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Abstract
A novel multivariate dynamic panel data analysis with correlated random effects 
is proposed for estimating high-dimensional parameter spaces. A semiparametric 
hierarchical Bayesian strategy is used to jointly address incidental parameters, endo-
geneity issues, and model mis-specification problems. The underlying methodol-
ogy involves an ad-hoc model selection based on conjugate informative proper 
mixture priors to select promising subsets of predictors affecting outcomes. Monte 
Carlo algorithms are then conducted on the resulting submodels to construct empiri-
cal Bayes estimators and investigate ratio-optimality and posterior consistency for 
forecasting purposes and policy issues. An empirical approach is applied to a large 
panel of economies, describing the functioning of the model. Simulations based on 
Monte Carlo designs are also performed to account for relative regrets dealing with 
cross-sectional heterogeneity.

Keywords Multidimensional data · Bayesian inference · Conditional forecasting · 
Incidental parameters · Tweedie correction · Multicountry analysis

1 Introduction

Dynamic panel data (DPD) models are widely used in empirical economics for fore-
casting individuals’ future outcomes (see, e.g., Hirano, 2002; Gu & Koenker, 2017b; 
Liu, 2018; Liu et al., 2020) and for controlling unobserved time-invariant individual 
heterogeneity (see, e.g., Chamberlain, 1984; Arellano & Bond, 1991 (linear case);  
Chamberlain, 2010; Arellano & Bonhomme, 2011 (non-linear case)). Such het-
erogeneity is an important issue, and failure to control for it results in misleading 
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inferences. This problem is even more severe when the unobserved heterogeneity 
may be correlated with covariates.

Consider a simple DPD model:

where i = 1,… ,N , t = 1,… , T  , yit and yi,t−1 are NT ⋅ 1 and N(T − 1) ⋅ 1 vectors 
denoting the outcomes and their first lags, �i is a N ⋅ 1 vector referring to individ-
ual–specific intercept with wi,t−1 = 1 , and uit ∼ N(0, �2) is a NT ⋅ 1 vector of inde-
pendent and identically distributed (i.i.d.) shocks.

Despite its widespread use, the model (1) faces some main limitations. This paper 
focuses on three related open research questions: the incidental parameters problem; 
high-dimensional settings; and nonlinear relationships. (i) Concerning the former, 
this arises from the presence of individual–specific effects ( �i ) in panel data models. 
These effects need to be estimated along with the other parameters of the model, 
and the problem becomes particularly pronounced when the time dimension (T) 
is small relative to the cross-sectional dimension (N). The challenges due to inci-
dental parameters are highly severe in dynamic panels where behavioural effects 
over time are jointly measured with individual–specific effects. While the inciden-
tal parameters to be estimated are consistent in least squares methods, maximum 
likelihood estimation leads to inconsistent estimates affecting the dynamics of data 
(see, for instance, Nickell, 1981). Solutions such as difference generalized method 
of moments (GMM), system GMM, and bias-corrected estimators involve analytical 
or bootstrap corrections to reduce the incidental parameters bias (Arellano & Bond, 
1991; Arellano & Bover, 1995; Blundell & Bond, 1998; Alvarez & Arellano, 2003; 
Arellano & Hahn, 2016, 2007; Bester & Hansen, 2009; Fernandez-Val, 2009; Hahn 
& Kuersteiner, 2011). (ii) A DPD model is not well-suited for high-dimensional set-
tings due to issues related to overfitting, leading to poor generalization to new data 
and hence resulting in unreliable and unstable estimates, multicollinearity, leading 
to imprecise estimates and difficulties in interpreting the effects of individual predic-
tors, and computational inefficiency, slowing down the analysis and making it dif-
ficult to apply standard techniques to very large datasets. Moreover, standard DPD 
models rely on parametric assumptions and linear relationships between variables 
that, in high-dimensional settings, may be too restrictive, leading to model mis-spec-
ification and biased estimates. Finally, as the dimensionality increases, the volume 
of the space increases exponentially, making the data sparser and more challenging 
to analyze. (iii) DPD models also fail to capture the complex and nonlinear relation-
ships present in real-world data due to linearity assumption, overlooking interaction 
effects, limited flexibility, incurring model mis-specification problems, endogeneity 
issues, without dealing with unobserved heterogeneity and omitted variable biases, 
and static structure, ignoring the possibility of time-varying relationships or state-
dependent dynamics. Methods like hierarchical Bayesian approaches, dynamic fac-
tor models, and semiparametric/nonparametric models generally provide powerful 
tools to address the challenges of high-dimensionality and complex nonlinear rela-
tionships (Hirano, 2002; Gelman & Hill, 2012; Forni et al., 2000; Norets & Pelenis, 
2012; Liu et al., 2020).

(1)yit = wi,t−1�i + �yi,t−1 + uit
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This paper aims to develop a computational approach to jointly deal with high-
dimensionality, incidental parameters problem, and nonlinearities. It focuses on a 
structural semiparametric hierarchical Bayesian approach to conduct inference in 
high-dimensional dynamic panel data with cross-sectional heterogeneity. The model 
is called the hierarchical dynamic panel Bayesian model with correlated random 
effects (HDPB-CRE) and is achieved by combining an implemented version of 
Pacifico (2020)’s analysis, which develops a robust open Bayesian (ROB) procedure 
for improving Bayesian model averaging (BMA) in multiple high-dimensional lin-
ear regression models, and the Liu et al. (2020)’s framework, which constructs point 
predictors using Tweedie’s formula for the posterior mean of heterogeneous coeffi-
cients under a correlated random effects distribution.

The ROB procedure is used to select the best number of predictors that affects 
outcomes when dealing with large paramater and model space and overfitting prob-
lems. It uses conjugate informative proper mixture (CIPM) priors to obtain posterior 
estimates. The term ‘proper’ refers to assigning different prior moments based on the 
observed data, which is particularly useful for accounting for dynamics when study-
ing time-varying data. Multicollinearity and complex relationships are also avoided 
because the shrinkage is performed on a set of informative priors (robust) and 
the posterior distributions are computed via Markov chains based on the Posterior 
model probabilities (PMPs) across every model solution (or combinations of predic-
tors). Given the observed data and prior beliefs, the PMPs refer to the probability 
that a particular model is the best one, where best stands for the model solution 
better fitting the data and hence predicting the outcomes. A PMP close to 1 implies 
strong evidence that a model solution is correct. In Pacifico (2020)’s analysis, the 
ROB procedure has been applied in a multivariate context to evaluate a structural 
panel VAR model. In a hierarchical framework, the procedure can be implemented 
within a multidimensional panel setting.

Empirical Bayes (EB) estimators combine the strengths of Bayesian methods with 
computational efficiency and simplicity. Indeed, empirical Bayes methods involve a 
two-step process to estimate hyperparameters by using maximum likelihood or sim-
ilar techniques, and then estimating the remaining parameters conditionally based 
on these hyperparameters. It is more efficient compared to the iterative sampling 
required—for example—in full Bayesian methods. EB approaches also simplify the 
prior specification by estimating hyperparameters directly from the data, making the 
procedure more straightforward to implement. For instance, in a high-dimensional 
dynamic panel data model, estimating the variances and covariances of random 
effects directly from the data simplifies the modeling process compared to specify-
ing complex hierarchical priors. CIPM priors allow for defining a simpler hierarchi-
cal structure to model time-varying coefficients, the covariance matrix, and the vola-
tility process. The latter is modeled by a stochastic process to reduce dimensionality 
and replace volatility changes with coefficient changes. The lagged distributions of 
the parameters are estimated using AutoRegressive coefficients in the procedure. 
Finally, correlated random effects are used to compute posterior means, addressing 
cross-sectional heterogeneity that affects outcomes.

Earlier works regarding empirical Bayes methods with parametric priors on 
heterogeneous parameters refer to Robbins (1964), Robert (1994), Brown and 
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Greenshtein (2009), and Jiang and Zhang (2009). More recently, nonparametric 
approaches have been developed by Liu et al. (2020) and Liu et al. (2019) (hereafter 
LMS) and Gu and Koenker (2017a, b) (hereafter GK). LMS aim to forecast a col-
lection of short time-series using cross-sectional information. Then, they construct 
point forecasts predictors using Tweedie’s formula1 for the posterior mean of hetero-
geneous individual–specific factors under a correlated random effects distribution. 
They show that the ratio optimality of point forecasts asymptotically converge to the 
one based on a nonparametric kernel estimate of the Tweedie correction. However, 
they replace the �i ’s distribution with a kernel density estimator that would perform 
less accurate forecasts than alternative estimates of the Tweedie correction such as 
nonparametric maximum likelihood estimation and finite mixture of normal distri-
butions. They also estimate relative regrets for these two alternative approaches via 
Markov chains simulations, but specifying bounds for the domain of the �i ’s and 
partitioning it into default setting bins. This compromises the estimates because of 
weak empirical forecast optimality limited to restrictive and constrained classes of 
models. GK use Tweedie’s formula to construct an approximation to the posterior 
mean of the heterogeneous parameters. They build on Kiefer and Wolfowitz (1956) 
and implement the empirical Bayes predictor based on a nonparametric maximum 
likelihood estimator of the cross-sectional distribution of the sufficient statistics. 
However, no theoretical optimality results are provided. In addition, neither LMS 
nor GK face variable selection problems and causality relationships in the shrinkage 
of large panel parameter spaces.

In this study, the multivariate panel data model is unbalanced and includes large 
cross-sectional dimension N and sufficiently large time-series T. Methodologically, 
Markov Chain Monte Carlo (MCMC) algorithms and implementations are used to 
construct posterior distributions and then perform cross-country conditional fore-
casts and policy issues. Theoretically, ratio-optimality and posterior consistency are 
also investigated to account for relative regrets when modelling individual–specific 
heterogeneity.

The main contributions of this paper can be summarized as follows. First, 
in a hierarchical framework, multivariate conjugate informative proper mix-
ture (mvCIPM) priors are used to select the best promising subset of covariates 
according to their PMPs, which denote the probability to better explain and thus 
fit the data in high-dimensional model classes. The mvCIPM priors are an imple-
mentation of the conjugate informative priors in Pacifico (2020) by adapting the 
prior specification strategy to large multidimensional (panel) setups with inciden-
tal parameters. The main thrust is to jointly deal with variable selection problems 
and causal relationships. The former stand for endogeneity issues (because of omit-
ted factors and unobserved heterogeneity), structural model uncertainty (because of 
some functional forms of mis-specification), and overfitting (when complex2 models 
always provide a somewhat better fit to the data than simpler models). Causality in 
dynamic panel data is assessed according to the Granger (non-)causality test (see, 
for instance, Dumitrescu & Hurlin 2012).

1 The formula is attributed to the astronomer Arthur Eddington and the statistician Maurice Tweedie.
2 The ’complexity’ stands, for example, for the number of unknown parameters.
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Second, to accomodate the correlated random coefficients model, I involve in 
the previous shrinking process an EB procedure, where the posterior mean of the 
�i ’s is expressed in terms of the marginal distribution of a sufficient statistic ( �̂�i(𝛽) ) 
estimated from the cross-sectional whole information (Tweedie’s formula). Deal-
ing with variable selection problems and causal inference, I implement the Liu et al. 
(2020)’s framework by constructing nonparametric Bayesian statistics through finite 
mixture approximation of multivariate (FMM) distributions. The latter are evaluated 
via MCMC integrations to (i) maximize the log likelihood function of the estimation 
procedure (expectation-maximization (EM)), (ii) use EB estimators to draw posteri-
ors for �̂�i(𝛽) from the joint distribution between some sufficient statistics designed 
for the �i ’s and indivudal outcomes (Metropolis–Hastings algorithm), and (iii) ana-
lytically compute posterior distributions for the time-varying estimates (Kalman-
Filter algorithm). In this context, lagged covariates and outcomes from AutoRegres-
sive (AR) processes are introduced on the right-hand side of the estimation model 
as external instruments to account for (potential) correlation between predictors 
and residual errors (see, e.g., Arellano & Bond, 1991).

Third, better conditional forecasts are involved in HDPB-CRE because of three 
main features: (i) the use of a semiparametric Bayesian approach modeling either 
time-varying and fixed effects; (ii) the use of a hierarchical framework to construct 
proper informative priors disentangling heterogeneous and common parameters; and 
(iii) the observation of incidental parameters treated as random variables possibly 
correlated with some of the predictors within the system.

An empirical application is conducted to highlight the functioning and perfor-
mance of the methodology. It builds on a pool of advanced and emerging economies 
and evaluates a large set of data including socioeconomic–demographic factors, 
policy tools, and economic–financial issues during the period 1990–2021. Forecast-
ing analysis is addressed to perform policy-relevant strategies safeguarding against 
(future) sudden outbreak on the global economy.

A simulated experiment using MCMC-based designs is also addressed to high-
light the performance of the estimating procedure with related works.

The remainder of this paper is organized as follows. Section  2 introduces the 
econometric model and the estimating procedure. Section 3 displays prior specifi-
cation strategy and posterior distributions accounting for empirical Bayes estima-
tor (Tweedie correction), ratio-optimality, and Markov Chain algorithms. Section 4 
describes the data and the empirical analysis. Section  5 presents the simulated 
experiment dealing with relative regrets for Tweedie correction. The final section 
contains some concluding remarks.

2  Dynamic Panel Data and Shrinking Process

2.1  Econometric Model

The baseline hierarchical DPD model, stacking for the sub-index parameters, is:
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where the subscripts i = 1, 2,… ,N are country indices, t = 1, 2,… , T  denotes time, 
yit is a NT ⋅ 1 vector of outcomes, yi,t−l and zi,t−l are N(T − �) ⋅M and N(T − �) ⋅ P 
matrices of predetermined ( m = 1, 2,… ,M ) and directly observed (endogenous) 
variables ( p = 1, 2,… ,P ) for each i, respectively, with l = 0, 1, 2,… , � , 𝛽l̃ and 𝛾l̃ 
are the autoregressive coefficients to be estimated for each i, with l̃ = 1,… , 𝜆 , xit 
is a NT ⋅ K vector of strictly exogenous factors for each i, with k = 1, 2,… ,K and 
� denoting the regression coefficients to be estimated, �i is a N ⋅ 1 heterogeneous 
intercept containing—for example—time-constant differences (such as territorial 
competitiveness, infrastructural system, competitiveness developments, macroeco-
nomic imbalances), and uit ∼ i.i.d.N(0, �2

u
) is a NT ⋅ 1 vector of unpredictable shock 

(or idiosyncratic error term), with E(uit) = 0 and E(uit ⋅ ujs) = �2
u
 if i = j and t = s , 

and E(uit ⋅ ujs) = 0 otherwise. In this study, I consider the same lag order (or optimal 
lag length) for both predetermined ( yi,t−l ) and observed variables ( zi,t−l).

Here, some considerations are in order: (i) the predetermined variables contain 
lagged control variables (e.g., economic status) and lagged outcomes (capturing, for 
example, the persistence); (ii) the �i ’s denote cross-sectional heterogeneity affecting the 
outcomes; (iii) correlated random effects matter and then �i ’s are possibly correlated 
with some of the covariates within the system; (iv) the roots of l̃(L) = 0 lie outside the 
unit circle so that the AR processes involved in the model (2) are stationary, with L 
denoting the lag operator; (v) the xit ’s strictly exogenous factors contain dummy vari-
ables to test—for example—the presence of structural breaks or policy shifts; and (vi) 
the instruments are fitted values from AR parameters based on all the available lags 
of the time-varying variables. In this study, the order of integration and the optimal 
lag length have been set using the the Augmented Dickey–Fuller (ADF) test for each 
i and the Arellano’s test (see, for instance, Arellano, 2003; Arellano & Honore, 2001), 
respectively.

Let the stationarity hold in (2), the time-series regressions would be valid and the 
estimates feasible. However, some moment restrictions need to hold to address exact 
identification in a context of correlated random effects and estimate 𝛽l̃ and 𝛾l̃ for T ≥ 3 
(see, for instance, Anderson & Hsiao, 1981; Arellano & Honore, 2001; Blundell & 
Bond, 1998). In this study, I assume that �i and ui,t are independently distributed across 
i and have the familiar error components structure:

Then, I also assume the standard assumption concerning the initial conditions yi,t=1:

(2)yit = �lyi,t−l + �xit + �lzi,t−l + �i + uit

(3)
E(�i) = 0,E(uit) = 0,E(uit ⋅ �i) = 0 for i = 1,… ,N and t = 2,…T

(4)E(uit ⋅ uis) = 0 for i = 1,… ,N and t ≠ s

(5)E(yi,t=1 ⋅ uit) = 0 for i = 1,… ,N and t = 2,…T
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2.2  Multivariate ROB Procedure in Longitudinal Data

When cross-sectional dimension (N) and time-series (T) are high-dimensional, the 
estimates of the common parameters ( �l , � �l, �2

u
 ) in (2) would result biased and 

inconsistent. Furthermore, leaving the individual heterogeneity unrestricted, the 
number of individual–specific effects would grow with the sample size and be 
highly contaminated by the shock uit , leading to inaccurate forecasts. Last but not 
least, when dealing with time-varying and high-dimensional data, variable selection 
problems such as overshrinkage/undershrinkage, model mis-specification problems, 
endogeneity issues, and model uncertainty3 also matter in DPD models, resulting 
in inconsistent estimates. The multivariate ROB procedure involved in this study 
addresses the above-mentioned issues. It moves forward three steps. (i) MCMC-
based PMPs are conducted to obtain a reduced subset of promising model solutions 
(or combination of predictors) fitting the data when dealing with variable selection 
problems. (ii) A further shrinkage is conducted to obtain a smaller subset of prom-
ising submodels with statistically significant predictive capability (accurate fore-
cast). Here, nonparametric Bayesian statistics are also addressed through MCMC 
implementations to model and quantify correlated random effects in large longitu-
dinal data. (iii) A final shrinkage is addressed according to the Granger (non-)cau-
sality test in multivariate dynamic panel data. The idea is to exclude the predictors 
when no causal link holds across units within the panel (homogeneity under the 
null hypothesis); conversely, whether highly strong causal links matter for a sub-
group of units (heterogeneity under the alternative), the same parameters should be 
taken into account to deal with overestimation of effect sizes (or individual contribu-
tions). In this study, the optimal lag length testing Granger-causality is set using the 
Arellano’s test. This latter step refers to the main novelty with respect to Pacifico 
(2020)’s analysis.

In a hierarchical panel structure, the use of a multivariate shrinking procedure 
helps to manage the complexity, mainly when dealing with high-dimensional data, 
and then improve the reliability of model parameter estimates. Overall, by stabiliz-
ing estimates,4 borrowing strength across groups,5 and penalizing complexity,6 the 
multivariate shrinkage procedure affects the marginal likelihood of models and 
hence the Posterior Model Probabilities, improving estimation accuracy and inter-
pretability. This differential impact leads to varying magnitudes of posterior prob-
abilities, favoring models that balance fit and parsimony effectively.

Given the HDPB-CRE in (2), I decompose the vectors of the observed endogenous 

variables: yi,t−l =
[
yo

�

i,t−l
, yc

�

i,t−l

]�

 , with yo�
i,t−l

 denoting lagged outcomes to capture the per-

3 Model uncertainty matters when a given model is set to be true without estimating the evidence for 
alternative model solutions.
4 Shrinkage reduces the variance of parameter estimates, leading to more stable and reliable estimates. 
This can improve the model fit by avoiding overfitting.
5 By pooling information across groups and individuals, shrinkage allows for better estimation in each 
subgroup, improving the overall model fit.
6 Hierarchical priors implicitly penalize model complexity by shrinking parameters towards common 
values, which can make simpler models more favorable in terms of posterior probability.
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sistence and yc�
i,t−l

 including lagged control variables such as general economic condi-

tions; and zi,t−l =
[
zs

�

i,t−l
, z

p�

i,t−l

]�

 , referring to other lagged factors such as socioeconomic 

conditions ( zs�
i,t−l

 ) and policy implications ( zp
�

i,t−l
 ). Then, I combine the (non-)homogene-

ous parameters into the vector � =
(
�o

�

l
, �c

�

l
, �

�

, �s
�

l
, �

p�

l

)�

.
In order to model the key latent heterogeneities ( �i ) and observed determinants 

( yi,t−l , xit , zi,t−l ) when dealing with high-dimensional analysis, I define the conditioning 
set at period t ( cit ) and the structural density ( D(yit|⋅) ) as:

and

The error terms ( uit ) are individual-time-specific shocks characterized by zero mean 
and homoskedastic Gaussian innovations. In a unified and hierarchical framework, I 
combine the individual heterogeneity into the vector �i =

(
�i, �

2
u

)
 under cross-sec-

tional homoskedasticity. Assuming correlated random coefficients model, �i and ci0 
could be correlated with each other, with:

Given these primary specifications, the HDPB-CRE model in (2) would be less par-
simonious and harder to implement due to high-dimensional parameter spaces.

Let F  be the full panel set containing all (potential) model solutions, the first 
step of the multivariate ROB procedure is addressed by imposing an auxiliary indi-
cator variable �h , with h = 1, 2,… ,m , containing every possible 2m subset choices, 
where �h = 0 if �h is small (absence of h-th covariate in the model) and �h = 1 if �h is 
sufficiently large (presence of h-th covariate in the model). According to the Pacifico 
(2020)’s framework, I match all potential candidate models to shrink both the model 
space and the parameter space. The shrinking jointly deals with overestimation of effect 
sizes (or individual contributions) and model uncertainty (implicit in the procedure) by 
using Posterior Model Probabilities for every candidate model. They can be defined as:

where pi(Mh) is the marginal prior distribution of Mh , 
�(y|Mh) = ∫

B
�(y|Mh, �h) ⋅ �(�h|Mh, y)d�h is the marginal likelihood, with 

�(�h|Mh, y) referring to the conditional prior distribution of �h . With N high-dimen-
sional and T sufficiently large, the calculation of the integral �(y|Mh) is unfeasible 
and then Markov Chain Monte Carlo algorithms need to be conducted.

(6)cit =
(
yo
i,0∶t−l

, yc
i,0∶t−l

, zs
i,0∶t−l

, z
p

i,0∶t−l
, xi,0∶t

)

(7)D
(
yit|yi,t−l, xit, zi,t−l,�i

)
= D

(
yit|yi,t−l, xit, zi,t−l, yi0,�i

)

(8)ci0 =
(
yo
i,0
, yc

i,0
, zs

i,0
, z

p

i,0
, xi,0∶T

)

(9)�(Mh�y) =
�(Mh) ⋅ �(y�Mh)∑

Mh∈M
�(Mh) ⋅ �(y�Mh)

with Mh ∈ M
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The subset containing the best model solutions will correspond to:

where Mj denotes the submodel solutions of the HDPB-CRE in (2), with Mj < Mh , 
j ≪ h , {1 ≤ j < h} , and � is a threshold chosen arbitrarily for sufficient poste-
rior consistency. With high-dimensional N ( > 1000 ), a threshold sufficiently small 
( < 1% ) would ensure that the PMPs concentrate on the true model. In this study, the 
convergence is found with � = 0.5%.

The second step consists of reducing the model space S to obtain a smaller 
subset of best submodel solutions:

where M𝜉 ≪ Mj , 𝜋(Mj|yi = yi, �̇�) denotes the PMPs, with �̇� denoting a new auxil-
iary variable containing the only best model solutions in the subset S and �̇� refer-
ring to a new arbitrary threshold to evaluate the probability of the model solutions in 
S performing the data (PMPs). In this study, I still use � = 0.5%—independently of 
N—for sufficient prediction accuracy explaining the data.

Finally, the multivariate ROB procedure comes to a conclusion (third step) 
once a further shrinkage is conducted according to the panel Granger (Non-)Cau-
sality test in order to obtain the smallest final subset of best promising submodel 
solutions ( M𝜉∗ ⊂ E ). More precisely, this last step consists of including the only 
candidate predictors displaying highly strong causal links for at least a subgroup of 
units (heterogeneity under the alternative) with p-value ≤ �̇� . To deal with endogene-
ity issues and mis-specified dynamics, all available lags of the best candidate pre-
dictors—obtained in the previous step—are included as instruments.

The final model solution to have to be considered for performing forecasting and 
policy-making will correspond to one of the submodels M�∗ with higher log natural 
Bayes Factor (lBF):

In this analysis, the lBF is interpreted according to the scale evidence in Pacifico 
(2020), but with more stringent conditions:

(10)S =

{
Mj ∶ Mj ⊂ S,S ∈ F,Θj ⊂ Θh,

𝜛∑
j=1

𝜋

(
Mj|yi = yi,𝜒

)
≥ 𝜏

}

(11)E =

{
M𝜉 ∶ M𝜉 ⊂ E, E ∈ S,

𝜛∑
j=1

𝜋

(
Mj|yi = yi, �̇�

)
≥ �̇�

}

(12)lBF�∗,� = log

{
�(M�∗ |yi = yi)

�(M�|yi = yi)

}

(13)

⎧⎪⎨⎪⎩

0.00 ≤ lB�∗,� ≤ 4.99 no evidence for submodel M�∗

5.00 ≤ lB�∗,� ≤ 9.99 moderate evidence for submodel M�∗

10.00 ≤ lB�∗,� ≤ 14.99 strong evidence for submodel M�∗

lB�∗,� ≥ 15.00 very strong evidence for submodel M�∗
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3  Semiparametric Hierarchical Bayesian Approach

3.1  Prior Specification Strategy and Tweedie’s Formula

The variable specification strategy entails estimating �h and �h as posterior means 
(the probability that a variable is in the model). All observal variables in cit and 
individual heterogeneity in �i are hierarchically modelled via mvCIPM priors.

In Bayesian hierarchical models, the prior is designed to reflect the different lev-
els of the hierarchy and the relationships between them. More precisely, let a hierar-
chical model typically involve parameters at multiple levels, the data have been clus-
tered within groups, where each group includes a pool of parameters defined in the 
conditioning set cit . According to model (2), two different levels of parameters have 
been defined: a group–level parameters (higher-level), describing the characteristics 
of the groups/clusters as a whole ( � ) and individual–level parameters (lower-level), 
denoting individual–specific characteristics within each group ( �i).

In this context, the MROB procedure involved in the shrinking process is able to 
deal with variations in cluster characteristics possibly affecting the choice of priors. 
Indeed, in the case of homogeneous clusters, the inclusion of the thresholds � and �̇� 
in the hierarchical panel set allows the use of tighter priors around the group–level 
parameters, reflecting the belief that there is not much variation between clusters. 
Conversely, if there is significant variation between clusters (heterogeneous clus-
ters), greater variability among the group–level parameters is allowed through the 
use of mvCIPM priors. These latter are used to construct posterior distributions to 
improve their estimates, especially when the data is limited.

The CIPM priors are so defined:

where

(14)�(�,�,�) = �(�|�) ⋅ �(�i|� , yi0) ⋅ �(�2
u
|�) ⋅ �(�)

(15)𝜋

(
𝜃|�−1

)
= N

(
�̄�, �̄�

)

(16)

�(�i|�) = N
(
��i

,Ψ�i

)
���� ��i

∼ N
(
0, �

)
��� Ψ�i

∼ IG

(
�

2
,
�

2

)

(17)�(yi0|�i) = N(0, �)

(18)�(�) = w|�| ⋅
(

h

|�|
)−1

(19)𝜋(𝜎2
u
) = IG

(
�̄�

2
,
𝜈

2

)
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where N(⋅) and IG(⋅) stand for normal and inverse-gamma distribution, respectively, 
�−1 refers to the cross-sectional information available at time −1 , � in (17) refers to 
the decay factor, and w|�| in (18) denotes the model prior choice related to the sum 
of the PMPs (or Prior Inclusion Probabilities) with respect to the model size |�| , 
through which the � ’s will require a non-0 estimate or the � ’s should be included 
in the model. The decay factor usually varies in the range [0.9–1.0] and controls the 
process of reducing past data by a constant rate over a period of time. In this way, 
one would weight more according to model size and—setting w|�| large for smaller 
|�|—assign more weight to parsimonious models.

All hyperparameters are known. More precisely, collecting them in a vector �̃� , 
where �̃� =

(
�̄�, �̄�, 𝜁 ,𝜑, 𝜀, 𝜅,w|𝜒|, �̄�, 𝜈

)
 , they are treated as fixed and are either 

obtained from the data to tune the prior to the specific applications (such as 
𝜑, 𝜅,w|𝜒|, �̄� ) or selected a priori to produce relatively loose priors (such as �̄� , 
�̄�, 𝜁 , 𝜀, 𝜈 ). Here, w|�| is restricted to a benchmark prior max

(
NT , |�|

)
 according to 

the non-0 components of �.
To accomodate the correlated random coefficients model where the individ-

ual–specific heterogeneity ( �i ) can be correlated with the conditioning variables ci0 
and yi0 , I use an empirical Bayes procedure where the posterior mean of the �i ’s is 
expressed in terms of the marginal distribution of a sufficient statistic ( �̂�i(𝜃) ) esti-
mated from the cross-sectional whole information (Tweedie’s formula). The main 
difference between an empirical and fully Bayesian approach is that the former 
picks the �i distribution by maximizing the Maximum Likelihood (ML) of the data,7 
whereas a fully Bayesian method constructs a prior for the correlated random effects 
and then evaluates it in view of the observed panel data.8 Even if the fully Bayesian 
approach tends to be more suitable for density forecasting and more easily extended 
to the non-linear case, it would be a lot more computationally intensive.

In this study, I implement the EB predictor used in Liu et al. (2020) by using non-
parametric Bayesian statistics to model and quantify correlated random effects. The 
latter are addressed through finite mixture approximation of multivariate (FMM) 
distributions, evaluated via MCMC integrations in order to maximize the log likeli-
hood function (expectation-maximization (EM)) and then use EB estimators to draw 
posteriors for �̂�i(𝜃) from the joint distribution between the �i ’s sufficient statistic and 
individual outcomes (Metropolis–Hastings algorithm).

Given the CIPM priors in (15)–(19), I define the compound risk and loss func-
tions—under which the forecasts will be evaluated—accounting for expectations 
over the observed trajectories Yi =

(
y0∶T
1

,… , y0∶T
N

)
 , with y0∶T

i
=
(
yi0, yi1,… , yiT

)
 , 

the unobserved heterogeneity ( �i = �1,… ,�N ), and the future shocks 
ui,T+k =

(
u1,T+k,… , uN,T+k

)
:

7 See, e.g., Chamberlain and Hirano (1999), Hirano (2002), Lancaster (2002), Jiang and Zhang (2009), 
and Gu and Koenker (2017a, b).
8 See, for instance, Liu (2018) and Liu et al. (2020) (linear case); and Liu et al. (2019) (non-linear case).
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where LN

�
ŷi,T+k, yi,T+k

�
=
∑N

i=1

�
ŷi,T+k − yi,T+k

�2

 denotes the compound loss 
obtained by summing over the units i the forecast error losses ( ̂yi,T+k − yi,T+k ), with 
ŷi,T+k = (ŷ1,T+k,… , ŷN,T+k)

� is a vector of k-period-ahead forecasts.
In the compound decision theory, the infeasible oracle forecast (or benchmark 

forecast) implies that the �i ’s and the distribution of the unobserved heterogeneity 
( �(�i, yi0) ) are known, the trajectories ( Yi ) are observed, and the values of the �i ’s are 
unknown across units i. Moreover, the integrated risk in (20) is minimized perform-
ing individual–specific forecasting that minimizes the posterior risk for each Yi . Thus, 
according to the Liu et al. (2020)’s framework, the posterior risk can be defined as:

where � (Yi,�i,ui,T+k)

�,�,�(⋅)
[yi,T+k] is the posterior predictive variance of yi,T+k . The optimal 

predictor would be the mean of the posterior predictive distribution:

where the acronym op stands for ’optimal’. Then, the compound risk in (20) associ-
ated with the infeasible oracle forecast can be rewritten as:

The optimal compound risk in (23) consists of two components: uncertainty con-
cerning the individual–specific heterogeneity on the observations i and uncertainty 
with respect to the error terms. Because of the infeasible benchmark forecast, the 
parameter vectors ( � , � ) and the CRE distribution ( �(⋅) ) are unknown. Thus, the 
posterior mean �(Yi,�i)

�,�,�(⋅)
[�i] in (22) is assessed through Tweedie’s formula by evaluat-

ing the marginal distribution of a sufficient statistic of the heterogeneous effects. The 
likelihood function associated with the multivariate HDPB-CRE in (2) is:

where �̂�i(𝜃) denotes the sufficient statistic and equals:

(20)R

(
ŷi,T+k

)
= �

(YN ,𝜇i,ui,T+k)

𝜃,𝜙,𝜋(⋅)

[
LN

(
ŷi,T+k, yi,T+k

)]

(21)
�
(YN ,𝜇i,ui,T+k)

𝜃,𝜙,𝜋(⋅)

[
LN

(
ŷi,T+k, yi,T+k

)]
=

N∑
i=1

{(
ŷi,T+k − �

(Yi,𝜇i,ui,T+k)

𝜃,𝜙,𝜋(⋅)
[yi,T+k]

)2

+

+ �
(Yi,𝜇i,ui,T+k)

𝜃,𝜙,𝜋(⋅)
[yi,T+k]

}

(22)ŷ
op

i,T+k
= �

(Yi,𝜇i,ui,T+k)

𝜃,𝜙,𝜋(⋅)
[yi,T+k] = �

(Yi,𝜇i)

𝜃,𝜙,𝜋(⋅)
[𝜇i] + (𝜃 ⋅ cit)

(23)R
op = �

(Yi,�i,ui,T+k)

�,�,�(⋅)

{ N∑
i=1

(
�
(Yi,�i)

�,�,�(⋅)
[�i] + �2

u

)}

(24)

𝜋

(
y1∶T
i

|yi0,𝜇i, 𝜃
)
∝ exp

{
−

1

2𝜎2
u

T∑
t=1

(
yit − (cit−l|𝜒)𝜃t − 𝜇i(𝜃)

)2}
∝

{
−

T

2𝜎2
u

(
�̂�i(𝜃) − 𝜇i

)2}
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According to Bayes’s theorem, the posterior distribution of �i can be obtained as:

The last step to obtain Tweedie’s formula is to differentiate the equation 
𝜋

(
𝜇i|�̂�i, yi0, 𝜃

)
 in (26) with respect to �̂�i and solve the equation for the posterior 

mean �(Yi,�i)

�,�,�(⋅)
[�i] in (22). Thus, Tweedie’s formula equals:

where the second term in (27) denotes the correction term capturing heterogene-
ous effects of the prior of �i ( �(⋅) ) on the posterior. It is expressed as a function of 
the marginal density of �̂�i(𝜃) conditional on yi0 and � ; contrary to the full Bayesian 
approach, where one needs to avoid the deconvolution problem that disentangle the 
prior density �(�i|yi0) from the distribution of the error terms ( uit).

3.2  Tweedie Correction and MCMC Implementations

Tweedie correction entails substituting the unknow parameters � and the joint distri-
bution between the �i ’s sufficient statistic and individual outcome values 
𝜋

(
�̂�i(𝜃), yi0

)
 in (27) by estimates. According to the multivariate ROB procedure, the 

cross-sectional information uploaded within the system is set into E . In dynamic 
panel data, consistent estimates of the unkown parameters � can be obtaining 
through genelarized method of moments (GMM) estimators. In this study, they cor-
respond to the AR(� ) coefficients related to predetermined and endogenous varia-
bles.9 Let the stationarity and moment conditions in (3–5) hold in the system, the 
time-series regressions are valid and GMM estimators are feasible. Concerning the 
density 𝜋

(
�̂�i(𝜃), yi0

)
 , I estimate it by using FMM distributions:

where ��(⋅) is the conditional density distribution of heterogeneous effects with sam-
ple size |�| . In this way, I can account for the whole cross-sectional information to 
obtain estimates of (non-)homogenous parameters � (first step) and density ��(⋅) 

(25)�̂�i(𝜃) =
1

T

T∑
t=1

(
yit − (𝜃 ⋅ cit−l)

)

(26)𝜋

(
𝜇i|y0∶Ti

, 𝜃
)
= 𝜋

(
𝜇i|�̂�i, yi0, 𝜃

)
=

𝜋

(
�̂�i|𝜇i, yi0, 𝜃

)
⋅ 𝜋

(
𝜇i|yi0

)

exp

{
ln
(
𝜋(�̂�i|yi0)

)}

(27)�
(Yi,𝜇i)

𝜃,𝜙,𝜋(⋅)
[𝜇i] = �̂�i(𝜃) +

𝜎2
u

T
⋅

𝜕

𝜕�̂�i(𝜃)
ln
(
�̂�i(𝜃), yi0

)

(28)𝜋mix

(
�̂�i, yi0 | |𝜒|, ci0

)
= |𝜒| ⋅ 𝜋𝜉

(
�̂�i, yi0 | ci0

)
���� |𝜒| > 0

9 See, e.g., Arellano (2003), Arellano and Honore (2001), Arellano and Bover (1995), and Blundell and 
Bond (1998).
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(second step). Here, I focus on only the best promising submodels achieved 
through the shrinking process, working with sufficiently high posterior consistency.

The FMM distributions and their moments (means and covariance matrices) are 
evaluated by maximizing the log-likelihood function via an expectation-maximiza-
tion (EM) algorithm. More precisely, I suppose m̄ regimes in which heterogeneous 
effects ( �i ) can vary in each submodel solution, where m̄ = 0, 1,… ,� is close to |�| , 
with 0 indicating the uninformative model where heterogeneous effects do not affect 
outcomes (e.g., DPD with fixed effects), and m̄ ⊂ E . Then, I use Metropolis–Hast-
ings algorithm10 to draw posteriors for �̂�i from the (proposal) joint density distribu-
tion 𝜋m̄ = |𝜒| ⋅ 𝜋∗

𝜉

(
�̂�m̄
i
, ym̄

i0
| cm̄

i0

)
 , with probability �m̄ equal to:

where �∗
�
 stands for the conditional density distribution of heterogeneous effects 

involved in the final model solution (third step).
Let |�|∗ be the sample size according to the uninformative model in which neither 

(non-)homogeneous parameters nor unobserved effects achieve sufficient posterior 
consistency, and �∗

t
= 1

i be a vector of ones, the probability function takes the form:

where

with �(�∗
t
, �t) displaying the probability to accept or reject a draw11 and �∗(⋅) denot-

ing the density distribution according to sample size |�|∗ . In this way, I obtain the 
same probability that each submodel M� would be true. In addition, since posterior 
distributions correspond—by construction—to the FMM distributions, I define three 
possible intervals—displayed in (32)—in which the posterior predictive variance of 
𝜇i

(
�
(Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
[𝜇i]

)
 can vary according to the model size ( |�| ). Thus, I am able to 

obtain exact posteriors on the predictive variance of the �i’s, by taking into account 
both the model space and the parameter space. According to the shrinking process 
(Sect. 2.2), I ensure that lower variability will be associated with less relative regret 
during the estimating procedure, achieving more accurate forecasts.

(29)�m̄ =

𝜋

(
�̂�m̄
i
, ym̄

i0
| �̂�m̄−l

i
,Yi,

{
𝜃t

}T

t=1
, cm̄

i0

)
⋅ 𝜋m̄−l

𝜋

(
�̂�m̄−l
i

, ym̄
i0
| �̂�m̄−l

i
,Yi,

{
𝜃t

}T

t=1
, cm̄

i0

)
⋅ 𝜋m̄

(30)�

(
�t | Yi

)
⋅ �∗(�∗

t
| �t) ⋅ �(�∗t , �t) = �

(
�∗
t
| Yi

)
⋅ �∗(�t | �∗t )

(31)�(𝜃∗
t
, 𝜃t) = min

[
𝜋(𝜃∗

t
| Yi) ⋅ 𝜋

∗(𝜃t | 𝜃∗t )
𝜋(𝜃t | Yi) ⋅ 𝜋

∗(𝜃∗t | 𝜃t)
, 1

]
≅ �m̄

10 See, for instance, Levine and Casella (2014).
11 See, for instance, Jacquier et al. (1994) and Pacifico (2021) for some applications to multicountry and 
multidimensional time-varying panel setups with stochastic and time-varying volatility, respectively.
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3.3  Ratio Optimality and Posterior Distributions

Ratio optimality is a necessary tool to be addressed for evaluating empirical forecast 
optimality. However, it tends to be very weak when dealing with large parameter 
spaces due to limited to restrictive classes of models. According to the multivarite 
ROB procedure involved in (2), I am able to work on a restricted set of submodels 
well specified in order to obtain better available forecast models. In this context, the 
optimal point forecasts’ objective is predicting the outcomes ( yit ) by minimizing the 
expected loss in (23). Methodologically, it means proving that the predictor ŷi,T+k 
achieves �0-ratio-optimality uniformly for priors 𝜋m̄ ⊂ E , with �0 ≥ 0 . Thus,

In (33), some considerations are in order. (i) The predictor ŷi,T+k in (20) is con-
structed by replacing � with a consistent estimator �̂� (estimated AR(� ) coefficients) 
and individual outcome values 𝜋

(
�̂�i(𝜃), yi0

)
 in (27) with estimates based on the 

FMM distributions. (ii) Taking expectations over y0∶T in (23), it follows that optimal 
point forecasts aim to work well on average rather than on a particular value (or sin-
gle draw) of the outcomes. More precisely, the individual–specific forecasts do not 
consist of estimating the realization of the outcomes themselves, but rather a func-
tion of their predictive conditional distributions. (iii) The prediction accuracy of 
optimal forecasts can be assessed through the mean squared errors �
MSE(�̂�) = E�̂�

�∑N

i=1
(ŷi,T+k − yi,T+k)

2
��

 , computed as the average of the squared 
forecast errors for all observations assigned to the model class M�∗ . For high � (Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
 

(e.g., with 𝜉∗ > 10 ), the further �̂�i ’s will be in the tails of their distribution, resulting 
in larger MSEs. Conversely, the MSEs will be smaller for less � (Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
 (e.g., with 

�∗ ≤ 5 ) and moderate for quite high � (Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
 (e.g., with 5 ≤ �∗ ≤ 10 ). (iv) In a sem-

iparametric context, whether model classes in E are high dimensional (e.g., highly 
large heterogeneity among subgroups), the expected loss in (23) is minimized as 
N → ∞ and 𝜋m̄ will converge to a limit that is optimal. Indeed, the final model 

(32)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.5 < �
(Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
[𝜇i] ≤ 1.0

(high dimension)

with 𝜉∗ > 10 (�������������)

0.1 ≤ �
(Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
[𝜇i] ≤ 0.5

(moderate dimension)

with 5 < 𝜉∗ ≤ 10 (���������� − �����������)

0.0 ≤ �
(Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
[𝜇i] < 0.1

(small dimension)

with 𝜉∗ ≤ 5 (���� − �����������)

(33)lim sup
N→∞ 𝜋m̄⊂E

R

(
ŷi,T+k,𝜋

m̄
)
−Rop

(
𝜋m̄

)
{
N𝜉∗ ⋅ �

Yi,𝜇i

𝜃,𝜙,𝜋m̄

(
�
(Yi,𝜇i)

𝜃,𝜙,𝜋m̄ [𝜇i]
)}

+ N(𝜉∗)𝜗0

≤ 0
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solution will correspond to the oracle forecast of the prior (or correlated random 
effect distribution) that most favors the true model (Tweedie correction). For a suffi-
ciently large sample size, the EB method will give a solution close to the Bayesian 
oracle, by exploiting information more efficiently than a fixed choice of the �i ’s 
(e.g., full Bayesian solutions).12 (v) The ratio-optimality in (33) allows for the pres-
ence of estimated parameters in the sufficient statistic �̂�i and uniformity with respect 
to the correlated random effect density 𝜋m̄ , allowed to have unbounded support.

For m̄ > 0 , the resulting predictor is:

with m̄ < ∞ according to all possible submodel solutions M𝜉∗ ⊂ E.
The posterior distributions for �̃� ( ̈̃𝜔 ) are calculated by combining the prior with 

the (conditional) likelihood for the initial conditions of the data. The resulting func-
tion is then proportional to

where y0∶T
i

= (yi0, yi1,… , yiT ) denotes the data and ̈̃𝜔 refers to the unknowns whose 
joint distributions need to be found.

Despite the dramatic parameter reduction implicit in the shrinking process, the 
analytical computation of posterior distributions ( ̈̃𝜔|ŷi,T+k) is unfeasible, where ŷi,T+k 
denotes the expectations of outcomes associated with the infeasible oracle forecast 
to be estimated (Eq. 22). Thus, I include a variant of the Gibbs sampler approach—
the Kalman-Filter technique—to analytically draw conditional posterior distribu-
tions of (𝜃1, 𝜃2,… , 𝜃T |ŷi,T+k, ̈̃𝜔−𝜃t

) , with ̈̃𝜔−𝜃t
 referring to the vector ̈̃𝜔 but excluding 

the parameter �t . Starting from �̄�T|T and �̄�T|T , the marginal distributions of �t can be 
then computed by averaging over draws in the nuisance dimensions, and the Kalman 
filter backwards can be run to compute posterior distributions for ̈̃𝜔:

where

(34)ŷi,T+k =

[
�̂�m̄
i
(𝜃) +

�̂�2
u

T
⋅

𝜕

𝜕�̂�m̄
i
(𝜃)

ln
(
�̂�m̄
i
(𝜃), ym̄

i0

)]m̄
+ �̂�yit

(35)

L
(
y0∶T
i

| ̈̃𝜔
)
∝ exp

{
−

1

2

[ T∑
t=1

(
yit − (cm̄

it
|�̇�)�̂�t − �̂�m̄

i
(�̂�)

)�
]
⋅ (�̂�2

u
)−1⋅

[ T∑
t=1

(
yit − (cm̄

it
|�̇�)�̂�t − �̂�m̄

i
(�̂�)

)]}

(36)𝜃t|𝜃t−l, ŷi,T+k, ̈̃𝜔−𝜃t
∼ N

(
̈̄𝜃t|T+k, ̈̄𝜌t|T+k

)

(37)̈̄𝜃t|T+k =
[(

̈̄𝜌−1
t|T+k ⋅ �̄�

)
+

T∑
t=1

(
(cm̄

it
|�̇�)� ⋅ (�̂�2

u
)−1 ⋅ (cm̄

it
|�̇�)

)
�̂�t

]

12 See, for instance, George and Foster (2000) and Scott and Berger (2010).
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with

The Eqs. (38) and (39) denote the variance-covariance matrix of the conditional dis-
tribution of ̈̄𝜃t|T+k and the GMM estimator, respectively. By rearranging the terms, 
Eq. (37) can be rewritten as

where ̈̄𝜃t|T+k and ̈̄𝜌t|T+k stand for the smoothed k-period-ahead forecasts of �t and of 
the variance-covariance matrix of the forecast error, respectively.

Generated a random trajectory for 
{
�t

}T

t=1
 from N

(
̈̄𝜃T|T , ̈̄𝜌T|T

)
13 in (36), the other 

posterior distributions can be defined as:

Here, some considerations are in order.
In Eq. (41), 𝛿𝜇i

∼ N
(
0, 𝜁

)
 and Ψ̃𝜇i

∼ IG
(
�̄�∕2, �̄�∕2

)
 , where 𝜁 = 𝜁 + (u

�

it
uit) , 

�̄� = 𝜑 ⋅ �̇� , and �̄� = 𝜀 ⋅ �̇� , with ( � , � ) denoting the arbitrary scale parameters (suffi-
ciently small) and � referring to the arbitrary degree of freedom (chosen to be close 
to zero). In this analysis, Ψ̃𝜇i

 is obtained by using the (proposal) joint posterior den-
sity ( 𝜋m̄ ) sampled via EM algorithm, (� , �) ≅ 0.001 , and � ≅ 0.1.

In Eq. (42), �̂� = 𝜅 ⋅ �
(Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
[𝜇i] , with � and � (Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
[⋅] denoting the arbitrary 

scale parameter and the posterior predictive variance of �i , respectively. In this anal-
ysis, � ≅ 1.0 and � (Yi,𝜇i)

𝜃,𝜙,𝜋(m̄)
[𝜇i] is obtained according to the sample size |�| as 

described in (32).

(38)̈̄𝜌t|T+k =
[
Ih −

(
�̄� ⋅ ̈̄𝜌−1

T+k|t
)]

⋅ �̄�

(39)�̂�t =
[
(cm̄

it
|�̇�)� ⋅ (�̂�2

u
)−1 ⋅ (cm̄

it
|�̇�)

]−1
⋅

[
(cm̄

it
|�̇�)� ⋅ (�̂�2

u
)−1 ⋅ yit

]

(40)̈̄𝜃t|T+k =
[(

̈̄𝜌−1
t|T+k ⋅ �̄�

)
+

( T∑
t=1

(cm̄
it
|�̇�)� ⋅ (�̂�2

u
)−1 ⋅ yit

)]

(41)𝜋(�̂�i|ŷi,T+k, �̂�t) ∼ N
(
𝛿𝜇i

, Ψ̃𝜇i

)

(42)𝜋(ŷi0|�̂�m̄
i
) = N(0, �̂�)

(43)𝜋(�̇�) = w̃|𝜒| ⋅
(

𝜉∗

|𝜒|
)−1

(44)𝜋(�̂�2
u
|ŷi,T+k) = IG

(
̈̄𝜔

2
,
�̃�

2

)

13 See, for instance, Carro (2007).
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In Eq. (43), w̃|𝜒| refers to the model posterior choice according to the sum of the 
PMPs, with w̃|𝜒| = max∗(NT , |𝜒|) accounting for the non-0 components of �̇�.

In Eq. (44), ̈̄𝜔 = �̄� + ̂̄𝜔 and �̃� = 𝜈 + �̂� , with �̄� and � denoting the arbitrary degrees 
of freedom (sufficiently small) and the arbitrary scale parameter, respectively, 
̂̄𝜔 =

�∑T

t=1
log(𝜏t)∕t

�
+ log

�∑T

t=1
(1∕𝜏t)

�
− log(t) and �̂� = (t ⋅ ̂̄𝜔)∕

�∑T

t=1
(1∕𝜏t)

�
 

referring to the Maximum Likelihood Estimates (MLEs). This latter is obtained by 
numerically computing ̂̄𝜔 . In this analysis, �t = {�1,… , �T} is the random sample 
from the data {0,T} , �̄� ≅ 0.1 , and � ≅ 0.001.

Finally, the last two hyperparameters to be defined are �̄� = �̂�0 , with �̂�0 denoting 
the GMM estimators of Eq. (2) related to the posteriors ŷi0 in (42), and �̄� = I𝜉∗.

The diagram below summarizes step-by-step the algorithm involved in the pro-
posed computational approach.

4  Empirical Evidence

4.1  Data Description and Results

The HDPB-CRE in (2) contains 22 country-specific models, including 9 advanced 
economies14, 7 emerging economies15, and 6 non-European countries16. All 
advanced countries—except for SV—refer to Western Europe (WE) economies and 
all emerging countries—except for GR—refer to Central-Eastern Europe (CEE) 
economies, respectively. All European countries are Eurozone members, except for 
CZ and PO, allowing for an in-depth investigation of interdependencies and inter-
country linkages. The estimation sample is expressed in years and covers the period 
from 1990 to 2021, with all data sourced from the World Bank database. Given the 
hierarchical structural conformation of the model and a sufficiently large number of 
years describing economic–financial and policy issues, it is able to investigate: (i) 

14 Austria (AU), Finland (FI), France (FR), Germany (DE), Ireland (IR), Italy (IT), Netherlands (NL), 
Slovenia (SV), and Spain (ES).
15 Czech Republic (CZ), Poland (PO), Slovak Republic (SV), Estonia (ES), Latvia (LV), Lithuania (LT), 
and Greece (GR).
16 United States (US), China (CH), Korea (KO), Japan (JP), United Kingdom (GB), and Chile (CH).
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endogeneity issues; (ii) interdependency, commonality, and homogeneity; (iii) rel-
evant monetary and fiscal policy interactions; and (iv) mis-specified dynamics.

The panel set contains 92 observable variables dealing with all potential deter-
minants and policy tools described through the vectors yi,t−l and zi,t−l . In this study, 
I split them into four groups: (i) Economic status, including 41 determinants 
combining information on education, income, economic development, and labor 
market; (ii) Healthcare statistics, addressing 11 determinants combining 
information on health coverage and expenditures on health; (iii) Demographic 
and environment statistics, accounting for 28 determinants combining 
information on population and sources of electricity; and (iv) Economic–finan-
cial issues, referring to 12 determinants dealing with real–financial economy 
and financial markets.

By running the shrinking process, in the first step, I find that 53 best covar-
iates,17 better fit the data with PIPs ≥ � and � = 1 (Table 1). Thus, I obtain 253 sub-
model solutions ( Mj ⊂ S ). Because of the curse of dimensionality, I further shrink 
the data performing the second step involved in the multivariate ROB proce-
dure. Overall, 31 best promising covariates are found, obtaining 231 submodel 
solutions ( M𝜉 ⊂ E ) with �̇� = 1 . Here, some preliminary results can be addressed. (i) 
Most of the model uncertainty and overfitting are avoided. Indeed, dealing with the 
sign certainty, the Conditional Posterior Sign (CPS)18 tends to be close to 0 (such as 
predictors 7, 25) and 1 (such as predictors 2, 9, 11, 26, 31). (ii) Socioeconomic fac-
tors matter more than economic status due to the ongoing outbreak of the epidemiol-
ogy. (iii) The main policy tools correspond to some of the core variables of real and 
financial business cycles affecting the spreading and transmission of spillover effects 
(such as current account balance, gross fixed capital formation, credit, and inflation 
rate). (iv) The final solution includes 20 best promising predictors that better fit 
the data with PIPs ≥ �̇� (in bold in Table 1).

According to empirical evidence, a performance comparison with respect to 
the Stuctural Panel Bayesian VAR model with time-varying volatilities (SPBVAR-
MTV) developed in Pacifico (2021) is addressed to emphasize the computional 
improvement of the proposed method. Firstly, the variable selection procedure is 
involved in the full panel set. Then, density forecasts on the results achieved are also 
performed.

By running the shrinking process, three main differences are in order (Fig. 1). (i) 
Even if only by a little, the performance accuracy in HDPB-CRE is higher than in 
SPBVAR-MTV, displaying a lower Posterior Model Size distribution. (ii) Overfit-
ting tends to be larger. Indeed, 27 potential predictors have been selected with PIPs 
≤ �̇� in the final step, obtaining 227 submodel solutions. (iii) Uncertain effects matter 
more in SPBVAR-MTV because of higher PMPs and CPS values not strictly close 
to 0 and 1 for more than 10 predictors. For instance, focusing on plot (a), 8 on the 

17 More precisely, 19 predictors refer to economic status 8 predictors account for healthcare 
statistics, 16 predictors account for demographic and environment statistics, and 
10 predictors refer to Economic–financial issues.
18 The CPS takes values close to 1 or 0 if a covariate in cit has a positive or negative effect on the out-
comes, respectively.
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Table 1  Best candidate predictors—second stage 

The Table is organised as follows: the first column denotes the predictor number; the second and third 
columns describe the predictors and the corresponding labels, respectively; the fourth column refers to 
the measurement unit; and the last two columns display the PIPs (in % ) and the CPS, respectively. The 
last row refers to the outcomes of interest. All contractions stand for: exp., ’expenditure’; emp., ’employ-
ment’; pop., ’population’; and dom. gen. gov., ’domestic general government’. All data refer to the World 
Bank database

Idx. Predictor Label Unit PIP (%) CPS

Economic status
1 Current education expenditure, secondary edusec Total exp. ( %) 0.43 0.63
2 Employers, total emto Total emp. ( %) 46.75 1.00
3 Employment to population ratio, 15+ empo Total pop. ( %) 0.17 0.33
4 Foreign direct investment, net inflows fdinet % GDP 16.41 0.96
5 Labor force partecipation rate, 15+ labpar Total pop. ( %) 0.22 0.27
6 Labor force, total labtot Logarithm (thousands) 33.65 0.68
7 Unemployment change unem Total labor force ( %) 65.51 0.00
8 Wage and salaried workers wage Total emp. ( %) 27.40 0.91
Healthcare statistics
9 Capital health expenditure cahe % GDP 31.56 1.00
10 Current health expenditure cuhe % GDP 44.02 0.37
11 Dom. gen. gov. health expenditure gghe % GDP 41.04 0.95
12 Dom. gen. gov. health expenditure hegg % gen. gov. exp 28.13 1.00
13 Current tobacco use tobuse % adults (15+) 17.37 0.61
14 Alcohol consumption per capita alcuse logarithm (adults, 15+) 0.36 0.33
Demographic and environment statistics
15 CO2 emissions, total co2tot total ( %) 23.06 0.16
16 Age dependency ratio arat working-age pop. ( %) 48.12 0.44
17 Fertility rate, total frat births per woman 35.43 0.10
18 Death race, crude death per 1,000 people 0.15 0.06
19 Energy imports, net eneim energy use ( %) 28.31 0.71
20 Population, total pop logarithm (thousands) 0.23 0.47
21 Rural population rural total pop. ( %) 0.18 0.35
22 Urban population urban total pop. ( %) 21.33 0.51
23 School enrollment, secondary school total pop. ( % net) 0.36 0.68
24 Human Capital Index hci working-age pop. [0–1] 0.32 0.81
Economic–financial issues
25 Central government debt, total debt % GDP 37.87 0.00
26 Current account balance cab % GDP 67.31 1.00
27 Domestic credit, financial sector crefin % GDP 0.41 0.83
28 Gen. gov. final consumption exp ggfce % GDP 0.24 0.75
29 Gross fixed capital formation gfcf % GDP 61.50 0.92
30 Inflation, consumer prices inf % GDP 63.24 0.04
31 GDP growth per capita gdpg annual % 74.45 1.00
– GDP per capita gdp PPP - -
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20 final predictors display higher divergences in terms of prior and posterior dis-
tributions: labtot (predictor 6); cuhe (predictor 10); tobuse (predictor 13); 
co2tot (predictor 15); arat (predictor 16); frat (predictor 17); eneim (predic-
tor 19); urban (predictor 22).

Finally, the final model solution better performing the data—with lBF = 13.49—
consists of 10 final best covariates included in M𝜉∗ ⊂ E and so split: predictors 2, 
7 for yc�

i,t−l
 ; predictors 10, 11, 16, 17 for zs�

i,t−l
 ; and predictors 26, 29, 30, 31 for zp

�

i,t−l
 . 

These results emphasize the performance of the HDPB-CRE procedure compared 
to multivariate dynamic models. Indeed, only 3 out of the 10 predictors need to be 
interpreted with care due to a CPS not strictly close to 0 or 1 (greater uncertainty). 
All their available lags, including lagged outcomes ( yo�

i,t−l
 ), are then included as 

external instruments. The third step concludes by performing a reverse causality, 
finding high significance in both directions (Table 2).

In Table 3, the main diagnostic tests highlighting the performance of the HDPB-
CRE model are displayed. In the estimating procedure, two time-invariant effects 
( x1t and x2t ) are also included, denoting the presence of structural breaks in 2008 
(due to the global financial crisis) and in 2020 (due to the COVID-19 pandemic). 
Here, some considerations are in order. (i) The best optimal lag chosen according to 
Arellano (2003)’s test is 3. (ii) All estimates are consistent and valid, showing no 
autocorrelation among residuals and highly strong linear dependencies; thus, varia-
ble selection problems are dealt with. (iii) The posterior predictive variance of the 
�i ’s reenters in the range displayed in (32), dealing with high dimensional data care-
fully ( �Yi,𝜇i

𝜃,𝜙,𝜋(m̄)
[𝜇i] = 0.74 with 𝜉∗ > 10 ). (iv) In Table 2, highly strong causal links 

confirm the presence of heterogeneity across units. (v) The Posterior model size dis-
tribution (PMSD) is close to 10 and then to the best candidate predictors better 
explaining the data ( �̇� ). (vi) The estimating procedure is robust dealing, with most 
of the explained variability of the outcomes ( R2

adj.
= 0.78).

Fig. 1  Posterior model size and probability distributions performing the proposed multivariate ROB pro-
cedure in HDPB-CRE (plot a) and SPBVAR-MTV (plot b) models
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4.2  Implications for Data Analysis and Country Sample

According to the results achieved in the empirical evidence, some main implications 
on the data and country samples are discussed and graphically displayed.

Firstly, by running a correlation analysis among the final 10 best predictors 
(Table 4), sufficiently high relationships matter without incurring in potential multi-
collinearity problems (correlation functions ≤ 60% ), ensuring more reliable and sta-
ble parameter estimates. Thus, the methodology can be possibly involved to study 
further applications and decision-making processes dealing with endogeneity issues 
and model mis-specification problems.

In Table  5, the predictors are then estimated using the dynamic panel model 
described in (2). Every covariate is significant at least at 10% , fitting well the out-
come of interest ( ̄R2 = 79% ). Furthermore, two additional estimates assuming 
individual– and time–specific effects have been developed, obtaining an adjusted 
R2 close to 100% ( 94% and 96% , respectively). This emphasizes the need to deal 

Table 3  Diagnostic tests

Here, l∗ denotes the optimal lag; LGBs and LGBr stand for Ljung–
Box test statistics of series and residuals (p-values), respectively; 
PMSD refers to the posterior model size distribution; and R2

adj.
 

denotes the adjusted R2

Main statistics Results

AR(l∗) 3
�∗ 10
LGBs 0.00
LGBr 0.91

�
Yi ,𝜇i

𝜃,𝜙,𝜋(m̄)
[𝜇i]

0.74

PMSD 9.92
lBF 13.49
R2

adj.
0.78

Table 4  Correlation analysis

Correlation matrix among the final best covariates included in M𝜉∗ ⊂ E

Idx emto unem cuhe gghe arat frat cab gfcf inf gdpg

2 emto 1.00 0.48 0.39 0.54 −0.60 −0.31 0.33 −0.30 −0.26 −0.53
7 unem 0.48 1.00 −0.58 −0.44 0.21 0.15 −0.45 −0.42 0.47 −0.58
10 cuhe 0.39 −0.58 1.00 0.52 0.37 0.12 0.17 −0.46 −0.39 −0.42
11 gghe 0.54 −0.44 0.52 1.00 0.40 −0.26 0.22 −0.47 −0.30 −0.48
16 arat −0.60 0.21 0.37 0.40 1.00 0.17 0.10 −0.50 0.12 −0.16
17 frat −0.31 0.15 0.12 −0.26 0.17 1.00 −0.37 −0.07 0.17 0.11
26 cab 0.33 −0.45 0.17 0.22 0.10 −0.37 1.00 −0.10 −0.06 −0.17
29 gfcf −0.30 −0.42 −0.46 −0.47 −0.50 −0.07 −0.10 1.00 −0.32 0.39
30 inf −0.26 0.47 −0.39 −0.30 0.12 0.17 −0.06 −0.32 1.00 0.15
31 gdpg −0.53 −0.58 −0.42 −0.48 −0.16 0.11 −0.17 0.39 0.15 1.00
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with correlated random effects when studying dynamic multidimensional data in 
high-dimensionality.

Based on economic theory and empirical evidence, the positive effects of emto, 
gghe, cab, gfcf, and gdpg on the outcome of interest are consistent and theo-
retically justified. Indeed, (i) the total number of employers is often correlated with 
business activity and economic dynamism; (ii) higher government health expendi-
ture can improve the overall health of the population, leading to healthy workers 
being generally more productive and contributing more effectively to economic 
output; (iii) a positive current account balance (surplus) indicates that a country 
is exporting more than it is importing, which can be a sign of a strong economy; 

Table 5  Estimation output in 
HDPB-CRE Model

The estimation output obtained by running the HDPB-CRE model 
described in (2) is displayed, with standard errors in parentheses. 
Here, TSS and RSS stand for ’Total Sum of Squares’ and ’Residual 
Sum of Squares’, respectively. The significant codes are: ∗∗∗ , signifi-
cance at 1% ; ∗∗ , significance at 5% ; and ∗ , significance at 10%

Dependent variable: GDP per capita in PPP

lag(gdp, 3) 0.773∗∗∗

(0.038)
emto 0.025∗∗

(0.012)
unem −0.004∗

(0.002)
cuhe −0.064∗∗∗

(0.020)
gghe 0.078∗∗∗

(0.024)
arat −0.004∗

(0.002)
frat −0.005∗∗∗

(0.001)
cab 0.008∗∗∗

(0.002)
gfcf 0.016∗∗∗

(0.002)
inf −0.017∗∗∗

(0.001)
gdpg 0.018∗∗∗

(0.002)
TSS 40.688
RSS 7.802
R
2 0.810

Adjusted R2 ( ̄R2) 0.780
Chi-squared (p-value) 0.000



High‑Dimensional Dynamic Panel with Correlated Random Effects:…

investments in physical assets are crucial for enhancing productive capacity and 
fostering economic growth; and (iv) the positive relationship with GDP growth per 
capita is almost tautological and expected in dynamic panel regressions. Similarly, 
(i) a higher unemployment rate typically leads to lower overall production and eco-
nomic output; (ii) while one might initially expect health expenditures to positively 
impact GDP per capita due to improved health and productivity, high current health 
expenditures can indicate inefficiencies or high costs that do not translate into pro-
portional health improvements, mainly in the short term; (iii) a higher dependency 
ratio implies that a larger segment of the population is not working, reducing the 
amount of income available for investment and consumption by the working pop-
ulation; (iv) a higher total fertility rate can result in greater expenditures on child 
care and education, potentially at the expense of savings and investment, and slow 
economic growth by limiting the resources available for enhancing productivity; (v) 
the negative relationship between the inflation rate and GDP per capita is consistent 
with economic theory.

Finally, the framework being hierarchical, a clustering analysis is esaliy per-
formed among the final predictors, where their PMPs are used as weights to com-
pute the distance function and then build the membership values (Fig. 2). Setting the 
number of clusters to 4, the expected result would be to group each factor accord-
ing to the four macro-groups specified in Table 1. Nevertheless, this does not occur 
since—by construction—the predictors are grouped based on their individual–spe-
cific characteristics. More precisely, clustering economic variables based on the 
countries’ characteristics can reveal important insights into how these variables are 
related and how they jointly influence economic outcomes. Moreover, it allows for 
in-depth investigation of cross-country interdependency and heterogeneity and the 
performance of relevant policy strategies in a multidimensional context.

Based on economic theory and empirical evidence, the results achieved in Fig. 2 
can be evaluated as follows. (i) The first cluster (plot a) groups arat and gfcf 
predictors. Their connection can be interpreted in terms of investment dynamics and 
resource allocation. In economies with a high age dependency ratio, a significant 
portion of resources might be directed towards consumption and social services to 
support dependents, potentially at the expense of investment in fixed capital. Con-
versely, lower dependency ratios can free up resources for higher levels of physi-
cal investments, supporting long-term economic growth. Thus, these two variables 
can be closely linked in how they shape economic outcomes. (ii) The second cluster 
(plot b) includes the most predictors: gdpg, emto; cuhe; gghe; and cab. These 
variables are interrelated through their collective impact on economic growth and 
stability. A growing economy (high GDP growth rate) typically exhibits a robust job 
market (total employers), balanced trade and financial interactions (current account 
balance), and adequate health investments. Health expenditures ensure a productive 
workforce, supporting sustainable growth. Hence, these variables form a cluster rep-
resenting the dynamics of economic growth, employment, trade balance, and health 
investment. (iii) In the third cluster (plot c), the unemployment rate (unem) and total 
fertility (frat) rate are connected through demographic and labor market dynam-
ics. High fertility rates can lead to a growing labor force, which, if not matched with 
sufficient employment opportunities, can result in high unemployment. Conversely, 
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high unemployment might discourage higher fertility rates due to economic uncer-
tainty and reduced family income. These interactions show why these variables 
might cluster together, reflecting the interplay between demographic trends and 
labor market conditions. (iv) The distinct cluster for the inflation rate (inf in plot 
d) underscores its unique role in economic dynamics, influenced by and influencing 
a broad array of economic activities and policy decisions. Generally, because of its 
pervasive influence and the specific policy tools aimed at controlling it, inflation 
is often considered separately in economic analysis. This theoretical basis justifies 
why the inflation rate is grouped in a distinct cluster, reflecting its unique and broad-
reaching impact on the economy (e.g., price stability, monetary policy, broad eco-
nomic impact).

Baes on country sample implications, the high heterogeneity (variation) in arat 
and gfcf across countries suggests differences in demographic structures and 
investment levels (cluster 1, top-left plot). For instance, while some countries would 
prioritize infrastructure to boost productivity, others focus on healthcare and social 
services. The divergence (opposite dynamics) between age dependency ratios and 
gross fixed capital formation is due to several economic and demographic factors 
(e.g., economic growth and productivity, government spending, savings and invest-
ment rates). In cluster 2 (top-right plot), co-movements across countries (common 
trends) include a positive correlation between GDP growth and health expendi-
tures, as wealthier nations can afford better healthcare. Similarly, countries with 
robust economies might exhibit better current account balances and more employ-
ers. Nevertheless, persistent heterogeneity matters due to varying economic policies, 

Fig. 2  The panel shows the clustering procedure performed on the HDPB-CRE estimates displayed in 
Table 5. The x- and y-axes refer to the country samples and series, respectively. The weighted distance 
measure and membership values have been computed using the PMPs as weights
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healthcare systems, and trade practices. Cluster 3 (bottom-left plot) displays both 
common patterns, including developing countries with higher fertility rates and 
higher unemployment due to rapid population growth outstripping job creation, and 
heterogeneity, accounting for developed countries showing lower fertility and unem-
ployment rates due to better economic conditions and family planning policies. In 
cluster 4 (bottom-right plot), including the inflation rate only, common trends matter 
among groups of countries with low inflation (e.g., due to stable economic policies) 
and those with high inflation (e.g., due to economic instability or external shocks). 
The latter displays wide variation in inflation rates, probably reflecting differences in 
economic policies, market conditions, and external shocks.

4.3  Forecasting and Policy Purposes

Concerning dynamic analyses, the total number of draws is 2000 + 3000 = 5000 , 
which corresponds to the sum of the final number of draws to discard and save, 
respectively. Convergence is achieved at approximately 1000 draws,19 which are 
used to conduct posterior inference at each t.

The natural conjugate prior refers to three subsamples: x(i) 2007–2009 to eval-
uate the impact of the Great Recession; (ii) 2010–2018 to adress how fiscal con-
solidation periods affected the dynamics of the productivity among countries; and 
(iii) 2019–2023 to investigate the evolution of productivity in light of the ongoing 
pandemic crisis and the Russia-Ukraine war (predictors 15, 19). The time frame 
2022 − 2023 refers to outcomes incorporated in the forecasting analysis.

Without restrictions, the estimation sample comprises 726 regression param-
eters: each estimate of the HDPB-CRE in (2) account for 22 country indices and 33 
time periods. Assuming hyperparameters in �̃� are all known and estimable, poste-
rior distributions are computed according to Eqs. (36–38) for 𝜃t|𝜃t−l, ŷi,T+k , (41–42) 
for moment distributions in 𝜇i|ŷi,T+k given initial values ( ̂yi0|�̂�m̄

i
 ), (43) for the final 

best parameter space, and (44) for ut|ŷi,T+k . All data are expressed in standard 
deviations.

In Fig. 3, conditional forecasts for outcomes ŷi,T+k are shown for advanced (top 
plot) and emerging (bottom plot) economies. The yellow and red curves denote the 
95% confidence bands, and the blue and purple curves represent the conditional20 
and unconditional21 projections of outcomes ŷi,T+k for each N country indexes and T 
time periods.

From a modelling perspective, three main findings are addressed. (i) Even if 
there has been evidence of significant co-movements and interdependencies among 
countries, consistent heterogeneities matter in both the spreading and the intensity 
of countries’ dynamics. Thus, forecasters and policymakers need to account for 
19 Convergence is found by averaging about 1.2 draws per regression parameter.
20 Generally, the conditional projection in forecasting models is the one that the model would have 
obtained over the same period conditionally on the actual path of unexpected dynamics for that period 
( �i dependent on yi0).
21 Generally, the unconditional projection in forecasting models is the one that the model would obtain 
for output growth for that period only on historical information, consistent with a model-based forecast 
path for the other variables ( �i independent of yi0).
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heterogeneous effects (correlated random coefficients) when formulating policy 
strategies and forecasting in multivariate dynamic panel data. (ii) Conditional pro-
jections lie within the confidence interval; conversely, unconditional projections 
tend to diverge over T. Therefore, when studying large time-varying panel data, 
cross-unit lagged interdependencies, dynamic feedback, and interactions must be 
assessed to address with endogeneity issues and mis-specified dynamics. (iii) A hint 
of boosting productivity to potential growth (2022–2023) can be observed among 
countries, particularly in advanced economies. Although recent dynamics suggest 
significant improvements in fiscal sustainability (e.g., during post-crisis periods), 
the risk of a cascade of policy errors, adverse political economy incentives, and 
divergence in financial integration become relevant issues for early and coordinated 
fiscal consolidation.

From a policy perspective, three main results are highlighted. (i) Empirical 
forecasts show that most European emerging economies are strongly exposed to 
financial interlinkages and are highly dependent on other European countries (e.g., 
Western European countries). However, the presence of persistent heterogeneities 
among countries’ responses emphasize the need to accelerate financial development 
in developing countries, stimulate domestic resource mobilization, and support con-
sistent reforms of the international financial system to boost investment and growth. 
(ii) Even though several measures have already been taken at the international and 
European Union levels, most countries have been limited in effectively using mon-
etary and fiscal tools due to stringent economic–institutional interdependencies, pre-
venting them from deploying conventional consolidation measures during triggering 

Fig. 3  The plot draws conditional forecasts for outcomes ŷi,T+k given individual–specific ( �i ) and time-
fixed ( � ) effects given a pool of socioeconomic–demographic, real–financial, and policy determinants. 
All time-varying parameters are posterior means
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events. Moreover, most countries have failed to control the extent of COVID-19 due 
to people’s attitudes of denial and misunderstanding of social distancing for out-
break control. Therefore, in a context of radical uncertainty and heterogeneous ter-
ritorial effects, appropriate policy measures need to be addressed locally rather than 
globally. (iii) Heterogeneity among countries’ responses is significant because of dif-
ferent policy adjustments applied by governments during a recession. Indeed, gov-
ernments have tended to follow distinct national rather than consensual international 
standards (as seen in the current outbreak and previous pandemic crises). Overall, 
policy tools should be implemented by closely monitoring the economic status of 
each country. More coordinated country-specific European and international meas-
ures, along with a participatory government approach, are needed to ensure robust 
health systems and more resilient economic development to safeguard against sud-
den outbreaks in the global economy.

5  Relative Regrets for Tweedie Correction: MCMC‑Based Experiments

In this example, the performance of the estimation method is investigated by sum-
marizing the regrets for the Tweedie correction in (28) relative to the posterior pre-
dictive variance of the �i’s. More precisely, according to (32), I consider three 
sequences of 

(
N, 𝜉∗,�

Yi,𝜇i

𝜃,𝜙,𝜋(m̄)
[𝜇i]

)
 with correlated random coefficients in the homo-

skedastic case to evaluate different improvements in forecasting performance: (i) 
(10000, 15, 1.0), heterogeneity with high dimension; (ii) (10000, 10, 0.5), sufficient-
homogeneity with moderate dimension; (iii) (10000, 5, 0.0), near-homogeneity with 
small dimension. I suppose a basic HDPD-CRE model with � = � = 0 , homoske-
dastic variance �2 = 1 , and regimes m̄ = 1 (e.g., a unique common individual–spe-
cific effect across units).

I include two additional empirical Bayes estimators dealing with alternative 
Tweedie corrections (Table 6): the Kernel Density (KD) estimator (see, for instance, 
Liu et al., 2020) and the NonParametric Maximum Likelihood (NPML) estimation 
(see, for instance, Gu and Koenker, 2017b). Concerning the former, the problem of 
forecasting a collection of short time-series processes is addressed using cross-sec-
tional information in a dynamic panel data. A nonparametric kernel estimate of the 
Tweedie correction is then constructed, showing its asymptotic equivalence to the 
risk of an empirical predictor treating the CREs’ distribution as known. As regards 

Table 6  MCMC-based designs

The Table shows the three sequences of 
(
N, 𝜉∗,�

Yi ,𝜇i

𝜃,𝜙,𝜋(m̄)
[𝜇i]

)
 with correlated random coefficients 

homoskedastic case conducted in the simulated example according to (32)

Law of motion yit = �i + �yi,t−1 + uit where � = 0.5 , uit ∼ i.i.d.N(0, 1)

Initial observations yi0 ∼ N(0, 1)

Correlated random effects �i|yi0 ∼ N(0,Ψ�i
) where Ψ�i

∼ IG
(

0.1

2
,
0.01

2

)
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the NPML estimation, the EB estimators are constructed by specifying appropriate 
bounds for the domain of CREs and then partitioning them into a predetermined set 
of bins.

Table  7 provides the relative regrets for Tweedie corrections according to the 
three proposed MCMC-based designs. The best choice of �0 improving forecasting 
performance in terms of ratio-optimality was set at 0.5 (middle point in an arbitrary 
range [0.1–0.9]). The findings underscore the effectiveness of the multivariate ROB 
procedure in significantly reducing model size when dealing with high-dimensional 
data. Additionally, the use of semiparametric Bayesian statistics with FMM distribu-
tions (Tweedie correction) leads to more accurate forecasts. Notably, lower posterior 
predictive variances of the �i values correspond to reduced relative regret. When 
compared to KD and NPLM estimates, FMM distributions consistently exhibit 
lower regret. In experiments with a much larger sample size (e.g., N = 100, 000 ) and 
lower ratio-optimality (e.g., �0 ≅ 0.1 ), the results show that relative regret decreases 
as the number of cross-sectional units N increases. However, although lower ratio-
optimality reduces computational costs, it is associated with higher regret.

Summarizing, the study demonstrates that the multivariate ROB procedure 
is efficient in shrinking model size for high-dimensional data. In the simulated 
experiment, the use of semiparametric Bayesian statistics with FMM distributions 
enhances forecast precision, leading to lower posterior predictive variances and 
reduced relative regret. Computationally, experiments with larger sample sizes indi-
cate that increasing the number of cross-sectional units N decreases regret. How-
ever, while lower ratio-optimality reduces computational costs, it results in higher 
associated regret. The main implication of the trade-off highlighted is the need for 
a balanced approach in model development and application. While computational 
efficiency is important, it should not come at the expense of significantly increased 
regret, which could undermine the model’s utility and reliability. For instance, 
decision-makers should carefully evaluate the acceptable levels of computational 
cost and model performance to ensure that the models serve their intended purpose 
effectively.

All results in Table 7 find confirmation in Fig. 4. More precisely, lower posterior 
predictive variances of the �i ’s are associated to less mean squared errors (MSEs) 

Table 7  Relative regrets for 
Tweedie corrections by MCMC-
based designs

Relative regrets for Tweedie corrections according to the three sup-
posed MCMC-based designs. The regret is standardized by the aver-
age posterior predictive variance of the �i’s, with �0 = 0.5

Design I Design II Design III

N 10000 10000 10000

�
Yi ,𝜇i

𝜃,𝜙,𝜋m̄ [𝜇i]
1.0 0.5 0.0

�∗ 15 10 5
Nsim 10000 10000 10000
KD 0.026 0.051 0.074
FMM 0.014 0.010 0.007
NPML 0.021 0.019 0.013
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and then better accuracy forecasts (associated with less relative regrets). Moreover, 
the (designed) joint density distribution of 𝜋m̄—depicting posterior draw samples of 
the empirical distribution of �̂�i—asymptotically converges to a Normal distribution, 
and then the FMM-based Tweedie correction— in Theorem (1.6)—approaches a 
linear distribution function. Furthermore, in the second and third designs, the empir-
ical realizations of �̂�i are greater and lie in the distribution, highlighting lower MSEs 
and less sampling variance in the estimated posterior means.

6  Conclusion

This study aims to construct and develop a methodology to improve the recent liter-
ature on DPD models when dealing with (i) individual–specific forecasts, (ii) ratio-
optimality and posterior consistency in dynamic panel setups, (iii) empirical Bayes 
approaches and alternative Tweedie corrections for nonparametric priors, and (iv) 

Fig. 4  The panels show the MSEs associated to the three supposed MCMC-based designs. The solid 
lines display the posterior draw samples of the empirical distribution of �̂�i according to the (designed) 
joint density distribution 𝜋m̄ and the FMM-based Tweedie correction
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the curse of dimensionality and variable selection problems when estimating time-
varying data.

The contributions of this study are threefold. First, a multivariate shrinking pro-
cedure is used to select the best promising subset of covariates according to their 
Posterior Model Probability, which denotes the probability to better explain and 
thus fit the data in high-dimensional model classes. Second, the correlated random 
effects are addressed by involving in the shrinking process an empirical Bayes pro-
cedure, where the posterior mean of the unobserved heterogeneity is expressed in 
terms of the marginal distribution of sufficient statistics estimated from the cross-
sectional whole information (Tweedie’s formula). Third, better conditional forecasts 
can be involved in the estimation model because of the use of a semiparametric 
Bayesian approach modelling either time-varying and fixed effects, and the observa-
tion of incidental parameters possibly correlated with some of the predictors within 
the system.

An empirical application on a pool of advanced and emerging economies is 
assessed, describing the functioning and the performance of the methodology. The 
estimation sample refers to the period 1990–2021, covering a sufficiently large sam-
ple to address potential causal links and interdependencies between outcomes and a 
set of time-varying factors, including heterogeneous individual–specific and time-
fixed effects. A simulated experiment using MCMC-based designs is also addressed 
to highlight the performance of the estimating procedure in comparison with related 
works.

Funding No fund was used to conduct this study.

Data availability Data available on request.

Declarations 

Conflict of interest The author declares no Conflict of interest.

Ethical ’Not applicable’.

Consent to participate ’Not applicable’.

Code availability Code available on request.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDeriv-
atives 4.0 International License, which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative 
Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view 
a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

http://creativecommons.org/licenses/by-nc-nd/4.0/


High‑Dimensional Dynamic Panel with Correlated Random Effects:…

References

Alvarez, J., & Arellano, M. (2003). The time series and cross-section asymptotics of dynamic panel 
data estimators. Econometrica, 71(4), 1121–1159.

Anderson, T. W., & Hsiao, C. (1981). Estimation of dynamic models with error components. Journal 
of the American Statistical Association, 76(375), 598–606.

Arellano, M. (2003). Panel data econometrics. Oxford University Press.
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence 

and an application to employment equations. The Review of Economic Studies, 58(2), 277–297.
Arellano, M., & Bonhomme, S. (2011). Nonlinear panel data analysis. Annual Review of Economics, 

3, 395–424.
Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-com-

ponents models. Journal of Econometrics, 68(1), 29–51.
Arellano, M., & Hahn, J. (2007). Understanding bias in nonlinear panel models: Some recent develop-

ments. In W. N. R. Blundell & T. Persson (Eds.), Advances in Economics and Econonometrics: 
Theory and Applications, Ninth World Congress. Cambridge: Cambridge University Press.

Arellano, M., & Hahn, J. (2016). A likelihood-based approximate solution to the incidental parameter 
problem in dynamic nonlinear models with multiple effects. Global Economic Review, 45(3), 
251–274.

Arellano, M., & Honore, B. (2001). Panel data models: Some recent developments. In Heckman, J. & 
Leamer E. (Eds.) Handbook of Econometrics (Vol. 5, pp. 3229–3296).

Bester, C. A., & Hansen, C. (2009). A penalty function approach to bias reduction in non-linear panel 
models with fixed effects. Journal of Business and Economic Statistics, 27(2), 131–148.

Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data 
models. Journal of Econometrics, 87(1), 115–143.

Brown, L. D., & Greenshtein, E. (2009). Nonparametric empirical Bayes and compound decision 
approaches to estimation of a high-dimensional vector of normal means. The Annals of Statistics, 
37, 1685–1704.

Carro, J. (2007). Estimating dynamic panel data discrete choice models with fixed effects. Journal of 
Econometrics, 140(2), 503–528.

Chamberlain, G. (1984). Panel data. In Griliches, Z. & Intriligator M. D. (Eds.) Handbook of Econo-
metrics (Vol. 2, pp. 3847–4605).

Chamberlain, G. (2010). Binary response models for panel data: Identification and information. 
Econometrica, 78, 159–168.

Chamberlain, G., & Hirano, K. (1999). Predictive distributions based on longitudinal earnings data. 
Annales d’Economie et de Statistique, 55–56, 211–242.

Dumitrescu, E., & Hurlin, C. (2012). Testing for granger non-causality in heterogeneous panels. Eco-
nomic Modelling, 29(4), 1450–1460.

Fernandez-Val, I. (2009). Fixed effects estimation of structural parameters and marginal effects in 
panel probit models. Journal of Econometrics, 150(1), 71–85.

Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2000). The generalized dynamic factor model: Identi-
fication and estimation. The Review of Economics and Statistics, 82(4), 540–554.

Gelman, A., & Hill, J. (2012). Data analysis using regression and multilevel/hierarchical models. 
Cambridge University Press. https:// doi. org/ 10. 1017/ CBO97 80511 790942

George, E. I., & Foster, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika, 
87, 731–747.

Gu, J., & Koenker, R. (2017). Empirical Bayesball remixed: Empirical Bayes methods for longitudinal 
data. Journal of Applied Economics, 32(3), 575–599.

Gu, J., & Koenker, R. (2017). Unobserved heterogeneity in income dynamics: An empirical Bayes 
methods for longitudinal data. Journal of Business and Economic Statistics, 35(1), 1–16.

Hahn, J., & Kuersteiner, G. (2011). Bias reduction for dynamic nonlinear panel models with fixed 
effects. Econometric Theory, 72, 1295–1319.

Hirano, K. (2002). Semiparametric Bayesian inference in autoregressive panel data models. Econo-
metrica, 70(2), 781–799.

Jacquier, E., Polson, N., & Rossi, P. (1994). Bayesian analysis of stochastic volatility. Journal of Busi-
ness and Economic Statistics, 12, 371–417.

https://doi.org/10.1017/CBO9780511790942


 A. Pacifico 

Jiang, W., & Zhang, C.-I.H. (2009). General maximum likelihood empirical Bayes estimation of normal 
means. The Annals of Statistics, 37(4), 1647–1684.

Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of 
infinitely many incidental parameters. The Annals of Mathematical Statistics, 27(4), 887–906.

Lancaster, T. (2002). Orthogonal parameters and panel data. The Review of Economic Studies, 69(3), 
647–666.

Levine, R. A., & Casella, G. (2014). Implementations of the Monte Carlo EM algorithm. Journal of 
Computational and Graphical Statistics, 10(3), 422–439.

Liu, L. (2018). Density forecasts in panel data models: A semiparametric Bayesian perspective. Working 
Paper. Cornell University, pp. 1–32. Available at: arXiv: 1805. 04178

Liu, L., Moon, H.R., & Schorfheide, F. (2019). Forecasting with a panel Tobit model. NBER Working 
Papers, 26569

Liu, L., Moon, H. R., & Schorfheide, F. (2020). Forecasting with dynamic panel data models. Economet-
rica, 88(1), 171–201.

Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417–1426.
Norets, A., & Pelenis, J. (2012). Bayesian modeling of joint and conditional distributions. Journal of 

Econometrics, 168, 332–346.
Pacifico, A. (2020). Robust open Bayesian analysis: Overfitting, model uncertainty, and endogeneity 

issues in multiple regression models. Econometric Reviews, 40(2), 148–176. https:// doi. org/ 10. 
1080/ 07474 938. 2020. 17709 96

Pacifico, A. (2021). Structural panel Bayesian VAR with multivariate time-varying volatility to jointly 
deal with structural changes, policy regime shifts, and endogeneity issues. Econometrics, 9(2), 
1–36. https:// doi. org/ 10. 3390/ econo metri cs902 0020

Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. The Annals of Math-
ematical Statistics, 35, 1–20.

Robert, C. (1994). The Bayesian choice. Springer.
Scott, J. G., & Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in problem. The 

Annals of Statistics, 38, 2587–2619.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

http://arxiv.org/abs/1805.04178
https://doi.org/10.1080/07474938.2020.1770996
https://doi.org/10.1080/07474938.2020.1770996
https://doi.org/10.3390/econometrics9020020

	High-Dimensional Dynamic Panel with Correlated Random Effects: A Semiparametric Hierarchical Empirical Bayes Approach
	Abstract
	1 Introduction
	2 Dynamic Panel Data and Shrinking Process
	2.1 Econometric Model
	2.2 Multivariate ROB Procedure in Longitudinal Data

	3 Semiparametric Hierarchical Bayesian Approach
	3.1 Prior Specification Strategy and Tweedie’s Formula
	3.2 Tweedie Correction and MCMC Implementations
	3.3 Ratio Optimality and Posterior Distributions

	4 Empirical Evidence
	4.1 Data Description and Results
	4.2 Implications for Data Analysis and Country Sample
	4.3 Forecasting and Policy Purposes

	5 Relative Regrets for Tweedie Correction: MCMC-Based Experiments
	6 Conclusion
	References


