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Abstract

The multinomial logit model has been used widely as a fundamental tool
for the analysis of discrete choices and has found large application in transport
studies. However, its restrictive assumptions, such as independence from ir-
relevant alternatives (IIA) and preference homogeneity across respondents,
fugle obivpfed e decelopiment of nuwre fHexible model shricfires Paf alloo
for an increasingly realistic representation of travel behaviour. Among these,
a primary role is played by random parameter models. This paper proposes a
ropp i Befae) tive different specificitions of vamdons perereter models,
namely the mixed logit and the discrete mixture model. An application to public
transport demand is illustrated.

JeL cLassiFicATION: C25; C23; C51

KeYwoRrDS: DISCRETE CHOICE; DISCRETE AND CONTINUOUS DISTRIBU-
TIONS; MIXTURE MODELS; RANDOM PARAMETERS.

1. Introduction

Over the past thirty years, the area of travel behaviour research has
made vast usage of discrete choice models belonging to the family of
Random Utility Models (RUM). For a long time, the high cost of esti-
mating advanced models meant that most applications were limited
to the use of the most basic model structures, such as multinomial
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and nested Logit. In particular, the Multinomial Logit (MNL) model,
or conditional logit model (Daniel McFadden, 1974), possesses many
advantages in terms of closed-form solution and simplicity of interpre-
tation and use.

However, the MNL model makes some restrictive assumptions such
as independence from irrelevant alternatives (IIA) and preference ho-
mogeneity across respondents. Such drawbacks have led to increasing
dissatisfaction with the MNL approach. Partly as a response to the per-
ceived weaknesses of the MNL model, partly as a result of the gains in
computing power and estimation techniques, Random Parameters Logit
(RPL) models have grown in popularity with discrete choice modellers
(Kenneth Train, 1998, 2003; McFadden and Train, 2000) over the past
ten years. In this approach, the utility of each individual is a function
of transport attributes (and, eventually, of individual socioeconomic
charackeristics] with attribute coefficients that are random and reflect
individoal preferences. The distribution of the costficients is generally
supposed to be continuous, leading to the so called Mixed Multino-
mial Logit (MMNL) model. Less frequently, a discrete distribution is
used to approximate the real underlying distribution of the random
parameters. The resulting Discrete Mixture (DM) model, or mass point
mixed logit model, is a particular case of the Latent Class (LC) model
(Wagner Kamakura and Gary Russell, 1989; Peter Boxall and Wiktor
Adamowicz, 2002). LC models, which have been used in the context of
transport studies by, for example, William Greene and David Hensher
(2003) and Back Jin Lee et al. (2003), capture taste heterogeneity by as-
suming that the underlying distribution of tastes can be represented by
a discrete distribution, with a small number of mass points that can be
interpreted as different classes or segments of individuals. The prob-
ability of anindividoal being assigned toa specific class is modelled as a
function of attributes of the respondent and possibly of the alternatives.
In DM models, instead, these allocation probabilities are independent
of explanatory variables and are simply given by constants that are to
be estimated.

Compared to the MMNL muodel specification, the DM model Tras
the advantage of being relatively simple, reasonably plausible, and
cornputationally appealing. However, it is somewhat less flexible than
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the MMNL since the attribute parameters in each class are fixed. In
contrast, the main disadvantage of the MMNL is that the distribution
of parameters should be specified by the analyst. The recopnition of
the fact that each model has its virtues and limitations has motivated
a flourishing literature atternpting to compare these two approaches.
Greene and Hensher (2003) compare the MMNL model with the LC
model in the context of a real application. Stephane Hess et al. (2007)
propose a systematic comparison of continuous and discrete mixture
models making use of both real and simulated data. Other applications
comparing MMNL and DM specifications are those of Sergio Colomb
et al. (2008), Junyi Shen et al. (2006), and Luisa Scaccia (2005), while a
theoretical discussion can be found in Michel Wedel et al. (1999). Greater
efforts are, however, advocated by Greene and Hensher (2003) to further
compare and contrast such advanced models.

The aim of this paper, hence, is to re-explore the potential advantages
and limits of MMNL and DM models both from a theoretical point of
view and through an application to data on public transport demand.
The hope is also to encourage a more widespread use of these models,
since the vast majority of large-scale real-world applications still rely
mainly on the use of MNL and nested Logit.

The paper is organised as follows. Seckion 2 briefly resumes the
MNL, with special emphasis on its limitations. Section 3 describes
MMNL and DM models and the way in which these models overcome
most of the limits of MNL model. In Section 4, we apply these two
specifications of RT'L models to the analysis of some stated preference
data on public transport demand. Finally, conclusions are given in
Section 5.

2. The Multinomial logit model

2.1 Model specification

Random utility models assume that the decision maker has a perfect
discrimination capability and thus, when faced with J possible alterna-

tives, he will choose the one that maximizes his own utility. Therefore an
individual » will choose alternative i ifand only if U ;> Unj, 7i#j, where
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U, is the utility that individual 7 is associating with alternative ;. While
this utility is known to the decision maker, the researcher is, instead, sup-
posed to have incomplete information and he can only observe a portion
of the utility, V., which is called representative utility. Therefore, utility is
decomposedasU =V .+ ¢ where £ ;captures the factors that affect utility
but are not observable and, thus, are treated as random by the researcher.
Assuming a particular density, f {E.n) for the vector £, ={¢, K &, )
the researcher can make probabilistic statements about the individual’s
choice, i.e. the probability that individual »n chooses alternative i is

P {i)=Pr (Um, =U,, Vi £ )= Il(a:nj e <V, VWi =i Ve,
where I{) is the indicator furiction. Different discrete choice models

are chrained from differant 5[::4_1{:”'1'::;-1 Hons of the distribution of the un-
observed portion of utility.

The MNL model assumes that the £ ; are independently, identically
distributed (i.i.d.) type I extreme value, i.e. {E.m. J=e e ¢ ™. Under
this assumption the probability that individual » will choose alternative
i is simply obtained, after some algebraic manipulation, as:

V.

. er
Pii)=— (1)
2
Jj 1
When using alinearin parmmeters specitication for the representative
utility, equation (1) becomes:

P{i)=—

li'x
"

)

Sy

e il

[

~.

where x,, is a vector of observed variables relating to alternative i and
individual » and [} is a vector of unknown parameters.
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2.2 Properties of the multinomial logit model

Under the assumptions of the MNL model, the choice probabilities
have a simple closed form and are analytically differentiable, and this
makes it possible to apply the traditional maximum likelihood proce-
dures for parameter estimation. Moreover, the log-likelihood function

N J
L {B)=2 2 y.mnP{)

n—l i-1
in which N is the number of individuals in the sample, y,, is a dicho-
tomic variable equal to 1 if person n chooses alternative i and to 0
otherwise, and in which P, {i S)is given in equation (2), is globally con-
cave in parameters i (McFadden, 1974), which helps in the numerical
maximization procedures. The simplicity of the MNL model and its
computational attractiveness have made it the most widely used method
for discrete choice analysis.

However, the assumption that the disturbances are i.i.d. represents
an important restriction. First of all, this assumption implies that the
utilities associated to different alternatives are uncorrelated, i.e.:

Cov'[Um. U, ): Cov(r,nj £ ): 0
and thus the MNL model is not capable of accounting for unobserved
similarities among alternatives. Strictly related to this, is the well known
property of independence from irrelevant alternatives (ILA), which
states that the ratio between the probabilities of choosing two different
alternatives i and k is independent from alternatives other than i and
k . In fact, for the MNL logit we have:

PG Ty,
Pn(kj_eV"k/Z s e" ", Wik
J
This ratio is the same no matter what other alternatives are available

or what the attributes of the other alternatives are. The same issue can
be expressed in terms of cross-elasticity. It can be easily shown that,
according to the MNL logit, an improvement in the attributes of an
alternative reduces the probabilities for all the other alternatives by the
same percentage. This pattern of substitution between alternatives is
clearly unrealistic in most situations.
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Another shortcoming of the MNL rmuodel is its Tack of flexibility as a
representation of behaviour, implying that all individuals have the same
tastes. More precisely, the MNL model can accommodate for systematic
taste variation: socioeconomic variables can be included as interactions
with attributes or as interactions with alkernative-specific constants, or
different models can be estimated for different subsets of data. Hence,
the MNL model can accommodate for variation that relates to observed
characteristics of the individuals, but not for random taste variation.
Finding better ways to represent heterogeneity in choice modelling is
important to improve understanding of the factors underlying consumer
hehaviour and willingness to pay, and how the benefits and costs of
policies are distributed across recipients. Finally, the MNL logit model
can be extended to the analysis of panel data only if the unobserved
factors that affect choices can be considered independent over the re-
peated choices. In this case, the MNL model can be used to examine
panel data in the same way as purely cross-sectional data, assuming
that the error components are independent over individuals, choices
and time. Then, the probability that individual » will chose the set of
alternatives i = {iI,K . bis:

T e 4 "Xnig
A
t=1 E e
Jj 1
The model can accommodate for dynamics linked to observed factors,
such as a persom’s past choices influencing current choices or Tagged
response to changes in attributes. However the independence of errors

over repeated choices makes it impossible to handle dynamics associ-
ated with unobserved factors.

3. Random parameters logit models
3.1 Model specification
The RPL models assume, as well as the MNL model, that the &, are

iid. type I extreme value. However, the parameters [} are no longer
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considerad as fixed, bubare now assumed tovary across the population,
according to a certain probability distribution. The result is a mixture
of models, where the underlying choice probability, conditional on the
value of the parameters 3, is simply the logit probability, i.e.:

ol

P B)=—

13", .
,Ele

When the parameters [3 are assumed to vary in a continuous way
in the population, according to a probability density function f{:), the

wixbire of models is defined a-;

PG)=[ PGB (B)ap 3)

and it is generally referred to as MMNL model.

As an alternative, it can be assumed that the number of possible
values for the faste patameters is finite and thus the parameter [iq ofa
generic q -th attribute, for ¢ =1,K , 0, has a discrete distribution, with
m, mass points labelled [3 " for I =LK ,m , » €ach of them associated
with probability 7, satisfying the conditions that 0 <n) <1, '%g,/, and

i J'I:; =1, ¥g . In this case, the mixture of models, generally referred to

i1
a4 DM model, is defined a-;

PO=3L 518K B )nl K n,

L=l Iyl
where the conditional probabilities P, (i | BALK, B Q’Q) are simply the
logit probabilities.

2.2 Properties of random parameter logit models
The MNL model is clearly a particular case of both the MMNL and

the DM models, which is obtained when the mixing distribution of [3
iv degenerate at fixed values, Apart from this trivial case, RPL models
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generalize the MNL model and allow to overcome its limits.

First of all, in the MMNL and the DM models, the parameters [ are
random and represent the tastes of individual decision makers, thus
allowing for heterogeneous tastes in the population. In this framework,
unlike the MNL model, both systematic and random taste variations
can be accommodated. Variations related to observed attributes of the
individual can be captured through specification of explanatery vari-
ables, as in MNL models, and / or the mixing distribution. For example,
cost of transport may be divided by the individual’s income to allow
the relative importance of cost to decline as income rises. The random
parameter of this variable, then, represents the unobserved variation
over people with the same income on the value that they place on cost.
This unobserved taste variation cannot be captured under the MNL
model.

Secondly, under RPL models, the utilities of different alternatives can
be correlated even if the errors are independent over alternatives. For
example, for the MMNL model:

Cov(Um. U, ): Cov{B'xm. +e,., B'x, +E, ): x,;'xB,,

where B is the variance-covariance matrix of [} . Thus various corre-
lation patterns, and hence substitution patterns, can be obtained. For
example, a situation in which an improvement in alternative i draws
proportionally more from alternative ;j than from alternative & canbe
easily represented, simply specifying an element of x that is positively
correlated between i and j but negatively correlated or uncorrelated
between i and &, and allowing the parameter of this variable to be
randorn. This flexibility in representing various substitubion patterns
obviously breaks the undesirable IIA property, which characterizes the
MNL model.

Finally, RPL models can be easily generalized to allow for repeated
choices by each sampled individual. A simple way to do it consists in
treating the random parameters as varying over people but being con-
stant over choice situations for each person. Utility from alternative i in
choice situation ¢ by person n can thenbe writtenas U , =3 'x  + ¢

n ~nit nit 7
with ¢, being ii.d. extreme value over time, individuals and alterna-
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tives, and [3, being the parameter vector specific to subject n . Hence,
the conditional probability of subject n choosing the set of alternatives
i={,K i }is:
T 1, "% 0
AN l_lJeT )
t1 n Xnjt
; e

and the unconditional probability under the MMNL model is then
obtained integrating the conditional probabilities with respect to the
mixing distribution of |3. Lagged dependent variables can also be
added without changing the conditional probabilities in equation (4),
since lagged variables entering U, will be uncorrelated with the error
terms for period 7. A similar generalization can be easily obtained also
for the DM model. In both cases, the randomness of the parameters
allows the inclusion in the model of dynamics associated with unob-
served factors.

The flexibility In representing taste heternomeneity, substitation pat-
terns among alternatives and temporal dynamics in panel data, offered
by RPL maclels, commes at the cost of commplex sperification, eshimation
and application issues related to these models (see Hensher and Greene,
2003} In terma of model specificatiom, the first relevant issue i3 that
of the choice of the parameters that are to be random. This choice is
particularly important since the random parameters are the basis for
acemnmnodating correlation acress alkemnatives and defining the degree
of unobserved heterogeneity. McFadden and Train (2000) suggest a La-
grange multiplier test for testing the presence of random components
againat the null hypothesiz of fixed-valie parameters This test atatistic
has the advantage that its asymptotic distribution under the null hypoth-
esis does not depend on the parameterization of the mixing distribution
under the alternative. However, it is recognized to have a low power in
minst situabions and hence further research in this field 15 advisable in
order to develop more powerful procedures.

Once the parameters that are to be random have been chosen, under
the MMNL the problem arises of selecting an appropriate distribution
for these parametera, Mostpopular specifications bave been the normal,
triangular, uniform and lognormal distributions. However, in practical
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applications, any of thern has shown its deficiencies, generally related
to sign and length of tails — see Hess et al. (2005) for an interesting
discussion of this issue. Clearly, the assumptions made during model
specification have a direct influence onomadel results, and aninappro-
priate choice of mixture distribution for g given taste costficient can
lead to problems in interpretation and potentially misguided policy-
decisions (Cinzia Cirillo and Kay Axhausen, 2006; Mogens Fosgerau,
2006; Hensher, 2006; Hess and Axhausen, 2004). Hensher and Greene
(2003) suggest an empirical procedure based on a kernel density esti-
mator to parameter estimates after applying a jackknife procedure to
a multinomial logit model. This method allows one to visually inspect
the distribution of parameters. Mogens Fosgerau and Michel Bierlaire
(2007) propesed o method Based oma seminonparametric specification
to test if a random parameter of a discrete choice model indeed follows
a given distribution. Fosgerau (2008) also describes a nonparametric test
procedure which uses a combination of smoothed residual plots and a
test skatistic able to detect general misspecification.

The problem of selecting an appropriate distribution does not arise
in the DM model. The use of a discrete distribution may be seen as a
nonparametric estimator of the random distribution and the researcher is
not required to make any prior assumption on the shape of this distribu-
tion. However, in this case, the issue of selecting the number of support
points arises. The likelihood ratio test cannot be used to choose between
models with different numbers of support points, even if models are
nested, and it is necessary to resort to information criteria like the AIC
(Hirotugu Akaike, 1974) or the BIC (Gideon Schwarz, 1978).

The issue of parameter estimates is also more complicated in
RPL models than in the MNL model. For the MMNIL, the choice
probabilities in equation (3) do not have a closed form and simulation
methods are required for parameters estimation. In practice, M values
BupK , By, are drawn from f {d) and used to calculate the simulated
probabilities

M Fiim) i
RORE DR

~ S
M = E_e om) Xy
J

which are then used to evaluate the simulated log-likelihood
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SLLE)=Y 3 3. o B.§)

nl il

The number of draws required to secure a stable set of parameter
estimates varies enormously, according to the complexity of the model
spacified, and estimation can be particularly me consuming, The use
of Halton draws (John Halton, 1960) can sensibly reduce computational
time, however some authors stress the need for further investigation of
their properties in simulation-based estimation (see Zsolt Sandor and
Kenneth Train, 2004).

An obvious advantage of the DM approach compared to MMNL
models is that, if the model for the conditional choice probabilities used
inside the mixture has a closed form, as the MNL model does, then the
DM has itself a closed form. However, the non-concavity of the log-like-
lihood tunction doees not allow the identification of a global maximum,
even for discrete mixtures of MNL. Given the potential presence of a high
number of local maxima, performing several estimations from various
starting points is advisable. Moreover, constrained maximum likelihood
must be used to account for constraints on the weights TI:; . Finally, pa-
rameter estimation in DM models frequently suffers from clustering of
mass points, which causes models with more support points to collapse
back ko miore parsimonious specifications,

All the=e =pecification, estirnation and application i=sies of the RPL
models, as well as the advantages they offer over the MNL model, will
be highlighted in the next section through an application to real data.

4. Application
4.1 Data set description

The data set refers to a study carried out between January and Mars
2004 on the bus service which links the centre of Urbino (Italy), where
the University is located, to Sogesta, a residential location with more

than 100 students (Edoardo Marcucci and Luisa Scaccia, 2005). The dis-
tance between the two locations is about 2 km and the bus took about
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9 minutes to cover it. The aim was to analyse the attributes of the local
public transport and to investigate possible interventions to improve the
service. The quality of the service was, in fact, considered as unsatisfac-
tory and many students were used to hitchhike along the road.

In order to identify the attributes that characterize the quality of
the service, a focus group of 30 students was interviewed. The group
resulted particulatly sensitive to five attributes of the service: cost of
ikl ﬂ}' ticlet, headu,'aj,f, first and lask run, real time information dis-
plays, bus shelters. Fach attribute was further described by five levals.
The attributes and corresponding levels, as used in the study, are shown
in Tab. 1.

Tab. 1 - Arcributes ond levels choraccerizing the guolity of the bus seivice
ATTIENEL TFX (AN LI

L2.50E
ST

Lootd of puvachle sicket | T8 00 G e il aticn)

LG 20E
S KB
ZE e
=1 o nrarss
| l&ad ey =T win bz G | sililize]
S TN
L NTRTT B
Fire] arel Iasd rom 0512 -- 0500
NE-T% aa 103 N

ezl oo s feebaal sihestion

Ozl 2 - X400

[RET PR [ 1]

FZeal time ndermation displays

WAAC el sl T il s iom s lispilages Caetoa ] —iloatizen)
A Adecca il ool S

Oy ooc vlerealale Caenae b mlinm)

Intirinatioi diplazs

s shzlmares

Using the software CBC (Choice - Based Conjoint) of Sawtooth
Software (http://www.sawtoothsoftware.com), questionnaires were
created, each containing 15 choice exercises, 11 of which were random,
2 aimed at testing the quality of the answers, and 2 aimed at testing
preference stability. Each choice exercise contained four hypothetical
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alternatives as shown in Tab. 2. Respondents were approached ran-
domly and face-to-face interviews were carried out at the bus stop. A
total number of 50 respondents took part in the study, providing a data
set of 750 observations.

Taly, 2- 4n rapunple-al 3 slpled cheiy raporinie |

ALTT B4=1TTL ALTT BA=1TTL ALTT BH=1TTL AL ATIVE
A ] [ 13
vrenrd porhiendid LA1E | vl eorlvendkd 205 | el roriiended 2RI12
Tezpdee s Tl 1e Tl 1e
orniruie 2errare, REJ ST/ 1L
Fimlan lasoran BRI ETHRETRRIS BRI ETHRETRRIS . -
Gl TR ERIE L Moz afprevicie Mz e
Wil el e Tl we ala )i ool we ala i
il n e pars dizplies dizplies
el s ol Viacakh: el ol Yiacakh: el ol Yiacakh:
wred Zumals wred Zumals

4.2 Model specification and vesnlts

Three differant models were specified and estimated on the data: a
simple MNL model, a MMNL model and a DM model. In the MMNL
and DM models, the repeated choice nature of the data was taken into
account by specifying the likelihood function with the integration and
summation, respectively, outside the product over replications for the
same respondent. The models were estimated in Biogeme (Bierlaire
2003, 2008). The utility of MNL muodel was specified as a linear fune-
tiony of all the attributes and alse of altermative specitic constants (ASC).
The significance of an ASC related to an unlabelled alternative would
imply that, after controlling for the effects of the modelled attributes,
this alternative has been chosen more or less frequently than the others,
revealing alternative ordering effects. However this was not the case with
the present dataset and all the A5( s turned out ko be not significantly
different from zero and were thus removed from further analysis. Also
the coefficient of the dummy for the presence of real time infarmation
d isp]a}-'s farmed Uk o be nok 5ig|‘1ifiL'a|'1 H:,f different fronm zero [p—valu:—z of
05371 and the domny variable was then removed from the specification
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of the utility function. Parameter estimates for the remaining attributes
are givenin Tal 3 Netice that the first and last run times were specified
in the utility function in terms of daily operating time (i.e. subtracting
thes first rum time frorm thee Tast rum fime

To specify the RPL models, the Lagrange multiplier test suggested by
McFadden and Train (2000) was used to decide which parameters are to be
random. The null hypothesis of no mixing was rejected for the parameters
of the attributes headway and daily operating time. The cost parameter
was instead treated as non random because, in this way, the estimation of
marginal willingness to pay (WTP) for an improvement in a certain attribute
issimplified and its distribution is simply the distribution of that atbribuote’s
coefficient Moreover, freating the parameter of the costas fixed allows to
restrict the cost variable to be non positive for all individuals.

Once the parameters of headway and daily operating time were
chosen to be random, the jackknife procedure proposed by Hensher and
Greene (2003) was used to obtain a kernel density estimator to param-
eters distribution. The results are shown in Fig. 1. Both of the densities
seem to be unimodal and, even if some skweness can be noticed, the
normal density was chosen to approximate the distribution of param-
eters of headway and daily operating time in the MMNL model. The
model was then estimated using 1,000 random draws.

Fig. 1 Kerned tlensidy eslimate Ter dhe porumeters ol heudwuy el pumel) undl
lnily peperaling linme [rich | pynel
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In the specification of the DM maodel, 2 support points were chisen
for the distribution of both random parameters. When models with a
larger number of support points were tried, the smallest probability hap-
pened tobe further split, becoming nat significantly different from zera,
causing these models to collapse back to the one with 2 support points.
Notice that many different starting values for parameter estimates were
used to deal with the local maxima problem.

Parameter estirmates for the three models spacified are givenin Tab
3. This observed that under any specification, the signs of the parameter
estimates are as expected. The negative signs of the cost and headway
parameters indicate that the utility of the trip maker decreases with
an increase in the magnitude of the respective attributes. The utility
increases instead as the daily running time does. For the qualitative
attribute, bus shelters, the positive sign indicates that the presence of
this attribute at both bus stations is considered utility.

Tab, 3 - Estlmation vesnlts Tar e thees models specifled,

EANL Lty B LT
[E TR ETHEEN TR
B < ] [
SRR I nia BN
Lz lincs IR I1:21 Pl
Fi =il ale k=1 L P peeal e ks Y.l =l
P [IREL HITHR G ni:a [LERES nna 21 LR | G
Ii\‘ 4y - 0 Sl [ H nl- s 3 [N H [
Bl e, SalEd Wi e
Bi e - Al IEREL - -
Hi g o Uikeh Ul 1T . -
ST . : - LI CoaEs: Lo
T it N5 L |
[P Iy 11 e 1 N
Ty e - - - NS [ [N ]
B w e N = anie N
e v e il ey - n:
Ble gwn el 1 Tl i . -
Boe T Tl N |
Moo WEE [ TR L]
Bla-g-c, - s nLes? Lo
Mg b alEa [ Gl

The interpretation of the coefficients is not meaningful except tor
sighificance and sign. Therefore, the marginal WTTs for the different
attributes are calculated by taking minus the ratios between the coef-
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ficiznts of the attributes and the coefricient of the cost attribute. These
values represent the marginal rates of substitution between the attributes
and the cost and provide an idea of how much the travellers, on aver-
age, are willing to pay for a positive unit change in each quantitative
attribute under consideration. The WTP for the bus shelter attribute
indicates the willingness to pay to have bus shelters also at Sogesta and
not only at Mercatale. In the MMNL miodel, with a fixed cost coefficient
and normally distributed attributes, marginal WTPs are also normally
distributed. Tab. 4 summarizes the marginal WTP estimates from the
different models under consideration. For example, the MMNL shows
an average WTP of 0.36 Euros more on the monthly ticket to obtain 1
minute less of headway. This value is very closed to the one obtained
under the MNL model. Under the DM model, the population is divided
into two groups of almost equal size with respect to their WTP for shorter
headway. The first group shows a very small propensity to pay for a
shorter headway, while the second group is much more sensitive to a
long headway and hence is willing to pay more to shorten it. Looking at
the WTP for operating time, it can be noticed that the DM model identi-
fies o sepment of the population, the 18.5% of it, which is not sensitive
to operating time (the parameter . .. i1 Tab. 3 is not significantly
different from zero) and hence is not willing to pay for an improvement
of this attribute, i.e. for an extension of the operating time.

Tih, 4 - Estinenclow of che Yy TP for dho differenc actribnos wnder the thres models spoelficd,

Wl k™1 Wk 1L [ [
T e S T8
T opdn. - - -
I -0 54 4.3 =11 0.7
|3 RIS - 2n - -
Himere 21k 141 2. .34
TFrmtire |14 - -

Moving on to the comparison of the three different models, from
Tab. 3 it can be noticed that both the RPL mudels uffer a significant
imprrovement inomadel fikover the ML model. The MMNL offers the
best performance, with an adjusted p* equal to 0.507. The DM model,
even if improving over the MNL rmodel, dues not fit the data so well as
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the MMNL model. This probably depends on the fact that the inspection
of the parameter distributions through the jackknife procedure seems
to reveal unimodal distributions, for which the DM with 2 mass points
might offer a not very good approximation. Probably a larger number
of support points would be required, if the real parameter distributions
were effectively unimodal and continuous, but this would determine
difficulties in the estimation procedures, as alluded toin Section 3.2

Another observation relates to the much lower estimation cost of
the DM model, with an estimation time of 2 seconds, compared to the
10 minutes and 21 seconds required by the MMNL model. This much
lower estimation fime would give a significant advantage to the T
model in the case of larger data sets. However, the estimation time for
the MMNL model is particularly high, since we decided to use random
rather than Halton draws in the estimation.

5. Summary and conclusions

RPL models allow to overcome all the limits of the simple MNL
model. As a drawback, several issues arise in both model specification
and estimation. In this paper, we summarized the theoretical results
concerning RPL models, considering both continuous distributions,
leading to the MMNL model, and discrete distributions, leading to the
DM model, for the parameters. We outlined the advantages and the
limits of both these RPL models, also making use of an application to a
real data set concerning the public transport demand.

The results from the application clearly show the major advantage
of the DM approach in terms of estimation cost, due to the fact that
parameter estimates have a closed form solution and does not rely on
simulation processes. Moreover, this approach avoids the problem of
choosing an adequate distribution for the random parameters. However,
even if the DM model provides a considerable improvement over the
MNL model, for the example at hand it does not seem to be competitive
with the MMNL miadel intermis of fit to the data. The reasan is protahly
that, in this case, the underlying distribution of the random parameters
seems to be continuous and unimodal, and, thus, 2 support points are
not enough to provide a reasonable approximation to it. Hess et al.
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(2007, in a siimalation study, find that T models, with a sofficiently
large number of support points, can offer a very good approximation to
the normal distribution. However, with our data set, we experienced a
clustering of mass points which did not allow us to estimate DM models
with a number of support points larger than 2. This is probably due,
also, to the fact that the data set is a relatively small one.

In this regard, the paper provides a different perspective to that of
Hess et al. (2007), Shen et al. (2006) and Colombo et al. (2008) in the
ongoing discussion about the comparison between MMNL and DM
models. In small data sets, with continuous and unimodal underly-
ing distribution of the random parameters, MMNL models, generally
requiring a smaller number of parameters to account for heterogeneity
in tastes, could perform better than DM models.
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