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Abstract
The early detection of handguns and knives from surveillance videos is crucial to enhance
people’s safety. Despite the increasing development of Deep Learning (DL) methods for
general object detection, weapon detection from surveillance videos still presents open chal-
lenges. Among these, the most significant are: (i) the very small size of the weapons with
respect to the camera field of view and (ii) the need of a real-time feedback, even when using
low-cost edge devices for computation. Complex and recently-developed DL architectures
could mitigate the former challenge but do not satisfy the latter one. To tackle such limitation,
the proposed work addresses the weapon-detection task from an edge perspective. A double-
step DL approach was developed and evaluated against other state-of-the-art methods on a
custom indoor surveillance dataset. The approach is based on a first Convolutional Neural
Network (CNN) for people detection which guides a second CNN to identify handguns and
knives. To evaluate the performance in a real-world indoor environment, the approach was
deployed on a NVIDIA Jetson Nano edge device which was connected to an IP camera. The
system achieved near real-time performance without relying on expensive hardware. The
results in terms of both COCOAverage Precision (AP = 79.30) and Frames per Second (FPS
= 5.10) on the low-power NVIDIA Jetson Nano pointed out the goodness of the proposed
approach compared with the others, encouraging the spread of automated video surveillance
systems affordable to everyone.

Keywords Video surveillance system · Deep learning · Indoor weapon detection · Edge
computing · Single board computer

1 Introduction

Crimes and violent activities involving handheld weapons are widespread across the world
and this is a significant problem for society. According to [33], handgun and knife-based
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violence results in the 76% of total homicides, worldwide. The great relevance of such
problem boosted the diffusion of Video Surveillance Systems (VSS), nowadays extensively
used in both public and private places (e.g., airports, hospitals, house, and offices). Early
detection of handheld guns and knives in VSSmay allow for a prompt intervention of security
officers, leading to a significant reduction of violent crimes and homicides. To date, such
systems mainly rely on human operators to monitor video streams 24 hours a day, 7 days
a week. This procedure, besides being time-consuming, poses issues including the cost of
personnel, which is often not affordable, and the level of operator attention, which inevitably
decreases as operator fatigue increases [5].

In recent years the field of automatic object detection has been extensively studied and
several approaches have been proposed in literature. With the increasing popularity of Deep
Learning (DL), automatic object detection approaches based on such paradigm progressively
replaced earlier approaches based on classical computer vision techniques (e.g., DPM [7],
Selective Search [32]), outperforming them in terms of both speed and reliability.

Despite the advances in the development of generic object detectors, weapon detection
in video surveillance still remains an open problem [9, 38]. Compared with generic object
detection, additional challenges arise that need to be addressed. The prominent one is the
small size of the objects to be detected [6]. In fact, when it comes to detecting weapons
from videos coming from a Closed-Circuit Television (CCTV), the size of the objects to
be localized is often very small with respect to the Field of View (FoV) of the camera. In
addition, the object of interest is usually several meters away from the spot where the camera
is placed, further decreasing its relative size compared to the FoV. In generic object detection
the small object issue can be partially mitigated with the use of increasingly powerful DL-
based architectures [22, 37, 40] coupled with higher input image resolution, as discussed in
[30]. On the downside, such architectures (i) must be trained on very large datasets to be
effective and (ii) need to be deployed on expensive computational resources to run inference,
which limits the applicability in the actual domain. As for (i), in the video-surveillance
field, the lack of real-world reference datasets for weapon detection hampers the possibility
of developing and applying burdensome detection architectures [38]. In order to enhance
localization of small weapons and to overcome the data-lack issue, more robust solutions
could be used based on video object segmentation techniques designed to require a weaker
form of supervision [13, 39]; but the high complexity of such solutions would again lead
to (ii). Given this, to enable the widespread deployment of automatic VSS while keeping
costs affordable to everyone, there is an emerging need to develop approaches for weapon
detection that can be executed with low-cost and computationally limited hardware.

Another major challenge in the detection of handheld weapons in video surveillance
regards the efficiency. Object detectors in automatic VSS should be able to process data in
near real-time, quantifiable in the range of 3-5 Frames per Second (FPS), considering the
application needs [2]. This would guarantee a prompt response (e.g., alarms or communica-
tion with the competent authorities) in the event of affirmative detection.

In this perspective, a solution based on the edge computing paradigm, employing low-
cost devices for the network-deployment phase, would allow to lower costs and mitigate
privacy issues related to non-local data processing (e.g., cloud-based solutions). Moreover,
an edge-computing solution would also enhance efficiency by reducing latency [1, 14].

Summing up the challenges and requirements in this still relatively unexplored research
field, there is the need to find an effective yet efficient approach for small handheld weapons
detection in CCTV under resource-constrained settings.

Driven by these considerations, this work presents a DL-based approach oriented to the
edge computing paradigm for handgun and knife detection from indoor surveillance videos.
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In comparison with the state of the art, the innovative contribution of the work is the proposal
of an approach robust to the small-object size challenge yet deployable on edge devices
with limited computing capacity – and consequently costs. The approach leverages a first
CNN to obtain a prior detection of the people in the frame, and a second CNN to perform a
subsequent detection of the potential handgun or knife within each person’s bounding box.
The edge device to deploy the proposed approach is the NVIDIA® Jetson Nano, a low-cost
hardware platform oriented to DL [4]. For the intended purposes, a custom real-world indoor
dataset consisting of 2425 annotated frames from 52 videos was collected. The dataset was
obtained from recordings of a CCTV camera placed within a building’s rooms.

The rest of the paper is organized as it follows. Section 2 reviews existing works in weapon
detection from CCTV cameras, with a particular focus on handheld weapons. Section 3
describes the dataset and the data acquisition phase, the implemented approach as well as
the experimental setup that was used and the deployment on the edge. Section 5 shows the
experiments carried out and the results obtained. Section 6 presents the discussion of results.
Finally, Section 7 concludes the paper alongwith considerations on future work. For enabling
fair comparisons we made our codes available at GitHub1.

2 Related work

Despite the popularity of generic object detection, research effort in automatic handguns and
knives detection from surveillance videos is quite limited, especially in on-the-edge settings
with Single Board Computers (SBCs). Among the seminal works in this field, the authors in
[10] present an approach for firearms and knives detection fromCCTV images based on visual
descriptors and Machine Learning (ML). In particular, knife detection algorithm relies on
sliding window technique followed by MPEG-7 based feature extraction and Support Vector
Machine (SVM) for classification. Firearm detection also involves an image pre-processing
step using background subtraction and Canny edge detection algorithms, in addition to slid-
ing window and a classification based on MPEG-7 region shape descriptor. Both detection
algorithms are evaluated on a custom-built dataset. Despite the valuable contribution, the use
of sliding window approach and other time-consuming techniques limits the applicability in
a real-world scenario.

In recent years, the increasing popularity of DL prompted the diffusion of new general-
purpose architectures for object detection.Among the state-of-the-art object detectors someof
the most widely used architectures are Faster R-CNN, based on a two stage detection process
(i.e., a first region proposal stage followed by the object localization and classification), and
one-stage object detectors (i.e., direct object localization and classification) like the YouOnly
Look Once (YOLO) family [25–27] and Single Shot multibox Detector (SSD) [19].

Following this trend, more recent works in the field of handguns and knives detection from
surveillance videos focused on exploiting such general-purpose detection architectures.

In [34] a handheld gun detection approach based onDL is proposed. The authors exploited
a Faster R-CNN with a VGG16 backbone and compared its performance against several
ML methods on the Internet Movie Firearms Database (IMFDB), proving its superiority.
Similarly, the authors in [20] compared a sliding window and a region proposal approach
both based on a VGG16 Convolutional Neural Network (CNN) classifier, with the latter
outperforming the former in terms of speed and detection accuracy on a custom-built dataset.

1 https://github.com/daniebera/on-the-edge-weapon-detection
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These works have the merits of having highlighted the validity of DL over standard ML
methodologies in video surveillance field.However, the datasets they use are not too represen-
tative of a real-world scenario. Indeed they are mainly made up of static images not acquired
by CCTV and firearms are often the biggest and the only object in the foreground. These
properties simplifies excessively the problem, invalidating the obtained results. Moreover,
results obtained in [20] on test videos show a high number of false negatives (i.e., missed
detections).

While the previous work focused exclusively on the detection of guns, the authors in [8]
addressed the detection of both guns and knives. To this end, a Faster R-CNN was trained
on a custom-built dataset obtained by collecting data from various sources, including part of
the dataset in [20] for guns and COCO2 images for knives. Both GoogleNet and SqueezeNet
CNNs were tested as backbones for the Faster R-CNN. While the latter obtained results
comparable with [20] for gun detection, it performed poorly on knives. On the other hand, the
GoogleNet-based architecture outperformed the others in knives detection, even though with
relatively low detection performances. In addition to the same issues on the data composition
as the previous works, the proposed solution needs two distinct architectures to be effective
both for handguns and knives, limiting the applicability in resource-constrained settings.

In the last few years research effort in general-purpose object detection also focused on the
development of DL modules to be added on top of CNN architectures to improve detection
performances. To this end, one of the most popular components is Feature Pyramid Network
(FPN) [17], which combines high and low-resolution features among different CNN layers,
improving the detection at different scales. Following the improvements over the existing
state-of-the-art, more recent works in handguns and knives detection from CCTV adopted
DL architectures with the integration of such components to tackle the issues related to
small object sizes [9, 16]. Authors in [16] proposed an approach for handgun detection
from CCTV based on a single stage object detector which integrates a multi-level FPN
to enhance localization ability. The approach was tested on a custom dataset containing
5500 images with handguns extracted from CCTV videos. In [9] a Faster R-CNN with a
FPN was exploited to perform gun detection on CCTV images. The training was performed
on several combinations of non-CCTV data from [20], custom CCTV data and synthetic
data. The evaluation on CCTV data highlighted that while the addition of synthetic training
data slightly improved the results, the addition of non-CCTV data even decreased detection
performances on small objects.

Although both works use components on top of the detection architectures to improve
performances on their respective CCTV datasets, the results obtained in terms of weapon
detection and inference speed do not allow to translate their approaches into the real-world
domain. This is clearly expressed by the authors themselves in the conclusions of [9].

With an eye towards focusing on computationally undemanding detection architectures,
the authors in [21] present a comparative analysis of the one-stage detectors YOLOv5 and
YOLOv7 [36] on a custom dataset of people, handguns, rifles and knives, with images
from Google Open Images Dataset, Roboflow Public Dataset and local sources. YOLOv5
outperformed YOLOv7, but the overall results were rather poor, hindering the real-world
implementation of the approach. Moreover, as demonstrated by the image samples shown in
the paper, the dataset does not mirror a real-world domain. Table 1 summarizes the state of
the art approaches with their methodological details and limitations.

To take a first step towards the resolution of the still open issues in the field of automatic
video surveillance, this work proposes an on-the-edge approach relying on a prior focus on

2 https://cocodataset.org/
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Table 1 Summary of the state-of-the-art approaches in weapon detection

Work Method Dataset Limitations

Grega et al., 2016 Sliding Window +
MPEG-7 + SVM,

custom, burdensome for edge
devices,

handgun and knife
classification

CCTV, not real-time

released w/o box-level
annotations

Verma et al., 2017 VGG16 Faster
RCNN,

IMDB, unrealistic dataset,

handgun detection non-CCTV, suffers from small
objects,

public burdensome for edge
devices

Olmos et al., 2018 VGG16-based region
proposal approach,

custom, unrealistic dataset,

handgun detection non-CCTV, suffers from small
objects,

released burdensome for edge
devices

Fernandez-Carrobles
et al., 2019

SqueezeNet Faster
RCNN,

custom/COCO/Olmos
et al., 2018

unrealistic dataset,

gun and knife
detection

non-CCTV, low knife-detection
performance

not released

Lim et al., 2019 Multi-Level
FPN-based
single-stage
detector,

custom, burdensome for edge
devices

handgun detection CCTV,

not released

González et al., 2020 ResNet50 Faster
RCNN with FPN,

custom, burdensome for edge
device,

handgun detection Synthetic/CCTV/non-
CCTV,

low speed for
real-time domain

released

Olorunshola et al.,
2023

YOLOv5, custom/Google Open
Images,

unrealistic dataset,

person, handgun, rifle
and knife detection

non-CCTV suffers from small
objects

not released

the people for handgun and knives detection from CCTV video. The approach was trained
and evaluated on a custom fully-CCTVdataset, built with appropriate expedients to overcome
the limits highlighted in the state-of-the-art in terms of dataset composition. To the best of the
authors’ knowledge, this is the first approach for on-the-edge handgun and knives detection
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to be executed on a SBC while maintaining high detection performances on CCTV data.
Figure 1 shows the workflow of the proposed approach.

Fig. 1 (a) Workflow of the proposed approach for indoor handgun and knife detection. After proper dataset
preparation (described in Section 4.1) the weapon detector was trained using the output of the people detector
(as detailed in Section 3.2) and the mean average precision performance was computed on the test set. Both
convolutional neural networks were quantized in half-precision (i.e., FP16 quantization) and deployed in the
NVIDIA Jetson Nano (as in Section 3.3) for real-time processing of the IP camera video stream. The details
on the convolutional structure of (b) the people detector and (c) the weapon detector are shown, too
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3 Materials andmethods

3.1 Data acquisition

The CCTV dataset to train the DL algorithm for dangerous object detection was collected
using a Dahua® 4MP Bullet Network Camera, a commercial Internet Protocol (IP) camera
connected to a LAN with Power over Ethernet connection. An IP camera was chosen to have
a good compromise between cost, performance, and quality in terms of image resolution and
compression technology. The camera was mounted in a top corner of a nearly empty room
to acquire video sequences in which a variable number of subjects were left free to move,
with one of them holding a weapon (i.e., a knife or a handgun).

The acquisition sessions were carried out using a custom-built Python script, collecting a
total of 52 video sequences of 30s each. The camera frame rate was set to 10 FPS at the default
resolution of 1280×720 pixels, resulting in a total of 300 frames for each video sequence.
Across the 52 collected video sequences, 19 different subjects appear holding a handgun or
a knife. In addition, the same subject appearing in multiple videos uses different clothing.
The average number of people per video is 2.88, with standard deviation of 1.05.

The dataset was gathered to simulate an indoor real-world application domain, so to
overcome the limitations found in the datasets used in [20, 34]. Some of the proposed dataset
challenges are shown in Fig. 2.

The major one is the very small size of the objects to be localized compared to the whole
image (i.e., ∼0.1% of the image area, computed on the average ground-truth boxes areas),
due to the distance of the people from the camera. A challenge related to the previous one

Fig. 2 Sample of frames from the dataset extracted from a recording are shown to highlight the related
challenges (e.g., multiple people, different dangerous and non-dangerous objects, distance from camera). For
visualization purposes only, the hand-held guns and knives have been pointed out in red
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is the poor contrast of the objects with respect to the background. Other challenges includes
the presence of multiple people possibly holding non-dangerous objects (e.g., smartphone
as in Fig. 2b), the different person’s poses (e.g., sitting or standing as in Fig. 2a and c) and
orientation (e.g., Fig. 2b with respect to Fig. 2a), the motion blur of the frames extracted from
video sequences and the variability both in terms of subjects and intra-class objects (i.e., the
use of different objects belonging to the same class).

3.2 Double-step deep-learning approach

The proposed approach is based on the observation that the weapon must necessarily be
carried by a human subject to be dangerous. Thus, a double-step detection is proposed,
with a prior detection of the people within each frame and a subsequent detection of the
potential handgun or knife within each person’s bounding box. Each step relies on a specific
DL architecture with the aim of maximizing the speed-accuracy trade-off. The architectural
choices also take into account the SBC hardware constraints in terms of memory footprint,
as this is a primary concern when dealing with edge devices.

To carry out the prior people’s detection, the SSDMobileNetV2network [19, 29]was used,
since it represents a good compromise between computational speed and people detection
accuracy. Although its detection performance on the COCO dataset is lower than other
architectures [29], it achieves nearly-optimal results when the performance evaluation is
restricted on the person category, as shown in [23]. The SSD meta-architecture was chosen
since it performs object localization by adopting a single-stage approach as opposed to other
two-stage architectures which enhances accuracy to the detriment of speed (e.g., [28]). This
allowed to reduce inference time.

MobileNetV2was adopted as backbone for features extraction to further increase the speed
of the SSD. MobileNetV2 is a lightweight CNN with a 3×3 convolutional layer followed by
19 inverted residual blocks [29], made up of three 1×1, 3×3, 1×1 convolutions interleaved
with batch normalization and ReLU6 activation function, with a residual connection [12]
between the 1×1 layers. The peculiar blocks’ structure reduces the number of network
parameters, thus increasing inference speed. The SSD meta-architecture stacks on top of the
MobileNetV2 six output convolutional blocks, obtaining six different scales of detection for
each input image.

An intermediate processing on each person’s bounding box within the frame was per-
formed before theweapon detection step. In particular, with the aim of preserving the objects’
aspect ratio, a square crop from the original image was computed, according to both the cen-
ter and the maximum side (between width and height) of each person’s bounding box. Each
crop was then fed to the subsequent step, resizing it according to the needs.

Once the prior information on each person’s location within the frame was obtained,
the subsequent step performed the detection of potential weapons carried by a subject. The
YOLOv4-Cross-Stage-Partial (CSP) network [35] was implemented for handgun and knife
detection due to its ability in detecting objects with respect to other state-of-the-art detectors,
while attaining a good inference speed in resource-constrained hardware. Such results are
highlighted by the comparison in both [3] and [29] on the COCO dataset. The YOLOv4-CSP
was designed starting from the YOLOv4 network, originally introduced in [3]. As regards
the backbone, the YOLOv4-CSP exploits the existing CSPDarknet53 (i.e., a Darknet53 with
CSP stages each made up of 1,2,8,8,4 residual layer, respectively) and converts only the first
CSP stage into an original Darknet residual layer for efficiency purposes. Instead, as regards
the neck, it introduces CSP connections in the Path Aggregation Network architecture of
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the YOLOv4 by transforming the original reversed darknet layers of YOLOv4 in reversed
CSP darknet layers, maintaining the Spatial Pyramid Pooling module. As output layers, in
its original configuration YOLOv4-CSP has three 1 × 1 convolutions with 255 filters each,
so as to obtain detection at three different scales. As a result, the YOLOv4-CSP obtained
a substantial gain in terms of trade-off between speed and accuracy, making it suitable for
challenging detection tasks in resource-constrained settings.

To accomplish the detection on two classes (i.e., knife, gun), each of the three original
output layer of the YOLOv4-CSPwas replaced with a 1×1 convolution having 3×(2+5) =
21 filters. In this way, each output layer provides a n×n×21 map in which each of the n×n
spatial locations encodes the information (i.e., coordinates, class scores and probability of
containing an object or objectness score) of 3 candidate bounding boxes, so that 3 candidate
bounding boxes × (2 class scores + 4 bounding box coordinates + 1 objectness score) = 21.
The final selection of the most promising bounding boxes among candidates was performed
according to the non-maximum suppression algorithm.

3.3 On-the-edge deployment

The SBC to deploy the DL framework was the NVIDIA® Jetson Nano Developer Kit3.
The Jetson Nano allows to run low power Artificial Intelligence (AI) applications and has
higher computational capabilities with respect to its competitors thanks to its 4 GB RAM,
4-coresARMA57CPUand on-boardGPUwith 128CUDAcores based on aMaxwellmicro-
architecture. To enhance the inference speed of the proposed approach, NVIDIA® TensorRT4

(TRT) was used. TRT is a framework that helps to optimize DL models and converts each
model in a serialized engine to be next used for higher performance inference on NVIDIA®

GPUs.
The MobileNetV2 model was converted in a pretty straightforward way from Tensorflow

to the Universal File Format (UFF) for TRT-compatibility and from UFF to an optimized
TRT engine. Instead, the YOLOv4-CSP model was converted from Keras to Open Neural
Network Exchange (ONNX), an open format to represent AImodels and to enable framework
interoperability. Then, a TRT engine was created from the ONNX-like model. Since an
internal default parameter of a Keras layer (i.e., upsampling) caused incompatibility issues
with TRT, the Keras model structure was re-implemented with a custom layer. Moreover,
two custom plugins in TRT were used to allow post processing of the model predictions and
to apply Non-maximum Suppression algorithm, otherwise not supported in TRT engine.

Among the optimizations applied, both the DL models were post-training quantized to
FP16, meaning that the models’ constants (e.g., weights and bias) were converted from
full precision (32-bit) to reduced precision (16-bit) floating point data type. The models
quantization allowed to halve the model size, further improving the inference speed on the
Jetson Nano.

Once the TRT engines were obtained, a pipeline was implemented to acquire frames from
the IP camera and to process them first with the SSD Mobilenetv2 and then (potentially)
with the YOLOv4-CSP. To carry out the data exchange between the IP camera and the Jetson
Nano, a camera handler was implemented. Using camera-specific parameters (e.g., camera
url, compression decoding standard to use, ...) the camera handler opens a video stream
via Real Time Streaming Protocol (RTSP) and starts to receive video data as consecutive
frames, which are then forwarded to the DL algorithms for processing. The people detector

3 https://developer.nvidia.com/embedded/jetson-nano-developer-kit
4 https://developer.nvidia.com/tensorrt
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and the weapon detector were implemented as distinct processes that communicate via the
TransmissionControl Protocol (TPC), enabling them, in principle, to be physically decoupled
(i.e., in an edge computing architecture with multiple nodes each process can communicate
with the others independently from its physical location). The entire pipeline was designed
to be suitable even in multi-camera settings via the opening of multiple camera-to-device
RTSP video streams.

4 Experimental protocol

4.1 Dataset preparation

The acquired data were processed to create the dataset to train DL algorithms. To this goal,
each video was trimmed, after manually checking the actual start and end of the individ-
ual acquisition session (i.e., when the person with the dangerous object in hand started and
stopped walking). For each video sequence, in order to increase differences between con-
secutive video frames, the obtained frames were sampled at the rate of 1 every 4, obtaining
a total of 2425 frames. Then, each frame was manually labeled using LabelMe5, a publicly
available annotation tool. Each annotation was performed by drawing a bounding box to
tightly enclose the weapon and by assigning it to the correct object class, either knife or gun.
Table 2 summarizes main information on the dataset, including number of frames and videos
for each class (i.e., knife and gun classes).

During the inference, in the second step of the proposed approach, the YOLOv4-CSP
for handguns and knives detection takes as input a square crop centered on each person’s
location instead of the original frame. Thus, the dataset was further processed to enable a
faster training of the algorithm. A new dataset was constructed by square cropping on the
original frame (having a resolution of 1280×720 pixels) the detected person holding the
weapon. Each crop was then resized to 416×416 pixels (i.e., the network’s input size) and
the ground-truth bounding box coordinates were adjusted accordingly, to obtain the dataset
used in training phase.

Table 3 summarizes the splitting strategy. The split was explicitly performed at video level
(i.e., without mixing frames extracted from the same video across train, validation and test
set) to attenuate possible bias. As a result of this strategy, the 78.3%, 8.3% and 13.4% of the
available frames were used for training, validation and testing, respectively.

To improve DL algorithms’ generalization capabilities, online data augmentation strate-
gies were implemented on the training dataset. The applied data-augmentation transforma-
tions were: the change in brightness level as to simulate a scenario where artificial and natural
lighting might change throughout the day, and the horizontal flipping to switch the weapon
grip.

4.2 Training settings

The SSD MobileNetV2 was implemented using Tensorflow. The available weights obtained
with the pre-training of the model on the COCO dataset were exploited for inference. The
YOLOv4-CSP network was implemented and trained in Keras, a Python library running on

5 https://github.com/wkentaro/labelme
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Table 2 Number of annotated
frames (i.e., prior
data-augmentation application)
and number of video sequences
related to each class of interest

N. of frames N. of videos

knife 1118 22

gun 1307 30

total 2425 52

top of TensorFlow. To train the YOLOv4-CSP the fine tuning methodology was applied.
Starting from the pre-trainedweights onCOCOdataset, themodelwas trainedwith stochastic
gradient descent (SGD) for 300 epochs using an initial learning rate of 0.001 and a batch
size of 16. The learning rate reduction on plateau policy was applied with a reduction factor
of 0.5 after 10 epochs with no improvements on the validation loss. Early stopping was also
applied, with training termination after 75 epochs with no improvements on the validation
loss. The optimal combination of batch size, optimizer and initial learning ratewas found after
the tuning of each hyper-parameter through manual search. The best weights configuration
among epochs was retrieved according to the lowest loss value achieved on the validation
set. The training was performed on a GPU NVIDIA® GeForce RTXTM 3090.

4.3 Ablation study and comparison with other architectures

Table 4 outlines the ablation studies conducted, including theDLmodels used in each step and
the name of each approach evaluated. As a first ablation study, the use of SSDMobilenetv2 in
both steps of the proposed approach was investigated (i.e., SSD-MobilenetV22), to evaluate
the impact on the detection performances. Since the work aims at developing an approach
to maximize the speed-accuracy trade-off, also the use of YOLOv4-CSP in both steps was
investigated (i.e., YOLOv4-CSP2), mainly to evaluate its influence on the inference speed.

The proposed double-step approach for handguns and knives detection was compared also
with the state-of-the-art methods in [9, 20] developed for weapons detection task, as well as
with other popular object detectors.

Moreover, to point out the impact of using different image input sizes on detection per-
formances, further comparison with state-of-the-art detectors with varying input sizes was
performed. The rationale for such comparison lies on the fact that in general-purpose object
detection the size of the input image can affect the performance. As a matter of fact, bigger
input sizes often leads to more accurate but slower detection while smaller input sizes leads
to faster but less accurate detection [31].

For a fair comparison, all the approaches were investigated using the same data splitting
and were trained on the same computational hardware.

Table 3 Number of video
sequences related to train,
validation and test datasets for
each class

Train Validation Test

knife videos (frames) 17 (870) 2 (98) 3 (150)

gun videos (frames) 24 (1030) 2 (103) 4 (174)

total videos (frames) 41 (1900) 4 (201) 7 (324)

In round brackets is given the number of total frames in each set for each
class, obtained by summing the number of labeled frames of each video
belonging to the set considered
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Table 4 Proposed ablation study

Name of the architecture First-step Second-step

SSD-MobilenetV22 SSD-MobilenetV2 SSD-MobilenetV2

YOLOv4-CSP2 YOLOv4-CSP YOLOv4-CSP

Proposed SSD-MobilenetV2 YOLOv4-CSP

4.4 Performancemetrics

To validate the proposed approach and compare it against the other state-of-the-art
approaches, embracing the main literature in the field [3, 19], the detection performance
was assessed using the standard COCO detection metrics as follows:

• Average Precision (AP) as primary metric computed as the average AP over the knife
and gun classes and over 10 Intersection over Union (IoU) thresholds from 0.50 to 0.95
with a step size of 0.05 (0.50:0.95);

• AP50 as the AP computed at IoU 0.50, corresponding to the primary PASCAL VOC6

metric;
• AP75 as a strict metric computed as the AP at IoU 0.75;
• APs and APm as the AP at IoU 0.50:0.95 for small (where object area < 322 pixels)
and medium (where 322 < object area < 962 pixels) objects, respectively. The APl for
large objects was not included since the weapons’ related bounding-box area is always
smaller than 962 pixels in the collected dataset.

To further evaluate the presented approaches, efficiency metrics were also computed.
Specifically, (i) floating point operations (GFLOPs) were computed when comparing the
proposed approach with the others in the state of the art and (ii) inference speed on the Jetson
Nano board (FPSnano) in terms of FPS was computed for the ablation studies. Following the
literature in closer fields [3, 15, 18, 24], both GFLOPs and FPS were plotted against AP.
Additionally, to assess if significant differences exist among the approaches in the ablation
studies, the one-way ANOVA (significance level = 0.05) with post hoc test was conducted.
The considered population for each approach was the set of APs computed individually for
each video in the test set.

5 Results

Table 5 summarizes the performance comparison in terms of AP, APm, APs, AP50, AP75
and FPSnano of the approaches in the ablation study.

The proposed approach achieved the highest results in all the COCO metrics, with an AP
= 79.30 averaged over all classes, as well as an AP50 = 99.60, which represents the PASCAL
VOC traditional metric computed at a single IoU of 0.50. The YOLOv4-CSP2 approach
obtained the same results of the proposed one for all the COCO metrics, while it achieved
the worst results in terms of inference speed (FPSnano = 2.80) on the Jetson Nano board. In
contrast, with the use of the SSD-MobilenetV22 approach the inference speed reached the
highest value (FPSnano = 13.60), but the AP dropped significantly (AP = 21.20 with 58.10
points drops), along with all the other COCO metrics. In particular, the SSD-MobilenetV22

6 http://host.robots.ox.ac.uk/pascal/VOC/
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Table 5 COCO standard evaluationmetric and inference speed comparisons for the ablation study. Best results
are in bold

Ablations AP APm APs AP50 AP75 FPSnano

SSD-MobilenetV22 21.20 26.50 19.40 56.80 8.90 13.60

YOLOv4-CSP2 79.30 50.10 49.30 99.60 93.90 2.80

Proposed 79.30 50.10 49.30 99.60 93.90 5.10

approach resulted in very low performancewhen computed at IoU of 0.75 (AP75 = 8.90) with
a drop of 85.00 points with respect to the proposed approach. Significant differences were
found (p-value < 0.05) between the approaches in the ablation studies. The speed-accuracy
trade-off of the proposed approach with respect to the ablations is shown in Fig. 3.

When compared with the other state-of-the-art single-step approaches, the proposed one
obtained by far the best performances for all the COCOmetrics (shown in Table 6).Moreover,
the proposed approach required GFLOPs = 26.35, achieving the best results in terms of trade-
off between complexity and detection performance (as pointed out in Fig. 4).

The approach in [20] (i.e., Faster-RCNN-VGG16640×640) achieved low values for all the
metrics, and particularly for AP, APs and AP75, with 10.40, 6.70 and 3.10, respectively. The
same holds for the approach in [21], with AP = 10.10, AP50 = 23.30 and AP75 = 7.80. The
approach in [9] (i.e., Faster-RCNN-ResNet50-FPN1280×720) required the highest GFLOPs
(i.e., 223.68), while obtained the nearest performance to the proposed approach with AP =
30.50, AP50 = 67.60 and AP75 = 20.80, yet showing consistent degradation in performance
when the IoU threshold increases from 0.50 to 0.75. Moreover, decreasing the input size on
the same architecture led to a significant reduction of all the metrics (AP = 15.80 and AP

Fig. 3 Comparison of the speed-accuracy trade-off in terms of frame per second on the Jetson Nano (FPSnano)
and Average Precision (AP) for the ablation study
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Table 6 COCO standard evaluation metric for comparisons between the proposed approach and other state-
of-the-art architectures. Best results are in bold

Compared Approaches AP APm APs AP50 AP75 GFLOPs

Faster-RCNN-VGG16640x640 [20] 10.40 14.50 6.70 28.20 3.10 138.12

Faster-RCNN-ResNet50-FPN1280x720 [9] 30.50 34.70 27.50 67.60 20.80 223.68

Faster-RCNN-ResNet50-FPN640x640 15.80 21.20 10.20 39.50 8.80 99.64

Faster-RCNN-ResNet50-FPN416x416 7.00 9.60 4.50 19.50 1.40 44.56

SSD-MobilenetV2416x416 9.80 17.50 2.90 26.40 5.10 1.18

YOLOv4-CSP416x416 9.00 11.50 1.10 32.00 1.90 25.17

YOLOv5416x416 [21] 10.10 17.20 3.60 23.30 7.80 47.90

Proposed 79.30 50.10 49.30 99.60 93.90 26.35

= 7.00 for Faster-RCNN-ResNet50-FPN640×640 and Faster-RCNN-ResNet50-FPN416×416,
respectively)

In particular, when evaluating the approach in [9] using the same input size as the proposed
approach (i.e., 416×416 pixels), the worst results were obtained in terms of AP, APm, AP50
and AP75 with values 7.00, 9.60, 19.50 and 1.40, respectively.

Both the architectures SSD-MobilenetV2 and YOLOv4-CSP in single-step settings (i.e.,
trained to directly detect the weapons from the original frames) obtained very low perfor-
mance, with the worst value on small objects achieved by YOLOv4-CSP (APs = 1.10). On

Fig. 4 Comparison of the complexity-accuracy trade-off in terms of floating point operations (GFLOPs) and
Average Precision (AP) for the comparison against the state-of-the art approaches. The yellow values in the
chart indicate the image input sizes for the Faster-RCNN-ResNet50-FPN architecture. The proposed approach
outperforms the state-of-the-art weapon detectors while having fewer GFLOPs
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the other hand, the SSD-MobilenetV2 required the smallest amount of GFLOPs (i.e., 1.18),
pointing out the lightweight design of the model.

Qualitative results of the proposed approach are shown in Fig. 5. The samples include
weapons from both classes (i.e., knife in Fig. 5a and gun in Fig. 5b and c).

Fig. 5 Samples of qualitative results. For the sake of clarity, each object detected has been zoomed in to point
out both the predicted bounding box and the related classification score. Predicted gun and knife bounding
boxes are highlighted in blue and red, respectively
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6 Discussion

Automatic handheld weapon detection from CCTV plays a crucial role in preventing crimes
and enabling a prompt response by law enforcement agencies. Despite its relevance, the
survey of the literature highlighted the lack of effective yet efficient approaches in coping
the open challenges in the field such as handling small-object sizes and achieving real-
time responses [9] especially in on-the-edge settings. As a first step to solve such issues,
the presented work addressed the challenging task of the on-the-edge indoor detection of
handguns and knives while keeping near real-time performance.

The proposed double-step approach achieved satisfactory detection results with AP and
AP50 equal to 79.30 and 99.60, respectively. The choice of YOLOv4-CSP as weapons
detector in the second step allowed to obtain accurate detection with good localization capa-
bility, with marginal differences in AP for small and medium-sized objects. The impact of
the YOLOv4-CSP as second-step detector is visible from the comparison with the SSD-
MobilenetV22 approach. In the latter, the SSD-MobilenetV2 detector used in the second step
was unable to achieve good localization at higher IoU and also suffered on small weapons
detection (APs = 19.40), meaning that the feature extracted from the person’s crop were
not strong enough to localize challenging objects (e.g., very thin objects, objects with low
background contrast). On the other hand, the SSD-MobilenetV22 approach achieved the
best inference speed thanks to the higher lightness of the SSD-MobilenetV2 with respect
to YOLOv4-CSP. Neverthless, the proposed approach still achieved the best speed/accuracy
trade-off among the approaches in the ablation study. Its accuracy is also evidenced by the
qualitative results, with high confidence in localizing and predicting each correct weapon
class. Also, in extremely challenging scenarios (i.e., in Fig. 5c, the vaguely visible gun on
the right side) the proposed approach localized the weapon, even if with lower confidence
compared to other detections. The low confidence in such situations could be attributed to
the detection hardness resulting from the low weapon/background contrast. In comparison
with YOLOv4-CSP2, while there is no difference in AP due to the simplicity of the people
detection task for both YOLOv4-CSP and SSD-MobilenetV2 models (i.e., in the first step
all the people were correctly identified in the frames), the speedup in the proposed approach
is given by the use of the lighter model in the first step.

When compared with the state-of-the-art approaches, the proposed one achieved the high-
est performance. The low performances of [20] could be related to the hardness in the
localization of handheld weapons whose size is very small compared to the frame size.
In support of such a consideration, the worst metrics of [20] were the APs and the AP75. As
regards [9], despite the addition of the FPNmodule slightly increased the detection ability on
the small objects, the low performance pairedwith the highGFLOPs does not allow the use of
the approach in the actual on-the-edge practice. Furthermore, reducing the input size makes
the achieved result even worse. The state-of-the-art detectors (i.e., SSD-MobilenetV2 and
YOLOv4-CSP) were evaluated at the same input size of the proposed approach and despite
the small GFLOPs values highlight the small complexity of the approaches, they obtained
very low performance. The poor results may be attributed to the small-sized weapons in the
images, which almost disappear when the original frame size (i.e., 1280×720) is resized to
match the detectors’ input size (i.e., 416×416). In the proposed approach, thanks to the prior
focus on the people, the size of the weapon with respect to the camera FoV does not affects
the detection performances so heavily.

A limitation of the proposed approach lies in the dependence of its speed on the number
of people in the FoV at the same time (i.e., the second step of the approach process an

123



Multimedia Tools and Applications (2024) 83:19109–19127 19125

image for each detected person), which ensure near real-time performance in non-crowded
environments (e.g., home surveillance systems).

7 Conclusions

To the best of the authors’ knowledge, this work proposes for among the first time in literature
a DL-based approach for handgun and knife detection deployable on low-cost SBC devices.
The proposed approach obtained satisfactory results in terms of effectiveness in localizing
and recognising the weapons in indoor scenarios while achieving near real-time inference
speed.

This moves toward the proposal of automatic VSSs both (i) reliable, which would enable
their exploitation even without the need for continuous support from human operators, and
(ii) able to give real-time responses even with the use of affordable and low-cost computing
devices as to promote large-scale distribution, thereby increasing the safety and well-being
of people.

Future improvement of the work deals with: (i) the collection of a similar dataset in
outdoor scenarios and the testing of the proposed approach on it, (ii) the deployment of the
DL approach on other SBC-type devices (e.g., Coral) as to test their efficiency performances,
(iii) the use of tracking modules [41, 42] to assess someone’s intentions by their moves once
a weapon is detected, and (iv) the integration of the video-based extracted data with data
coming from different sensing devices (e.g., Passive Infrared [11]) as to increase systems’
reliability.
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