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a b s t r a c t

The resistance indices, namely the Kirchhoff index and its generalisations, have undergone
intense critical scrutiny in recent years. Based on randomwalks, we derive three Kirchhof-
fian indices for strongly connected and weighted digraphs. These indices are expressed in
terms of (i) hitting times and (ii) the trace and eigenvalues of suitable matrices associated
to the graph, namely the asymmetric Laplacian, the diagonally scaled Laplacian and their
Moore–Penrose inverses. The appropriateness of the generalised Kirchhoff index as a
measure of network robustness is discussed, providing an alternative interpretation which
is supported by an empirical application to the World Trade Network.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

On a simple connected graph G = (V , E), it is possible to define a multitude of descriptors aimed at characterising
and quantifying its structural properties, which are preserved by a graph isomorphism. These descriptors, often referred
to as graph invariants or topological indices, are particularly useful in practical applications. Amongst these descriptors,
the resistive indices – namely the Kirchhoff index and its generalisations, such as the multiplicative and the additive
Kirchhoff indices – have received considerable attention in e.g. chemical applications, because they have proven to be
useful in discriminating among chemicalmolecules (=undirected graphs), with their atoms (=vertices) and bonds (=edges),
according to their cyclicity (see [2,3,8,11,12,14,16,27]).

A natural extension motivated by the node/edge structure of real networks is to think of Kirchhoff-type descriptors
defined on strongly connected andweighted digraphs. In this context, there are ways to define effective resistances between
nodes so as to provide a possible generalisation of the Kirchhoff index (e.g. [6,26]), even though it may be argued that the
physical interpretation of these generalised effective resistances remains elusive (for instance: these effective resistances do
not satisfy the triangular inequality).

Following the probabilistic approach to the Kirchhoff index based on the random walk on a graph [16], this paper aims
at providing different expressions of the Kirchhoff-type descriptors in terms of (i) hitting and commute times and (ii) the
trace and eigenvalues of suitable matrices associated to the graph, namely the asymmetric Laplacian, the diagonally scaled
Laplacian and their Moore–Penrose inverses. Moreover, interesting relationships interlacing these indices are derived.

It is worth pointing out that the Kirchhoff index for undirected and weighted graphs gives a measure of the robustness of
a network, i.e. the capacity of a network to maintain functionality – through back-up paths – in the presence of node failure.
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In particular, it is important to stress the monotonicity of the Kirchhoff index within this context. Indeed, adding an edge, or
increasing the weight of an edge, yields a graph with a smaller total effective resistance, i.e. a smaller Kirchhoff index (see
Theorem 2.7 in [9]).

On the other hand, the additive and multiplicative Kirchhoff indices are not monotonic even in the case of undirected
graphs. Thus, the minimum requirement for an index to be a suitable robustness measure is not satisfied.

Following the presentation of our analytical results, we show that, in the case of directed networks, the Kirchhoff index
can no longer correspond to a robustness measure (as defined above), and we suggest an alternative interpretation within
the framework of randomwalks on graphs.Moreover, we further argue about the usefulness of the Kirchhoff-type descriptor
proposed with an empirical illustrative application to the World Trade Network.

2. Notation and preliminaries

Wequickly recall some standard definitions and results about graph theory and randomwalks on graphs; formore details
the reader is referred to [10,13,24].

A graph G = (V , E) is a pair of sets (V , E) , where V is the set of n vertices and E is the set of m pairs of vertices of V . Let
us denote with |V | and |E| the cardinality of the sets V and E, respectively. An undirected graph is a graph in which (j, i) ∈ E
whenever (i, j) ∈ E, whereas a directed graph (digraph, hereinafter) is a graph in which each edge (arc) is an ordered pair
(i, j) of vertices. Moreover, a weight wij is possibly associated to each edge (i, j), in this case we will have a weighted (or
valued) graph.

By simple graphwe refer to an unweighted, undirected graph containing no self-loops or multiple edges [24].
A non-negative n-square matrix A, representing the adjacency relationships between vertices of G, is associated to the

graph (the adjacency matrix); the off-diagonal elements aij of A are equal to 1 if vertices i and j are adjacent, 0 otherwise;
if the graph has self-loops the corresponding diagonal elements of A are equal to 1. If G = (V , E) is a digraph, its adjacency
matrix is in general asymmetric. In the sequel we denote byW = [wij] the weighted adjacencymatrix of a weighted digraph
G.

For an undirected graph G, the degree di of vertex i ( i = 1, . . . , n) is the number of edges incident to it. In a digraph the
in-degree d(in)i of a vertex i, is the number of arcs directed from other vertices to i and the out-degree d(out)i of a vertex i is
the number of arcs directed from i to other vertices. For weighted graphs we have d(out)i =

∑n
j=1 wij and d(in)i =

∑n
j=1 wji, for

i = 1, . . . , n. In general d(out)i ̸= d(in)i but
n∑

i=1

d(out)i =

n∑
i=1

d(in)i =

n∑
i=1

n∑
j=1

wij

and we refer to this quantity as the volume Vol(G) of the weighted digraph G. For simple graphs, we have Vol(G) = 2|E|.
In the sequel we deal with the general case of weighted digraphs and we focus on out-degrees underlining that all the

results can be carried out also for in-degrees taking the transpose of the weighted adjacency matrix.
Let us assume that every vertex has at least one out-going edge which can include self-loops, i.e. d(out)i ̸= 0 for every i.

In this case, the matrix D = diag(d(out)i ) is non singular and we can define P = D−1W as the transition probability matrix of
the Markov chain associated with a random walk on G. Thus pij = wij/d

(out)
i is the probability of transiting from vertex i to

vertex j and it is different from zero when (i, j) ∈ E.
If the graph G is strongly connected, i.e. for any pair of vertices there is a directed path leading from one vertex to the

other, P is irreducible and the associated Markov chain is said to be ergodic. By the Perron–Frobenius theorem, there exists
a unique positive vector of stationary probabilities π = [πj] such that πTP = πT and πTe = 1, where e denotes the n × 1
vector consisting of all ones.

Recall that for any ergodic chain the matrix (I − P + eπT ) is non singular and its inverse Z is known as the fundamental
matrix of the chain [10,13]. In case of a regular chain, i.e. a chain for which P is primitive, we have

Z =

∞∑
k=0

(P − eπT )k = I +

∞∑
k=1

(Pk
− eπT ) (1)

Another useful matrix associated to the graph G is the (ordinary) asymmetric Laplacian matrix L = ΠΠΠ (I − P), where
ΠΠΠ = diag(πi). It is well known that rank(L) = n − 1, and Le = LTe = 0.

Moreover, L + ππT is non singular, and its inverse Z̃ is related to the fundamental matrix Z by the formula Z̃ = ZΠΠΠ−1.
If we denote byM the Moore–Penrose inverse of L, it can be proved that

M = (I − E/n)̃Z(I − E/n)

where E = eeT (see, for instance, [5], Lemma 14). Note thatMe = eTM = 0.
The matrices M and Z play a central role in defining the expected hitting time. The hitting time Tj is the number of

transitions needed by a random walker on G to reach j for the first time and its expected value, also known as mean first
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passage time (MFPT, hereinafter), when she/he starts at i, is denoted by H(i, j). By convention H(i, i) = 0, ∀i while for i ̸= j
it is well known that

H(i, j) =
zjj − zij

πj
. (2)

We recall from [5], Theorem 15, the following expression to obtain the expected hitting time in terms of the Moore–
Penrose inverseM of the Laplacian matrix L:

H(i, j) = mjj − mij +

n∑
k=1

(mik − mjk)πk.

In contrast with the expected hitting time H(i, j), which is in general not symmetric, the commute time, defined as

C(i, j) = C(j, i) = H(i, j) + H(j, i) = mjj + mii − mij − mji (3)

is a symmetric measure.
In what follows, we will be interested in partial sums of hitting times. The Random Target Lemma [1,10], states that

n∑
j=1

πjH(i, j)

is a constant K not depending on i, usually called Kemeny’s constant. It can be expressed in terms of the eigenvalues
νi ̸= ν1 = 1 of the matrix P as

K =

n∑
i=2

1
1 − νi

. (4)

3. Kirchhoffian descriptors: Analytical properties

In this section we present a generalisation of the Kirchhoff-type indices, namely the Kirchhoff index, the multiplicative
and the additive Kirchhoff indices, for strongly connected, directed and weighted (DW-hereinafter) graphs, both in terms of
suitable Laplacian matrices and their eigenvalues.

3.1. DW-Kirchhoff index

For a simple connected graph G = (V , E), the Kirchhoff index was defined by Klein and Randić in [14] as

R(G) =

n∑
i=1

n∑
j=i+1

Rij,

where Rij is the effective resistance as defined by Ohm’s law when a battery is placed between i and j so that the current
entering at i is 1 and the voltage at j is 0. An algebraic approach to R(G) (see [12] and [27]) yielded the representation

R(G) = n
n−1∑
i=1

1
λi

, (5)

where the λi’s are the non-zero eigenvalues of the Laplacian L = ∆∆∆ − A , with ∆∆∆ = diag(di) and A being the adjacency
matrix of G. There is also an obvious connection between R(G) and expected hitting times that was noticed first in [16]:

R(G) =
1

2|E|

n∑
i,j=1

H(i, j).

This probabilistic definition of R(G) allows us to define for strongly connected, weighted digraphs theDW-Kirchhoff index
as follows:

S(G) =
1

Vol(G)

n∑
i,j=1

H(i, j). (6)

In what followswe derive two different equivalent formulas for the DW-Kirchhoff index. The first one gives S(G) in terms
of the trace ofM, while the latter generalises formula (5).

Proposition 1. For any strongly connected, weighted digraph G, we have

S(G) =
n

Vol(G)
Trace(M); (7)
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or equivalently,

S(G) =
n

Vol(G)

n−1∑
i=1

1
µi

, (8)

where the µi’s are the non-zero eigenvalues of the asymmetric Laplacian L.

Proof. Formula (7) derives easily from (2) taking into account that Me = 0, while the proof of (8) follows the same line of
Corollary 2 of [18].

First of all, from the properties of the fundamental matrix Z, we get

(I − E/n) = (L + ππT )ZΠΠΠ−1(I − E/n) = (L + eπT )ZΠΠΠ−1(I − E/n).

Since (L + eπT ) is non singular,

ZΠΠΠ−1(I − E/n) = (L + eπT )−1(I − E/n)

and

S(G) =
n

Vol(G)
Trace(UT (L + eπT )−1(I − E/n)U)

where U is an orthonormal matrix with 1
√
ne as its first column. Standard computations on block matrices, show that the

trace of the matrix (UT (L+ eπT )−1(I− E/n)U) is given by the sum of the non-zero eigenvalues of the asymmetric Laplacian
matrix L. □

Note that even if some of the eigenvalues of the Laplacian matrix L might be complex, the sum in (8) is real since the
complex eigenvalues are always present in conjugate pairs.

3.2. DW-Multiplicative Kirchhoff index

On a simple connected graph G = (V , E), the multiplicative degree-Kirchhoff index, proposed by [8] was defined as

R∗(G) =

n∑
i=1

n∑
j=i+1

didjRij, (9)

where di is the degree of the vertex i and Rij is the effective resistance between vertices i and j. An algebraic approach to
R∗(G) yielded the representation

R∗(G) = 2|E|

n−1∑
i=1

1
λ∗

i
, (10)

where the λ∗

i ’s are the non-zero eigenvalues of the diagonally-scaled LaplacianLd
= ∆∆∆1/2L∆∆∆−1/2 (see [8] ), or equivalently

λ∗

i = 1 − νi, where the νi’s are the eigenvalues not equal to 1 of the transition probability matrix P = ∆∆∆−1A of the random
walk on G (see [19]). Also, in terms of expected hitting times, we get

R∗(G) = 2|E|

n∑
i,j=1

πiπjH(i, j). (11)

where πi = di/2|E|, for the case of simple graphs.
According to the expression above, we can define the DW-multiplicative Kirchhoff index as

S∗(G) = Vol(G)
n∑

i,j=1

πiπjH(i, j). (12)

Note that by the Random Target Lemma,

S∗(G) = Vol(G)
n∑

j=1

πjH(i, j), for any i. (13)

Thus, up to a multiplicative constant, S∗(G) represents the average of the expected hitting times with weights given by the
elements of the stationary distribution vector π (see [1]).

In the next proposition we give alternative expressions of the DW-multiplicative Kirchhoff index.
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Proposition 2. For any strongly connected, weighted digraph

S∗(G) = Vol(G) Trace(Md)

whereMd is the Moore–Penrose inverse of the diagonally scaled asymmetric Laplacian Ld = ΠΠΠ1/2LΠΠΠ−1/2, or, equivalently,

S∗(G) = Vol(G) Trace(ΠΠΠM) − π TMπ. (14)

Moreover,

S∗(G) = Vol(G)
n∑

i=2

1
1 − νi

, (15)

where the νi’s are the eigenvalues (not equal to 1) of the transition probability matrix P.

Proof. Formulas (13) and (2) give

S∗(G) = Vol(G)(Trace(Z) − 1).

Taking into account Definition 9 and Lemma 14 in [5], setting
√

π = (
√

π1, . . .
√

πn)T and Zd
= ΠΠΠ1/2̃ZΠΠΠ1/2, we get

S∗(G) = Vol(G) (Trace(̃ZΠΠΠ ) − 1) = Vol(G) (Trace(ΠΠΠ1/2̃ZΠΠΠ1/2) − 1) =

= Vol(G) (Trace(Zd) − Trace(
√

π
√

π
T )) =

= Vol(G) Trace(Md).

Now, by the calculus rules of the Moore–Penrose inverse,

Md
= (I −

√
π
√

π
T )ΠΠΠ1/2MΠΠΠ1/2(I −

√
π
√

π
T ),

by the idempotent property of (I −
√

π
√

π
T ), and the equality ΠΠΠ1/2√π = π we get

Trace(Md) = Trace(ΠΠΠ1/2MΠΠΠ1/2(I −
√

π
√

π
T )) =

= Trace(ΠΠΠ1/2MΠΠΠ1/2) − Trace(ΠΠΠ1/2MΠΠΠ1/2√π
√

π
T ) =

= Trace(ΠΠΠM) − Trace(π TMπ) = Trace(ΠΠΠM) − π TMπ

Therefore expression (14) follows. Finally, the third expression is a direct consequence of (4). □

3.3. DW-Additive Kirchhoff index

On a simple connected graph G = (V , E), the additive degree-Kirchhoff index, proposed by [11] was defined as

R+(G) =

n∑
i=1

n∑
j=i+1

(di + dj)Rij, (16)

where di is the degree of the vertex i and Rij is the effective resistance between vertices i and j. By the randomwalk approach,
it is known that 2|E|Rij = H(i, j)+H(j, i) = C(i, j) (see for instance, [18]). Thus recalling that di = 2πi|E|, we can rewrite (16)
as

R+(G) =
1
2

n∑
i,j=1

(πi + πj)C(i, j)

and this definition makes sense in any strongly connected, weighted digraph G. Thus we introduce the directed weighted
additive Kirchhoff index (DW-additive Kirchhoff index, for brevity) as a weighted average of the commute times between
each pair of nodes, with weights given by (πi + πj)/2:

S+(G) =
1
2

n∑
i,j=1

(πi + πj)C(i, j). (17)

In the next proposition we put in evidence an interesting link between the DW-additive Kirchhoff index and the DW-
Kirchhoff index, already noted by Yang and Klein for unweighted undirected graphs (see Theorem 3 in [25]), and, in addition,
we give also a link with the DW-multiplicative Kirchhoff index.

Proposition 3. For any strongly connected, weighted digraph

S+(G) =
Vol(G)

n
S(G) + n Trace(ΠΠΠM). (18)
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Moreover,

S+(G) =
Vol(G)

n
S(G) +

n
Vol(G)

S∗(G) + nπTMπ (19)

Proof. Eq. (18) follows from (3) and (7). To prove (19) we relate the last summand in (18) with the DW-multiplicative
Kirchhoff index. Indeed, by (14),

Trace(ΠΠΠM) =
1

Vol(G)
S∗(G) + π TMπ

and the assertion follows. □

In the next proposition we give an expression of the DW-additive Kirchhoff index in terms of the sum of eigenvalues of
suitable matrices (for the case concerning simple graphs, see [17]).

Proposition 4. For any strongly connected, weighted digraph

S+(G) =

n∑
i=1

1
αi

+ n
n∑

i=2

1
1 − νi

− n (20)

where the αis are the eigenvalues of the modified Laplacian matrix L + ππT and the ν ′

i s the eigenvalues (not equal to 1) of the
transition probability matrix P.

Proof. Starting by (19), let us consider the term

Vol(G)
n

S(G) + nπTMπ = Trace((I + nππT )M)

Inserting the expression of M = (I − E/n)Z̃(I − E/n) and taking into account the relations Z̃ = ZΠΠΠ−1 and πTZ = πT , after
some algebra we get

Trace((I + nππT )M) = Trace(Z̃) − n.

The assertion follows by the definition of the matrix Z̃ = (L + ππT )−1 and by Proposition 2. □

As a summarising device, we report in Table 1 alternative expressions for the Kirchhoff-type descriptors derived so far.
Recall that the µi’s are the non-zero eigenvalues of the asymmetric Laplacian L, the νi’s are the eigenvalues (not equal to 1)
of the transition probability matrix P while the αis are the eigenvalues of the modified Laplacian matrix (L + ππT ).

Table 1
Alternative expressions of Kirchhoff-type descriptors.
Index H(i, j) or C(i, j) Moore–Penrose Eigenvalues

S(G)
1

Vol(G)
∑n

i,j=1 H(i, j)
n

Vol(G)
Trace(M)

n
Vol(G)

∑n−1
i=1

1
µi

S∗(G) Vol(G)
∑n

j=1 πjH(i, j) Vol(G)Trace(Md) Vol(G)
∑n

i=2
1

1−νi

S+(G) 1
2

∑n
i,j=1(πi + πj)C(i, j) Trace(M) + nTrace(ΠM)

∑n
i=1

1
αi

+ n
∑n

i=2
1

1−νi
− n

4. Kirchhoffian descriptors: discussion and empirical application

The Kirchhoff index for the case of weighted, undirected graphs has been advocated as a suitable measure of network
robustness [20]. The fact that the index decreases monotonically when an edge is added (or the weight of an existing link
increased) allows us to unambiguously associate a decrease in total effective resistance to a higher network robustness.
This monotonicity property, however, does not automatically extend to the additive and multiplicative indices or to the
DW-Kirchhoff index introduced in Section 3.1

In this section we discuss the monotonicity property for (i) the multiplicative and additive Kirchhoff indices (for
undirected graphs) and (ii) the DW-Kirchhoff index, providing an alternative interpretation for S(G) as a closeness centrality
index. Such an interpretation is illustrated with an empirical application to the World Trade Network, comparing also S(G)
with S∗(G) and S+(G), within this context.

1 We wish to thank an anonymous referee for his insightful comment, directing our attention to this issue.
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4.1. Discussion: Undirected graphs

The following example shows that the monotonicity property does not hold for the multiplicative and additive Kirchhoff
indices, already within the context of undirected graphs. Fig. 1 reports first the adjacency matrix of graph G1. We then
represent graphs G2 and G3: G2 is identical to G1 with an added link between nodes 1 and 5, whereas G3 is identical to G2
with a further edge between nodes 1 and 6.

Given the added paths between vertices, we would expect the additive and multiplicative Kirchhoff indices to decrease.
However, as can be seen from Table 2, while total effective resistance R(G) decreases as links are added, R∗(G) and R+(G) do
not follow a monotonic trend: both indices increase (when considering the change between G1 and G2) and then decrease
(when considering the change between G2 and G3).

Thus, already in the undirected case themonotonicity property only holds for the Kirchhoff index and not for the additive
and multiplicative variants. Taking this result into account, we concentrate on the DW-Kirchhoff index in what follows.

Fig. 1. Behaviour of R(G), R∗(G) and R+(G). Adjacency matrix of G1; G2 is equal to G1 with an additional edge between nodes 1 and 2, whereas G3 adds a
further edge to G2 between nodes 1 and 5. Nodes in the adjacency matrix go from 1 to 6, nodes in graphs are numbered counter-clockwise, starting from
node 1 (labelled); added edge with a dashed line type.

Table 2
Behaviour of R(G), R∗(G) and R+(G).

G1 G2 G3

R(G) 25 21 12.7
R∗(G) 81 107.6 85.6
R+(G) 92 95.3 66.1

4.2. Discussion: Directed, weighted graphs

In the examples below we analyse three possible outcomes for the behaviour of S(G) when an edge is added with
progressively higher weight: S(G) is (i) monotonically increasing, (ii) conditional upon the weight of the new link or (iii)
monotonically decreasing. Fig. 2 depicts three strongly connected graphs G1, G2 and G3, one corresponding to each of the
cases (i)–(iii).

To grasp the behaviour of the relevant magnitudes of each example in some detail, Table 3 reports (for varying link
weights) S(G) and its components, according to (6), noting that it may be written as:

S(G) =
1

Vol(G)

n∑
i,j=1

H(i, j) =
n

Vol(G)

n∑
j=1

H̄(j), where H̄(j) = (1/n)
n∑

i=1

H(i, j)

i.e. H̄(j) is the average hitting time to reach node j, averaging over possible source nodes in the network.
In graphG1, nodes 1 and 3 are originally only connected through node 2, and setting up an edge from3 to 1 decreases S(G),

irrespective of the link weight w. In graph G2, adding a link from node 2 to 1 makes it possible to reach the latter without
necessarily passing by node 3. In this case, there is a switchover in the behaviour of S(G) (first decreases and then increases)
as w varies at some point between w = 0.5 and w = 1.5. Finally, an edge from node 1 to 3 is added in the cycle graph G3,
and S(G) increases, irrespective of the link weight w.

Thus, there is no unambiguous behaviour for the DW-Kirchhoff index S(G) when adding an edge or increasing the weight
of an existing link. In order to understand the determinants of this outcome, we focus on the general pattern of behaviour
of average hitting times H̄(j).

In all three graphs, the average hitting time of the source node in the new link remains unaltered (possible paths to
be reached as a target have not changed), whereas the average mean first passage time of the target node in the new link
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Fig. 2. Behaviour of S(G) for varying levels of an additional linkw ∈ [0, 1.5]. Graphs and adjacencymatrices of G1 , G2 and G3 . Nodes in the adjacencymatrix
go from 1 to 3, nodes in graphs are numbered counter-clockwise, starting from node 1 (labelled); added edge with a dashed line type.

Table 3
Behaviour of S(G).
(column #) [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Graph G1 G2 G3
New Link 3 → 1 2 → 1 1 → 3

Link Weight w 0.00 0.50 1.00 1.50 0.00 0.50 1.00 1.50 0.00 0.50 1.00 1.50
S(G) 4.00 3.13 2.70 2.40 3.13 2.72 2.70 2.75 3.00 3.50 4.00 4.50
Vol(G) 4.00 4.50 5.00 5.50 4.00 4.50 5.00 5.50 3.00 3.05 3.13 3.20∑

i,j H(i, j) 16.00 14.08 13.50 13.23 12.50 12.25 13.50 15.13 9.00 10.67 12.50 14.40
H̄(1) 2.33 1.58 1.33 1.21 2.33 1.58 1.33 1.21 1.00 1.00 1.00 1.00
H̄(2) 0.67 0.78 0.83 0.87 0.83 0.83 0.83 0.83 1.00 1.67 2.33 3.00
H̄(3) 2.33 2.33 2.33 2.33 1.00 1.67 2.33 3.00 1.00 0.89 0.83 0.80

decreases (possible paths to be reached increase). Interestingly, the average hitting time of the remaining node(s) increases.2
Hence, the uneven behaviour in H̄(j) determines the outcome observed: when the decrease in the target node is higher
than the increase in other nodes, the DW-Kirchhoff index decreases. Therefore, S(G) as formulated in (6) does not behave
monotonically when a new edge is added, hindering its use as a measure of network robustness for the case of directed
graphs.

4.3. Random walk on graphs and Kirchhoffian descriptors in the world trade network

A meaningful alternative interpretation of the DW-Kirchhoff index consists in considering the mean of H(i, j) from all
source nodes i to a given target node j – denoted above byH(j) – as providing a local measure of closeness centrality (labelled
random-walk centrality in [4]):

Crw(j) =
1

H(j)
conveying the notion of how immediately, on average, every node reaches node j.

Under this light, S(G)−1 can be interpreted as a measure of average closeness centrality across nodes:

S(G)−1
=

Vol(G)∑n
i,j=1 H(i, j)

=
Vol(G)
n2 ×

(
n∑n

j=1 Crw(j)−1

)
(21)

i.e. a harmonic average (up to a multiplicative term) of random walk centrality scores for each target node j.3

2 Examples involving networks with a higher number of nodes confirm this pattern.
3 Note that S(G)−1 is not a measure of harmonic centrality (see [15]), as our harmonic mean is based on Crw(j) scores, which are the reciprocal of node

distances H̄(j), i.e. the expected hitting times associated to each target node j.
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Interpreting S(G) as a globalmeasure of closeness centrality in a context of weighted, directed graphs become useful when
available indicators require to transform the original graph into an undirected network, discarding crucial information as
regards the direction of flows. One such example within the field of economic networks is the World Trade Network (WTN,
hereinafter) (see, e.g. [7, ch. 2]).

The WTN is the graph representation of the recorded set of trade transactions in goods and services between countries.
Nodes represent trading partners and the outgoing and incoming links stand for export and import flows, respectively. In
its original form, it can be interpreted as a weighted (by the flow value in USD), directed (asymmetric import/export links)
graph. However, applications usually transform original data to obtain either a binary and/or symmetric network, in order
to fit the indicators readily available [22,23].

Our aim is to show that, by recourse to our DW-Kirchhoff index S(G) it is possible to depict the evolution of global random
walk closeness centrality of the WTN more accurately than the picture portrayed by indicators computed on undirected
and/or unweighted data.

Moreover, the standard formulation of the concept of random walk centrality from an operational perspective (e.g. [4])
relies on the application of absorbing chain techniques [21, pp. 128–130] to compute hitting times. On the contrary, by
specifying S(G) in terms of elements of theMoore–Penrose inverse of the asymmetric Laplacian in (7), there is a reduction in
computer execution time: absorbing chain techniques are based on the iterative inversion of as many matrices as there are
nodes in the network. Instead, our approach allows to obtain all relevant magnitudes by computing only one (generalised)
inverse matrix for the whole network.

As an illustration, we depict the evolution of S(G) for theWTN throughout 1997–2015, comparing it to effective resistance
indices computed onundirected andunweightedWTN setups. Data comes from theOECDBilateral Trade by Industry and End
Use (BTDIxE) database.4 We considered a subset of 93 countries continuously present within the time-span analysed.5 The
transition probability matrices obtained from the WTN are irreducible, thus, our graphs are strongly connected. Moreover,
in order to allow for consistency in our temporal analysis, we rescaled weights by setting Vol(G) = 1 when dealing with
weighted networks (see [23]).6

Table 4 and Fig. 3 report the results. Columns [4]–[9] of Table 4 show the Kirchhoff-type descriptor and its reciprocal
for three different data setups: (i) weighted, directed; (ii) weighted, undirected and (iii) unweighted, undirected WTN. The
second graph on the right-hand side panel of Fig. 3 plots columns [5], [7] and [9], comparing random walk closeness
centrality across setups. Note from the table that the coefficient of variation (CV) of (the reciprocal of) our DW-Kirchhoff
index (column [5]) shows the highest relative variability, as is evinced from the graph. On the contrary, the CV associated
to the index for the unweighted/undirected case (column [9]) is only 0.023, i.e. the range of change in the index has been
only 1/10 of the change in 1/S(G).7 The weighted/undirected index, though evincing similar direction of change to that of
the DW-Kirchhoff index, has a comparatively reduced amplitude of fluctuations (its associated CV being only 40% that of
S(G)−1).

The importance of these differences in capturing the volatility in the structure of world trade becomes clear when
comparing average randomwalk (closeness) centrality to the dynamics ofworld GDP (column [2] in Table 4). The first graph
on the right-hand side panel of Fig. 3 depicts columns [2] and [5] of the table. It evinces how the build-up of increasingly
higher (average) closeness centrality up to the Great Recession of 2009was followed by a sharp decline, which only returned
(close) to its pre-crisis level in 2014. Thus, while an asset in good times, having a relatively low value of S(G) may render
the world economy more fragile on a trade cycle downswing because countries are, on average, faster to be reached. Such a
depiction could not have been portrayed with either the weighted/undirected or unweighted/undirected indices.8

Understandably, by taking into account all available information on inter-country flows (weight and direction), the DW-
Kirchhoff index captures demand weaknesses in some spots of the world economy that become blurred when trade flows
are rendered symmetric (by averaging import and export bilateral links) or binarised (by ignoring their relative importance).
Thus, as this empirical illustration shows, the DW-Kirchhoff index may have a meaningful interpretation as a synthetic
indicator of closeness centrality across nodes, within the context of random walks on graphs.

Differently from the DW-Kirchhoff index S(G) – which is intended to provide a synthetic global measure – the DW-
multiplicative Kirchhoff index S∗(G) may be used to uncover node-specific features. To see this, departing from (13), noting
that it is valid for any i (thus, also for their average), and recalling that Vol(G) = 1 in our WTN application, we write:

S∗(G) =

n∑
j=1

πjH(i, j) =

n∑
j=1

πj

(∑n
i=1 H(i, j)

n

)
=

n∑
j=1

πjH(j) =

n∑
j=1

H(j)
(1/πj)

(22)

4 Data can be accessed at: http://www.oecd.org/trade/bilateraltradeingoodsbyindustryandend-usecategory.htm.
The empirical exercise has been implemented using the R statistical programming environment. Data and source code for reproducibility purposes are

available from the authors upon request.
5 These 93 countries represent at least 93.7% of the volume of world trade in all years considered. The remaining countries have been gathered in a

residual ‘Rest of the World’ region.
6 Thus, our focus is on capturing changes in the structure of the trading network, separating these from the evolution of aggregate trade volumes.

Moreover, by normalising Vol(G) = 1 and keeping the number of nodes constant, S(G)−1 precisely corresponds to a global measure of random walk
(closeness) centrality.
7 Note that column [9] is plotted in a secondary y-axis, to visually inspect its evolution in the same plot. However, its range of change is comparatively

limited.
8 As can be confirmed by inspecting their almost uninterrupted upward trend or mild fluctuations.

http://www.oecd.org/trade/bilateraltradeingoodsbyindustryandend-usecategory.htm
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Table 4
World GDP growth, Trade Volumes and Kirchhoffian Descriptors (1997–2015).
[1] [2] [3] [4] [5] [6] [7] [8] [9]

Graph weights: Weighted Weighted Unweighted
Graph direction: Directed Undirected Undirected

Year gGDP Trade Vol. S(G) 1/S(G) S(G) 1/S(G) R(G) 1/R(G)
(in p.p.) (in 109 USD) (in 106) (in 10−8) (in 106) (in 10−8) (in 10−2)

1997 3.73 5363.9 26.72 3.74 28.31 3.53 102.33 0.977
1998 2.54 5347.3 22.93 4.36 26.48 3.78 100.78 0.992
1999 3.22 5614.7 27.51 3.64 29.37 3.40 101.11 0.989
2000 4.34 6398.1 31.51 3.17 32.05 3.12 99.04 1.010
2001 1.97 6178.7 29.51 3.39 32.23 3.10 98.92 1.011
2002 2.21 6438.3 30.17 3.31 32.69 3.06 98.56 1.015
2003 2.95 7526.0 27.30 3.66 33.76 2.96 98.14 1.019
2004 4.33 9176.3 25.85 3.87 33.30 3.00 98.02 1.020
2005 3.83 10406.0 25.09 3.99 31.87 3.14 97.64 1.024
2006 4.30 12019.2 24.38 4.10 31.78 3.15 96.72 1.034
2007 4.21 13815.0 22.10 4.52 30.63 3.26 96.23 1.039
2008 1.79 15922.7 22.28 4.49 33.04 3.03 95.79 1.044
2009 −1.72 12195.7 17.68 5.66 27.96 3.58 95.89 1.043
2010 4.30 15006.3 19.96 5.01 30.32 3.30 95.77 1.044
2011 3.16 17875.9 19.60 5.10 27.81 3.60 95.42 1.048
2012 2.45 18033.5 19.96 5.01 27.64 3.62 95.33 1.049
2013 2.59 18402.1 24.92 4.01 32.37 3.09 94.84 1.054
2014 2.83 18347.3 18.02 5.55 28.37 3.52 95.08 1.052
2015 2.77 16080.9 14.94 6.69 24.94 4.01 94.85 1.054

Descriptive Statistics
Min −1.72 5347.28 14.94 3.17 24.94 2.96 94.84 0.98
Max 4.34 18402.12 31.51 6.69 33.76 4.01 102.33 1.05
Mean 2.94 11586.73 23.71 4.38 30.26 3.33 97.39 1.03
STDev 1.41 4995.40 4.58 0.92 2.59 0.30 2.27 0.02
CV 0.480 0.431 0.193 0.211 0.086 0.089 0.023 0.023

Source: Authors’ computation based on OECD BTDIxE Database and UNSD National Accounts Database.

Inspecting (22), note that the DW-multiplicative Kirchhoff index can be recognised as an expression for Kemeny’s
constant [10]. More interestingly, it is the sum of individual node contributions. Each such contribution represents a ratio
between the average hitting timeH(j) and themean recurrence time 1/πj [21], i.e. how immediately reachable a target node
j is from all other source nodes, with respect to the time a random walker employs to depart from and return to node j.

Thus, within the WTN, a node contribution which is smaller than one (H(j) < 1/πj) indicates that the country is
immediately reachable from other nodes, on average, relatively faster than from itself, implying a lower aggregate indicator
S∗(G). On the contrary, a value greater than one (H(j) > 1/πj) indicates that a country has a relatively lower mean
recurrence time with respect to how immediately may be reached from other source nodes, implying a higher aggregate
descriptor. Intuitively, the faster a country is reachable from other partners rather than from itself conveys the idea of dense
interconnectedness amongst economies, and is reflected in a lower aggregate value of S∗(G). Therefore, the addenda of the
DW-multiplicative Kirchhoff index allow, for example, to build country rankings according to their individual contribution
and compare these through time.9

The preference of S(G) over S∗(G) as a global descriptor stems from the fact that each country’s contribution to S∗(G) is of
the same order of magnitude, so a single node may have a crucial influence on the resulting aggregate score. Moreover, the
range of variability of S∗(G) through time is bound to be limited when compared to S(G), as evinced by Fig. 4 and columns
[5]–[6] from Table 5: when measured as a ratio with respect to the average across years, S(G) depicts clear-cut yearly
changes, whereas deviations of S∗(G) from unity are negligible.

Finally, note that the decomposition of the DW-additive Kirchhoff index S+(G) in (19) has S(G) and S∗(G) as key
components. In the WTN application, for Vol(G) = 1, S(G)/n is of the order 1 × 105, whereas nS∗(G) and nπTMπ are each
of the order 1 × 103. Thus, the evolution of S(G) dominates over the other two additive components, and the correlation
between S+(G) and S(G) is almost 1,10 allowing us to focus on S(G) as the global indicator of interest in thisWTN application.

5. Concluding remarks

Wehave provided a generalisation of three Kirchhoff-type global indices – namely the Kirchhoff index, themultiplicative
and the additive Kirchhoff indices – for strongly connected, weighted digraphs. Following a probabilistic approach, we

9 Though an interesting avenue for further research, such an exploration would take us beyond the scope of the present paper, mostly focused on global
Kirchhoffian descriptors.
10 As may be corroborated by inspecting columns [5] and [7] of Table 5.
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Fig. 3. Application of Kirchhoffian descriptors to the analysis of the World Trade Network (1997–2015). Left-hand side panel: graph of a subset of the
network of international trade in goods for 2015 (the plot shows only the subset of links representing at least 0.05% of world trade each. Taken together
they cover 75% of total trade). Right-hand side panel: graphs depicting the evolution of 1/S(G) with respect to the growth rate of World GDP (above) and a
comparison between Kirchhoff indices in three different setups: weighted/directed, weighted/undirected and unweighted/undirected variants of theworld
trade network (below).
Source: Authors’ computation based on OECD Bilateral Trade by Industry and End Use Database (BTDIxE) and United Nations National Accounts Main
Aggregates Database.

Table 5
Comparison of Kirchhoffian descriptors, World Trade Network (1997–2015).
[1] [2] [3] [4] [5] [6] [7]

Original units Ratio with respect
to average

Year S(G) S∗(G) S+(G) S(G) S∗(G) S+(G)
(in 106) (in 104)

1997 26.72 93.95 29.61 1.13 1.0025 1.12
1998 22.93 93.84 25.54 0.97 1.0014 0.97
1999 27.51 93.77 30.46 1.16 1.0006 1.15
2000 31.51 93.74 34.77 1.33 1.0003 1.32
2001 29.51 93.70 32.62 1.24 0.9999 1.24
2002 30.17 93.70 33.32 1.27 0.9999 1.26
2003 27.30 93.74 30.24 1.15 1.0002 1.15
2004 25.85 93.74 28.68 1.09 1.0002 1.09
2005 25.09 93.75 27.85 1.06 1.0004 1.06
2006 24.38 93.74 27.09 1.03 1.0002 1.03
2007 22.10 93.80 24.64 0.93 1.0009 0.93
2008 22.28 93.77 24.84 0.94 1.0006 0.94
2009 17.68 93.67 19.89 0.75 0.9995 0.75
2010 19.96 93.66 22.34 0.84 0.9994 0.85
2011 19.60 93.67 21.95 0.83 0.9995 0.83
2012 19.96 93.60 22.34 0.84 0.9988 0.85
2013 24.92 93.62 27.67 1.05 0.9990 1.05
2014 18.02 93.58 20.26 0.76 0.9986 0.77
2015 14.94 93.54 16.94 0.63 0.9981 0.64

Descriptive Statistics
Mean 23.71 93.71 26.37 1.00 1.0000 1.00

Source: Authors’ computation based on OECD BTDIxE Database.
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Fig. 4. Ratio with respect to average across years: S(G) and S∗(G), World Trade Network (1997–2015).

specified the generalised indices in terms of hitting and commute times, elements of theMoore–Penrose inverses and trace-
cum-eigenvalues of alternative graph Laplacian matrices. We showed that, for the directed case, the Kirchhoff index can
no longer correspond to a robustness measure, suggesting an alternative interpretation. In fact, by means of an empirical
application to the World Trade Network, we showed how S(G), the generalised Kirchhoff-type descriptor introduced,
provided a useful tool to study closeness centrality within the framework of Random Walks on graphs. Complementarily,
within our empirical application, we compared the synthetic global indicator S(G) to a generalised multiplicative Kirchhoff
index S∗(G), which instead may be used to uncover node-specific features. We also noted, within this context, how the
evolution of the generalised additive Kirchhoff index S+(G) is crucially determined by the Kirchhoff-type descriptor S(G).

At least two avenues of further research could be pursued.
On the one hand, a deeper exploration into Kirchhoff-type descriptors for directed, weighted networks that evince a

monotonic behaviour when adding an edge (or increasing the weight of an existing link) is in place. Numerical examples
considered depict an interesting pattern: in the event of adding a new link, the average hitting time of the nodes to which
no new link was added increases. Formal exploration of this (and other) patterns for the case of weighted, directed graphs is
a challenging issue we expect to tackle in future work.

On the other hand, due to the continuously growing volume of empirical networks which are weighted and directed,
applications of these Kirchhoff-type descriptors may include economic networks of different sorts (e.g. inter-industry
production relations, firms’ ownership structures, banks’ financial balance sheets). If the analytical framework holds,
applications in these directions (and others) may suitably follow.
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