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Abstract. In this paper, we introduced the novel concept of advisor
network to address the problem of noisy labels in image classification.
Deep neural networks (DNN) are prone to performance reduction and
overfitting problems on training data with noisy annotations. Weighting
loss methods aim to mitigate the influence of noisy labels during the
training, completely removing their contribution. This discarding process
prevents DNNs from learning wrong associations between images and
their correct labels but reduces the amount of data used, especially when
most of the samples have noisy labels. Differently, our method weighs
the feature extracted directly from the classifier without altering the loss
value of each data. The advisor helps to focus only on some part of
the information present in mislabeled examples, allowing the classifier to
leverage that data as well. We trained it with a meta-learning strategy so
that it can adapt throughout the training of the main model. We tested
our method on CIFARI10 and CIFAR100 with synthetic noise, and on
ClothinglM which contains real-world noise, reporting state-of-the-art
results.
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1 Introduction

Modern image classification systems are based on using deep neural network
models that are trained on a huge number of labeled images [I1]. Due to the
extreme cost of labeling such an amount of images and difficulty in covering
many concepts, researchers recently have looked into methods that generate
labels automatically. One significant line of research exploits available labeled
images from non-experts (e.g. from social networks, online stores) that can be
easily retrieved in large quantities but may have been mislabeled [IJ.

Deep neural networks typically consist of a large number of parameters that
are highly shared among feature dimensions and states, enabling flexibility in
learning different tasks and classes. This flexibility has the advantage to lead
to strong discriminative models unless data annotations are corrupted by noise,
leading to performance reduction and overfitting problems [9]. Recent methods
tried to address the problem by using curriculum learning [4], directly estimating
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the labels noise in the set [8], or measuring the confidence of the network during
training [12], also using another co-trained network [7]. The idea was usually to
understand mislabeled samples out of distribution and reduce their influence on
the learning by dampening their loss or decreasing their impact directly from
the training set.

In this paper, we proposed a meta-learning approach to address the problem
of noisy labels in image classification based on an advisor network, developed to
help the classifier. While a standard image classification model is trained, the
advisor network observes the main network activations and adjusts features at
training time when noisy label images are identified as input. This allows the
classifier model to get information even from mislabeled samples where some
noise structure is present. We only retained the main model as the final classi-
fier, while the advisor was discarded. Unlike the teacher-student paradigm, the
advisor network was not trained to solve the image classification task, but only
to help the learning process of the classifier model by its altering activations.

In summary, our contribution is:

— We propose the use of an advisor network, i.e. the use of an additional net-
work at training time, learned by meta-learning, that can adjust activations
and gradient of the main network that is being trained.

— We develop such concept for the task of image classification, allowing the
training of an image classification network in presence of artificial label noise.

— We test our approach in presence of artificial label noise and on a popular
noisy dataset, obtaining state-of-the-art performance.

2 Related works

2.1 Noisy training labels

Numerous works deal with the problem of noisy labels in training data. It has
been shown that the performance of machine learning systems degrades in the
presence of label noise [I8], [21]. A first solution involves a loss correction to
mitigate the effect of mislabeled samples on the classifier network. For example
GLC [8], Reed [22], M-correction [2], F-correction [6] and S-adaptation [20] es-
timated the matrix of corruption probabilities used to change the wrong labels
to the correct ones. Instead, [25], [I7], [32] modeled the annotations noise dis-
tribution linearly combining the output of the network and the noisy label to
estimate true labels. Another different approach was assigning a weight to each
sample. A lower weight value avoids the contribution of that sample to the train-
ing of the network. In this way, it is possible to assign low values to mislabeled
examples and high values to correct ones. MentorNet [10] and MentorMix [9]
found the latent weights with data-driven curriculum learning and the student-
teacher paradigm. Other contributions include data augmentation strategies like
Mixup [33], Advaug [5] and DevideMix [13]. Differently from these methods, we
modified the network activation using an advisor instead of the loss value.
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2.2 Meta learning

There are methods [3], [26], [27], [15] that needs supplemental clean label to
handle the noise. This assumption of clean data is also true for a solution that
exploits the Meta-learning paradigm. It consists of the use of machine learning
algorithms to assist the training and optimization of other machine learning
models. Meta-learning [23], [24], [14], [28] had used to address the noisy labels
problem. With small clean validation data, the meta-model learns how to correct
the biased training labels. For example, L2R [23] weighed each example giving
less importance to the mislabeled samples. MLNT [I4] simulated regular training
with synthetic noisy labels. MW-Net [24] learned an explicit weighting function
that can be easily adapted to different types of annotations noise. MLC [2§]
estimated the label noise transition matrix. Contrary to all aforementioned meta-
learning solutions, our method does not act by directly modifying the loss of the
neural network. We applied a meta-attention layer inside a neural network. The
weights of the attention are learned by the advisor network. In this way, the
mislabeled data can be leveraged to improve the overall performance of the
main model.

3 Method

3.1 Task

In this paper, we developed a method that can handle images with noisy labels
when training networks for image classification. We started from the idea that
also a mislabeled example contains information that can contribute to a greater
generalization of the network. The model should concentrate only on some con-
venient parts of these data. Our idea was to exploit the attention mechanism to
enhance the useful parts of the information and lower the rest. We made use of
an auxiliary advisor network that learns automatically a function that weighs
the features extracted from a DNN during its training. This advisor network
should be aware of the state of the main model and the meta-learning training
solves this constraint. Our method Meta Feature Re-Weighting (MFRW) acts
like a meta-attention layer. Different from weighting loss methods that tend to
completely remove the influence of mislabeled examples during the training our
MFRW can take advantage of them.

We first introduce meta-learning basics and formulation typical of methods
that learn robust deep neural networks from noisy labels. Then in Section [3.3
we explain our method showing the architecture of the whole process.

3.2 DMeta learning for Noisy Image Classification

In general meta-learning (ML) is referred to the process of improving a learning
algorithm over multiple learning episodes, also called commonly learning to learn.
Usually, ML is divided into two learning algorithms: an inner (or base) algorithm
that solves a task, such as images classification, defined by a training dataset and
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objective function; an outer (or upper/meta) algorithm that updates the inner
one, such that the main model it learns improves an outer objective function.
ML was applied to solve the problem of noisy labels in training data [23], [24].
We introduce the symbols useful for understanding ML in this particular setting
and the three basic steps into which the entire learning process is divided.

Let Dtrain = {glra ytralN  ‘he the noisy annotated training set, where N is
the total number of examples, composed of an image x; and the correspondent
one-hot label y; over ¢ classes. In general if we have a deep neural network (DNN)
model @(-;w), where w are its parameters and § = ®(x;w) is its prediction on
the input image x, we can obtain the optimal parameters w* by minimizing the
softmax cross-entropy loss £(§,y) on the training set D"*". ML, applied to the
Noisy Image Classification task, requires the presence of an additional verified
dataset. This validation set D% = {m}?“l,y;’“l};vil is much smaller than the
training set, M < N.

In [24] a meta-model was used to implement the ML process. A multilayer
perceptron network with only one hidden layer learns how to weigh each training
example. Let W (-;0), parameterized by 0, be the meta-model that maps a loss
value to a scalar weight. In this case, the optimal parameters w* are derived
using the following weighted loss:

N
* _ : 1 tra tra
w*(0) = arglrumnﬁ Z;Vi (0)L7 (w) (1)
with VIre(0) = @(L"(w);0) as the weight predicted by the meta model for
the ¢-th training example. Instead the meta model is trained minimizing the
validation loss:

M

* . 1 val *

0" = arg;mnM ; L3 (w*(0)) (2)
where LY (w*(0)) = £(P(x¥; w*(0),y4*")) is the loss for the j-th validation
example.

Equations Eq. and Eq. can be minimized alternating optimization
via gradient descent. One solution that ensures the efficiency of the algorithm
and its convergence [24] adopts an online strategy to update 6 and w through a
single optimization loop, which is divided into three main steps.

The first step is called Virtual-Train because the original DNN will not be
updated and the optimization is carried out on a virtual model that is the
copy of the original one. Consider the ¢-th iteration and associated mini batches
Birain — {(zfre, ylra)lr ) and B = {(z¥,yv*")}7 |, where n and m are the
size of mini-batch respectively. The virtual update can be derived by:

1 n
() =w—a= Y VIO)V,LI (w) (3)
n
i=1
where « is the learning rate for the DNN and w is its parameter at the current
iteration. Then there is the Meta-Train step, where given the optimized virtual
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model the meta model is updated by:
/ 1 S val ( ~
=0—p3— , 4
=03 Ve @) (1)

with 8 the learning rate for the meta model. In last step, Actual-Train, the
base DNN model is optimized taking into account the previously updated meta
model.

1 n
I o V!f’!‘a 6/ vwﬁtra 5
o =l S VOVt ) )
w’ becomes the w in Eq. (3)) for the (¢ + 1)-th iteration.

3.3 Meta Feature Re-Weighting (MFRW)

Attention for a DNN is a mechanism that tries to mimic the cognitive attention
of the human brain. It intensifies the important parts of the input and reduces
the rest. In Meta Feature Re-Weighting (MFRW) the attention is applied with
a Hadamard product between the feature extracted from a DNN and a vector
of weights automatically learned from a meta-model. In order to get this, we
separated the main model @(-;w) in two-part: the backbone @y (+;wp), that has
an image x as input and gives out a feature vector f, and the classifier @.(-; w.),
that has f as input and a probability score vector s as output. In this way, it
was possible to manipulate the feature f directly with our meta-model ¥.

The meta-model takes two different inputs ¥(f, £) and gives back a vector
of weights Wy. The first input f is the feature extracted from the backbone &,
relative to the example x. This is important for the meta-model because it makes
the W strictly connected to the feature that needs to be modified. The other
input is the loss £ of the example x calculated from the prediction obtained
by the main full model @. This gives the meta-model information about how
much z is a “hard” or an “easy” example for the main model. The two inputs
together let the meta-model differentiate a feature belonging to a noisy x from
the one related to a correct x. In dot-product attention the multiplication is
done element-wise, so the W has to be of the same size as f, and its values
must be in the range € (0, 1).

MFRW is divided into 4 main phases for each iteration. Figure [I| shows the
overall process of our method divided by step. We put our method at the ¢-th
iteration and we will describe each step to reach the (¢ + 1)-th.

Our method needs an additional initial phase Loss Pre-Calculation respect
to [24] and what is described in We must calculate in advance the value of
loss £P" related to the training batch z!"*". This is done at the beginning to
obtain a loss value dependent on the original feature and not on the weighted
one. It is not an expensive step because it is a direct loss inference, without
gradient calculation.

The second step is the Virtual-Train. Here @} and &' are temporary clone of
the original ones. The train batch 27" is passed in ®! to obtain the features
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Fig. 1: Tllustration of an iteration of the proposed Meta Feature Re-Weighting
(MFRW) method. Each iteration is divided into four steps. First, a Loss Pre-
Calculation is performed to calculate in advance the loss £P"¢ value of the train-
ing batch 27", The second step is the Virtual-Train, where a clone of the main
model is virtually updated. Here the meta-model modifies the feature of the
main model by multiplying it with a vector of weights. The purple color indi-
cates the weighted features. The third step shows the Meta-Train process. With
a meta batch of clean example 2 the meta-model is updated minimizing the
loss L™ given by the previous virtually updated network. In the last phase
Actual-Train, the real main model is trained with the meta-model optimized
(yellow color)
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ftrein Then f*"*" goes inside ¥* with the relative loss values £P™ to get the
vector of weights Wy. We multiplied element-wise f'"* with Wy to get a new
feature vector with attention f%*. This is given to @ to obtain the score 574"
and then the correspondent loss £7". We now virtually update &! and &,
parameters, but not the one of ¥*.

Like [24] we have a clean and balanced meta dataset that will be used to train
the meta-model ¥ in the third step Meta-Train. Here we have ¢/*! and @+
virtually updated from the step before. Now we pass a meta batch ™¢* through
them in order to get a validation loss £™*, Then ¥? is updated minimizing
L€t Tn this way, the meta-model is optimized to help the main model minimize
its error on clean data. Here the optimization takes into consideration also the
previous Virtual-Train, thus this is the most expensive part of the method.

The last phase is the Actual-Train where the original @} and @' are optimized
taking into account the updated meta-model ¥*+1.

The meta-model is used only during the training time of the main network.
It will be discarded at test time when only the main network is retained as the
final model.

3.4 Meta model architecture

Our meta-model ¥ has a really simple architecture. The inputs of the network
are a feature f and a loss value L£,. Each input is projected in a fixed size
embedding space through a separate fully connected layer. Then the embeddings
are concatenated and passed to another fully connected layer that projects them
into a larger common space. Its size is the sum of the dimension of each previous
embedding. Finally, a linear layer is used to pass the data from the common
space to a vector with a size equal to the one of the feature f, that is given as
input. Because the output must be an attention weight in the range € (0,1) we
put a sigmoid activation after the last layer.

4 Experiments

To demonstrate the effectiveness of our method, we conducted experiments on
synthetically generated datasets with controlled noise structure and level. Then
we tested its ability to generalize with experiments on a real-world dataset.

4.1 Datasets

Following previous work [24], [23], [10], we used CIFAR-10 and CIFAR-100 which
are the typical choice to generate synthetic datasets containing different types of
noise structures. They are composed of 50K training images and 10K test images
of size 32x32. Of the training set, 1000 images with clean labels are randomly
selected to create the validation set for meta-training.

In addition to synthetic datasets, there is a collection of data containing
real-world noise. ClothinglM [30] is a dataset that is composed of 1 million
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images of clothing taken from online shopping websites. There are 14 categories
like T-shirt, Shirt, Knitwear, etc. The labels are obtained from the text of the
images provided by the sellers and not from expert annotators, that’s why there
are errors. The validation set of 14k clean data is used as the meta dataset.
This dataset allowed our strategy to be evaluated as a concrete application for
fine-grained classification with noisy training annotations.

4.2 Implementation details

We used the same settings for the experiments on CIFAR-10 and CIFAR-100.
The backbone was a Resnet-32 trained through SGD with a momentum of 0.9,
weight decay of be-4, batch size of 128, and a starting learning rate of 0.1. The
learning rate decreased to its % at the 50 epoch and 70 epoch, stopped at the
100 epochs.

With Clothing1M we used as backbone a ResNet-50 pre-trained on ImageNet.
It was trained through SGD with a momentum of 0.9, weight decay of 1le-3, and
a starting learning rate of 0.01. The batch size was 32 and it was preprocessed
resizing the image to 256 x 256, cropping the center 224 x 224, and performing
normalization. The learning rate was divided by 1—10 after 5 epochs and stopped
at 10 epochs.

In every experiment, the meta-model was optimized with Adam and a learn-
ing rate of le-4. The embedding space size was set always to 100.

4.3 Results

Flip (or asymmetric) is a noise that is designed to mimic the structure where
labels are only replaced by similar classes, e.g. dog«>cat. We choose to test our
method on that type of noise because it usually appends that the label error
could depend on the ambiguity between classes and similar visual patterns [30].
We created a synthetic version of CIFAR-10 and CIFAR-100. The noise ratio
was controlled by a parameter p, which represents the probability that a clean
example is contaminated by noise. In this way we could test our method on
different level of noise, from p = 0.0 (no noise), to p = 0.8 (heavy noise).

Table [1| shows the accuracy results on the test set of CIFAR-10 and CIFAR-
100 datasets with flip label noises. The compared methods are directly cited with
the result in their paper. For MW-Net [24] and the direct training (CrossEntropy)
we report also our reproduced results. The accuracy gained over the other meth-
ods was significant. We can see that at a higher noise rate our result outperforms
MW-Net and CrossEntropy by a large margin, indicating the effectiveness of our
method on the synthetic Flip noise. From the results of Table [I]|is possible to
notice a limitation of our strategy that occurs when there is no noise (p = 0.0) in
the training annotations. We obtained worse accuracy values than the training
with the classic softmax cross-entropy loss on both CIFAR-10 and CIFAR-100.
The advisor network introduces a bias from the distribution of the meta set to
the training data. Because the training annotations are completely correct the
introduction of this meta bias makes the accuracy a little worse than without.
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Table 1: Top-1 accuracy on CIFAR10 and CIFAR100 dataset with Flip noise.
The backbone used was a ResNet-32. p denotes the different levels of noise. The
results for the cited method are reported directly from their original papers. |
indicates the results obtained by our implementation. The first and the second
best results are respectively marked in bold and underline.

Dataset Flip CIFAR-10 Flip CIFAR-100
Noise p 0.0 0.2 04 | 0.6 0.8 0.0 0.2 0.4 0.6 0.8
CrossEntropy [24](92.89 | 76.83 | 70.77| - - 70.50 | 50.86 |43.01 | - -
Reed-Hard [22] |92.31|88.28|81.06| - - 69.02|60.27|50.40 | - -
S-Model [6] 83.61|79.25|75.73| - - 51.46145.45| 43.8 - -
Self-paced [12] |88.52|87.03|81.63| - - 67.55|63.63 | 53.51 - -
Focal Loss [16] |93.03|86.45(80.45| - - 70.02 |61.87(54.13| - -
Co-teaching [7] |89.87|82.83|75.41| - - 63.31[54.13|44.85| - -
D2L [17] 92.02 | 87.66 | 83.89| - - 68.11]63.48 | 51.83| - -
Fine-tuning [24] |93.23|82.47 | 74.07| - - 70.72|56.98|46.37| - -
MentorNet [10] |[92.13| 86.3 |81.76| - - 70.24 161.97(52.66| - -
L2RW [23] 89.25 | 87.86 | 85.66| - - 64.11|57.47|50.98| - -
GLC 8]  |91.02|89.68|88.92| - | - |6542|63.07(62.22] - | -
MW-net [24] 92.04190.33|87.54| - - 70.11|64.22 | 58.64 | - -
CrossEntropy! [92.33]90.56 | 86.25 | 26.67 | 13.58 || 70.18 [65.02| 50.25 | 18.67 | 4.32
MW-net! [24] [92.19]90.74|87.63 |42.41|27.19 || 70.57 | 64.13 | 51.23 | 19.89 | 7.42
Ours 91.87191.09(90.26|89.34(82.47|| 68.93 | 63.54 | 59.07 [56.13|20.29

We introduced also two new noise settings, namely Flip2 and Flip3. The
difference from Flip is that the noise is equally distributed over multiple similar
classes, two and three respectively. Table show respectively the result for
noise of type Flip2 and Flip3. We can see how our method performs better than
the others, especially in very noisy situations.

Table 2: Accuracy result on CIFAR10 and CIFAR100 dataset with Flip2 noise.
p denotes the different level of noise. T indicates the results obtained by our
implementation. The first and the second best results are respectively marked
with bold and underline.

Dataset

Flip2 CIFAR-10

Flip2 CIFAR-100

Noise p

0.2

0.4 | 0.6

0.8

0.2

0.4

0.6 | 0.8

CrossEntropy’

MW-net!

90.71
[24] |90.93

87.83|75.83
88.83 | 86.85

11.86
27.49

64.91
65.37

57.7

36.55| 7
9

59 [36.97| 7.99

Ours

90.66

89.72|87.75

73.83

63.07 |57.96

45.35(22.41

Table [4] shows the results on Clothingl M. As we can see our method outper-
forms the current state-of-the-art result.
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Table 3: Result for Flip3 noise on CIFAR10 and CIFAR100 dataset. p denotes
the different level of noise. T indicates the results obtained by our implementa-
tion. The first and the second best results are respectively marked with bold and
underline.
Dataset Flip3 CIFAR-10 Flip3 CIFAR-100
Noise p 02 | 04 | 0.6 0.8 0.2 04 | 0.6 | 0.8
CrossEntropyJr 90.13 | 88.44 | 82.31|20.34 |/ 65.29|59.35| 44 |11.07
MW-net| [24] [90.56|88.49 | 85.65 | 22.69 ||65.33(62.74|45.77 | 10.33
Ours 90.31 |88.96(87.73|75.53|| 62.98 | 59.08 |52.28|25.72

Table 4: Comparison with state-of-the-art methods in test accuracy (%) on
Clothing1M dataset. Results for baselines are copied from original papers.

Method Accuracy (%)
CrossEntropy [24] 68.94
F-correction [20] 69.84
JoCoR [29] 70.30
S-Model [6] 70.36
M-correction [2] 71.00
MLC [25] 71.06
Joint-Optim [25] 72.16
MLNT [14] 73.47
P-correction [32] 73.49
MW-Net [24] 73.72
MentorMix [9] 74.30
FaMUS [31] 74.43
DivideMix [13] 74.76
AugDesc [19] 75.11
Ours 75.35

5 Conclusions

In this paper, we introduced Meta Feature Re-Weighting (MFRW), which makes
use of a novel concept of advisor network to mitigate the problem of training
DNNSs on corrupted labels. We empirically show the effectiveness of our method
on a synthetic and real-world noisy dataset for the classification task. The exper-
imental results demonstrate that the advisor strategy can leverage information
present in noisy data helping the main network to achieve a better generalization
performance. Our method yields state-of-the-art performance on the Clothing1 M
dataset. Future research in this area may include adapting the advisor network
to different problems than noise, like class imbalance.
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