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Abstract
This article introduces the Risk Balancing Frontier (RBF), a new portfolio boundary
in the absolute risk-total return space: the RBF arises when two risk indicators, the
Tracking Error Volatility (TEV) and the Value-at-Risk (VaR), are both constrained
not to exceed pre-set maximum values. By focusing on the trade-off between the joint
restrictions on the two risk indicators, this frontier is the set of all portfolios charac-
terized by the minimum VaR attainable for each TEV level. First, the RBF is defined
analytically and itsmathematical properties are discussed:we show its connectionwith
the Constrained Tracking Error Volatility Frontier (Jorion in Financ Anal J, 59(5):70–
82, 2003. https://doi.org/10.2469/faj.v59.n5.2565) and the Constrained Value-at-Risk
Frontier (Alexander and Baptista in J EconDynControl, 32(3):779–820, 2008. https://
doi.org/10.1016/j.jedc.2007.03.005) frontiers. Next, we explore computational issues
implied with its construction, and we develop a fast and accurate algorithm to this aim.
Finally, we perform an empirical example and consider its relevance in the context of
applied finance: we show that the RBF provides a useful tool to investigate and solve
potential agency problems.
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1 Introduction and literature review

In active portfolio management, several objectives have to be pursued jointly. Typi-
cally, a portfolio has to be evaluated simultaneously in terms of absolute and relative
risk. Absolute risk is usually evaluated via measures such as portfolio variance or
Value-at-Risk (VaR), while relative risk is often measured by the Tracking Error
Volatility (TEV), that is the discrepancy to a given benchmark. In some cases, the
two goals are at odds with each other.

This implies a complication, with respect to the traditional Markowitz’s paradigm,
since agents evaluate portfolio performance not only by considering return and abso-
lute risk, but also by taking into account some reference measures associated to a
benchmark portfolio (see, for example, Chow 1995). In other words, the use of mul-
tiple measures of risk should be considered in order to obtain a complete picture of
the risk profile of the portfolio and a comprehensive assessment of the investment. In
practical situations, an agent choosing the portfolio composition may want to maxi-
mize an objective function which involves both types of risk. Alternatively, it could be
a consequence stemming from delegation: in contemporary financial markets, most
investors delegate their investment decisions to professionals and establish agency
relationships.

In this article, we introduce an analytical tool to analyze such cases. Although risk
measures could be chosen from awide variety of alternatives, in this paper we focus on
the TEV and VaR, the risk indicators most commonly employed in delegated portfolio
management to limit asset manager’s activity. To be specific, our goal is to provide an
analytical tool which captures the risk-return relationship of managed portfolios when
these two risk indicators are both constrained. Formally, we make the very minimal
assumption that the agent’s objective function, given a portfolio ω, is increasing in its
return and decreasing in its risk (both absolute and relative).

We classify portfolios on the basis of the following criterion: if, for a given return R,
a portfolio ω can be modified so as to reduce one source of risk without increasing the
other and to remain feasible at the same time, then it is clearly sub-optimal. Therefore,
the question of interest is to identify the set S of portfolios that satisfy the following
criterion: for a given return R(ω), ifω ∈ S, no other portfolios exist in a neighborhood
of ω such that both types of risk decrease.

Thus, from the perspective of economic theory, the set S could be considered as
a set of Pareto-efficient portfolios. To be specific, we define a new portfolio frontier
that contains all portfolios for which the VaR constraint is minimized for each TEV
level. This boundary can be seen as a set of equilibria that necessarily includes the
benchmark, where the TEV equals zero by definition, as a special case. Therefore,
our main focus is to keep the two types of risk under control, while choosing efficient
combinations in termsof portfolio risk and return. This is consistentwith the theoretical
framework developed by Jorion (2003) and the actual practice in the assetmanagement
industry.
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Reconciling Tracking Error...

The analysis of the relationship between various risk measures and portfolio effi-
ciency has traditionally been undertaken by considering geometric objects in the
(σP , μP ) space, where σP and μP are absolute risk (standard deviation of the returns)
and the expected total return of portfolio P . TheMean-Variance frontier (MVF) intro-
duced by Markowitz (1952) is the cornerstone for defining other portfolio frontiers
in the (σP , μP ) space. The MVF is also crucial because it divides the plane into two
regions, and identifies the surface area at its left as the set of inadmissible portfo-
lios. Another relevant boundary is the Mean-TEV frontier (MTF), introduced by Roll
(1992). This corresponds to a horizontal translation of the MVF since it is derived by
minimizing the TEV rather than the portfolio variance. An important feature is that
the benchmark portfolio necessarily lies on it.

Considering the constraints of maximum TEV and VaR, two other portfolio fron-
tiers play a key role. Jorion (2003) introduced the Constrained TEV Frontier (CTF), a
portfolio frontier which takes an egg-like shape in the (σP , μP ) space. The maximum
TEV delimits a closed and bounded set of feasible portfolios that lie around the bench-
mark; the more stringent the TEV becomes, the more this boundary narrows around
the benchmark itself. Alexander and Baptista (2008) define the Constrained VaR Fron-
tier (CVF) as a positive-slope linear portfolio boundary in the (σP , μP ) space, to the
left of which all portfolios satisfy the VaR constraint. Since the vertical intercept of
this function is equal to the negative of the VaR limit, the intercept gets higher as the
constraint becomes tighter. These two frontiers are the starting point for our analysis,
and we will use them to illustrate the compatibility issues for the TEV and the VaR
constraints in Sect. 2. Building on previous work by Alexander and Baptista (2008);
Palomba and Riccetti (2012) analyzed the space of feasible portfolios that satisfy both
TEV and VaR constraints, and introduced the Fixed VaR-TEV Frontier (FVTF), thus
obtaining various scenarios according to the predetermined values assigned to the two
risk indicators.1

The literature on the relationships between different portfolio frontiers has subse-
quently developed in several directions. For example, Alexander and Baptista (2010)
proposed a strategy for active portfolio management via a new portfolio frontier that
contains all portfolios which minimize the TEV for any given ex ante portfolio alpha,
where alpha is the intercept of the linear regression of the portfolio return on the
benchmark return. This approach provides a new viewpoint about active management
strategies and identifies portfolios that simultaneously satisfy more than one criterion.
In this context, Stucchi (2015) studies the relationships between the contributions of
Roll (1992), Jorion (2003), Alexander and Baptista (2008, 2010) and Palomba and
Riccetti (2012), and proposes a unified approach in order to summarize their results
into a single optimal allocation strategy that works under different additional risk
constraints.

Other authors consider portfolio performance under simultaneous TEV and weight
constraints compliance, starting from the contribution of Bajeux-Besnainou et al.
(2011) up to the work of Daly and Van Vuuren (2020) in which new constrained
portfolio frontiers are defined. Recently, Du Sart and Van Vuuren (2021) focus on two
portfolios lying on the Jorion’s CTF and analyze their composition and performance in

1 Figure8 in the appendix contains graphical representation of all these objects.
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comparison with the maximum Sharpe Ratio portfolio. Using data from South Africa,
they illustrate how these portfolios perform during bull and bear markets.

Moreover, a large number of contributions put forward enhancements of Jorion’s
original proposal by considering constraints on different quantities (see, for instance,
Ammann and Zimmermann (2001), El-Hassan and Kofman (2003), Maxwell et al.
(2018); Maxwell and Van Vuuren (2019)). Bertrand (2010) proposes an alternative to
Jorion’s approach by introducing the Constant Risk Aversion frontier. This boundary
is based on the risk aversion parameter, defined as the marginal rate of substitution
between the portfolio variance and expected return. Another recent contribution is
provided by Stowe (2019), who reformulates the models by Best and Grauer (1990)
and Jorion (2003) by considering themaximization of a quadratic utility function under
several combinations of linear and quadratic constraints that correspond to different
restrictions on the portfolio expected return or on the TEV.

Finally, Palomba and Riccetti (2019) focus on the portfolio efficiency issue when
restriction to TEV, VaR and possibly to the overall variance are jointly set. The main
result is the formal definition of some portfolio frontiers that satisfy all the restrictions
on risk indicators and contain only non-dominated portfolios in terms of variance and
return.

The remainder of this article proceeds as follows: in Sect. 2 we introduce our new
portfolio boundary, and we discuss its properties and financial implications. In this
context, we also present the numerical method for representing it as a curve in the
standard deviation-return space. Section3 provides a short empirical example, and
Sect. 4 concludes.

2 The Risk Balancing Frontier (RBF)

In our analysis, we use the same setup as in Alexander and Baptista (2008) and
Palomba and Riccetti (2012). We assume that the parties can choose among n risky
assets, with μ being the n-dimensional column vector of expected returns, and �

their covariance matrix, which we assume non-singular. We define the parameters
a = ι′�−1ι, b = ι′�−1μ and c = μ′�−1μ, where ι is an n-dimensional column
vector of ones. A related quantity that will be often used in the following is the scalar
d = c − b2/a: note that

√
d is the asymptotic slope of Markowitz’ MVF.

We also define ωC as the “Global Minimum Variance” portfolio and C as the
corresponding point on the (σP , μP ) plane; ωC has expected return μC = b/a and
σ 2
C = 1/a, while μB and σ 2

B are the benchmark return and variance.
We make the customary assumptions of unlimited short sales, quadratic utility

function and/or normally distributed returns; these assumptions rule out skewed and
leptokurtic return distributions, so we adopt the portfolio standard deviation as our
absolute risk measure.

In active portfolio management, the manager has a reference benchmark B. For
any portfolio P ∈ (σP , μP ), define T (P) = (ωP − ωB)′�(ωP − ωB) as the TEV
of P with respect to the chosen benchmark B and V (P, θ) = zθσP − μP its VaR
for a given risk level θ , where zθ is the standard normal quantile. Now consider the
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portfolio that minimizes the VaR subject to a given TEV = T0 given by

P̂(T0, θ) = argminT (P)=T0 V (P, θ); (1)

we define the Risk Balancing Frontier (RBF from here on) as the subset of (σP , μP )
space containing all portfolios P̂(T0, θ) for T0 ∈ [0, Tmax]. Note that theminimization
of V (P, θ) is defined under the constraint T (P) = T0; in fact, it may be more realistic
to consider the weak-inequality constraint T (P) ≤ T0. This issue will be analyzed in
Sect. 2.4.

2.1 Derivation of the RBF

In order to find an explicit solution to Eq. (1), we re-state the optimization problem as
max −VaR = zθ σP (ω) − μP (ω)

sub
√
TEV = √

T0
fully invested portfolio

⇒
min VaR = zθ

√
ω′�ω − ω′μ

sub
√

(ω − ωB)′�(ω − ωB) = √
T0

ω′ι = 1,

(2)

where ωB is the benchmark portfolio. Equation (2) leads to the following Lagrangian:

L(ω, T0) = zθ
√

ω′�ω − ω′μ − λ1[
√

(ω − ωB)′�(ω − ωB) −√
T0] − λ2[ω′ι − 1],

(3)

where the scalars λ1 and λ2 are the shadow prices. For the first order conditions we
get

∇(ω, T0) = r(ω, θ)�ω − μ − λ1
1√
T0

�(ω − ωB) − λ2ι = 0 (4)

where r(ω, θ) = zθ
σP (ω)

is a strictly positive scalar function; Eq. (4) may be trans-

formed by premultiplying ∇(ω, T0) by the inverse of �,

∇∗(ω, T0) = r(ω, θ)ω − �−1μ − λ1
1√
T0

(ω − ωB) − λ2�
−1ι = 0; (5)

therefore, the solutions for the shadow prices are

λ∗
1 =

√
T0

μP − μB

[
r(ω, θ)(μP − μC ) − d

]
(6)

λ∗
2 = r(ω, θ) − b

a
. (7)

By combining Eqs. (5), (6) and (7), for a given level of T0 we get

ω∗ = μP − μB

D(ω, θ)

{
�−1μ +

[
r(ω, θ)

a
− μC

]
�−1ι − 1

μP − μB
[r(ω, θ)(μP − μC ) − d]ωB

}

= − 1

D(ω, θ)
[r(ω, θ)(μP − μC ) − d]ωB + b

μP − μB

D(ω, θ)
ωQ + a

μP − μB

D(ω, θ)

[
r(ω, θ)

a
− μC

]
ωC ,
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where ω∗ is the optimal portfolio2 for a given value of the tracking error volatility
T0, D(ω, θ) ≡ d − �1r(ω, θ), while ωQ = b−1�−1μ and ωC = a−1�−1ι are the
‘Maximum Sharpe-Ratio’ and the ‘Global MinimumVariance’ portfolios lying on the
MVF.

Therefore, an implicit definition of the optimal portfolio ω∗ can be given as

ω∗ = x1(ω
∗)ωB + x2(ω

∗)ωQ + x3(ω
∗)ωC , (8)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(ω∗) = 1 − r(ω∗, θ)

D(ω∗, θ)
(ω∗ − ωB)′μ

x2(ω∗) = b

D(ω∗, θ)
(ω∗ − ωB)′μ

x3(ω∗) =
[
r(ω∗, θ) − b

D(ω∗, θ)

]
(ω∗ − ωB)′μ,

(9)

and our Risk Balancing Frontier can be thought of as the set of the points on the
(σP , μP ) space corresponding to the portfoliosω∗ for any given level of T0. As Eq. (8)
shows, these portfolios can be represented as a linear combination of three well-known
portfolios, namely the benchmark portfolio, the ‘Maximum Sharpe-Ratio’ portfolio,
and the ‘Global Minimum Variance’ portfolio, with the three scalar weights summing
to unity; these weights are functions ofω∗ andmay be outside the [0, 1] interval. Since
the benchmark belongs to the RBF by definition when T0 = 0, we get x1(ω∗) = 1,
x2(ω∗) = 0 and x3(ω∗) = 0; conversely, we do not get the triples x(ω∗) = [

0 1 0
]′

and x(ω∗) = [
0 0 1

]′ for portfolios ωQ and ωC because they do not lie on the RBF.
The triples with x1(ω∗) = 0, x2(ω∗) 	= 0 and x3(ω∗) 	= 0 deserve special attention

because Eq. (8) reduces to the well-knownMutual Fund Separation Theorem (Merton,
1972) in which any portfolio belonging to theMean-Variance boundary can be written
as a proper linear combination of ωC and ωQ . Under this condition the RBF and the
efficient branch of the MVF must contain a common portfolio.

Figure1 shows that the RBF defines to a specific locus, corresponding to a contin-
uous set of points in the (σP , μP ) space; this property derives from the RBF being an
envelope of several optima under a continuously-varying constraint. Along this path,
two notable points can be identified:

the portfolio Z, defined as the portfolio in which the variance is minimized;
the portfolioM, defined as the portfolio for which the efficiency loss3 is zero. M
corresponds to the contact point with the MVF, and minimizes the VaR among all
admissible portfolios.

The definition of the RBF implies that its position in the (σP , μP ) space depends on
the benchmark coordinates, as well as the location of the zero efficiency loss portfolio
M .

2 In order to avoid excessively burdensome notation, we use the notation ω∗ instead of ω∗(T0).
3 We use the customary definition of efficiency loss as the horizontal distance in the (σP , μP ) space between
a portfolio and the Markowitz frontier MVF.
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Fig. 1 TheRiskBalancing Frontier (RBF). Legend:MVF,Mean-Variance Frontier; B, Benchmark portfolio

2.2 Relationship of the RBF with Previous Literature

The points contained in the RBF bear an interesting relationship with where Jorion’s
CTF and Alexander and Baptista’s CVF (see Sect. 1). The analytical definition of the
CTF and CVF boundaries in the (σP , μP ) space are provided by Eqs. (10) and (11),
respectively:

d(σ 2
P − σ 2

B − T0)
2 + 4�2(μP − μB)2 +

− 4�1(σ
2
P − σ 2

B − T0)(μP − μB) − 4dδBT0 = 0 (10)

μP = zθσP − V0, (11)

where �1 = μB − μC , �2 = σ 2
B − σ 2

C , δB = �2 − �1/d; zθ is the standard normal
quantile (with 0.5 ≤ θ < 1) and T0 and V0 are the constraints set on TEV and
VaR. Equation (10) was introduced by Jorion (2003), and identifies a set of points in
(σP , μP ) space that takes a (somewhat distorted) oval shape. Equation (11), instead,
was put forward in Alexander and Baptista (2008) and produces an upward-sloped
straight line.

The case of incompatible restrictions on V0 and T0 arises when the oval boundary
lies completely to the right of the linear one, and there are no intersections. Otherwise,
the intersection of the CTF and the CVF contains all portfolios that jointly satisfy
the inequalities TEV ≤ T0 and VaR ≤ V0. If the CTF and the CVF are tangent, a
unique portfolio is available, and strict equality holds for both restriction TEV = T0
and VaR = V0. In this case, we define this unique portfolio K ≡ (σK , μK ) as the
tangency portfolio, while we use the symbol B to indicate the benchmark the TEV is
computed against. In this light, the RBF can be thought of as the set of portfolios that
correspond to all possible risk-return space coordinates of the tangency portfolio K
for increasing levels of T0.

Consider for example the depicted scenario in Fig. 2(a), which occurs when the
restrictions are mainly aimed at reducing relative risk, so that the constraint on the
VaRof the portfolio K is not particularly severe. Conversely, in the scenario in Fig. 2(b)
themaximumTEV is larger, so the VaR limit on K is more binding. The eccentricity of
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Fig. 2 Tangency portfolio K (TEV = T0 and VaR = V0). Legend: MVF, Mean-Variance Frontier; MTF,
Mean-TEV Frontier; CVF, Constrained VaR frontier; B, Benchmark portfolio; K , Tangency portfolio; V0,
Target VaR

the CTF and the intercept of the CVF can be taken as graphical hints on how stringent
the constraints on the TEV and on the VaR are. Since the portion of the plane delimited
by the CTF increases with T0, it is apparent from Fig. 2 that the position of portfolio
K depends on both T0 and V0, with a trade-off between the two.

Therefore, the RBF is entirely contained within the Mean-Variance frontier, where
the equalityCTF(σ 2

P , μP ; T0) = CVF(σ 2
P , μP ; V0) holds and theVaR for each portfo-

lio is the minimum attainable for a given TEV = T0. Note that its shape is independent
of the slope of the CVF, zθ , and that of the horizontal axis of the CTF, �1.

As for the slope of the CVF line, we distinguish two cases: the high-confidence
case, for which the VaR line has a steeper slope than the asymptotic slope of the MVF
(zθ >

√
d), and the low-confidence case, when the inequality is reversed. The rest of

the paper will focus on the high confidence case, that we consider the most realistic
one, in the light of the fact that risk management offices customarily set θ very close
to 1.

2.3 Numerical Calculation of the RBF

Note that an explicit solution to Eq. (8) cannot be found analytically, and numerical
techniques are called for. A convenient method to determine the locus is to apply the
BFGS numerical optimization algorithm for a grid of values for T0 (see Broyden 1970;
Fletcher 1970; Goldfarb 1970; Shanno 1970).

A description of the algorithm is best given by referring to the geometric objects
depicted in Fig. 3. Define two points in the σP , μP space as

J0 ≡ (σ 2
B + T0 − 2

√
T0�2, μB − �1

√
T0/�2) (12)

J1 ≡ (σ 2
B + T0 + 2�1

√
T0/d, μB +√

dT0). (13)

The point J0 yields the the CTF-constrained minimum variance allocation, whereas
J1 gives the one with the highest expected return, that also corresponds to the position
where the hyperbolic MTF crosses the oval CTF (see Jorion 2003; Palomba and
Riccetti 2019).
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Fig. 3 The Risk Balancing Frontier (RBF) and the points J0 and J1

For any given level of the restriction T0, the return of the tangency portfolio K
will lie in the interval [μ0(T0), μ1(T0)], where the extrema are the TEV-dependent
expected returns of the endpoints J0 and J1. Consequently, for any given expected
return μ0(T0) ≤ μ ≤ μ1(T0), the function

S(T0, μ) = σ 2
B + T0 + 2

d

{
�1(μ − μB) −

√
dδB[dT0 − (μ − μB)2]

}
(14)

returns the risk for the portfolio on the arc ŐJ0 J1 which minimizes the VaR for a given
T0.

TheRBF is foundbycalculatingEq. (14) on anumerical gridT0 = 0, h, 2h, 3h, . . . ,

Tmax, where h is an arbitrary and numerically small increment. Our algorithm can
therefore be described as:

1. starting from T0 = 0, calculate the extremal returns μ0(T0) and μ1(T0),
2. set μ̄ as the midpoint between μ0(T0) and μ1(T0),
3. minimize numerically the VaR V (μ) = zθ

√
S(T0, μ)−μ via the BFGS algorithm

using μ̄ as a starting point and call μ∗ the solution;
4. determine the coordinates of the resulting portfolio ω∗ using Eq. (14),
5. increment T0 by h and repeat until T0 = Tmax.

For each point on the RBF, the corresponding portfolio ω∗ can be found using the
method outlined in Appendix B.

2.4 Geometric Properties of the RBF in the Standard Case

The RBF, as defined in the previous section, is a continuum of portfolios, indexed by
the TEV T0; when T0 = 0, ω∗ is the benchmark portfolio, and different choices for T0
lead to different optima ω∗. This set can be split into the following 3 non-overlapping
subsets for increasing values of T0:

RBF = RBF1 ∪ RBF2 ∪ RBF3.
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These subsets are identified by the fact that

1. there exists a TEV level TZ such that the variance of the portfolio ωZ = ω(TZ ) is
a minimum within the RBF (see Appendix A for a proof);

2. there exists a TEV level TM such that portfolio ωM = ω(TM ) minimizes the VaR.
Since we assume that the manager’s confidence level zθ is high, such portfolio is
Markowitz-efficient. From a geometric point of view, the minimum VaR portfolio
M is the tangency portfolio between the linear CVF and the Markowitz’ MVF. The
analytical proof is provided in section 2.4.2.

It is useful to distinguish the two situations TZ ≤ TM , which we refer to as the
“standard” case, and the “aggressive benchmark” case TZ > TM , that occurs when a
benchmark with high risk and return is chosen. In the former case we have

RBF1 = {ω∗ : 0 ≤ TEV ≤ TZ },
RBF2 = {ω∗ : TZ < TEV ≤ TM },
RBF3 = {ω∗ : TEV > TM } (15)

while, in the aggressive case, these subsets are defined as

RBF1 = {ω∗ : 0 ≤ TEV ≤ TM },
RBF2 = {ω∗ : TM < TEV ≤ TZ },
RBF3 = ∅. (16)

These subsets possess different properties from the financial point of view. We
will focus on the standard case first and leave the analysis of the aggressive case for
subsection 2.5.

As claimed in Sect. 2.1, the RBF is an envelope that contains all the tangency
portfolios between the CTF and CVF curves. Analytically, each point of this frontier
yields the solution of a systemcontaining bothEqs. (10) and (11). Palomba andRiccetti
(2012) show that the solution is a fourth degree equation in the mean-variance space
and proved that the solution depends on the benchmark coordinates together with the
values of T0, V0 and the confidence level θ .

From Fig. 3 several important characteristics of the RBF become apparent: the
boundary on the (σP , μP ) space takes a horseshoe-like shape, with one endpoint
necessarily at B, where T0 = 0. The subsets RBF1 and RBF2 correspond to the arcs
ŊBZ , ŊZM , and the points to the right of M form the subset RBF3. The situation in
which the benchmark portfolio lies on the efficient branch4 of the MVF is notable,
since in this case the arc ŊBM on the RBF lies on the MVF.

2.4.1 The arc ŇBZ

Since portfolio B identifies the passive strategy T0 = 0, as the TEV increases the
arc ŐJ0 J1 moves away from B; therefore, as a rule, the arc ŊBZ can be thought of a

4 The situation of a benchmark located in the inefficient branch would have no practical relevance.
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line starting from B and going in the North-West direction, with decreasing efficiency
loss. In practice, for each portfolio P ∈ RBF1, asset managers obtain σP ≤ σB and
VP ≤ VB .

Let Z ≡ (σZ , μZ ) be the minimum variance portfolio lying on the RBF: the
existence of such portfolio is proven in Appendix A and implies that asset managers
can jointly satisfy the pair of constraints TEV = T0 and VaR = V0 so as to select
a position in which they can also minimize overall portfolio risk. Thus, the arc ŊBZ
is the subset of the RBF where an increase in the TEV limit implies a tighter VaR
restriction, leading to more efficient portfolios. In other words, along the ŊBZ arc the
TEV and VaR move in opposite directions, and a trade-off exists between relative risk
(the TEV) and both measures of absolute portfolio risk (the VaR and σP ).

2.4.2 The arc ŇZM

In order to analyze the properties of the intermediate subset RBF2, we begin by con-
sidering the portfolio

ω̂ = argminω∈RBF VaR(ω);

that minimizes the VaR along the RBF for a given TEV = T0. Since the first shadow
price in Eq. (6) yields the variation of the objective function with respect to T0

∂VaR(ω)

∂T0
= √

T0
r(ω, θ)(μP − μC ) − d

μP − μB
,

then ω̂ must satisfy

∂VaR(ω)

∂T0
= 0 ⇒ μ̂ = ω̂

′
μ = μC + d

zθ
σ (ω̂). (17)

Now consider M , defined earlier as the portfolio that minimizes the VaR among
admissible portfolios: Palomba and Riccetti (2012) prove that its coordinates on the
(σP , μP ) space are

M ≡
⎛

⎝ z2θ
z2θ − d

σ 2
C , μC + d

σC√
z2θ − d

⎞

⎠ . (18)

Geometrically, M ≡ (σM , μM ) is the contact portfolio between the MVF and the
linear boundary CVF, and the associated VaR equals VM = zθσM − μM = −μC +√

σ 2
C (z2θ − d). This is the most binding assignable VaR because lower values lead to

infeasible portfolios.
Since

μM = μC + d

zθ
σ (ω̂) = μC + dσC√

z2 − d
= μ̂, (19)
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portfolioM satisfies condition (17). From this result it is easy to seewhy the RBF takes
the shape shown in Fig. 1: starting from the benchmark B, we have (ωP −ωB)′μ ≥ 0,
and therefore the VaR decreases first until it reaches its minimum at portfolio M , and
then it rises again for μP > μM .

Most of the properties of the points along ŊZM are the same as those of ŊBZ ; notably,
moving from Z to M , and thus allowing for larger TEV, still leads to portfolios that
have lower VaR and feature decreasing efficiency loss. However, contrary to the ŊBZ
case, this comes at the price of a larger variance.

2.4.3 The Upper Branch

At a first glance, this subset of theRBFwould havemore limited relevance than the pre-
vious two. Indeed, from the pointM onward, there are progressively less stringent VaR
constraints and the tolerable risk relative to the benchmark B increases, which leads to
riskier portfolios in terms of overall variance and Value-at-Risk. Hence, the point M
can be thought as a watershed between the two opposite TEV-VaR relationships. How-
ever, portfolios belonging to this branch could be considered also by investors with
a certain level of risk aversion as long as the expected excess returns meet investors’
requirements. Given these premises, we may call this subset the “daredevil” segment
of the RBF.

2.4.4 Relationships Along the RBF

Figure4 summarizes the relationships along the RBF between all the relevant portfolio
quantities; note the special importance of the three reference portfolios B, Z and M .
Moving from the benchmark B, the portfolio variance and the VaR follow a convex
and non-monotonic relationship, while the expected return of the portfolios always
increases. The lower-right plot displays the relationship between the two absolute risk
measures. Starting from the benchmark, the overall initial risk reduction is accom-
panied by a progressively more stringent VaR. From portfolio Z onward, the overall
portfolio variance increases, while the efficiency loss reduces until the portfolio M is
reached. From the point M onward the efficiency loss increases and is accompanied
by progressively larger values of T0 and V0.

The discussion above entails an important implication: setting a maximum value
of the TEV lower than the one of the Z portfolio is a questionable choice for the risk
manager, since along the ŊBZ arc either the expected return and all the absolute risk
indicators can be improved by raising the TEV. Moving along the upper branch, any
choice beyond M would only lead to extremely risky positions, so it would be a rather
extreme one in practice.

2.5 The Aggressive Benchmark

The “aggressive benchmark” case is a special situation that arises when the benchmark
return and variance are greater than the one of the minimum VaR portfolio M , so the
benchmark B is itself a high risk-high return portfolio. A more specific definition
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Fig. 4 Mutual relationships between return, variance, TEV and VaR along the RBF

Fig. 5 Aggressive benchmark

is provided by Palomba and Riccetti (2012). In this context, B is the portfolio with
the highest available expected return on the RBF, but this feature entails considerable
risk. As a consequence, loosening the TEV constraint makes it optimal to reduce the
associated risk, rather than increase the portfolio return, and Eq. (16) holds instead of
(15). Figure5 shows the shape of the RBF in this case.

The boundary starts from the benchmark and proceeds South-West, reaches the
tangency portfolio M and stops at the point of minimum risk Z .

Technically, the RBF can be extended beyond portfolio Z for values of the TEV
higher than TZ , but from a financial point of view this would lead to inefficient port-
folios, i.e. dominated under any possible metric (variance, return, VaR or portfolio
efficiency loss).5 Therefore, we truncate the boundary at Z and set the condition

5 In principle, this may not be strictly true, as it is conceivable that one could reach portfolios with a higher
return thanμB for very large values of the TEV.However, we consider this scenario as extremely unrealistic.
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RBF3 = ∅ in Eq. (16). Using Eq. (17), the condition (ωP − ωB)′μ < 0 always holds
so the VaR increases all along the arc ŊZM .

3 Empirical Example and the RBF’s Economic Implications

An interesting question arises by considering the sensitivity of the RBF to systemic
risk.A tool for analysing the impact of systemic risk is theCoVaRmeasure, put forward
in Adrian and Brunnermeier (2016). From the analytical viewpoint, systemic risk
affects the RBF bymodifying the distribution of the returns bymodifying the expected
returns μ and/or their covariance matrix �. The main rationale behind CoVaR is that
systemic risk may modify such parameters, so it makes sense to study the changes in
the quantiles of a portfolio (the VaR) conditional to such events. However, our RBF
is defined via parameters that describe an unconditional distribution. Modifying our
setup to make the RBF a conditional boundary would entail assumptions about the
analytical link between measures of systemic risk and the distributional parameters
we considered given at each point in time. As a result, a COVaR-like boundary would
make it necessary to redefine all variables in a conditional context, which is a topic
for further research. However, the sensitvity of the RBF to global shocks is taken into
consideration in our empirical example by choosing to analyse the RBF behaviour
during the COVID-19 pandemic.

In order to show how our RBF boundary works in practice, we carry out a short
numerical example, using the S&P100 market index as a benchmark and all its con-
stituents, listed in Table 2 in Appendix C, as the universe of available risky securities.
The daily returns for both index and stocks were calculated using one year of data
covering two distinct periods: a pre-COVID period ranging from 2019-01-01 to 2019-
12-31, and the period that goes from 2020-04-01 to 2021-03-31, which we define as
the “post-COVID period”. The use of both periods is necessary to make a comparison
because, as illustrated by Fig. 6, returns and volatility are generally higher during the
“post-COVID” period.

Table 1 reports several statistics for some portfolios of interest, namely the bench-
mark (B), the minimum variance portfolio (Z ) and theminimumVaR portfolio (M) on
the RBF, and the Global Minimum Variance (C) and the Maximum Sharpe Ratio (Q)
on the MVF. Figure7 illustrates the MVF and the RBF boundaries for both periods.
The plots on the left offer a global view; those on the right zoom in around the RBF
minimum variance portfolio Z .

As can be noticed, all portfolios changed considerably from one analyzed period to
another in terms of risks and return. The increased returns offered in the second period
are accompanied by significant increases in the level of risks, excepting portfolios Q
(decreased values for both return and risk), Z and M(less returns at a higher risk).

The efficiency loss also increased substantially. During the pandemic phase, the
horizontal distance between B and the MVF is much greater, so the TEV cannot be
kept under control without serious efficiency losses.

It is interested to note how the weights for the Z portfolio changed in post-COVID
with respect to pre-COVID. The adjustments are perfectly coherentwith the risk-return
evolution of the three component portfolios B, C and Q. If in the pre-COVID period

123



Reconciling Tracking Error...

Fig. 6 Constituents of S&P100 index in the two subsamples

Fig. 7 The Markowitz and Risk Balancing frontiers: before and after
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the benchmark portfolio was the second component in terms of weight, the situation
is completely reversed in the second period due to the B’s significant increases in
standard deviation and efficiency loss, with less significant increment in terms of
return. Its position is taken by the portfolio Q, with zero efficiency loss.

Thus, the efficiency loss for the Z portfolio decreases in the COVID period, despite
the drop in the portfolio return and the risk increase. It should also be noted that
portfolio Z displays a much higher TEV in the COVID period and that this may have
led managers to reduce the VaR.

The shift of the RBF towards riskier positions is mirrored by the adjustment of the
xi (ω)weights for the Z and M portfolios, and especially by the increase in x2(ω) (see
Eq. (8)). Therefore, there is a shift in favor of portfolio Q, whose TEV is much higher
in the pre-COVID period. On the other hand, the shift of the MVF and RBF due to
the instability caused by the pandemic has increased the distance between the upper
branches of the two curves: the efficiency loss for an aggressive portfolio, which is
minimal in the pre-COVID period, becomes quite substantial afterwards.

Regardless of context (economic turmoil or not) the properties of the new frontier
RBF come to the support of investors, asset managers and the relationship between
them.

Portfolios’ management is often delegated by investors to asset managers (agents)
and the financial literature emphasizes that a suitable tool to measure agents’
performance and compensation is the benchmarking. Both delegated investments
and benchmarked compensation could generate agency problems if there are mis-
alignments between investor’s and agent’s objectives. In practice, when agent’s
compensation depends on benchmark outperforming, the probability of unexpected
divergent behavior of asset managers arises if the risk level chosen by her is not com-
patible with the investor’s wishes (see for example, Starks 1987). In other words, as
long as agent’s risk objectives refer exclusively to relative risk, her behavior could not
meet the total risk level mentioned in the IPS.

The RBF is obtained by setting both relative and total risk constraints, therefore the
level of portfolio’s tracking error volatility can be limited and aligned with investor’s
risk tolerance. These constraints narrow the set of optimal portfolios to those that
meet the investor’s risk requirements while still maximizing returns. The RBF, in fact,
contains portfolios for which the absolute risk is minimized for each level of relative
risk.

Specifically, our new frontier contains portfolios with higher returns allowing to
control two types of risk. This helps improve client’s satisfaction, andminimize bench-
marked compensation issues.

4 Summary, Conclusions and Future Extensions

In this paper, we develop a novel tool to consider situations when asset managers must
jointly satisfy the restrictions imposed by investors on two risk measures: the tracking
error volatility (TEV) and the Value-at-Risk (VaR). This framework creates a trade-off
possibility between the two constraints: when the TEV and the VaR restrictions hold
at the same time, the more stringent is one, the less binding is the other.
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The tool we propose to analyze this situation is theRiskBalancing Frontier (RBF), a
portfolio boundary in the risk-return space that identifies all portfolios with minimum
VaRgiven a preset TEV level.Weprove that theRBFcanbe expressed as a combination
of three basic portfolios, namely the benchmark, the ‘Maximum Sharpe Ratio’ and the
‘Global Minimum Variance’ portfolios; we also study the boundary’s main geometric
properties, and provide operational details about the computational issues involved.
In order to exemplify the practical usage of the RBF for analyzing actual market
scenarios, we provide an analysis of the SP100 index before and after the COVID
pandemic.

Our approach could be further developed in several directions. For example, intro-
ducing management fees or transaction costs would certainly make the analysis more
realistic. Other possibilities to consider are to introduce a risk free asset and disallow
short selling that corresponds to a severe restriction that often characterizes different
fund policies or contracts between managers and investors, but it comes at the cost
of making the algebra and the computational aspects much more complex. Finally,
the hypothesis of normally distributed returns could be dropped in favor of more gen-
eral alternatives: this possibility would enrich our analysis by generalizing for skewed
and/or leptokurtic distributions of returns but, on the other hand, would require a sub-
stantial and complex revision of all the portfolio frontiers that our proposed approach
is based on.

Appendix A: The portfolio variance along the RBF

Equation (8) can be re-expressed as

ω∗ = Wx(ω∗)

where W = [
ωB ωQ ωC

]
is a n × 3 matrix and x(ω∗)′ = [

x1(ω∗) x2(ω∗) x3(ω∗)
]
.

The variance of each portfolio lying on the RBF is

σ ∗2 = ω∗′
�ω∗ = x(ω∗)′�x(ω∗) (A1)

where the matrix � can be obtained as the quadratic form

� = W ′�W =
⎡

⎣
σ 2
B μB/b σ 2

C
μB/b σ 2

Q σ 2
C

σ 2
C σ 2

C σ 2
C

⎤

⎦ = 2

b

⎡

⎣
bσ 2

B μB μC

μB μQ μC

μC μC μC

⎤

⎦ .

In order to find the variance-minimizing portfolio along the RBF we need to solve the
following problem

min σ ∗2 = x(ω)′�x(ω)

sub G[x(ω)] = 0,
(A2)
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where

G[x(ω)] =
⎡

⎣
1
0
0

⎤

⎦+
⎡

⎣
−r(ω, θ)

b
r(ω, θ) − b

⎤

⎦ (ω − ωB)′μ
D(ω, θ)

−
⎡

⎣
x1(ω)

x2(ω)

x3(ω)

⎤

⎦ .

The problem (A2) consists of minimizing the portfolio variance in a trivariate system
where the portfolioweights are restricted to be those obtained inEq. (9). In this context,
the restriction is nonlinear but it always guaranteed that such weights sum up to unity.
The Lagrangian is

L[x(ω), θ ] = x(ω)′�x(ω) − λ′G[x(ω)],

therefore

∂L[x(ω), θ ]
∂x(ω)

∣∣∣∣
ω=ω̂

= 0 ⇒ �x(ω̂) − G′[x(ω̂)]λ = 0, (A3)

where G′[x(ω̂)] is the 3 × 3 Jacobian matrix. Since we have

∂r(ω, θ)

∂x(ω)
= − r(ω, θ)

σ 2 �x(ω),
∂D(ω, θ)

∂x(ω)
= �1

r(ω, θ)

σ 2 �x(ω) and
∂(ω − ωB)′μ

∂x(ω)
= W ′μ,

where ω = Wx(ω) and W ′μ = [
μB μQ μC

]′, we get

G′[x(ω)] =

⎡

⎢⎢⎢⎢⎢
⎣

−x(ω)′�φ[D(ω, θ) − �1r(ω, θ)] − μ′W r(ω, θ)

D(ω, θ)

−x(ω)′� φb�1 + μ′W b

D(ω, θ)

−x(ω)′�φ(d − b�1) + μ′W r(ω, θ) − b

D(ω, θ)

⎤

⎥⎥⎥⎥⎥
⎦

′

− I3

where φ = (μ∗ − μB)

D(ω, θ)2
r(ω, θ)

σ 2 is a scalar and I3 is the 3 × 3 identity matrix.

Assuming that the matrix � is non-singular, from Eq. (A3) the solution is

x(ω̂) = �−1G′[x(ω̂)]λ, (A4)

and therefore, after substituting G[x(ω̂)] into the constraint, we get

λ̂ = {�−1G′[x(ω̂)]}−1x(ω̂) = G′[x(ω̂)]−1�x(ω̂).

Since by assumption� is positive definite, the existence of the solution (A4) guarantees
that the RBF admits a portfolio in which the overall risk is minimized.
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Appendix B: Points and Portfolio Weights on the RBF

For each n×1 vectorωP containing the portfolio weights, there exists a corresponding
point P on the (σP , μP ) space. Clearly, givenωP , the n-dimensional column vector of
expected returns μ and their covariance matrix �, the coordinates of P can be easily
determined by the usual equations

σP =
√

ωP
′�ωP and μP = ωP

′μ.

As for the inverse problem, namely finding the portfolio weights given the couple
[σP μP ]′, one would have to solve a system of 2 equations in n variables, that obvi-
ously has infinitely many solutions. In this Appendix, we describe how to determine
the vector of portfolio weights ωK corresponding to any point K that lies on the Risk
Balancing Frontier.

All portfolios belonging to the RBF share twomain characteristics: on the one hand,
they are characterized by the minimum VaR that can be reach for each TEV level and,
on the other, they are the tangency points between the linear CVF and the “oval” CTF.
The minimum VaR value V0 can be calculated via the algorithm we introduced at the
end of section 2.1; in this context, information is needed on the benchmark portfolio
weights ωB and on T0 restriction imposed to the TEV. The tangency condition in the
(σP , μP ) space implies that there is a single point K associated to bothmeasures of risk
T0 and V0, and the vector of portfolio weights ωK corresponds to the solution for the
two optimization problems from which the CTF and CVF are defined. In other words,
assuming the vector ωJ as a portfolio lying on the oval boundary and the vector ωAB
as a portfolio on the linear boundary, K is the only point where the equalityωJ = ωAB
holds.

From the technical point of view, it is sufficient to apply the following results in
order to determine the portfolios lying on the RBF:

1. A portfolio belonging to the CTF (and therefore, to the arc ŐJ0 J1) has equation

ωJ = ωB − 1

λ2
�−1(μ + λ1ι + λ3�ωB), (B1)

where

λ1 = −λ3 + b

a
, λ2 = −2

√
dδB

4T0�2 − y2
, and λ3 = − 1

�2

(
�1 + y

2
λ2

)
;

the parameters a, d, �1, �2, δB are defined in section 2, while y = σ 2
J − σ 2

B − T0
is computed via Eq. (14). (See Appendix C in Jorion 2003, for the complete proof)

2. A portfolio that lies on the CVF (the straight line μP = zθσ 2
P −V0 in the (σP , μP )

space) is defined by the linear combination

ωAB = X ωC + Y ωQ + Z ωB, (B2)
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where

X =
−k4 +

√
k24 − 4k3k5

2k3
, Y = (k7 − k6X)

k6 + ad
, and Z = 1 − X − Y .

The parameters are

k3 = k26σ
2
Q + (ad)2σ 2

B + 2adk6μB/b

(k6 + ad)2
− σ 2

C ,

k4 = 2

[

σ 2
C + −k6k7σ 2

Q + adk8σ 2
B + (k6k8 − adk7)μB/b

(k6 + ad)2

]

,

k5 = k27σ
2
Q + k28σ

2
B − (2/b)k7k8μB

(k6 + ad)2
−
(
V0 + μAB

zθ

)2

,

k6 = b(b − aμB),

k7 = ab(μAB − μB),

k8 = a(bμAB − c),

where a, b, c and d are the scalars already defined in section 2,μB is the benchmark
return, and σ 2

B , σ
2
Q = c/b2 and σ 2

C = 1/a are the variances of portfolios B, Q, and
C . (See Appendix D in Alexander and Baptista 2008, for the proof).

For any given μ, �, ωB and T0, each point K ∈ RBF has the property that the vectors
in Eqs. (B1) and (B2) coincide (the corresponding Value-at-Risk V0 is a result of the
optimization described in subsection 2.1).

A special situation arises for portfolioM , which lies on theMean-Variance Frontier.
In this case the Mutual Fund Separation Theorem (Merton, 1972) establishes that, for
any portfolio P lying on the MVF, the portfolio weights can be conveniently obtained
via the linear combination

ωP = ψ ωQ + (1 − ψ)ωC , (B3)

where ψ = μP − μC

μQ − μC
and μQ = c/b and μC = b/a are the returns of portfolios Q

and C . Equation (B3) requires ωQ and ωC already defined before Eq. (8) and does
not depend of any portfolio variance. For its computation in portfolio M it sufficient
to set the target return μP = μM .

Appendix C: Stock returns of the S&P 100

See Table 2.
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Appendix D: The Constrained Mean-TEV Frontier and the Fixed VaR-
TEV Frontier

This Appendix contains a brief geometric illustration of the scenarios for the Con-
strained Mean-TEV Frontier (CMTF) by Alexander and Baptista (2008) and the
FVTF by Palomba and Riccetti (2012) arising from different VaR restrictions. The
Constrained Mean-TEV Frontier (CMTF) is a portfolio boundary satisfying the VaR
constraint, while the TEV is kept at its minimum value (Roll, 1992). The FVTF con-
siders the CTF as well.

In general, based on different VaR bounds, the CMTF could be

(a) an empty set if the CVF lies to the left of the MVF, i.e. in the set of inadmissible
portfolios;

(b) a single admissible portfolio when the CVF is tangent to the MVF;
(c) a segment, if the CVF crosses the MVF but not the MTF (but may be tangent to

the MTF);
(d) an arc, consecutive to two segments, if the CVF crosses both the MVF and the

MTF.

Assigning a VaR bound to each scenario, the FVTF could be

An empty set in three cases:

• in case (a) above;
• in case (b) above, when the tangency between the CVF and the MVF does not
satisfy the TEV restriction;

• in case (c) above, when the CVF crosses the MVF only.

A single portfolio when the CVF is tangent to the CTF (portfolio K , where TEV =
T0 and VaR = V0).

A closed and bounded set in several cases:

• when the CVF crosses the CTF given by the segment and the left arc identified by
the two intersections;

• when the CVF crosses all the other frontiers. This boundary have a horseshoe-like
shape: the linear frontier crosses both the CTF and the MTF thus defining two arcs
on the left whose endpoints are joined by two segments;

• same as above, but the straight line passes through (at least) one intersection
between the oval and the hyperbolic boundaries;

• where the set is given by the two left arcs defined by the two intersections between
the CTF and the MTF. In this case the VaR rvlimit is not binding.

Clearly, an empty FVTF indicates that no admissible portfolio can satisfy the joint
limits on risk indicators, so these limits are incompatible. Otherwise, inside this fron-
tier, the asset manager has to face a trade-off: she can try to reduce the VaR via a
riskier active strategy that enlarges the TEV or try to reduce the relative risk, but this
implies a higher VaR near to that of the selected benchmark. Figure8 shows the various
scenarios in the (σP , μP ) space.

123



R. Lucchetti et al.

Fig. 8 CMTF and FVTF for different VaR bounds
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