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1 IntroductionCentile reference charts are an important screening tool in medical practice. The general formof a centile chart is a series of smoothed curves, showing how selected centiles for a biometricalmeasurement, such as height, weight or middle-upper-arm-circumference, change when plottedagainst some independent, appropriate covariate, often age. Here we will refer to these curves ascentile or growth curves. This second name comes from the fact that such charts are used widelyin pediatrics, for measurements related to growth and development.On the basis of the centile curves for a certain biometrical measurement, it is possible to identifypatients who are unusual, in the sense that their value for that measurement lies in the tails of thereference distribution. Centiles are usually chosen from a symmetric subset of the 3rd, 5th, 10th,25th, 50th, 75th, 90th, 95th, 97th.The simplest way to draw the centile curves is to calculate the empirical centiles, after groupingor smoothing with respect to the covariate. If empirical centiles are used, however, the more extremeare estimated relatively inaccurately, as the centile standard errors increase steeply towards the tailsof the distribution. This problem can be overcome by �tting a theoretical distribution to the dataand thereby obtaining the expected centiles. In doing so, two main criteria must be met:1. Generally the covariate concerned takes continuous values and the distribution of the measure-ments can be assumed to vary smoothly with the covariate; centile curves should therefore beconstructed in such a way to respect this continuity, and arbitrary discretisation or groupingshould be avoided.2. Even if biometrical measurements are often approximately normally distributed, it seemsmore appropriate not to make strong distributional assumptions, or to assume a particularparametric form for the dependence on the covariate.In order to address the second requirement we �t a theoretical distribution to the data using a �nitemixture model. Mixture models provide an appealing semi-parametric structure in which to modelheterogeneity and unknown distributional shapes. We refer to the monographs by Titteringtonet. al. (1985) and B�ohning (2000) for general background. In the present context we considera mixture of normal distributions and model the dependence of the observations on the covariate2



through the weights. We allow the weights to be indexed by the covariate, so that they can varyfrom observation to observation.In doing so we also meet the �rst requirement. We model the weights as a smooth function ofthe covariate using B-splines. In this way the centile curves respect the continuity of the covariateand there is no need for arbitrary grouping of the observations. We refer to Green and Silverman(1994) and Wahba (1990) for a comprehensive discussion of splines. An alternative approach tothe nonparametric estimation of growth curves was taken by Cole and Green (1992); see also theother references therein. Bayesian approaches include those of Geisser (1970) and Fearn (1975).The paper is structured as follows. In Section 2 we present the Bayesian hierarchical mixturemodel proposed for the density estimate and the calculation of the expected centiles. Splines andtheir application in modelling the weights of the mixture are introduced in Section 3. Computationalimplementation via Markov chain Monte Carlo methods is discussed in Section 4. In Section 5,performance of the methodology is assessed through application to a real data set, and we concludein Section 6 with general discussion and some possibilities for future work.2 Mixture model2.1 Normal MixtureLet y = (yi)ni=1 be observations of a biometrical variable we want to construct growth curves for,and t = (ti)ni=1 the corresponding observed values of a continuous covariate (such as time or age).The model we assume for y isyi � kXj=1wj(ti)�(�;�j ; �j) independently for i = 1; 2; : : : ; n; (1)conditional on weights, means and variances, where �(�;�; �) is the density of the N(�; �2) distri-bution with � = (�j)kj=1 and � = (�j)kj=1.The weights satisfy wj(t) � 0 with Pkj=1wj(t) = 1 for all t and they are allowed to varycontinuously with t. Let wj be the n-vector wj(ti)ni=1, for each j = 1; 2; : : : ; k, with w the k � nmatrix of all wj(ti).The number of components k is unknown and subject to inference, as are �, � and w. Note thatmaking inference about wj(t) as functions allows us to make predictions about future observations3



y for values of t lying between the observed ti.Conditional on weights, means and variances, the 100�th centile can be numerically evaluatedfrom (1) as that value C�(ti) for which� = kXj=1wj(ti) Z C�(ti)�1 �(x;�j ; �j) dx = kXj=1wj(ti)� C�(ti)� �j�j ! ; (2)where �(�) is the cumulative density for a standard normal distribution.Note that we have chosen to model the weights as varying with t, while keeping the means andvariances �xed; it is possible to consider other formulations with varying means and/or variances,modelled in a similar way to our treatment of the weights in Section 3 below, but we have notexplored these in any detail.It is worth stressing that we are using the mixture representation primarily as a convenientsemi-parametric density estimation device, and we are not greatly interested in the number ofcomponents of the mixture per se, or in a clustering of the observations.2.2 Latent allocation variablesAn alternative perspective leading to the same mixture model (1) involves the introduction of latentallocation variables z = (zi)ni=1 and the assumption that each observation yi arose from an unknowncomponent zi of the mixture. The allocation variables are given probability mass functionp(zi = j) = wj(ti) independently for i = 1; 2; : : : ; n; (3)and conditional on them, the observations y are independently drawn from the densitiesyijz; �; � � �(�;�zi ; �zi): (4)Integrating out zi in (4) using the distribution in (3) leads back to (1).2.3 Priors on component parametersFrom past experience, we would not expect inference about the density in (1) to be highly sensitiveto prior speci�cation. As in Richardson and Green (1997), our prior assumptions are that the �jand ��2j are all drawn independently, with normal and gamma priors�j � N(�; ��1) and ��2j � �(�; �);4



where the latter is parametrised so that the mean and the variance are �=� and �=�2 respectively.The prior on the weights wj will be discussed in section 3.2.The number of components k will also be considered unknown and subject to inference. For thispurpose, we assume for the number of components k a uniform prior on the values f1; 2; : : : ; kmaxg,where kmax is a pre-speci�ed integer. As in other mixture model contexts (or indeed in almostall model choice problems), it seems di�cult to argue objectively for any speci�c prior for k. Ourchoice here is for similar reasons to those in Richardson and Green (1997), namely that with thischoice it is easy to adjust results to get posteriors corresponding to other priors, by importancesampling (see, for example, Hammersley and Handscomb, 1964).In order to allow for weakly informative priors for the model parameters, we introduce a hyper-prior structure and hyperparameter choices which correspond to making only minimal assumptionson the data. Following Richardson and Green (1997) we take the N(�; ��1) prior for � to be ratherat over the range of the data, by letting � equal to the mid-point of this range, and � equal to asmall multiple of 1=R2, where R is the length of the range.For �2 we instead introduce an additional hierarchical level by allowing � to follow a Gammadistribution with parameters f and h, with � > 1 > f and h a small multiple of 1=R2. This meansthat the support for �2 is not �xed a priori but determined by the value sampled for �.3 Modelling dependence using splinesA particular feature of our mixture model is that the weights in (1) are evaluated at ti, so thatthey are allowed to vary from observation to observation, according to the value recorded for thecovariate. In this way, we introduce dependence on the covariate through the modelling of theweights. In particular we want to reect the fact that observations corresponding to values of thecovariate t not too far from each other, are somewhat similar. This is especially true when thinkingof growth curves, for which the distribution of the biometrical measurement can be assumed tovary smoothly with the covariate. In our model this is achieved through requiring the weights (andthus also the allocation probabilities) to be continuous functions of t.The model we propose makes use of a linear combination of cubic B-splines, after a suitabletransformation of the weights. 5



3.1 Mathematical formulationThe weights wj(t) are constrained to be non-negative and sum to one for all t. For convenience,we impose the necessary constraints by transformation and, therefore, express the weights aswj(t) = exp(gj(t))Pkj0=1 exp(gj0(t)) ; (5)where gj(t) is some continuous function of the covariate t. In order to allow the biometricalmeasurement to change smoothly and slowly with the covariate, we choose to model gj(t) and,thereby the weights wj(t), using natural cubic splines. For more details of the mathematical andstatistical properties of cubic splines, needed in this and the following section, see Green andSilverman (1994, chapters 2 and 3).Consider a set of distinct real numbers t1; : : : ; tn (such as, for example, possible values of ourcovariate) on some interval [a; b], satisfying a < t1 < t2 < : : : < tn < b. A function g de�ned on[a; b] is a cubic spline on the knots ti if:i) g is a cubic polynomial on each of the intervals (a; t1); (t1; t2); (t2; t3); : : : ; (tn; b);ii) the polynomial pieces �t together at the points ti in such a way that g itself and its �rst andsecond derivatives are continuous at each ti, and hence on the whole of [a; b].The continuity of the second derivative is enough to give \visual smoothness" of the resultingfunction. Cubic splines can be speci�ed in many equivalent ways. One of them is to give the fourpolynomial coe�cients of each cubic piece, for example in the formg(t) = di(t� ti)3 + ci(t� ti)2 + bi(t� ti) + ai for ti � t � ti+1:A cubic spline on an interval [a; b] is said to be a natural cubic spline if its second and thirdderivatives are zero at a and b. These conditions, called the natural boundary conditions, implythat d0 = c0 = dn = cn = 0, so that g is linear on the two extreme intervals [a; t1] and [tn; b].The importance of these functions derives from their variational characterisation: among allfunctions g on [a; b] that are twice continuously di�erentiable and interpolate a given set of datapoints (ti; yi), where the ti are distinct, that minimising the integrated-squared-second-derivativeroughness penalty R (g00j (t))2dt is the unique interpolating natural cubic spline. This result motivates6



both the use of such splines in modelling smooth dependence, and the use of the prior speci�cationin the following section.Cubic splines are very convenient functions to deal with computationally; the existence ofbanded matrices in representations of interpolating and smoothing splines guarantees that compu-tation times are O(n) for n data points. However, the computational requirements of our Bayesianmethodology are more demanding, and it is convenient to impose a �nite-dimensional structureon the problem, by restricting the choice of g(t) to the span of a prescribed set of basis functions,�1; : : : ; �q, and, thus, considering only functions g(t) that can be expressed in the formg(t) = qXl=1 l�l(t)for some numbers 1; : : : ; q.A possible choice for the basis functions is the set of natural cubic B-splines on a �xed grid ofknots s1 < s2 < � � � < sq, usually taken to be equally spaced to cover the range of points ti. TheB-splines form a set of natural cubic splines that are non-negative and have only limited support:for 3 � l � q � 2 the function �l is zero outside (sl�2; sl+2), whilst �1, �2, �q�1 and �q are similarbut linear outside (s1; sq). Restricting g(t) to lie in the span of a set of, say, 10 B-splines typicallyhas minimal impact on the quality of �t to the data.Now, in our model, we have a function g(t) for each component of the mixture. Modelling themas a linear combination of B-splines on the same knots s1 < s2 < � � � < sq, we can write them asgj(t) = qXl=1 lj�l(t): (6)Let j be the q-vector (lj)ql=1, for each j = 1; 2; : : : ; k, with  the q � k matrix of all lj.3.2 Priors on weightsThe prior on the weights is speci�ed via that on gj or j , beginning with the natural integral-squared-second-derivative penalty � Z (g00j (t))2 dt = �Tj Kj (7)for j = 1; 2; : : : ; k, where � is a parameter always positive and K is the q � q matrix withKlm = R �00l (t)�00m(t) dt. The prior p(gj) / expf�(1=2)�Tj Kjg would be \partially improper",7



since the matrix K has rank q � 2; see Wahba (1978). Essentially the prior is invariant to theaddition of a linear trend in t. Combined with the fact that while wj are identi�able from the data,the gj are not, this can cause problems with impropriety in the posterior. To circumvent these, theprior is converted to be proper by substituting the matrix K with a full rank matrix, and usingp(gj) / expf�(1=2)Tj (�K + �I)jg (8)(where I is the identity matrix and � is a positive parameter).The natural integral-squared-second-derivative R (g00j (t))2 dt is a measure of the roughness ofthe curve gj(t). There are many ways of measuring how rough a curve is, but this is particularlyappealing for di�erent reasons. First of all, a natural requirement for any measure of roughness isthat if two functions di�er only by a constant or a linear function then their roughness should beidentical. This logically leads to the idea of a roughness measure based on the second derivativeof the curve under consideration. Secondly, the integral-squared-second-derivative has considerablecomputational advantages. Thirdly, there is the connection with the variational characterisation ofnatural cubic splines, mentioned in the previous section.The role of � is that of a smoothing parameter. As � increases towards 1, there is a strongershrinkage of each j towards a linear trend. As a result the curves gj(t) become smoother andso do the weights. Overall, the centile growth curves will also be very smooth and display littlecurvature. In the opposite limiting case, as �! 0 the centile growth curves will track the empiricalones very closely at the expense of being rather variable. This variability would a�ect particularlythe more extreme centile curves and the accuracy of their estimates, as the centile standard errorsincrease steeply towards the tail of the distribution.In this perspective, the model chosen for the weights introduces, through the natural integral-squared-second-derivative R (g00j (t))2 dt and the smoothing parameter �, a roughness penalising ele-ment and a trade-o� between smoothness and goodness of �t of the centile curves.The parameter � can also be regarded as a smoothing parameter. As its value increases, notonly there is a stronger shrinkage of the j towards zero, but this e�ect is also reinforced by thefact that the variance for the j is reduced and their distribution is more concentrated around thezero-mean.Obviously the choice of the parameters � and � is of some importance. This matter will bediscussed later in section 5.3. 8
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Figure 1: Directed acyclic graph for the complete hierarchical model3.3 Complete hierarchical modelThe joint distribution of all variables conditional on �xed hyperparameters may be writtenp(k; ; �; �; �; z; yj�; �; �; �; �; f; h) = p(k)p(jk; �; �)p(�jk; �; �)p(�jf; h)p(�jk; �; �)p(zj; k)p(yjz; �; �):We have p(zj; k) = nYi=1wzi(ti);with the relationship between w and  given by (5), andp(yjz; �; �) = nYi=1�(yi;�zi ; �zi):The prior distribution p(jk; �; �) is given in section 3.2, while p(�jk; �; �), p(�jf; h) and p(�jk; �; �)are given in section 2.3. The complete hierarchical model is displayed in Figure 1 as a directedacyclic graph (DAG). We follow the usual convention that square boxes represent �xed or observedquantities and circles represent the unknowns. Relationships that are deterministic, as opposed tostochastic, are indicated by broken lines. 9



4 Computational implementationThe complexity of the mixture model presented requires Markov chain Monte Carlo (MCMC)methods to approximate the posterior distribution. Details of these computational methods can befound for example in Tierney (1994) and Besag et. al. (1995).Our sampler uses �ve di�erent �xed-dimension moves, each updating one of the variables of themodel, plus a variable dimension move for updating k. The way in which the �rst �ve moves areperformed is quite standard and thus we will go through them rather quickly. The last move, forupdating k, is performed using a reversible jump method (Green, 1995).4.1 Random walk Metropolis move for the weightsWe can update the weights by means of a simultaneous random walk Metropolis method appliedto . Thus we draw 0lj � N(lj ; �2)independently, compute the corresponding weights w0j(ti), and accept this proposal with the usualprobability equal to minf1; Qg whereQ = p(k; 0; �; �; �; z; y)p(k; ; �; �; �; z; y) = p(0jk)p(jk) p(zj0; k)p(zj; k) ;which simpli�es intoQ = exp0@�(1=2) kXj=1[(0j)T (�K + �I)0j � Tj (�K + �I)j ]1A nYi=1 w0zi(ti)wzi(ti) :Faster convergence in the algorithm was obtained introducing a small bias in the proposal. Thus,instead of proposing to update lj to the new value0lj = lj + r;where r is a random number from a N(0; �2), we propose, as a new value for lj,0lj = lj + r + % Xi:z(i)=j �l(ti);where % is a small number (we used % = 0:001 on the basis of some limited pilot runs). Theacceptance ratio for this proposal then becomesQ0 = p(0jk)p(jk) p(zj0; k)p(zj; k) p(0j)p(j0) = Q exp0@�2%�2 kXj=1 qXl=1(0j � j) Xi:z(i)=j �l(ti)1A ;10



where p(0j) is the probability of proposing 0 when the current value is  and p(j0) is theprobability of proposing  when the current value is 0.The biased proposal has the overall e�ect of proposing new weights which tend slightly to favourthe current allocation of the observations.4.2 Gibbs move for the allocationsFor the allocations we havep(zj; �; �; k; y) / p(; �; �; z; k; y) / p(zj; k)p(yjz; �; �)(that is, proportional as a function of z), so the allocation variable zi has conditional probabilityp(zi = jj; �; �; k; y) = wj(ti)�(yi;�j ; �j)Pj0 wj0(ti)�(yi;�j0 ; �j0) : (9)We can sample directly from this distribution and update the allocation variables independentlyby means of Gibbs sampling.4.3 Moves for the parameters and the hyperparameterUpdating �Before considering the updating of the �j, we comment briey on the issue of labelling the com-ponents. The whole model is, in fact, invariant to permutation of the labels j = 1; 2; : : : ; k. Foridenti�ability, Richardson and Green (1997) adopt a unique labelling in which the �j are in in-creasing numerical order. As a consequence the joint prior distribution of the �j is k! times theproduct of the individual normal densities, restricted to the set �1 < �2 < : : : < �k.The �j can be updated by means of Gibbs sampler, drawing them independently from thedistribution �jj � � � � N  ��2j Pi:zi=j yi + ����2j nj + � ; (��2j nj + �)�1! ;where nj = #fi : zi = jg is the number of observations currently allocated to the j componentof the mixture. Here and later, `� � �' denotes `all other variables'. In order to preserve the order-ing constraints on the �j , the move is accepted provided the ordering is unchanged and rejectedotherwise. 11



Except for very small values of k, this updating move has the drawback of producing a verysmall acceptance ratio, due to the fact that the ordering of the �j seldom remains unchanged. Forthis reason it is preferable to update �j using a trick similar to the one that Green and Richardson(2000) adopt to update their component risk parameters. We propose simultaneous independentzero-mean normal increments to each �j ; the modi�ed values of �j are then placed in increasingorder to give �0 say. The complete set of updates is accepted with probability, formed from priorratio and likelihood ratio, which reduces to minf1; Sg whereS = exp8<: kXj=124��2 �(�02j � �2j)� 2�(�0j � �j)�� Xi:zi=j 12�2zi �(�02zi � �2zi)� 2yi(�0zi � �zi)�359=; :An alternative to imposing identi�ability constraints on the parameters, is to order the parameters,according to some unique labelling, a posteriori, after the whole sample of parameters drawn fromthe posterior is available. In the present case, where the main concern is the inference on theposterior density of the data and its centiles, rather than on the single parameters of the model,this labelling is not even required. In this case Gibbs sampler can be used for updating �j withoutany need for their order to stay unchanged.For reason of completeness and because of some interest, however, we preferred to make inferencealso on the single parameters of the model and we decided to use the �rst approach (i.e. to imposean ordering on the �j a priori) after having obtained much the same results from both of them.Updating �The full conditionals for �2j are��2j j � � � � �0@� + 12nj; � + 12 Xi:zi=j(yi � �j)21A :We update �2j independently using a Gibbs move, sampling from their full conditionals.Updating �The only hyperparameter we are not treating as �xed is �. Conditional on all the other parametersand the data, � has a Gamma distribution�j � � � � �(f + k�; h+ kXj=1��2j ):12



We update � by a Gibbs move, sampling from its full conditional.4.4 Variable dimension move for updating kUpdating the value of k implies a change of dimensionality for the components � and �, theallocation variables z and the weights w (through the change of dimensionality for g and ). Wefollow the approach used by Richardson and Green (1997) consisting of a random choice betweensplitting an existing component into two, and merging two existing components into one. Theprobabilities of these alternatives are bk and dk = 1 � bk, respectively, when there are currentlyk components. Of course, d1 = 0 and bkmax = 0, and otherwise we choose bk = dk = 0:5, fork = 2; 3; : : : ; kmax � 1.For the combine proposal we randomly choose a pair of components (j1; j2) that are adjacent interms of the current value of their means, which means �j1 < �j2 , with no other �j in the interval[�j1 ; �j2 ]. These two components are merged into a new one, labelled �j?, reducing k by 1. Wethen reallocate all those observations yi with zi = j1 or j2 to the new component j? and createvalues for �j?; �j? in such a way that:�j? = (�j1 + �j2)=2�2j? + �2j? = [(�2j1 + �2j1) + (�2j1 + �2j2)]=2:To create the new values wj?(ti) we �rst have to create lj? , for l = 1; 2; : : : ; q. We do this bysetting lj? = log[exp(lj1) + exp(lj2)]; for l = 1; 2; : : : ; qand calculate g?j (ti) and w?j (ti) using (6) and (5), respectively. Note that in this way all the weightschange slightly.The split proposal starts by choosing a component j? at random. This component is split intotwo new ones labelled j1 and j2, augmenting k by 1. Then we have to reallocate all those observa-tions yi with zi = j? between the two new components, and create values for (wj1 ; wj2 ; �j1 ; �j2 ; �j1 ; �j2).Let us start by splitting �j? and �j?. We generate a two-dimensional random vector v to specifythe new parameters. We use Beta distributionsv1 � Be(1; 1) and v2 � Be(1; 1)13



for this and set �j1 = �j? � v1�j? ; �j2 = �j? + v1�j?;�2j1 = 2v2(1� v21)�2j? and �2j2 = 2(1 � v2)(1 � v21)�2j? :We then need to check that the constraints on the means are satis�ed. If not the move is rejectedforthwith, as the mis-ordered vector � has zero density under the ordered prior. If the constraintsare satis�ed we move on and split the weights.In doing so, we generate a q-dimensional vector u fromul � Be(0:5; 0:5); independently for l = 1; 2; : : : ; q;and we set lj1 = lj? + log(ul) ; lj2 = lj? + log(1� ul) for l = 1; 2; : : : ; q:We then calculate gj1(ti), gj2(ti) and wj1(ti), wj2(ti) using (6) and (5), respectively. We denote theproposed new weights by w0.Finally we reallocate those yi with zi = j? between j1 and j2 in a way analogous to the standardGibbs allocation move; see equation (9). We denote the proposed new allocation vector by z0.According to the reversible jump framework, the acceptance probability for the split move ismin(1; A), whereA = (likelihood ratio)� p(k + 1)p(k) � (k + 1)� nYi=1 w0z0i(ti)wzi(ti)� r �2� exp���2 h(�j1 � �)2 + (�j2 � �)2 � (�j? � �)2i�� ���(�) exp "��  1�2j1 + 1�2j2 � 1�2j?!# �j?�j1�j2!2(��1)� j�K + �Ij1=2(2�)q=2 exp��12 hTj1(�K + �I)j1 + Tj2(�K + �I)j2 � Tj?(�K + �I)j?i�� dk+1bkPalloc � "be1;1(v1)be1;1(v2) qYl=1 be0:5;0:5(ul)#�1� 8(1� v21)�3j?Qql=1 ul(1� ul) ; (10)where �(�) is the Gamma function, Palloc is the probability of this particular allocation, bep;r denotesthe Beta(p; r) density, and (likelihood ratio) is the ratio of the product of the f(yijzi; �zi ; �zi) terms14



for the new parameter set to that for the old one. The quantity j�K+�Ij represents the determinantof the inverse of the covariance matrix for each of the gj. The need to make the prior distributionon the gj proper and to introduce the positive parameter � is now evident.The �rst four lines of (10) are the product of the likelihood ratio and the prior ratio forthe parameters of the model. The �fth line is the proposal ratio. The last line is the Jaco-bian of the transformation from the vector (�j?; �j? ; 1j? ; : : : ; qj? ; v1; v2; u1; : : : ; uq) to the vector(�j1 ; �j1 ; 1j1 ; : : : ; qj1 ; �j2 ; �j2 ; 1j2 ; : : : ; qj2).The acceptance probability for the combine move is min(1; A�1), with some obvious substitu-tions in the expression for A.4.5 Within-model simulation and path samplingThe alternative general approach to sample-based joint inference about a model indicator k andmodel parameters is to conduct separate simulation within each model, and piece the results to-gether afterwards. Inference about k is then based on the estimate of the posterior model proba-bilities p(kjY ) / p(k)p(Y jk):These require estimates of the marginal likelihoods p(Y jk) separately for each k, using individualMCMC runs. Let  k = (�; �;w) denote the unknowns �, � and w in the model with k components.Then, possible estimates of marginal likelihoods, using importance sampling, are for example (seeNewton and Raftery (1994)) bp1(Y jk) =M= MXm=1np(Y jk;  (m)k )o�1 ;based on an MCMC sample  (1)k ;  (2)k ; : : : ;  (M)k from the posterior p( kjY; k),bp2(Y jk) =M�1 MXm=1 p(Y jk;  (m)k );based on a sample from the prior p( kjk), orbp3(Y jk) = PMm=1 p(Y jk;  (m)k )=n�bp3(Y jk) + (1� �)p(Y jk;  (m)k )oPMm=1 n�bp3(Y jk) + (1� �)p(Y jk;  (m)k )o�1 ;
15



based on a sample from a (�; 1 � �) mixture of the prior p( kjk) and the posterior p( kjY; k) andsupposed to perform better than the previous two. It is well known, however, that when thedistance between the prior and the posterior densities is big (as it is in our case), the variability ofthis last estimator can become so large that the estimate is virtually unusable. A gain of e�ciencycan be obtained using the idea of the bridge sampling and choosing a sensible density which servesas a \bridge" between the prior and the posterior densities. The idea of creating a bridge canobviously be pushed further if the prior and the posterior densities are so far separated that theestimator based on the bridge sampling is too variable to use in practice. In such cases it is usefulto construct an in�nite series of intermediate densities, i.e. a whole \path", from which we canmake draws. We refer to Gelman and Meng (1998) for a detailed discussion of bridge sampling andpath sampling.Briey, to estimate the marginal likelihood, we construct a geometric path between the priorand the posterior parameter densities using a scalar parameter � 2 [0; 1],q( kj�) = fp( kjk)g1��fp( kjk)p(Y j k; k)g� = p( kjk)fp(Y j k; k)g� : (11)We use a notation in which q(�) represents an un-normalised density, p(�) is the correspondingnormalised density and c(�) is the normalising constant. From (11) it is evident that estimatingp(Y jk) is equivalent to estimating c(1), i.e. the normalising constant when � = 1. Following Gelmanand Meng (1998) it can be proved thatlog[p(Y jk)] = log[c(1)] = Z 10 E�[U( k; �)] d�; (12)where E� denotes the expectation with respect to the sampling distribution p( kj�) (which is theunknown normalised version of q( kj�)) and whereU( k; �) = dd� log q( kj�):For estimating log[p(Y jk)] we then numerically evaluated the integral in (12) over a grid of valuesfor �. We chose an exponential spacing for the grid to account for the sharp variation of q( kj�) for� close to 0. Given the indexing 0 = �(1) < : : : < �(h) < : : : < �(H) = 1 and a (possibly dependent)sample of draws ( (m)k ; �(m)) from p( k; �), applying the trapezoidal rule, we estimate log[p(Y jk)]by log[bp(Y jk)] = log bc(1) = 12 H�1Xh=1 (�(h+1) � �(h))( �U(h+1) + �U(h)); (13)16



where �U(h) is the average of the values of U( (m)k ; �(m)) for all simulation draws m for which�(m) = �(h).We now come to the matter of obtaining an MCMC sample of draws ( (m)k ; �(m)) from the jointdistribution p( k; �), using a di�erent MCMC sample from that used to compute the within-modelposterior distribution of the parameters. We can easily draw  k from p( kj�), but the problemof updating � is more complicated. Assuming a discrete uniform distribution for � on the valuesspeci�ed in the grid, we havep(�j k) / p(�)p( kj�) = p(�)q( kj�)c(�) / q( kj�)c(�) ;and c(�) is unknown.A �rst solution would be to use nested loops: for each value � in the grid, run an iterativesimulation algorithm until approximate convergence to obtain p( kj�). The problem with thissolution is that when the grid for � is very �ne, as in the present case, many runs of the algorithmare required and convergence needs to be assessed for each of them.We thus preferred to draw from the joint density of ( k; �), combining the simulations of  k and� in a single loop of iterative simulation, alternately updating  k and �. In this way, convergencecan be checked looking at the sampled distribution for � which should be uniform on the valuesspeci�ed in the grid. Also, we avoid the need to do burn-in runs for each � in the grid, separately.To overcome the problem of drawing � from p(�j k) we used a rough estimate c?(�) instead of c(�)and simulated � with target p(�)q( kj�)c?(�) = �p(�) c(�)c?(�)� p( kj�);so that the output distribution for � is only slightly altered (provided c?(�) is not too far from c(�))while the output distribution for ( kj�) is unaltered. We proceeded starting from a �rst roughestimate c?(�). This is obtained keeping � = �(h0) �xed for 20 sweeps of the algorithm, updatingonly  k, estimating c?(�(h0)) from these 20 sweeps using (13) where the sum is over h = 1; : : : ; h0�1,and then moving to � = �(h0+1). Notice that there is no need to estimate c?(0) since c(0) = 1. Afterc?(�) was calculated for each � a further 100 000 sweeps were used to draw values of � and  kfrom their joint distribution and to re-estimate c?(�) after an exponentially increasing number ofsweeps (m = 67; 91; 168; : : : ; 73 783; 100 000). We then used the last estimate of c?(�) to run the17



�nal 100 000 iterations to be used to estimate p(Y jk) from (13). The whole procedure is quitecumbersome. It is however required to get values of c?(�) as close as possible to those of c(�). Thisis necessary to obtain an output distribution of � not too far from the uniform and to ensure, inthis way, that the averages �U(h) are calculated over a considerable number of values for each h.5 ResultsThe method for determining growth curves illustrated so far is applied to data on triceps skinfoldin Gambian females. These data come from an anthropometry survey of 892 girls and women upto age 50 in three Gambian villages, seen during the dry season of 1989; 620 (70 %) of the subjectswere aged under 20. Five di�erent anthropometric measurements were taken. Here we only discussthe triceps skinfold for a subset of the original data including 584 subjects aged from about 3 to 26years. In this covariate range, the observations on triceps skinfold vary in the interval [3:2; 21:0],determining a length R for the range of the data equal to 17.8. This dataset has already beenanalysed in Cole and Green (1992) and Green and Silverman (1994, x6.7).The results reported correspond to runs of 100 000 sweeps after a burn-in period of 50 000sweeps. The following settings were used for previously unspeci�ed constants: � = 10:0=R2, � = 2:0,f = 0:2, h = 10:0=R2, � = 0:7, � = 0:09. Some experimentation indicates that results are quiterobust to reasonable perturbations of these values.Models with a number of components up to kmax = 5 were considered. The number of knotswas �xed at 10, with the knots equally spaced between 5 and 23.5.1 Posterior inference on kThe reversible jump approach allows joint (or across-model) inference about the number of compo-nents k and the other parameters of the model. The posterior distribution p(kjy) can be, therefore,directly obtained from the MCMC sample. Unfortunately, in the present case, a few runs of thealgorithm showed an extremely small acceptance rate of the split/combine move, approximatelyequal to 0.06 %. This is partly due to the large number of parameters involved in the model, thatmakes it di�cult to move from a state of dimension 12k to a new one with dimension 12(k � 1)or 12(k + 1). However, the main reason for such bad performance is the large size of the data set.18



This leads to very peaked posterior distributions for the parameters, causing a very low acceptancerate of the split/combine proposals.An improvement in the acceptance rate was found considering one quarter of the original dataset: the data were sorted according to the value of ti and a reduced data set was created takingone datum at random from every consecutive four, in order to preserve the original structure ofthe data. In this way the acceptance rate increases 10 times and a further increase was obtainedrepeating the split/combine move more than once in each sweep and considering the move acceptedoverall, if accepted at least once.Reversible jump was therefore used on the reduced data set to simulate a \partial" posteriordistribution for k. The mode of this distribution was considered as an estimate of the numberof components for the mixture. The MCMC algorithm was then run again to obtain the densityestimate for the whole data set, skipping this time the variable dimension move and �xing k to itsestimated value. This is not `using the data twice', but is a valid approach to approximating theposterior of all parameters conditional on k = k?, where k? maximises p(kjy); the probability thatk? di�ers between the reduced and full data sets is negligible.In addition to the across-model approach on the partial data set, we also tried the within-modelapproach of Section 4.5. We mainly did so in order to check the estimate of k we obtained from thereduced data set and also to explore an alternative solution when the amount of data makes theuse of reversible jump on the whole data set infeasible, at least with the moves we have considered.Even proceeding in this way, the estimate still shows some variability. In order to reduce thisvariability, the �nal estimate for each model was therefore obtained as a trimmed mean of fourestimates (i.e. the mean of the middle two of the four) resulting from four di�erent runs of thealgorithm. Figure 2 shows the posterior distribution p(kjY ) obtained in this way for the whole dataset (continuous line) and for the partial data set (dashed line) compared with the one resulting fromthe reversible jump sample on the partial data set (dotted line). In spite of their variability, thedi�erent estimates agree on the mode of the posterior distribution for k and favour an explanationof the data using 4 components.A further visual comparison to evaluate the goodness of �t of the di�erent models can be basedon the plot of the cumulative density of the data against the covariate. If the data are well �ttedby the model, the points must be uniformly spread (in the vertical direction) over the plot. The19
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Figure 2: Posterior distribution p(kjY ) estimated using path sampling on the whole data set (con-tinuous line) and on the partial data set (dashed line), and using reversible jump on the partialdata set (dotted line).cumulative density, conditional on weights, means and variances can be written asF (yi) = kXj=1wj(ti) Z yi�1 �(x;�j ; �j) dx = kXj=1wj(ti)� yi � �j�j ! :The cumulative density for all ti was computed at each sweep and then averaged over the numberof sweeps. Figure 3 shows these cumulative densities plotted against the age for the �ve di�erentmodels. Clearly the models with 1 and 2 components show their limits in �tting the data, whilethe models with 3 to 5 components seem to be all reasonable. In the bottom right corner, the �tcorresponding to the across-model inference is also shown.5.2 Posterior inference for centile curvesWe briey illustrate how to evaluate the centile curves from the MCMC output. First of all, centilecurves were not evaluated for every ti but only over a grid of 47 equally spaced values for t, between4.0 and 26.0. We indicate these values as t? = (t?i )n?i=1, where n? = 47. This was done to reduce thecomputing time required to evaluate the centiles numerically at each sweep of the algorithm.20
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Then we set a grid of values a = (ah)200h=1. For each sweep m = 1; 2; : : : ; 100 000 and for eachvalue t?i , and recalling (2), we evaluate, for a given value �, the centile C(m)� (t?i ) as that value ahfor which kXj=1w(m)j (t?i )�0@ah � �(m)j�(m)j 1A � � < kXj=1w(m)j (t?i )�0@ah+1 � �(m)j�(m)j 1A :The centiles C(m)� (t?i ) are then averaged over the di�erent sweeps to obtain �nally C�(t?i ). Figure4 shows the centile curves obtained for the �ve di�erent models. The results for the model with 1component are given only for reasons of completeness and as a visual aid, to see how the �tting ofthe data changes as the number of components increases. It expresses no dependence of the dataon the covariate and simply models the data as a normal distribution with some estimated meanand variance. Obviously it has no pretension of explaining the data. The 2 components mixtureseems to be not completely adequate to model the density of the data, either, while mixtures with3 to 5 components show similar results in terms of growth curves. In the bottom right corner ofFigure 4, the centile curves estimated for the partial data set, using the across-model approach arealso given. In this case inference results from mixing over k, while inference on the other centilecurves is conditional upon k.Data are characterised by high triceps values in early childhood, followed by a fall and then asecond continuous rise until the end of the age interval. The centile curves obtained using the threemodels with 3 to 5 components closely follow this pattern. They show the same \notch" in thedependence at around 9 years, found in Cole and Green (1992). They also show a gradual increasein the spread of the data after age 10.The across-model approach gives much the same results, with some obvious di�erences due tothe fact that here only one quarter of the data are involved in the model �tting.The centile curves are reasonably well smoothed up to age 20. After that they appear somewhatragged. This might well be due to the fact that data for women aged more than 20 are very sparse.Smoother curves could be obtained by increasing the value of the smoothing parameters � or �.5.3 The choice of the smoothing parametersThe choice of the smoothing parameters � and � obviously involve an arbitrary decision. A possiblesolution to overcome this problem would be to assign a hyperprior to � and �. This would allow23
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an observation to be allocated to that component. For all the models it can be noticed that theposterior distribution of �j becomes more and more spread as we move from �1 to �k. This is dueto the fact that the mean value of �2j increases with j, and also to the fact that fewer observationsare generally allocated to the last components. If we consider the modal allocation, for the modelwith �ve components, 526 observations are allocated to the �rst three components and only 58observations are allocated to the last two.It is also interesting to notice how the e�ect of going from k = 3 to k = 4 components is thatall the components are shifted, while the principal e�ect of going from k = 4 to k = 5 componentsis that the third component is split into two.Looking at the posterior distribution of �2j , a general increase in the variance of the distributionis again evident, together with an increase in the shift towards right, as we move from �21 to �2k.These increases are caused by a smaller number of observations allocated to components with large�, but also by the fact that these observations are the most disperse ones. The only exception inthe location of the posterior densities for �2 can be noticed for k = 5 where the posterior mode for�24 is less than the posterior mode for �23 .The posterior densities of zi, i.e. the weight curves wj(ti), can be analysed using both Figure 6and Figure 7. Figure 7 describes the modal allocation of each observation and gives a more imme-diate idea than Figure 6.In the model with k = 3, the observations at ages less than �ve are very likely associated to thesecond component. Then the weight of this second component decreases in favour of the weight ofthe �rst one to which all the observations in the notch are allocated with probability very close to1. The observations at ages more than 15 are associated again with the second component or withthe third one, when their value is high.In the models with k = 4 and k = 5, the �rst component is still associated with the notcharound the age 9. Observations on the edges of this notch are instead very likely to be allocatedto the second component. The fourth component in the model with k = 4 has the same role ofthe �fth component in the model with k = 5: it is associated with observations aged more than15 with high triceps values. As noted before, going from k = 4 to k = 5 has the e�ect of splittingthe third component. For k = 4, the third component is both associated with observations atyoung ages and with observations at ages around 15 and older, characterised by triceps around the26



5 10 15 20 25

5
10

15
20

k=3

Age

T
ric

ep
s 

sk
in

fo
ld

1
1
1
1

1

11
1
11
1
111

1
1
1
1

1

1
1

1

1
1
1
1
11

1
1

11
1

1

11
11
1

1
111

1
1

1

1
1
11

1

1
1
111
1
1
11
1

1

1

1
1

1

1
11

1
11
11

1

1
11
1
1
11
1
1

11

111
1

1

1

1

1
11111
11
1
1
1

1

11
11

1
1

1

111

11
111

1

11
1

1
1
1
1
1
1
11

1

1

11
11

1
1
1

11

1

1

1
1
11
11

1

1
1

11

11
1
1
11
11

1
1

1111
111

1
1
11
1
1
1

11
11
1
1
1
1
1
11111
1
11
11111
1
1
1
1111

1

1

111
1
1

11
1
11

11

11

1

1

1

111
1

1

1

1
111
1

11
2

2

2

2

2

2
2

2

2

2

2

2

22

2

2

2

2

22

22

2

2

2
2

2

2
2

22

2
2

22
222
22

2

2
2

2

22

2
2
2
2

22

2

2

22
22
2
2

2

2

2
2

2
2

2

2

2

2

2

2
2

2

2222
222

2

22
22
222

2

2
2

2

22
2
2

2

2
222

222 222
2

2

2
2
2

222

2
2
2

2

222

2

2

2
22

2

2
2
22

2

2

222

2

22

2
2
2
2
2

2

2222
2

22
2222
2

2

2
2

222

22

22
2

2

2

2
2
2

2

2
2

2

2

2

222

2

2

2

2
2

2

222
2
2
2
22

22

2

2

2

2
2

2
2

22

2

2
2

2

2

2
2

2

2

2

2

22

2
22
2
2

2

2

22
2

2

2
2

2
2
22

2

2

2

2

2
22
22
2

2
22

22

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

22
2
22

2

2

2

2

2 2
2

33

33
3

3
333

3

3
3

3

3

3

3

3

3

33

3

33

3

3

3

3
3

3

3

3

3
3

3

33

3

3

33

3

33

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

5 10 15 20 25

5
10

15
20

k=4

Age

T
ric

ep
s 

sk
in

fo
ld

1
11111

11
1
111
1

1
1
11
1

1

1
111
1
1
11

1

1
1

11
1

1

1
11
11

1

1
11
1
1
11
1
1

11

111
1

1

1

1

1
11111
11
1
1
11

1
111

1
1

1

111

11111

1

11
1

1
1
1
1
1
1
11

11

1

1

1
1
1

11

11
1
11
1

1

1
1

1

11
1
1
11
11111

1
111111

1

11
11

2

2
2

2
2222
2
2

2
222
22
222
222
2

2

22

22
22

22

2
22
22
2
2

22
2

2
2

2

2

2
2
2
2

2
2

2222
222

2

22
22
22

2

2

2

2
2

2

2

22

2

2

2
2

2
2

2

2
22
2222

2
22
22
2
22
22

2
2

2

2

22

2

2
222
2
22

22 222
2

22

22
2

2
2
2
2
2

2

2
2
2
2

22
22
2

2

2

2

2
2
2

2

2

2

2
2
2222

2

2
2
2
22

2
22

2

2

2

2
2

2
2
2

2
2
22
2

2

2
2
2

2

22
2

2

22
2

2
2222

2

2

2

22

2

2
2

2

2

22
2
2

2

2
2222
2
222
2

2

2

222
2

2
22

2

2
22
222
22
22
2
22

2

2

2

2

2

22
2

2

222

22

2

2

2
2222
2
22
2
222

3

3

3

3
33

33

3

3

3

33
33

3
3
3
33

3
3

3

3
3

3

3
3 33 3

33

33

3

3
33

3

333

3

3
3
3
33

3

3

3
3
3

3

3
3

3

3

3
3

3

33

3

3
3
3

33
3

3

3
3

3

3

3
3
3
3

3

3

3

3

3

3

3
33
33

33

3

3
3

3

33
3

3

3

3

3

3

3
3

3

3

3
3

3

3

3

3

3

3

33
3
3

33

3

3

3

3

333

3

33

3
3

33

3

44

4

4

4

44

4

4

4

4
4

4

4 44

4

4

44

4

4

4
4

4

4

4
4

4

44

4

4

44

4

44

5 10 15 20 25

5
10

15
20

k=5

Age

T
ric

ep
s 

sk
in

fo
ld

1
11111

11
1
1111
1

1
1
11

1

1
1
111
1
1
11

1

1
1

1

1
11

1
11
11

1

1
11
1
1
11
1
1

11

111
1

1

1

1

1
11111
11
1
1
1

1

11
11

1
1

1

111

11
111

1

11
1

1
1
1
1
1
1
11

1

1

11

1
1
1

11

11
1
11

1

1
1

1

11
1
1
11
1111 1

2

2

22

2

2
222

2

22
2

2
222

2

22
222
22

2

2
2

2

22

2
2
2
2

22

2
22
22
2
2

22
2

2
2

2

2

2

2

2
2

2
2

2222
222

2

22
22
22

2

2

2

2
2

2

2

2

22

2

2

2
2

2
2

2

2
22
2222

2
22
22
2
2
2
22

2
22

22

2

2
222
2
22

22 222
2

222

22
2

2
2
2
2
2

2

2
2
2
2

222

22
2

2

2

2

2
2
2

2

2

2

2
2
2222

2

2
2
2
2
2

2
2

2

2

2

2

2

2
2

2
2
2

2
2
22
2

2

2
2
2

2

22
2

2

22
2

2
2222

2

2

2

2

22

2

2

2

2
2

2
2

2

22
2

2
2

2

2
2

2

222
2
22

2

2

2

2

2

2

2

2

222
2

2
2

2

2

2

2

2
222
22
22

2

22
2
2
2

2

2

2

2
2

2

2

22

2

2

2
2

2

222
22

22

2

2

2
2222
2
22
2
22

3
33

33

3

3

3

3

3

333

3

3

3
3
3

3

3
3

3

3

3
3

3

33

3

3
3

3

3

33
3

3

3
3

3

3

3
3
3
3

3

3

3

3

3

3

3
33
33

33

3

3
3

3

33
3

3

3

3

3

3

3
3

3

3

3
3

3

3

3

3

3

3

33
3
3

33

3

3

3

3

333

3

33

3
3

33

3

4

4
4
4

44
44

4

4

44

44
44

4

4
44

55

5

5

5

55

5

5

5

5
5

5

5 55

5

5

55

5

5

5
5

5

5

5
5

5

55

5

5

55

5

55

Figure 7: Modal allocation of the observations for models with 3 to 5 componentsvalue 10. In the model with k = 5, observations at young ages and observations at ages around15 and older are instead separated and allocated with high probability to the fourth and the thirdcomponent respectively. It is evident that very few observations have a reasonable probability ofbeing allocated to the fourth component. On the other side, these are much less dispersed thanthose likely to be allocated to the third one. This explains the fact that the posterior mode for �24is less than the posterior mode for �23 when k = 5, and also the fact that �24 is more dispersed.6 DiscussionWe believe that the model introduced and discussed in this paper provide an interesting newmethodology for the estimate of growth curves. The main di�culty lies, in fact, in decidingwhether a bump or dip observed on a centile curve at a particular age is a real feature of the27



data, or whether it is simply sampling error. The Bayesian modelling approach, together with theexible semiparametric nature of mixture models, the adaptability of the splines and the roughnesspenalising element they introduce provide an elegant solution to this problem. Data are smoothedpreserving their heterogeneity, no age cut-o�s need to be speci�ed and the only arbitrariness in thewhole procedure is the choice of the smoothing parameters � and �.The model could be extended in several directions. One interesting extension is the use of B-splines to model not only the weights of the mixture, but also the component parameters �j and �j .This would give the model more exibility. Let us think of an extreme example. If we consider ahypothetical data set for which the underlying theoretical model is a simple linear regression on thecovariate, it is clear that the mixture model presented in the paper would require a large numberof components to �t the data. Modelling the component parameters as a smoothed function of thecovariate, would instead allow to �t the data using only one component.Although the validation of the MCMC code did not receive much space in the paper, numerouschecks were conducted on the correctness of our sampler. In particular we checked that withoutany data, our estimate of the joint posterior distribution tallies with the chosen prior. We aresatis�ed that the values chosen for the smoothing parameters � and � allow substantial smoothingin the centile curves, so that higher values of � and �, for which mixing could be slower, are notnecessary.Finally, we draw attention on the di�cult matter of estimating the marginal likelihood forcomplex, non-regular problems, when the large amount of data induce very peaked posterior dis-tributions for the parameters and makes the use of reversible jump infeasible.AcknowledgementsWe acknowledge partial support of this work by the UK Engineering and Physical Sciences Re-search Council, and are grateful for helpful comments by the referees and editor, which have led toimprovement of the presentation.ReferencesBesag, J., Green, P. J., Higdon, D. and Mengersen, K. (1995) Bayesian computation and stochastic systems(with discussion), Statistical Science, 10, 3{66.28
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