(u.;})-
there exists v € A{n. () such that

o{w)(t,w) = v{t.w) on [[§1.+00) % 0, LxP—ae

where B, o is the set of the Borel subsets of Al(n.C): L 1s the Lebesgue measure on

Proof. The proof is due to (Soner and Touzi, 2003) and standard stochastic calculus, B
The following result sumnarizes the main properties of

the soluticn of the state equation.
As in Lemma 3.1, the following result is als

o grounded on (Scner and Touzi, 2003).

Lemma 3.2. Let us denote the solution of (2.2) as Xﬁq(t): to indicate the wnitial data
X()y=¢ neT and { ts an integrable random variable, and the control c.

(§P1) Consistency in law wilh deterministic initial data:

Bl (X2 ()i, ) = (t.2)] = BUI(X L (s))]
where f is a Borel-measurable bounded function and s 2 t.
e (SP2) Pathwise unigueness

V7 0eT with® <7, P-a.s., it results

X8, = X§.,. on [{r,+0o0) x £, where { = Xg (7).

£

[SP3) Causality:

Va,as € Aln, €) such that oy = az on ([6,7]], where 7,8 € T such that Plr>0) =1,
X5 = Xg2 on [[6, 7] = Q.

e (SP4) Measurabslily:

X2, is Borel measurable with respect to the variables . z and o

Progf, In order to prove this result, we remind the reader to {Soner and Touzi. 2003).

n
he next result provides an useful generallzation of the definitions of the functional J
.3 of the value function V given in (2.8) and (2.9).

[

: Tt a0 . PP L A A Ao A
Peammea 2.5, Lot us congiaar @ © A Qe O & A

&)

such that. for each flzed n € 7,

; —
Yl g P- 1) o= ( g
atE ) Qs

Then
Jinaa) = (0,2 &) = o (Al (3.3)
and
Vi z)=e V{0, 2) = e~V (), (3.4)
foreachneT. 2 € B anda o nirol process.
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The proof is omitted.

Remark 3.4. The formulas (3.3) and {3.4) allow to treat the case in which the starting
L J \ ; &
time is deterministic. In fact, a constant cime is a special case of a stopping Case, and, s0

t & T, foreach t € [0, +2¢).

For sake of completeness. we recall a resuls useful £o prove the Measur
Theorem.
Lemma 3.5 (Jankov-von Meumannj, Lei X an ralytio s
of X x Y.
Let us define
{ 3
projx (4) = {l £ X Jyc ¥ suchtha {2y € 4} e

Then there exists an analytically measurable funciion

& projy(A) =1

such that
Gr(6) = {(;c, ola) 1z € pro_jX(A)} C A

We need a remarkable property of the Borel sets.
Lemma 3.6. Let X be a Borel set. Then every Borel subset of X is analytic.
Proof. We remind the reader to (Bertsekas and Shreve, 1978},

Now we prove the main result of this section. We have the following,

Theorem 3.7 {(Measurable Selection Theorem). Let us consider a stopping timen & 7.
For any product measure 7 on the space 0, +xc) x B given the product of a Lebesgue
measure on [0, +00) and o probability measure on B and for each ¢ > 0, there exisls a

Borel-measurable function

oF ([0,+oo) x B,B[O:-s-ac)xB) — (A( ), Bag.))

such that o%(t,z) is an e-optimal control for starting point X(t) = z, for each (t,z) €
10, 4+00) x B 7-a.¢.

Proof. The prool consists of three steps.

o [Trst step

Giiven € > 0, let us define the space

G j(t_.l‘.,a) c 0, +o0) x B x At z) 1Vt ) - J{t, e o) < F}.

The space (. can be interpreted as follows: Vit aoa) € G, alt.r) s an e-optimal

control, for each (£, x) € [0.-+00) x . We want to prove that (. is a Borel-measurable

set.
I
&

Tn order o prove this claim we need to give the proof thar J and V7 are measurabl

T e T T D R T I Tt P
Toor s iy rhe B condhimon o000
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— J is a measurable function of ({,z,a). We get this property by the measurability
of the state process X (t) (by the property (SP4}). by the measurability of o, by
the measurability of 7 as stopping time and by the measurability of the functions
f and g. So J is composed by measurable functions, hence J is measurable.

— V{i,z) is measurable. By definition of V(t, 2} as supremum ol J(f,z, o) with
respect to the controls a € A{t. 2}, we get that V{t, z) is measurable if and only

if A(t.z) is countable. By the separability property of A(t.z), proved in Lemma
3.1, we get that there exists a set D(t,z) G A(t, x) that Is countable and dense in

Alt.z). So V{t,z) is measurable.

So G, is Borel-measurable.

e Second slep

By Lemma 3.6, we get that G, is an analytic subset of {0, +oc) x B x A(-, ) (since it is

a Borel set). By the Jankov-von Neumann Lemma, we obtain directly the existence of

an analytically measurable function & : [0, +00) X B — A(-, ) such that Gr{g.) € G,

i.e. ¢.(t,x) is an e-optimal control, ¥V {t,z) € [0, +oc) x B.
o Third step

It remains to construct a Borel measurable map ¢f such that ¢} = ¢ 7-a.e.

Let us define TI{{0, +oc) x B) as the set of all product measures on [0, +00) x B and,
siven # € [1{[0, +oc) x B), let us define Bip,.oc)x5(7) as the completion of the Borel
o-algebra Big iocyx 5 With all 7-null sets or sets of measure zero under w. Moreover,

let us define ¢-algebra

O 4oc)x 5 = N Big rocyx 5(7).
#elT{0,+oc) ®x B)

One can prove that every analytic subset of a Borel set X is measurable with respect
t0 O 2 neyxp (see, for example. (Bertsekas and Shreve, 1978)). As a particular case,

we have LhaL every analytic map ¢, i3 measurable with respect to Oio.+2c1x 5

By definition, we get

o e n o ig Ve (e
and so &, s measurable with vespect By ooy wp{®
T . ™ T 1
mplies that there exists a Borel measurable y
The shasrony g r Rt =Te
Lhe (hacrem 18 oo jet Cf‘\ roved
e . e .
‘3.1 Dvrpamic Frogramming Principl

("'l
g
C‘\
=
Il

We have proved in a general case a Measurable Selec
prove the Principle of Optimality.
First of all. we need a preliminary technical result,

Lemma 3.8, Lef ug consider ~ € T such thai v € 0.7 and o € A

iont Theorem. Now we are able

(]
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Then
. - ‘ AN R IR TP, EO S e = g 1 -
(v X(v).al)) = E[/ FIXS oy (shals)ie™ ds + A{XD ey (7))e Fae 8D
Proof. The proof comes from y (Yong and Zhou, 1999), Lemma 3.2, ;,z) sfinitions
provided by (2.7) and \9 §) and the Markovian property of the state pro N
Theorem 3.9 (Dynamic Programming Principle). Let us consider n €7
- ‘-F’;,"\'T "
Vit x)= sup E’ / Fls afs). Xis)ds + Vigar X{n» MK =2l
o Atz L :

where the sup is taken over all admissible controls over the stochastic intervael AT
and, in the setting proposed for our general model,

Flsoals), X (5)) := 7% flafs). X(s)).
Proof. We prove the double inequality so as to prove the validity of (3.5).

First step
Let us consider a stopping time 7 € 7. We can write

- AT
V{t.z} = sup Ei /n fls,als), X(s))ds+

oA

-/ TR aln), X(8)dt - e Th(X ()| F.
n

AT

Fix o, € A, Accordingly with the notation introduced in Lemma 3.2, let us consider
the controlled dynamic with starting point X% (n A7) and let © be a product measure
on [0, +oc) x B induced by X5n A 7). For each ¢ > 0, by Theorem 3.7, there exists a
Borel-measurable function

@;r : UO"*"OO) X BJBE‘O"’['DC}XB - (A()BA{))

such that, ¥ (¢, 2) € [0, +oc) x B, ¢5(t. x) i1s an e-optimal control at (¢, x) 7-a.e. Now, let
us consider the function

£:0—A

such that:
W =t O;(T] A T({.o‘), X(T} AN T)(w))

For each w, 95(n A ) X(nA7)w)) is e-optimal at {7 A 7{w), X{nAr)e)l
Thanks to {A2), we have that there exists qo € A such that

E(w) = oL{n Ar{ew) X(nA i) = ap{w) Vw e

and s is an e-optimal admissible control at (pA7. XA,
Furthermore, by (A1) we get that for each oy € A, there exists « defined as

=

[N ) 1 T 1"‘:_‘-21 e

Fhar is an adimissible conrrol ar
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Let us consider now ¢ > 0 and X{-) a stochastic process with starting peint a B-random
variable and controlled by a delined as in (3.7), where a; is an arbitrary admissible control
and oy is an c-optimal control for starting point (n A7, X (A 7).

By (3.7) it results o = o In [0,nAT)and a = a2 in [y A .71 So, by definition of V.
by (SP3) and by (3.5). we get the following inequalities:

AT _ N
Vitz) 2 J{l e a)= Elr / Fls. afs), X(s))ds l Fil+
Ly I

H
S 2

. T B . - r naT a . ;
E| / fls.als), X(s))ds + ¢ Th{X (7)) 1 ]—'7;.,\71 = I / Fs.a{s). X{s))ds| 7«}] 4+
nAT I : Ly i J

- T _ . _ | -
+E| ) Fls. ag(s), X (s))ds + e TR(X (7)) Fare
s | SanT,
sTa) .

Fls.oz(s), X{s))ds li F e dman, XAt ag)

Then

AT
Vit,z) = SEiE[/ fis,a(s), X(s))ds + VinaT, X(nA TINX()) = I} — €.

3

Second step: let us consider ¢ > 0 and af-) an e-optimal control for (t.z).
In order to proceed, we need to remark that, given 7€ T, 1t results:

ac A = Cll{h.:,:,x) c A Yy >0 (38)

Mareover, by (3.4) and (3.5}, we get

sup B | " F(s.als), X (e)ds + e TR(X (1)) i Fore| = VI AT X {7 AT)). (3.9)

aEA S JphT

So, by (3.8) and (3.9). we have:

nAT
Vitz) ¢ = E{/ _/'(s,a(s):X(s))ds g th“i-
{

- 0T B B . s - e ' - =
J:,' i s als), X(s))ds + e TR(X{T)) F,[,\n_nj% < El/ Fis.a(s). X(s))ds 1 Fi % +
L 4 { 4

o O ST . o
Vit x)—e < sup B / fis. als) X{s)ds + Vipg AT, X(pAT)X (t) = :‘cT
as A St -

The theorem is completely proved. =
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@ Conclusions

In this paper a Dynamic Programming Principle for a certain class of optimal control prob-
lems with exit time is proved. To this end, a Measurable Selection result is firstly showed.
The optimality principle cau be used to treat several dynamic optimization problems, in-
volving economic, financial, engineering or physical applications.
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