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Abstract
The Goodwin model is a widely used economic growth model able to explain endoge-
nous fluctuations in employment rate andwage share; in its initial version, the standard
Phillips curve is used. In the present work, we suggest a revised Phillips curve that
takes into account how the wage share influences the rate of changes of the wage itself
thus obtaining a continuous-time modified Goodwin model. Since applying mod-
els to real data often requires working in a discrete-time setup, we then move from
the continuous-time to the discrete-time version of the proposed model, by using a
general polynomial discretization method in backward and forward-looking (hybrid
discretization). By comparing the continuous-time system to its discrete-time coun-
terpart we prove that fixed points and local dynamics do not change, as long as the
time step is not too high. Moreover, numerical simulations employing Dynamic Time
Warping, cross-correlation, and semblance analysis consistently affirm that enhancing
the similarity of quantitative dynamics is achieved by reducing the time step.

Keywords Goodwin model with nonlinear Phillips curve · Local and global
dynamics · Hybrid discretization method · Dynamic time warping ·
Cross-correlation · Semblance analysis

Mathematics Subject Classification 37M · 37N · 39A · 91-10

JEL Classification C62 · C63 · E32
B E. Michetti

elisabetta.michetti@unimc.it

M. M. Baldi
mauromaria.baldi@unimc.it

M. Guzowska
malgorzata.guzowska@usz.edu.pl

1 Department of Economics and Law, University of Macerata, Via Crescimbeni 14,
62100 Macerata, Marche, Italy

2 Institute of Economics and Finance, University of Szczecin, Adama Mickiewicza 64,
71-101 Szczecin, Pomerania, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10203-024-00491-9&domain=pdf
http://orcid.org/0000-0003-3767-0422


M. M. Baldi et al.

1 Introduction

The choice between continuous and discrete time while building dynamic models
is a discussed question, especially in economic theory. For instance, the majority
of macroeconomic models use differential equations or sets of these equations to
describe economic growth. Examples includemodels proposed bySolow (1956), Swan
(1956), Haavelmo (1954), Ramsey (1928), and Goodwin (1967). However, since the
majority of economic data is available in discrete time, it is often necessary to consider
models expressed in discrete time (difference equations), especially when dealingwith
applications involving real-world data.

When such needs become prominent, models require to be formalized in discrete
time. To the scope, the first way is to construct the model from the beginning by
assuming the time is not continuous. Certainly, qualitative and quantitative dynamics,
in general, will yield results that differ from those demonstrated by the continuous-
time version. This raises potential doubts about the model’s ability to accurately depict
the phenomenon under study.

As a consequence, researchers began exploring methods and approaches that could
facilitate the transition from a satisfying model in continuous time (based on a given
target), to its discrete-time counterpart while preserving the same dynamic properties.
To pursue this second approach, discretization methods must be used.

Such approaches give rise to important questions to be addressed. For instance, will
the equilibria remain unchanged? And what about their local stability properties? If
the quantitative dynamics differ, is it possible to measure their similarity?

In the present paper, we give an answer to such questions starting from a modified
version of a very popular continuous-time growth model, i.e., the Goodwin model
(Goodwin 1967). The motivation for modifying the original Goodwin model is to
make its behaviour more realistic by introducing a non-linear Phillips curve into the
model, following the original idea of Phillips (1958). More precisely, the obtained
model is not only a modified version of the standard Goodwin model, but it also
represents a generalization of the initial formulation because of the introduction of a
parameter, namely η > 0, measuring the weight the nonlinear term has in the Phillips
curve. More in detail, the modified Goodwin model represents a family of systems
tending to the standard Goodwin model as long as η → ∞.

After introducing the modified Goodwin model, in order to move from contin-
uous to discrete time, a non-standard discretization method is used, namely hybrid
discretization (see, for instance, Bosi and Ragot (2012)). The obtained discrete-time
model is then investigated with the main goal of comparing equilibria, local stability,
and numerical properties.

Our main findings indicate that the use of hybrid discretization maintains the
equilibria and their local stability unchanged. On the other hand, when quantitative
dynamics are investigated one has to discuss howmuch solutions differ. More in detail
we need to investigate the closeness between the trajectories produced by the discrete
model and the curves obtained from the system of differential equations. This question
requires careful study and evaluation, taking into account the impact of various ele-
ments, including how they change in response to modifications in initial conditions,
parameters, and time steps.
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To appreciate the proximity between the continuous and discrete models herewith
proposed, we employ various tools. The most relevant one is the Dynamic TimeWarp-
ing algorithm (DTW), which aims to align a time series with a reference one in a way
that minimizes the sum of distances between corresponding points. Other tools used
include the mean error, cross-correlation, as well as semblance analysis. Experimen-
tal tests confirm that discrete approximation approaches the continuous model by
reducing the step size.

The paper is organized as follows. First, we study the role of the added nonlin-
ear component to the standard Phillip curve on the local and global dynamics of the
continuous time system (Sect. 2). Then we move from the continuous time setup to
the discrete-time one by applying the hybrid discretization method; the qualitative
dynamics of the discrete-time model are then studied and compared to those produced
by the continuous time initial version (Sect. 3). Even though equilibria and local quali-
tative dynamics do not change, in Sect. 4 we discuss the goodness of the discretization
method by making use of numerical simulations and statistical techniques such as the
DTW algorithm, the mean error, cross-correlation, and semblance analysis. Our key
observation, as illustrated in the computational results section (Sect. 4) and outlined in
the conclusions provided in Sect. 5, is that the orbits of the discrete model tend to align
with those of the continuous model as the step size approaches zero. This suggests
that the discrete-time approximation performs effectively, provided that the step size
is not excessively large.

2 Themodified Goodwinmodel

The Goodwin growth model (Goodwin 1967) is a well-known model that combines
aspects of the Harrod-Domar growth model (by Roy F. Harrod (1939) and Evsey
Domar (1946)) with the Phillips curve (describing the correlation between reduc-
tion in unemployment and increased rates of wage) to explain endogenous economic
fluctuations in continuous time. Since Goodwin’s publication in 1967, the model has
been extensively expanded to incorporate new elements, as demonstrated by several
researchers such as Desai (1973), Gandolfo (1997), Vercelli (2000), Sordi and Vercelli
(2006), Sordi and Vercelli (2012), and Sordi and Vercelli (2014). In addition to the
theoretical approaches, Goodwin’s model is also used in practice (see, for instance,
Araujo et al. (2019), Matsumoto et al. (2018), Araujo and Moreira (2021), and Santos
et al. (2011)).

We recall that the standard Goodwin model is described by the following two-
dimensional system S in the variables v ∈ [0, 1], representing the employment rate,
and u ∈ [0, 1], representing the wage share:

S :
{

dv
dt = [ 1

σ
− (α + β) − 1

σ
u]v

du
dt = [−α + (ρv − γ )]u (1)
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where α > 0 and β > 0 are growth rates respectively of labour productivity and
labour supply, σ > 0 is the capital/output ratio while γ > 0 and ρ > 0 are related to
the variation of real wage rate under the assumption of linear approximation.

We also recall that the standard Goodwin model (1) always admits up to two fixed
points as stated in the following remark (see Liu and Elaydi (2001) and Grassetti et al.
(2020)).

Remark 1 Consider system (1).

• The origin E0 = (0, 0) is a hyperbolic saddle point,
• as long as σ(α + β) ∈ (0, 1) and α + γ < ρ, an interior fixed point exists

ES = (vs, us) =
(

α+γ
ρ

, 1 − σ(α + β)
)

∈ (0, 1) × (0, 1), whose associated

eigenvalues are both purely imaginary, representing a center.

Notice that the function ẇ/w = f (v) = ρv − γ involved in the second equation
of system (1) represents the standard Phillips curve relation proposed in the original
Goodwin’s model.

In the present work, we aim to consider that the rate of changes of the wage share
not only depends on the employment rate, v, but is also additionally influenced by
the labor bill, u. To take into account such evidence, we add a new component to the
Pillips curve, namely g(u), thus obtaining

ẇ/w = f (v) + g(u),

where g(u) is assumed to be a continuous and decreasing w.r.t. u. Such an assumption
is in accordance with the original idea of Phillips (1958).

According to the previous considerations, the function g(u) can be formalized as
follows:

g(u) = (1 − u)η, η > 0, (2)

thus satisfying

∂g

∂u
= −η(1 − u)η−1 < 0

i.e., workers claim higher wages when they experience a disadvantage in the income
distribution.

ThemodifiedGoodwinmodel in continuous time is then described by the following
system:

CG :
{

dv
dt = v

( 1
σ

− α − β − 1
σ
u
)

du
dt = u((1 − u)η − α − γ + ρv)

, (3)

where constants α, β, γ , σ , η, and ρ are positive, and the state variables v ∈ [0, 1]
and u ∈ [0, 1] are respectively the employment rate and the wage share.
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Notice that, since limη→∞ g(u) = 0 then the standard Goodwing model can be
seen as a limit form of the modified Goodwin model when the nonlinear component
of the Phillips curve tends to zero, i.e., for η approaching infinity. On the other hand,
if η → 0 then CG tends to CG0 where the latter is simply obtained by (3) while
substituting the second equation with u(1 − α − γ + ρv).

2.1 Fixed points and local stability

The fixed points of system CG are summarized in the following proposition.

Proposition 1 The continuous time dynamical system CG as given by (3) admits up
to three fixed points.

(i) The origin E0 = (0, 0) is a fixed point for all parameter combinations.
(ii) Assume σ(α + β) ∈ (0, 1) and 0 < α + γ − (σ (α + β))η < ρ, then E∗ =

(v∗, u∗) =
(

α+γ−(σ (α+β))η

ρ
, 1 − σ(α + β)

)
is an interior fixed point.

(iii) Assume α + γ < 1, then one more equilibrium E1 =
(
0, 1 − (α + γ )

1
η

)
is

admitted.

Proof The proof is trivially obtained by solving dv
dt = 0 and du

dt = 0 and by stating
conditions such that the equilibria are feasible. ��

It is immediate to observe that, differently from the standard Goodwin model in
(1), the new formulation may present up to three fixed points.

More precisely the following considerations hold.
The origin is a fixed point for both system S and CG.
Both S and CG exhibit a unique interior equilibrium. Upon comparing the equi-

librium values, it is evident that the wage share at equilibrium remains constant,
while the associated employment rate decreases, given by u∗ = us − (σ (α+β))η

ρ
,

and, as η approaches infinity, limη→+∞u∗ = us . Additionally, the associated
condition for the feasibility of v is consequently modified. Notice that condition
0 < α + γ − (σ (α + β))η < ρ can be restricted to condition 1 < α + γ < ρ

representing parameters combinations such that the interior equilibrium exists for all
η > 0.

System CG may also have an additional fixed point located on the u-axis at which
the wage share is zero.

Forwhat it concerns the local stability of thefixedpoints ownedbyCG the following
proposition holds.

Proposition 2 Consider system CG as given by (3) and Proposition 1. The local
stability of each fixed point, when it exists, follows.

(i) If α + γ > 1 and σ(α + β) < 1, then the origin E0 is a saddle point.
(ii) The interior fixed point E∗ is a stable focus.

(iii) Ifα+β >
(α+γ )

1
η

σ
then the equilibrium E1 is a stable point,while ifα+β <

(α+γ )
1
η

σ
then E1 is a saddle point.
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Proof To study the local stability of the fixed points of CG we compute the Jacobian
matrix and distinguish between the three cases.

(i) For what it concerns the origin, the related Jacobian matrix is given by

J (E0) =
[−α − β + 1

σ
0

0 1 − α − γ

]
,

since det(J (E0)) = (1−α−γ )(1−σ(α+β))
σ

, if (1− α − γ ) < 0 and (1− σ(α + β)) > 0
it results to be negative. In such a case, E0 is a hyperbolic saddle point.

(i i) We now consider the interior fixed point. The correspondent Jacobian matrix
results as follows:

J ∗(E∗) =
[

0 −α+γ−(σ (α+β))η

ρσ

ρ(1 − σ(α + β)) −η(σ (α + β))−1+η(1 − σ(α + β))

]
,

so that the associated characteristic equation is given by:

det(λI − J ∗) = λ2 − tr(J ∗)λ + det(J ∗),

where

tr(J ∗) = −η(σ (α + β))−1+η(1 − σ(α + β))

and

det(J ∗) = (1 − σ(α + β))(α + γ − (σ (α + β))η)

σ
.

Observe that a pair of complex conjugate eigenvalues emerges only if 
 :=
(tr(J ∗))2 − 4 det(J ∗) < 0. In this case:

λ1,2 = tr(J ∗)
2

± i

√−


2

If η → 0 the eigenvalues tend to be purely imaginary and given by

λ1,2 = ±i

√
4(1 − α − γ )(1 − σ(α + β))

σ
,

the fixed point is not hyperbolic, and no conclusions can be drawn from the linear
analysis. If η > 0, since the Jacobian matrix has a negative Trace and a positive
Determinant then the point E∗ is locally stable (about the conditions for the local
stability related to the trace and the determinant of the Jacobian matrix (Medio and
Lines 2001).
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(i i i) Finally consider the fixed point E1 = (0, 1 − (α + γ )
1
η ). The associated

Jacobian matrix is as follows:

J (E1) =
⎡
⎣−α − β + (α+γ )

1
η

σ
0

ρ − (α + γ )
1
η ρ −

(
(α + γ )

1
η

)−1+η (
1 − (α + γ )

1
η

)
η

⎤
⎦ .

Eigenvalues of J (E1) are then given by:

λ1 = −
(
(α + γ )

1
η

)−1+η (
1 − (α + γ )

1
η

)
η

and

λ2 = −α − β + (α + γ )
1
η

σ
.

Since α + γ < 1 and η > 0 then λ1 < 0 for all combinations of parameters.

Differently, the eigenvalue λ2 can be both negative (if α + β >
(α+γ )

1
η

σ
) or positive

(if α + β <
(α+γ )

1
η

σ
). Then E1 can be a saddle point or a locally stable fixed point. ��

By comparing the qualitative dynamics of the Standard Goodwin model to those
exhibited by its modified version, it is of interest to observe that the interior equi-
librium point becomes stable. From an economic perspective, this ensures long-term
convergence, although fluctuations may still emerge.

3 From continuous to discrete time. The hybrid discretizationmethod

After showing the qualitative properties of the continuous-time model, we now apply
the hybrid discretization method to system CG as given by (3) in order to provide
a discrete version of the modified Goodwin model that preserves the behavior of the
original one, i.e., fixed points and local stability.

To the scope,weuse the hybrid discretizationmethod as proposed byBosi andRagot
(2012) that has also been successfully used in Guzowska and Michetti (2018) and
Zhang et al. (2010). The resulting two-dimensional discrete-time dynamical system
is as follows:

DG :
{

vt+1 = vtσ−h+hut+1+σ+hσ(α+β)

ut+1 = ut + hut ((1 − ut )η − α − γ + vtρ),
(4)

where h is a small enough positive constant representing the discretization step.
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3.1 Fixed points and local stability

In order to evaluate the goodness of the discretization methods herewith applied, we
first determine the fixed points of the system DG. By substituting ut+1 = ut and
vt+1 = vt the following Proposition trivially holds.

Proposition 3 The discrete-time dynamical system DG as given by (4) admits up to
three fixed points:

(i) the origin E0 = (0, 0),

(i i) an interior fixed point E∗ = (v∗, u∗) =
(

α+γ−(σ (α+β))η

ρ
, 1 − σ(α + β)

)
,

(i i i) E1 =
(
0, 1 − (α + γ )

1
η

)
belonging to the border.

Conditions on parameters for the existence of the three fixed points are the same as
stated in Proposition 1 for the continuous time model.

Proposition 3 shows that systemsCG and DG admit the same equilibriumpoints for
any given parameter combinations providing that the discretization method herewith
used preserves the existence and number of equilibria of the growth model. For what
concerns their local stability the following Proposition holds.

Proposition 4 The local stability properties of the fixed points of the system DG given
by (4) follows.

(i) If α + γ > 1 and σ(α + β) < 1, then there exists h0 > 0 such that origin E0 is a
saddle point for all h < h0.

(ii) There exists h∗ > 0 such that E∗ is a locally stable fixed point ∀h ∈ (0, h∗).

(iii) There exists h1 > 0 such that, ∀h < h1 two cases may emerge: if α +β >
(α+γ )

1
η

σ

then the equilibrium E1 is a stable point, while if α + β <
(α+γ )

1
η

σ
then E1 is a

saddle point.

Proof To prove the stability properties of the fixed points of system DG we proceed
as follows.

(i) We start considering the origin. For E0 = (0, 0) the Jacobian matrix evaluated
at the fixed point is given by

J (E0) =
[ σ

σ−h(1−σ(α+β))
0

0 1 + h(1 − α − γ )

]

and its eigenvalues are λ1 = σ
σ−h(1−σ(α+β))

and λ2 = 1 + h(1 − α − γ ). Define

h0 = − 2
1−α−γ

, then being α + γ > 1 and σ(α + β) < 1 simple computations show
that −1 < λ2 < 1 < λ1 so that E0 is a saddle point.

(i i) We now consider the fixed point E∗. The associated Jacobian matrix takes the
form:

J (E∗) =
[
j11 j12
j21 j22

]
, (5)
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where

j11 = −σ + h2(1 − σ(α + β)) (α + γ − (σ (α + β))η)

σ
,

j12 = − (α + γ − (σ (α + β))η)
(
h − h2η(σ (α + β))−1+η(1 − σ(α + β))

)
ρσ

,

j21 = hρ(1 − σ(α + β)),

and

j22 = 1 − hη(σ (α + β))−1+η(1 − σ(α + β)).

Hence the corresponding characteristic equation is given by

det(λI − J ∗) = λ2 − tr(J ∗)λ + det(J ∗),

where

tr(J ∗) = 2 − h2(1 − σ(α + β)) (α + γ − (σ (α + β))η)

σ
+

−hη(σ (α + β))−1+η(1 − σ(α + β)),

and

det(J ∗) = 1 − hη(σ (α + β))−1+η(1 − σ(α + β)).

Consider the local stability conditions in terms of trace and determinant (see. e.g.
Medio and Lines (2001)).

If η → 0 then det(J ∗) → 1 and the fixed point is not hyperbolic.
If η > 0 then simple computations show that (1 − tr(J ∗) + det(J ∗)) and (1 −

det(J ∗)) are both positive.
Concerning the third condition to be fulfilled for the local stability, we have to

verify that

�(h) = (1 + tr(J ∗) + det(J ∗)) > 0.

Simple computations show that

�(h) = − (1 − σ(α + β)) (α + γ − (σ (α + β))η)

σ
h2

−2η(σ (α + β))−1+η(1 − σ(α + β))h + 4 =
= −p1h

2 − p2h + 4,

where

p1 = (1 − σ(α + β)) (α + γ − (σ (α + β))η)

σ
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and

p2 = 2η(σ (α + β))−1+η(1 − σ(α + β)).

Function �(h) is a concave parabola passing through the point (0, 4) and with its
vertex at hv < 0. Then there exists a h∗ > 0 such that �(h) > 0 for all h ∈ (0, h∗).

The value of h∗ can be easily computed as

h∗ =
−p2 +

√
p22 + 16p1

2p1
.

(i i i) Finally, for point E1 we have

J (E1) =
[
j11 j12
j21 j22

]
.

where:

j11 = σ

σ + h
(
−(α + γ )

1
η + σ(α + β)

) ,

j12 = 0,

j21 = −h
(
−1 + (α + γ )

1
η

)
ρ

and

j22 = 1 − h
(
(α + γ )

1
η

)−1+η (
1 − (α + γ )

1
η

)
η.

The associated eigenvalues are then given by

λ1 = σ

σ + h
(
−(α + γ )

1
η + σ(α + β)

)

and

λ2 = 1 − h
(
(α + γ )

1
η

)−1+η (
1 − (α + γ )

1
η

)
η.

Since α + γ < 1, then there exists a

h11 = 1(
(α + γ )

1
η

)−1+η (
1 − (α + γ )

1
η

)
η

> 0

such that 0 < λ2 < 1 for all h < h11.
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In relation to the first eigenvalue, we aim to establish conditions under which
|λ1| > 1, leveraging the inequality σ(α + β) < (α + γ )1/η. Let D = σ +
h

(
−(α + γ )

1
η + σ(α + β)

)
, then we can express λ1 as σ

D . It it easy to see that if

h <
σ

(α + γ )
1
η − σ(α + β)

,

then D > 0 and so, taking into account that σ(α + β) < (α + γ )1/η the denominator
is also less than σ . Consequently, λ1 > 1. Vice versa, if

h >
σ

(α + γ )
1
η − σ(α + β)

,

then D < 0. In this case, the inequality |λ1| > 1 becomes σ
D < −1 that is satisfied

for

h <
2σ

(α + γ )
1
η − σ(α + β)

.

Consequently, considering both possibilities, there exists

h12 = 2σ(
(α + γ )

1
η − σ(α + β)

)

such that |λ1| > 1, ∀h < h12 and E1 is a saddle point; otherwise if σ(α + β) >

(α + γ )1/η then 0 < λ1 < 1 and E1 is locally stable. Let h1 = min{h11, h12} then the
statement holds true. ��

By using analytical tools our results show that the equilibria and their local stability
properties do not change when moving from the continuous-time to the discrete-time
model using the hybrid discretization method as long as the time step is not too high.
Anyway, quantitative dynamics must be considered to detect the goodness of the
discretization method herewith proposed. For this purpose, in the next section, we
employ numerical tools with the primary objective of assessing the extent to which
the evolution of two systems may differ and examining the impact of the choice of
initial conditions and parameter values.

4 Quantitative comparisons

As it has been proved, the fixed points and, in particular, the economically meaningful
interior equilibrium point, maintain their local stability properties when moving from
a continuous to a discrete-time setup using the hybrid discretization method if the time
step involved in the discrete-time model is not too high.
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Anyway, although the local qualitative behavior of the two systems is the same,
we want to give an answer to the following open questions: if also the quantitative
dynamics are the same or if and in which measure they differ.

To assess the approximation of the discretized model to the continuous one, we
compare the dynamics of the two models under various parameter settings referred to
as scenarios, and focusing on the solutions converging to the interior equilibrium.

A distinguishing feature of this study, in contrast to previous works (e.g., Grassetti
et al. (2020)), is the utilization of the Dynamic TimeWarping algorithm for comparing
the orbits.

The rest of this section is organized as follows: first, we briefly recall the metrics
used to compare the discretized model with the continuous one. Then, we introduce
the scenarios considered during the computational tests. After that, we summarize the
results obtained, both in graphical and tabular form.

In the following, we are going to compare the orbits of a discrete model with those
of a continuous one. Theoretically speaking, an orbit of a discrete dynamical system is
a set with an infinite number of elements whose cardinality is ℵ0. Vice versa, an orbit
of a continuous dynamical system is a set with an infinite number of elements with the
cardinality of the continuum. Inpractice, it is not feasible tomake a comparison through
the use of a computer because we have to deal with an infinite number of elements and
with different cardinalities. Thus, in the following comparisons, we truncate both the
orbits at a reasonable time limit tmax. Such a value can be any instant of time after the
transient phase. We still have to fix the issue that the orbit of the continuous dynamical
system has an infinite number of points in [0, tmax]. In our comparisons, we sample
this orbit in the same instants of time of the discrete dynamical system, i.e., with a
time step h < h∗. In this way, there are N = [ tmax

h + 1
]
points in [0, tmax] for both the

orbits. We denote by xd = {xd0 , xd1 , . . . , xdN−1} the points of the orbit of the discrete
dynamical system and by xc = {xc0, xc1, . . . , xcN−1} the corresponding points of the
orbit of the continuous dynamical system. Here, the letter x , depending on the context,
can either be u, v, or even (u, v).

4.1 The error

The error ε is just the norm of the difference of the two sampled sequences, i.e.:

ε = ‖xc − xd‖.

4.2 The dynamic time warping algorithm

The Dynamic Time Warping (DTW) is a dynamic-programming algorithm that aims
to compare two time series x = {x0, x1, . . . , xN−1} and y = {y0, y1, . . . , yM−1}
not necessarily of the same length (in fact, M �= N in principle) but with the same
time step (Rabiner and Juang 1993; Müller 2007). Using a distance metric (typically
the l1 or l2 norm), the DTW algorithm seeks the minimum warping path, which is a
path minimizing the distance. For details on the application of this algorithm, see, for
instance, Smidtaite et al. (2023). A warping path is a sequence of indexes of the two
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time series satisfying boundary, monotonicity, and step-size conditions (Müller 2007).
Thus, the output of the DTW algorithm is a score equal to the sum of the distances of
the couples of points involved in the optimal warping path. Consequently, this score
provides a measure of the similarity of the two signals. In particular, the lower the
score, the closer the two signals.

4.3 Cross correlation

Cross-correlation is a widespread indicator in signal processing that aims to measure
the similarity of two time series (examples of applications are in Kristoufek (2016)
and Hua and Wu (2023)). Given a particular instant of time n ∈ N and two time series
x and y, the cross correlation at time n between x and y is defined as:

Rxy(n) =
+∞∑

m=−∞
xm yn+m .

If more than an instant of time is considered, the result is a vector of cross-correlation
coefficients, where each element in the vector is associated to an instant of time.

4.4 Semblance analysis

Semblance analysis describes the correlation between two signals both in terms of
time and wavelength. The result is a matrix of values between −1 and 1. One axis of
the matrix refers to the time, while the other one to the wavelength. If an element of the
matrix is positive, then the two time series at that time and wavelength are correlated.
If negative, they are anti-correlated, and if zero, they are uncorrelated. An application
of semblance analysis can be found in Jacob and Urban (2016).

4.5 Computational results

We conducted our computational analysis using Matlab. Given the considerable num-
ber of parameters describing the model, we decided to test the model under different
combinations of parameters. We name scenario each combination of parameters. In
Table 1, we show the parameter values of each scenario.

In Table 2, we show the results for each scenario, starting from (v0, u0) =
(1/4, 1/4). As previously mentioned, the number of points in the time interval
[0, tmax] depends on h and is given by N = [ tmax

h + 1
]
. In Table 2, we are comparing

different time series with different numbers of points. Thus, to make this comparison
fair, we need to scale the results obtained from computations by the number of points
N in order to get a mean score. In particular, the error in column 3 is given by ε/N .
The DTW in columns 4 and 5 is given by the score of the DTW algorithm (computed
both using the l1 and l2 norm) divided by N . Finally, columns 6 and 7 show the mean
cross correlation respectively for v and u. This is given by the sum of the elements in
the array of the cross-correlation divided by N .
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Table 1 Parameter values for the
considered scenarios

Scenario α β γ η ρ σ

1 0.8 0.1 0.4 2 2 0.5

2 0.7 0.4 0.5 2.5 3 0.5

3 0.4 0.4 1 3 3 1

4 0.3 0.3 0.5 2 2 1

5 0.4 0.4 1.5 3 2 1

6 0.1 0.8 0.6 1 1.5 0.7

7 0.6 0.3 0.7 4 2 0.8

8 0.5 0.5 0.5 0.5 0.5 0.7

9 0.5 0.5 0.5 0.5 1 0.8

10 0.5 0.5 0.5 2.5 1 0.8

Table 2 Indicators’ results

Scenario h Error DTW l2 DTW l1 Xcorr v Xcorr u

1 1.0 6.88 × 10−3 1.99 × 10−2 2.46 × 10−2 1.03 × 101 1.21 × 101

0.8 3.83 × 10−3 1.16 × 10−2 1.47 × 10−2 1.27 × 101 1.51 × 101

0.4 9.77 × 10−4 4.09 × 10−3 5.14 × 10−3 2.52 × 101 2.99 × 101

0.1 1.02 × 10−4 1.12 × 10−3 1.41 × 10−3 1.00 × 102 1.19 × 102

2 1.0 1.45 × 10−3 4.21 × 10−3 5.56 × 10−3 4.34 × 100 8.15 × 100

0.8 8.77 × 10−4 2.85 × 10−3 3.74 × 10−3 5.41 × 100 1.02 × 101

0.4 2.39 × 10−4 1.38 × 10−3 1.80 × 10−3 1.07 × 101 2.02 × 101

0.1 2.69 × 10−5 5.24 × 10−4 6.67 × 10−4 4.28 × 101 8.05 × 101

3 1.0 4.90 × 10−4 1.18 × 10−3 1.57 × 10−3 3.52 × 100 1.60 × 100

0.8 3.49 × 10−4 8.96 × 10−4 1.20 × 10−3 4.38 × 100 1.99 × 100

0.4 1.22 × 10−4 4.13 × 10−4 5.52 × 10−4 8.69 × 100 3.95 × 100

0.1 1.44 × 10−5 9.55 × 10−5 1.26 × 10−4 3.46 × 101 1.57 × 101

4 1.0 5.81 × 10−4 1.72 × 10−3 2.21 × 10−3 2.03 × 100 6.53 × 100

0.8 4.19 × 10−4 1.41 × 10−3 1.81 × 10−3 2.53 × 100 8.14 × 100

0.4 1.52 × 10−4 7.33 × 10−4 9.38 × 10−4 5.04 × 100 1.62 × 101

0.1 2.03 × 10−5 1.99 × 10−4 2.55 × 10−4 2.00 × 101 6.45 × 101

5 1.0 1.59 × 10−2 4.46 × 10−2 5.45 × 10−2 1.96 × 101 1.47 × 100

0.8 6.09 × 10−3 1.13 × 10−2 1.42 × 10−2 2.36 × 101 1.81 × 100

0.4 1.76 × 10−3 3.86 × 10−3 4.77 × 10−3 4.63 × 101 3.55 × 100

The results in Table 2 clearly show how the approximation given by the discrete
model improves when h is reduced. In fact, themean error in column 3 decreases when
h is decreased. A similar trend can be observed in the columns reporting DTW results,
thus confirming the improvement of the discrete-time series when h decreases. The
columns associated to the cross-correlation analysis tell us that the mean correlation
between the discrete and continuous orbits increases when h decreases.
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Table 2 continued

Scenario h Error DTW l2 DTW l1 Xcorr v Xcorr u

0.1 2.06 × 10−4 9.47 × 10−4 1.16 × 10−3 1.83 × 102 1.41 × 101

6 1.0 6.44 × 10−4 2.42 × 10−3 3.04 × 10−3 1.50 × 10−1 6.01 × 100

0.8 4.70 × 10−4 1.96 × 10−3 2.44 × 10−3 1.86 × 10−1 7.49 × 100

0.4 1.75 × 10−4 1.03 × 10−3 1.27 × 10−3 3.64 × 10−1 1.49 × 101

0.1 2.55 × 10−5 2.85 × 10−4 3.60 × 10−4 1.44 × 100 5.93 × 101

7 1.0 2.74 × 10−3 4.52 × 10−3 5.97 × 10−3 1.06 × 101 3.04 × 100

0.8 1.81 × 10−3 2.93 × 10−3 3.88 × 10−3 1.32 × 101 3.78 × 100

0.4 5.84 × 10−4 1.22 × 10−3 1.62 × 10−3 2.61 × 101 7.50 × 100

0.1 6.90 × 10−5 3.37 × 10−4 4.36 × 10−4 1.04 × 102 2.98 × 101

8 1.0 2.50 × 10−4 1.07 × 10−3 1.39 × 10−3 4.38 × 100 3.60 × 100

0.8 1.74 × 10−4 8.32 × 10−4 1.07 × 10−3 5.46 × 100 4.49 × 100

0.4 5.63 × 10−5 3.96 × 10−4 4.95 × 10−4 1.09 × 101 8.92 × 100

0.1 6.44 × 10−6 1.15 × 10−4 1.44 × 10−4 4.32 × 101 3.55 × 101

9 1.0 2.94 × 10−4 1.64 × 10−3 2.11 × 10−3 4.82 × 10−1 1.78 × 100

0.8 2.07 × 10−4 1.29 × 10−3 1.66 × 10−3 5.98 × 10−1 2.22 × 100

0.4 7.17 × 10−5 6.20 × 10−4 8.07 × 10−4 1.18 × 100 4.39 × 100

0.1 9.21 × 10−6 1.57 × 10−4 2.11 × 10−4 4.66 × 100 1.74 × 101

10 1.0 1.41 × 10−3 2.07 × 10−3 2.69 × 10−3 7.03 × 100 1.55 × 100

0.8 9.95 × 10−4 1.74 × 10−3 2.26 × 10−3 8.75 × 100 1.93 × 100

0.4 3.45 × 10−4 8.75 × 10−4 1.14 × 10−3 1.73 × 101 3.83 × 100

0.1 4.22 × 10−5 2.19 × 10−4 2.80 × 10−4 6.89 × 101 1.52 × 101

Inspired by these results, we decided to perform a more detailed analysis. We
concentrated on scenario 5 because it is the scenario with the highest values of the
DTW algorithm. In Fig. 1, we plot the orbit of v and u for the continuous and discrete
models, starting from (v0, u0) = (1/4, 1/4), and with different values of h. It is clear
from these pictures that the discrete orbit is significantly different from the continuous
one for the highest values of h. This difference is dramatically reduced when h = 0.1.

A similar trend can also be appreciated from a two-dimensional analysis of the
orbit. To this purpose, in Fig. 2 we compare the phase portrait of two orbits, starting
from (v0, u0) = (0.4, 0.4) and (v0, u0) = (0.6, 0.6).

It is evident from Fig. 2 that the discrete model yields a coarse approximation for a
high value of h, but this approximation significantly improves if h is reduced. Figure2
also confirms that all the orbits converge to the interior fixed point, even when the
quality of the approximation is not accurate.

Another interesting comparison is provided in Fig. 3. Here, we have reported the
mean error and the mean DTW score (computed using both the l-1 and l-2 norm) for
scenario 5, again starting from (u0, v0) = (1/4, 1/4) and varying h between 0.1 and
1.
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Fig. 1 Continuous and discrete orbits for scenario 5 concerning v (panel a) and u (panel b)

Fig. 2 A comparison of phase portraits for scenario 5 between the discrete model with h = 1 (panel a),
h = 0.1 (panel b), and the continuous model (panel c)
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Fig. 3 The mean error (panel a) and the mean DTW score (panel b) for scenario 5, with h varying between
0.1 and 1

Again, the conclusion confirms the previous evidence: both the error and the DTW
scores dramatically reduce when h is decreased.

Regarding theDTWalgorithm, it isworthwhile to present a graphical representation
of the results. In this regard, Fig. 4 shows the assignments of points resulting from
the DTW algorithm for scenario 5 between the continuous and discrete orbits. For
example, the upper plot in Fig. 4a overlaps the orbits of vt (in yellow) with h = 1 and
v(t) (in blue), both starting from v0 = 1/4 (and u0 = 1/4).

As illustrated in the lower plot in Fig. 4a, the DTW algorithm stretches the vt orbit
in a way that it assumes a shape as similar as possible to v(t). As a consequence,
the peaks of the two orbits become aligned. The same procedure applies in Fig. 4b,
but this time vt is computed with a step size of 0.1. As already witnessed by the
previous figures, with this choice of h the discrete orbit tends to the continuous one.
Consequently, the DTW algorithm does not perform an appreciable stretching, thus
yielding a lower score. Similar considerations hold for Fig. 4c, d.

Finally, in Fig. 5, we show graphical results from semblance analysis for h = 1 and
h = 0.1. Semblance analysis shows the correlation between two datasets as a function
of both time and wavelength. In Figure 5, anticorrelation (s=-1) is displayed in blue,
zero correlation (s=0) in green, and positive correlation (s=+1) in red colour. In both
cases (h = 1 and h = 0.1), the image shows the correlation between the continuous
model and the discrete one,which ismostly red (implying a strongpositive correlation).

5 Conclusion

Introducing a nonlinear term to the Phillips curve has led to a new formulation of
the Goodwin growth model. In contrast to the standard model, the modified Goodwin
model can exhibit up to three equilibria, including an additional fixed point on the
boundary. Naturally, the inclusion of the nonlinear term in the Phillips curve alters the
parameter conditions for the existence of these fixed points.
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Fig. 4 The final assignments of the DTW algorithm for scenario 5 involving vt with h = 1 (panel a), vt
with h = 0.1 (panel b), ut with h = 1 (panel c), and ut with h = 0.1 (panel d)

Fig. 5 Semblance analysis results for scenario 5 with h = 1 (panel a) and h = 0.1 (panel b)
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In any case, considering the economically significant equilibrium, namely the
interior fixed point, we observe that even if the wage share remains constant, the
equilibrium employment rate decreases due to disadvantages in income distribution.
Moreover, a surprising effect on the local stability properties of the economically
meaningful fixed point emerges; it ceases to be a center and instead becomes a stable
focus. This alteration in local stability is noteworthy from an economic perspective as it
endows the economy with endogenous forces ensuring the convergence of economic
variables in the long run. Furthermore, endogenous fluctuations become apparent,
aligning with typical patterns observed in economic data. These findings hold true
for both continuous-time and discrete-time frameworks, provided the time step is
sufficiently small.

In our comparisons of quantitative dynamics, we presented various scenarios and
assessed the effectiveness of the employed discretization method concerning the eco-
nomically meaningful equilibrium through numerical simulations. Utilizing different
computational techniques, primarilyDynamicTimeWarping in conjunctionwith other
metrics, we demonstrate that the discrete-timemodel continues to be a reliable approx-
imation of the continuous-time model, even from a quantitative perspective, provided
that the time step is not excessively high.
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