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A B S T R A C T

Heterogeneity in agents’ preferences is generally analysed through mixed logit models, which
assume taste parameters are distributed in the population according to a certain mixing
distribution. As a result, if the utility function is linear in attributes, the willingness to pay is
the ratio of two random parameters and is itself random. This paper proposes a technique built
on the Delta method, partly analytical and partly based on simulations, to obtain the sampling
distribution of the willingness to pay, accounting for both heterogeneity and sampling error.
The paper contributes to the literature by: (i) redressing some imprecisions in Bliemer and Rose
(2013) that produce biased results; (ii) proposing a faster estimation process, compared to the
Krinsky and Robb (1986, 1990) method that, relying on simulation only, proves computationally
more demanding; (iii) comparing the performance of different methods using both synthetic and
real data sets. The paper shows, via a Monte Carlo study, that the method we develop and the
Krinsky and Robb one produce similar results, while outperforming that proposed by Bliemer
and Rose.

. Introduction

Willingness to pay (WTP1) is the price an agent would pay to obtain an improvement in a specific attribute of a desired good or
ervice. WTP plays a central role in many cases such as, for instance, when a private company has to decide on the selling price of a
iven good or when a policy maker has to set the price agents have to pay when using a public service (e.g., public transportation).
urthermore, it is often used for economic evaluations such as in cost–benefit analysis.

Discrete choice models, representing a widespread technique to derive WTP measures, rest upon random utility theory.
tated/revealed preferences data are used to estimate parameters of the utility function. Whenever the utility is linear in the
ttributes, one can calculate the WTP for a given attribute as the ratio of that attribute parameter and the estimate of the marginal
tility of income. The latter is typically obtained as the negative of a price parameter (Train, 2009).

Utility parameters for all agents and WTP are constant when using the traditional multinomial logit (MNL) of McFadden (1974).
owever, the computed WTP is itself an estimate since model estimation yields an estimate of the true parameters. Informed policy-
aking needs the calculation of WTP standard errors and confidence intervals characterized by good statistical properties. Both the
elta method and the Krinsky and Robb (KR) method (Krinsky and Robb, 1986, 1990) represent the standard statistical tools for
chieving this goal. Alternative methods used rest upon the inversion of Wald-type test (Bolduc et al., 2010), t-test or likelihood ratio
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1 All acronyms used in this paper are listed in Appendix A.
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test (Armstrong et al., 2001). Gatta et al. (2015) provide, for all these methods, a comprehensive comparison of their performances
when estimating WTP confidence intervals within a MNL model framework (see also Hole, 2007).

Utility parameters are random and vary according to some mixing distribution, accounting for agent’s heterogeneity in
references, when using mixed multinomial logit (MXL) model (McFadden and Train, 2000), also referred to as random parameters
ogit model. WTP is, therefore, random in this case. This is true also when MXL model is estimated in WTP space, instead of
reference space (Train and Weeks, 2005; Scarpa et al., 2008).

When WTP is random, the policy maker will, for sure, be interested in many different quantities, such as the average WTP (i.e. the
TP of an agent with average attribute and price parameters), its standard error and/or its confidence interval. Additionally, one might

be interested in the WTP prediction interval, accounting for the uncertainty due both to sampling error and WTP heterogeneity. This
provides an estimate of the WTP lower and upper bound of a certain percentage of the population. Furthermore, the probability of
WTP exceeding a given level might help estimating the proportion of agents willing to pay more than a pre-set threshold. Conversely,
one might also want to know the quantiles of the WTP distribution, representing the maximum price a given proportion of agents
is willing to pay.

The KR procedure is the only one that allows obtaining any possible information, since it delivers the whole simulated sampling
distribution of the WTP. Within a MXL framework, this method, discussed by Hensher and Greene (2003) and used in both Sillano
and Ortúzar (2005) and Michaud et al. (2013), proves particularly time consuming since it involves Monte Carlo simulations in a
high number of dimensions.

Bliemer and Rose (2013) provide an alternative, based on an extension of the Delta method to the case of random parameters.
This method, partly analytical and partly based on simulations, allows saving computing time. However, it does not deliver the
whole WTP sampling distribution. It just provides mean and variance, thus enabling the computation of only prediction intervals
and the standard errors of the predictions.

Other related works deal with standard errors and interval estimates at the individual-specific level. Among these, one should
recall (Daziano and Achtnicht, 2014) considering the MXL in a Bayesian framework, and Sarrias and Daziano (2018) focusing on
the latent class logit model within a frequentist setting. Fosgerau (2006), instead, proposes a different way of obtaining the WTP
distribution. He employs non parametric techniques that do not require the preliminary specification of the mixing distribution for
the taste parameters.

This paper focuses on parametric mixing distributions adopting a frequentist framework, since this is the most commonly used
approach. It extends the Delta method to the random parameter case. It differs from the one proposed by Bliemer and Rose (2013)
(denoted DBR in the rest of the paper) since it treats the WTP sampling distribution as a mixture of normal distributions with the
standard deviations of each component estimated through the Delta method. The paper contributes to the literature by: (i) improving
with respect to DBR, characterized by some technical imprecisions giving rise to biased results; (ii) improving with respect to KR that,
representing a simulation-based approach to the calculation of confidence and prediction intervals, is a much more computationally
demanding method compared to the one here proposed; (iii) comparing the performances of the three methods via synthetic data
sets and the same empirical data (Bliemer and Rose, 2013) used in their study, so to clarify the relative advantages not only from
an abstract perspective but also by showing their practical implications.

In more detail, the approach here proposed (denoted DSMG in the rest of the paper) provides both the advantages of KR and
those of DBR. In fact, DSMG, as it is also true for KR, produces the whole WTP simulated sampling distribution, thus allowing the
estimation of any desired indicator characterizing the WTP. Additionally, as it is also true for DBR, DSMG being partly analytical
allows reducing the computational burden characterizing KR.

The illustration and discussion of the different methods take place within a preference space context. However, they can
seamlessly be transferred in WTP space without any adjustment. The paper compares DBR, DSMG and KR via a Monte Carlo study.
Data are generated under different scenarios mimicking real situations and considering various taste parameter distributions. A real
data set is also used to illustrate the practical relevance of the issues raised in the simulation study.

The rest of the paper is organized as follows. Section 2 briefly recalls random utility models and WTP measures. Section 3
illustrates the Delta method within a fixed parameters context, summarizes the DBR extension to the random parameters case,
discusses its shortcomings, and develops the alternative DSMG approach. Section 4 considers the KR method. The Monte Carlo
comparison between the three methods is proposed in Section 5, while Section 6 shows an application to real data. Section 7
summarizes the findings, concludes by suggesting general guidelines and provides readers with the link to a spreadsheet that
implements the DSMG methodology.

2. Logit models and WTP

Consider a sample of 𝑁 decision makers facing 𝐽 different alternatives in 𝑇 different choice experiments. The choice of agent
𝑛, for 𝑛 = 1,… , 𝑁 , is typically described as follows:

𝑦𝑖𝑛𝑡 =
{

1 if 𝑈𝑖𝑛𝑡 ≥ 𝑈𝑗𝑛𝑡 for 𝑗 = 1,… , 𝐽
0 otherwise (1)

where
55
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is the unobservable utility that 𝑛 derives from alternative 𝑖 (for 𝑖 = 1,… , 𝐽 ), in choice experiment 𝑡 (for 𝑡 = 1,… , 𝑇 ), 𝑉𝑖𝑛𝑡 is the
observable utility and 𝜖𝑖𝑛𝑡 is an error term. Observable utility is a (linear or non-linear) function 𝑔𝑖 of some known attribute levels
for that alternative and a vector of unknown parameters:

𝑉𝑖𝑛𝑡 = 𝑔𝑖(𝑋𝑖𝑛𝑡|𝛽),

here 𝑋𝑖𝑛𝑡 is a (1 ×𝐾) vector of attributes and 𝛽 is a (𝐾 × 1) vector of parameters. Often, a linear formulation is assumed, so that

𝑉𝑖𝑛𝑡 = 𝑋𝑖𝑛𝑡𝛽. (3)

The choice probability can, therefore, be represented as follows:

𝑃𝑖𝑛𝑡 = 𝑃
(

𝑈𝑖𝑛𝑡 ≥ 𝑈𝑗𝑛𝑡, for 𝑗 = 1,… , 𝐽
)

.

The assumptions made on the error term in (2) determine different analytical models. In particular, when the error terms are
independently and identically distributed (i.i.d.) as an extreme value type 1 distribution, one can calculate the probability of choosing
a certain alternative following a logit type model (McFadden, 1974).

Dropping all the subscripts to lighten notation, one can write 𝑈 = 𝑉 + 𝜖. When 𝑉 is specified as linear in the alternative
attributes, as in (3), the total variation of 𝑈 with respect to joint variations in the 𝑘th attribute 𝑋𝑘 and the cost attribute 𝑋𝑐 is
𝑑𝑈 = 𝛽𝑘𝑑𝑋𝑘 + 𝛽𝑐𝑑𝑋𝑐 . Setting this expression equal to zero and solving for 𝑑𝑋𝑐∕𝑑𝑋𝑘 yields the change in cost that keeps utility
unchanged given a change in 𝑋𝑘:

𝑑𝑋𝑐
𝑑𝑋𝑘

= 𝑤𝑘 = −
𝛽𝑘
𝛽𝑐

,

which represents the WTP, 𝑤𝑘, for an improvement in 𝑘th attribute.2 In the more general case of a non-linear utility function, the

WTP of attribute 𝑘 is 𝑤𝑘 = −
𝑑𝑔𝑗∕𝑑𝑋𝑘

𝑑𝑔𝑗∕𝑑𝑋𝑐
. While this paper focuses on the case of linear utility functions, the theory exposed and the

results obtained herein also apply to the general non-linear case.
Since the parameters 𝛽, describing agents’ preferences, are unknown, one needs to estimate them. Assuming homogeneous agents

implies fixed parameters. Alternatively, when unobserved heterogeneity3 in agents’ preferences is present, parameters are assumed
random and distributed according to some distributions over agents. In this case, one can estimate the structural parameters of these
distributions. For example, when assuming a normal distribution for 𝛽𝑘 one can estimate the mean 𝜇𝑘 and standard deviation 𝜎𝑘.
When errors are i.i.d. extreme value type 1, and agents are homogeneous, this implies a MNL model as well as a fixed unknown value
for WTP. Assuming heterogeneous agents, instead, implies a MXL model with random WTP distributed over the agents’ population.
In both cases, the WTP estimate or that of its distributional parameters suffer from sampling error. Therefore, calculating WTP
confidence or prediction intervals as well as providing a measure of uncertainty in estimates or predictions become interesting
issues that the next sections explore.

3. Delta method

3.1. The fixed parameter case

The Delta method is commonly used to determine the standard error for a function of the parameter estimates. If 𝛽
𝐷
←←←←←←←←→ 𝑁(𝛽,𝛺𝛽 )

nd ℎ is a differentiable function, then

ℎ(𝛽)
𝐷
←←←←←←←←→ 𝑁(ℎ(𝛽),∇𝛽ℎ(𝛽)𝑇𝛺𝛽∇𝛽ℎ(𝛽)),

where ∇𝛽ℎ(𝛽) is the Jacobian of ℎ(𝛽).
When considering the WTP of a MNL model, i.e. 𝑤𝑘 = ℎ(𝛽𝑘, 𝛽𝑐 ) = − 𝛽𝑘

𝛽𝑐
, the Delta method yields

�̂�𝑘
𝐷
←←←←←←←←→ 𝑁

(

𝑤𝑘,
(

∇𝛽𝑘𝑤𝑘
∇𝛽𝑐𝑤𝑘

)𝑇

𝛺𝛽𝑘 ,𝛽𝑐

(

∇𝛽𝑘𝑤𝑘
∇𝛽𝑐𝑤𝑘

)

)

,

with 𝛺𝛽𝑘 ,𝛽𝑐
being the variance–covariance sub-matrix for parameter estimates 𝛽𝑘 and 𝛽𝑐 , ∇𝛽𝑘𝑤𝑘 = −1∕𝛽𝑐 and ∇𝛽𝑐𝑤𝑘 = 𝛽𝑘∕𝛽2𝑐 . This

leads to the well known asymptotic standard error formula for �̂�𝑘 found in Armstrong et al. (2001) and Daly et al. (2012a), among
others, i.e.

se(�̂�𝑘) =
1
𝛽𝑐

√

Var(𝛽𝑘) + 2𝑤𝑘Cov(𝛽𝑘, 𝛽𝑐 ) +𝑤2
𝑘Var(𝛽𝑐 ). (4)

2 Note that the 𝑘th attribute can be either numerical or categorical. In this last case, dummy or effects coding are commonly used, but the definition of 𝑤𝑘
is still valid. For example, 𝑋𝑘 might be a dummy equal to 1 if class travel is ‘‘comfort’’ and 0 if it is ‘‘economy’’. Then, 𝑑𝑋𝑘 = 1 indicates the variation of the
class travel from ‘‘economy’’ to ‘‘comfort’’, and 𝑤𝑘 = − 𝛽𝑘

𝛽𝑐
is the WTP for moving from ‘‘economy’’ to ‘‘comfort’’ class.

3 Unobserved heterogeneity refers to taste variations that are purely random or due to unobserved agents’ characteristics. Observed heterogeneity refers,
nstead, to tastes that vary systematically with respect to observed socio-economic or demographic characteristics. Fixed parameters logit models can capture
bserved heterogeneity by interacting attributes with agents’ characteristics, while random parameters are used to deal with unobserved heterogeneity.
56
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Substituting parameters with their estimates in (4) allows calculating se(�̂�𝑘) that can be used in the construction of confidence
intervals at the (1 − 𝛼) level as:

�̂�𝑘 ± 𝑧𝛼∕2 ŝe(�̂�𝑘) (5)

where 𝑧𝛼∕2 is the 100(1 − 𝛼∕2)th percentile of the standard normal distribution.

.2. The random parameter case

When assuming stochastic taste parameters, 𝑤𝑘 is a random variable itself characterized by a certain probability density function
𝑓𝑤𝑘

(𝑥), which is determined by the type of distributions chosen for the taste parameters 𝛽. For example, if 𝛽𝑘 is assumed fixed and
𝑐 is assumed log-normal, 𝑤𝑘 will also have a log-normal distribution. If, instead, a normal distribution is chosen for 𝛽𝑐 , 𝑤𝑘 will
ave a distribution with infinite moments (Daly et al., 2012b).

When 𝑤𝑘 is random, one might want to compute confidence intervals, prediction intervals, or both, as well as other quantities
f interest. Let us suppose that the moments of 𝑤𝑘 do exist, E(𝑤𝑘) be its expected value, and �̄�𝑘 be an asymptotically unbiased and
ormally distributed sample estimator of E(𝑤𝑘), with standard error se(�̄�𝑘). Then the confidence interval for the expected WTP,
(𝑤𝑘), is

�̄�𝑘 ± 𝑧𝛼∕2 ŝe(�̄�𝑘), (6)

here ŝe(�̄�𝑘) is a sample estimate of se(�̄�𝑘). If, instead, the aim is to predict an outcome of the variable 𝑤𝑘, rather than to estimate
ts expected value, one could still use �̄�𝑘 as a point estimate of this outcome. However, while the uncertainty in estimating E(𝑤𝑘)
s only due to the sampling error, the uncertainty in predicting an outcome of 𝑤𝑘, must also account for the natural variability of
he distribution 𝑓𝑤𝑘

(𝑥) along with the sampling error. The prediction standard error quantifies both uncertainty types. It might be
empting, then, to calculate prediction intervals for the random variable 𝑤𝑘 similarly to (6), thus simply substituting the standard
rror with the prediction standard error. This is exactly what Bliemer and Rose (2013) do. However, unless 𝛽𝑘 is assumed normal and
𝑐 fixed, 𝑤𝑘 is not normally distributed, thus prediction intervals calculated in such a way might suffer from a coverage probability
eing different from (1 − 𝛼). One should, therefore, develop a different strategy such as that illustrated in Section 3.2.2.

.2.1. The DBR approach
Bliemer and Rose (2013) extend the Delta method to compute prediction intervals4 for 𝑤𝑘 in the mixed logit context. They start

ith the case of 𝛽𝑘 and 𝛽𝑐 independently distributed. They express the parameters as functions of structural parameters 𝜃𝑘 ∈ R𝑝𝑘 and
𝑐 ∈ R𝑝𝑐 , of dimension 𝑝𝑘 and 𝑝𝑐 , respectively, using parameter-free distributions (standard normal or standard uniform distribution),
.e.

𝛽𝑘 = 𝛽𝑘(𝜃𝑘, 𝑧𝑘) and 𝛽𝑐 = 𝛽𝑐 (𝜃𝑐 , 𝑧𝑐 ), (7)

here 𝑧𝑘 ∈ R𝑠𝑘 and 𝑧𝑐 ∈ R𝑠𝑐 are vectors of draws (of dimension 𝑠𝑘 and 𝑠𝑐 , respectively) from standard distributions. Subsequently,
hey use these functions within the Delta method to map the variance–covariance matrix of the structural parameter estimates
̂ = (�̂�𝑘, �̂�𝑐 ) to that of 𝛽 = (𝛽𝑘, 𝛽𝑐 ), so to obtain the standard error of −𝛽𝑘∕𝛽𝑐 ,∀𝑘. For example, if 𝛽𝑘 ∼ 𝑁(𝜇𝑘, 𝜎2𝑘) one can write
𝑘 = 𝜇𝑘 + 𝜎𝑘𝑧𝑘, where 𝑧𝑘 ∼ 𝑁(0, 1), so that 𝜃𝑘 = (𝜇𝑘, 𝜎𝑘). Bliemer and Rose (2013) provide a useful list of distributions which can be
btained from a standard normal or uniform distribution.

Under this framework, one can write the variable 𝑤𝑘 as follows:

𝑤𝑘 = −
𝛽𝑘(𝜃𝑘, 𝑧𝑘)
𝛽𝑐 (𝜃𝑐 , 𝑧𝑐 )

, (8)

i.e. as a function of the fixed parameters 𝜃 = (𝜃𝑘, 𝜃𝑐 ) ∈ R𝑝𝑘+𝑝𝑐 and the random variables 𝑧 = (𝑧𝑘, 𝑧𝑐 ) ∈ R𝑠𝑘+𝑠𝑐 accounting for
heterogeneity. Considering a particular value 𝑧 and conditioning on it, the model collapses to the fixed parameter case, where the
WTP is no longer a random variable but a fixed value:

𝑤𝑘(𝑧) = −
𝛽𝑘(𝜃𝑘|𝑧𝑘)
𝛽𝑐 (𝜃𝑐 |𝑧𝑐 )

. (9)

Substituting 𝜃 with its estimate �̂� leads to �̂�𝑘(𝑧) = − 𝛽𝑘(�̂�𝑘|𝑧𝑘)
𝛽𝑐 (�̂�𝑐 |𝑧𝑐 )

, which is an estimate of the fixed value 𝑤𝑘(𝑧) affected by a standard

rror. Bliemer and Rose (2013) state that, according to the Delta method:

�̂�𝑘(𝑧)
𝐷
←←←←←←←←→ 𝑁

⎛

⎜

⎜

⎜

⎜

⎝

𝑤𝑘(𝑧),

⎛

⎜

⎜

⎜

⎜

⎝

∇𝜃𝑘𝑤𝑘(𝑧)
∇𝜃𝑐𝑤𝑘(𝑧)
∇𝑧𝑘𝑤𝑘(𝑧)
∇𝑧𝑐𝑤𝑘(𝑧)

⎞

⎟

⎟

⎟

⎟

⎠

𝑇
(

𝛺�̂�𝑘 ,�̂�𝑐
𝟎

𝟎𝑇 𝟏

)

⎛

⎜

⎜

⎜

⎜

⎝

∇𝜃𝑘𝑤𝑘(𝑧)
∇𝜃𝑐𝑤𝑘(𝑧)
∇𝑧𝑘𝑤𝑘(𝑧)
∇𝑧𝑐𝑤𝑘(𝑧)

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

, (10)

4 It is important to note that the econometric literature typically uses ‘‘confidence intervals’’ for both types of intervals. Bliemer and Rose (2013) use the term
‘confidence interval’’ while computing a ‘‘prediction interval’’. This paper, instead, keeps the two concepts separate and compute them both using an extension
57
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where 𝟎 ∈ R(𝑝𝑘+𝑝𝑐 )×(𝑠𝑘+𝑠𝑐 ) is a matrix of zeros and 𝟏 ∈ R(𝑠𝑘+𝑠𝑐 )×(𝑠𝑘+𝑠𝑐 ) is a diagonal matrix of ones due to the fact that 𝑧𝑘 and 𝑧𝑐
re independently distributed and they are also independent from the estimators �̂�𝑘 and �̂�𝑐 . The unconditional mean WTP estimate,

according to Bliemer and Rose (2013), is defined as5

�̄�𝑘 = ∫𝑧
�̂�𝑘(𝑧)𝑑𝐹𝑧(𝑧) (11)

where 𝐹𝑧(𝑧) = 𝐹𝑧𝑘 (𝑧𝑘)𝐹𝑧𝑐 (𝑧𝑐 ) is the cumulative distribution function of the standard independently distributed 𝑧𝑘 and 𝑧𝑐 . Since
integrals are linear operators, the resulting asymptotic distribution of �̄�𝑘 is also normally distributed, with expectation and variance
given by the integrals over 𝑧 of the conditional expectation and variance in (10).

Using Monte Carlo simulation, one can obtain the following approximation of the unconditional mean WTP estimate:

�̄�𝑘 ≈ 1
𝑅

𝑅
∑

𝑟=1
�̂�𝑘

(

𝑧(𝑟)
)

, (12)

whose prediction standard error6 is approximated in Bliemer and Rose (2013) as the average, over 𝑧 of the conditional standard
errors, that is:

pse(�̄�𝑘) ≈
1
𝑅

𝑅
∑

𝑟=1

√

√

√

√

√

√

√

√

√

⎛

⎜

⎜

⎜

⎜

⎝

∇𝜃𝑘𝑤𝑘(𝑧(𝑟))
∇𝜃𝑐𝑤𝑘(𝑧(𝑟))
∇𝑧𝑘𝑤𝑘(𝑧(𝑟))
∇𝑧𝑐𝑤𝑘(𝑧(𝑟))

⎞

⎟

⎟

⎟

⎟

⎠

𝑇
(

𝛺�̂�𝑘 ,�̂�𝑐
𝟎

𝟎𝑇 𝟏

)

⎛

⎜

⎜

⎜

⎜

⎝

∇𝜃𝑘𝑤𝑘(𝑧(𝑟))
∇𝜃𝑐𝑤𝑘(𝑧(𝑟))
∇𝑧𝑘𝑤𝑘(𝑧(𝑟))
∇𝑧𝑐𝑤𝑘(𝑧(𝑟))

⎞

⎟

⎟

⎟

⎟

⎠

, (13)

where 𝑧(𝑟) =
(

𝑧(𝑟)𝑘 , 𝑧(𝑟)𝑐
)

are draws from 𝐹𝑧𝑘 (𝑧𝑘) and 𝐹𝑧𝑐 (𝑧𝑐 ).
One can estimate the prediction standard error in (13) substituting parameter and variance–covariance matrix estimates in its

equation and use it to compute prediction intervals as in (6). Bliemer and Rose (2013) clearly state that ‘‘. . . the [prediction] standard
error of the unconditional WTP computed directly from the conditional WTP’s, considering only simulated values of �̂�𝑘

(

𝑧(𝑟)𝑘 , 𝑧(𝑟)𝑐
)

is incorrect as it ignores the uncertainty (expressed in the variance–covariance matrix) of the distributional parameter estimates
�̂�, while we explicitly take this into account . . . ’’. They correctly stress that one should account for both the variability due to
heterogeneity and for the variability linked to the uncertainty in the estimate of 𝜃 when constructing prediction intervals for random
WTP. However, we do not completely agree with this procedure resting on Eqs. (10) and (13) (see Section 3.2.2). Moreover,
computing prediction intervals as in (6) produces symmetric intervals. This might represent a shortcoming compared to the KR
method and the one proposed here. In fact, in some cases, it might deliver questionable results, as discussed in Section 3.2.2 and
illustrated in Sections 5 and 6.2.

3.2.2. The DSMG approach
Let us go back to the conditional WTP in (9). When conditioning on 𝑧, 𝑧 is no longer a random variable but a fixed known

value instead. As a consequence, 𝑤𝑘(𝑧) is also a fixed and unknown value dependent on the unknown parameter vector 𝜃. When
estimating 𝜃 and 𝑤𝑘(𝑧), one can calculate the standard error of �̂�𝑘(𝑧) via the Delta method. We claim that the Delta method is to
be applied in exactly the same way as it would be in the fixed parameter case. This is correct given we are conditioning on 𝑧, thus
𝛽 becomes a vector of fixed parameters since 𝜃 is fixed. We suggest substituting Eq. (10) with:

�̂�𝑘(𝑧)
𝐷
←←←←←←←←→ 𝑁

(

𝑤𝑘(𝑧),
(

∇𝜃𝑘𝑤𝑘(𝑧)
∇𝜃𝑐𝑤𝑘(𝑧)

)𝑇

𝛺�̂�𝑘 ,�̂�𝑐

(

∇𝜃𝑘𝑤𝑘(𝑧)
∇𝜃𝑐𝑤𝑘(𝑧)

)

)

, (14)

where, unlike in (10), the variability of �̂�𝑘(𝑧) only depends on the sample variability of the estimates �̂�, while 𝑧 is fixed.
Eq. (11) reports the unconditional mean WTP estimate, �̄�𝑘, that can be evaluated through a Monte Carlo approximation as in

(12). It is asymptotically normal with mean E(𝑤𝑘), given by the integral over 𝑧 of the conditional expectations E(�̂�𝑘(𝑧)) = 𝑤𝑘(𝑧).
We propose an alternative method to compute the standard error of �̄�𝑘, with respect to what Bliemer and Rose (2013) suggest. In
fact, we explicitly consider that the �̂�𝑘(𝑧) are not independent over 𝑧, thus we do not take the integral over 𝑧 of the conditional
standard errors.7 In conclusion, to calculate the variance of �̄�𝑘 one should use the following formula:

Var(�̄�𝑘) = Var∫𝑧
�̂�𝑘(𝑧)𝑑𝐹𝑧(𝑧) = ∫𝑧1 ∫𝑧2

Cov(�̂�𝑘(𝑧1), �̂�𝑘(𝑧2))𝑑𝐹𝑧(𝑧1)𝑑𝐹𝑧(𝑧2),

5 Note that Bliemer and Rose (2013) use the notation �̂�𝑘, while we prefer �̄�𝑘, since we use the former to denote the random variable obtained from (8)
hen substituting the parameters 𝜃 with their sample estimates.
6 Bliemer and Rose (2013) refer to it simply as standard error and indicate it as se(⋅). We prefer distinguishing between prediction standard error, accounting

or the uncertainty due to both sampling error and heterogeneity, and standard error, accounting for sampling variability alone, since we compute both quantities
sing the Delta method.

7 In fact, even for independent variables, the standard error of their sum is not the sum of their standard errors, while it is true that the variance of their
ums is the sum of their variances. We show in Appendix B that the prediction standard error in (13) correctly accounts for uncertainty due to heterogeneity
ut not for that due to sampling error, for the normal divided by fixed case. The sampling error, however, becomes progressively less important compared
o heterogeneity when the sample size increases. In the large sample size case, the bias is negligible. Nevertheless, for different mixing distributions, even the
ariability due to heterogeneity is incorrectly estimated. The problem does not vanish even when the sample size increases. Thus, the estimate of the prediction
tandard error in (13) may be both biased and inconsistent, depending on the chosen mixing distributions.
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where one could use the Delta method (Klein, 1953, p. 258) to approximate Cov(�̂�𝑘(𝑧1), �̂�𝑘(𝑧2)). The standard error of �̄�𝑘 can be
stimated as8:

se(�̄�𝑘) ≈
1
𝑅

√

√

√

√

𝑅
∑

𝑟=1

𝑅
∑

𝑠=1

(

∇𝜃𝑘𝑤𝑘(𝑧(𝑟))
∇𝜃𝑐𝑤𝑘(𝑧(𝑟))

)𝑇

𝛺�̂�𝑘 ,�̂�𝑐

(

∇𝜃𝑘𝑤𝑘(𝑧(𝑠))
∇𝜃𝑐𝑤𝑘(𝑧(𝑠))

)

. (15)

We stress that the standard error in (15) only accounts for the variability of �̄�𝑘 due to sampling error, but not for the variability
due to heterogeneity.9 As such, one can use it (once estimated on the data) to build a confidence interval for 𝐸(𝑤𝑘) as in (6), since
�̄�𝑘 in (11) is an asymptotically unbiased and normally distributed estimator of 𝐸(𝑤𝑘).

Let us now discuss the estimation of a prediction interval for the random variable 𝑤𝑘 and a prediction standard error. Consider
the conditional estimates �̂�𝑘(𝑧) and their asymptotic normal distribution in (14). Integrating the normal distribution in (14) over 𝑧,
one obtains the asymptotic distribution of the unconditional variable �̂�𝑘:

𝑓�̂�𝑘
(𝑥) = ∫𝑧

𝜙
(

𝑥;𝑤𝑘(𝑧),Var
(

�̂�𝑘(𝑧)
))

𝑑𝐹𝑧(𝑧), (16)

where Var(�̂�𝑘(𝑧)) is specified in (14) and 𝜙(𝑥;𝜇, 𝜎2) denotes the density of a normal distribution with mean 𝜇 and variance 𝜎2,
evaluated in 𝑥. Notice the difference between (11) and (16). While (11) is the integral of the conditional �̂�𝑘(𝑧) over 𝑧, providing
the expected value of these quantities with respect to 𝑧, (16) is the integral of the densities of the conditional �̂�𝑘(𝑧) and produces
the density of the unconditional �̂�𝑘, which is a continuous mixture of normal distributions with weights given by the joint density
of (𝑧𝑘, 𝑧𝑐 ).

The moments of a mixture can be easily computed (Withers et al., 2015). In particular, the mean of a mixture is the average of
the components’ means, while the variance is the mean of the components’ variances plus the variance for the components’ means.
In our framework, this implies both

E(�̂�𝑘) = ∫𝑧
𝑤𝑘(𝑧)𝑑𝐹𝑧(𝑧) = E(𝑤𝑘),

that one can estimate as in (11) and approximate as in (12), as well as

Var(�̂�𝑘) = ∫𝑧
Var(�̂�𝑘(𝑧))𝑑𝐹𝑧(𝑧) + ∫𝑧

(𝑤𝑘(𝑧) − E(𝑤𝑘))2𝑑𝐹𝑧(𝑧). (17)

The first integral is the part of variability of �̂�𝑘 due to the sampling error. This can be estimated via a Monte Carlo approximation
as 1

𝑅
∑𝑅

𝑟=1 V̂ar(�̂�𝑘(𝑧(𝑟))), where

V̂ar(�̂�𝑘(𝑧(𝑟))) =

(

∇�̂�𝑘
�̂�𝑘(𝑧(𝑟))

∇�̂�𝑐
�̂�𝑘(𝑧(𝑟))

)𝑇

�̂��̂�𝑘 ,�̂�𝑐

(

∇�̂�𝑘
�̂�𝑘(𝑧(𝑟))

∇�̂�𝑐
�̂�𝑘(𝑧(𝑟))

)

(18)

represents the sample estimate of Var(�̂�𝑘(𝑧)) appearing in (14) and used in (17). The second integral in (17) accounts for the
dispersion of the conditional 𝑤𝑘(𝑧) around their mean. This is Var(𝑤𝑘) and constitutes the variability due to heterogeneity. One can
estimate it as

V̂ar(𝑤𝑘) =
1
𝑅

𝑅
∑

𝑟=1
(�̂�𝑘(𝑧(𝑟)) − �̄�𝑘)2. (19)

Therefore, the distribution of �̂�𝑘 in (16) accounts for both the variability due to sampling error and the variability due to
heterogeneity. One can safely use it to build prediction intervals. However, 𝑓�̂�𝑘

(𝑥), being a mixture of normal distributions, might
assume various shapes and be very far from symmetric. We, thus, consider wise to refrain from building a prediction interval
using normal theory. Instead, we propose using the percentiles of 𝑓�̂�𝑘

(𝑥). After substituting 𝑤𝑘(𝑧) and Var(�̂�𝑘(𝑧)) with their sample
estimates, one can use Monte Carlo approximation to get:

𝑓�̂�𝑘
(𝑥) ≈ 1

𝑅

𝑅
∑

𝑟=1
𝜙
(

𝑥; �̂�𝑘(𝑧(𝑟)), V̂ar(�̂�𝑘(𝑧(𝑟)))
)

. (20)

A (1 − 𝛼) level prediction interval for 𝑤𝑘 is given by
[

𝐹−1
�̂�𝑘

(𝛼∕2) ; 𝐹−1
�̂�𝑘

(1 − 𝛼∕2)
]

, (21)

where 𝐹−1
�̂�𝑘

is the inverse of the estimated cumulative distribution of �̂�𝑘. Although there is no simple formula for the percentiles of
a mixture of normal distributions, a line search can be performed to get the percentiles. In practice, 𝐹�̂�𝑘

(𝑥) can be computed from
any statistical package as

𝐹�̂�𝑘
(𝑥) ≈ 1

𝑅

𝑅
∑

𝑟=1
𝛷
(

𝑥; �̂�𝑘(𝑧(𝑟)), V̂ar(�̂�𝑘(𝑧(𝑟)))
)

, (22)

8 Notice the difference with Eq. (13).
9 This motivates why we refer to it simply as standard error and not as prediction standard error. We denote it by se(⋅).
59



Transportation Research Part B 167 (2023) 54–78L. Scaccia et al.

m

n
𝑧
p
w

a
e
s
c

with 𝛷 denoting the cumulative of 𝜙. The percentile 𝐹−1
�̂�𝑘

(𝛼) can be obtained through a minimization routine as the value 𝑥
inimizing |𝐹�̂�𝑘

(𝑥) − 𝛼|.
Notice that the approach we propose, as well as the DBR, only requires simulations in a number of dimensions equal to the

umber of random parameters in the WTP ratio. Therefore, simulations in at most two dimensions are required, i.e. the draws for
𝑘 and 𝑧𝑐 . KR requires, instead, simulations in a number of dimensions equal to the number of random parameters in the WTP ratio
lus the total number of structural parameters (see Section 4). Nevertheless, as for KR, our approach delivers an estimate of the
hole �̂�𝑘 distribution, not only of its moments, which can be used to calculate whatever one needs to know about the WTP.

In conclusion, we stress that both DSMG and DBR assume a normal sampling distribution for the estimated structural parameters
nd for �̂�𝑘(𝑧). This assumption is fulfilled for large enough samples given asymptotic normality of simulated maximum likelihood
stimates. Please also notice that, conditioning on 𝑧, �̂�𝑘(𝑧) becomes a continuous and differentiable function of the estimates of the
tructural parameters 𝜃𝑘 and 𝜃𝑐 . Since these estimates are asymptotically normal, the results of Daly et al. (2012a) apply and one
an state that �̂�𝑘(𝑧) is also asymptotically normal.

To summarize, DSMG prescribes the following steps:

1. Write the parameters 𝛽 in their parameter-free distribution form as in (7).
2. Use standard software to get parameter vector estimates (�̂�1,… , �̂�𝐾 , �̂�𝑐 ) and estimated variance–covariance matrix �̂�(�̂�1 ,…,�̂�𝐾 ,�̂�𝑐 )

.
3. Obtain a large number 𝑅 of pseudo-random or quasi-random draws (such as Halton, Sobol, Modified Latin Hypercube

Sampling, etc.) for 𝑧 from the appropriate standard distributions and let (𝑧(𝑟)1 ,… , 𝑧(𝑟)𝐾 , 𝑧(𝑟)𝑐 ), for 𝑟 = 1,… , 𝑅, denote the set
of draws.

4. For each 𝑟 = 1,… , 𝑅, compute 𝛽𝑘(�̂�𝑘, 𝑧
(𝑟)
𝑘 ), for 𝑘 = 1,… , 𝐾, and 𝛽𝑐 (�̂�𝑐 , 𝑧

(𝑟)
𝑐 ) and, then, compute �̂�𝑘(𝑧(𝑟)) = −𝛽𝑘(�̂�𝑘, 𝑧

(𝑟)
𝑘 )∕𝛽𝑐 (�̂�𝑐 , 𝑧

(𝑟)
𝑐 ).

5. Use the �̂�𝑘(𝑧(𝑟)) to get different quantities of interest, such as:

- estimated average WTP, �̄�𝑘, obtained as in (12);

- estimated standard error for �̄�𝑘, obtained as

ŝe(�̄�𝑘) ≈
1
𝑅

√

√

√

√

√

𝑅
∑

𝑟=1

𝑅
∑

𝑠=1

(

∇�̂�𝑘
�̂�𝑘(𝑧(𝑟))

∇�̂�𝑐
�̂�𝑘(𝑧(𝑟))

)𝑇

�̂��̂�𝑘 ,�̂�𝑐

(

∇�̂�𝑘
�̂�𝑘(𝑧(𝑠))

∇�̂�𝑐
�̂�𝑘(𝑧(𝑠))

)

; (23)

- estimated confidence intervals for the average WTP, E(𝑤𝑘), obtained as in (6), with �̄�𝑘 given in (12) and ŝe(�̄�𝑘) given
in (23);

- estimated prediction standard error, p̂se(�̄�𝑘), obtained as the square root of an estimate of (17), that is

p̂se(�̄�𝑘) =

√

√

√

√
1
𝑅

𝑅
∑

𝑟=1
V̂ar(�̂�𝑘(𝑧(𝑟))) + V̂ar(𝑤𝑘),

with V̂ar(�̂�𝑘(𝑧(𝑟))) given in (18) and V̂ar(𝑤𝑘) given in (19);

- estimated prediction intervals for 𝑤𝑘, obtained as in (21), where 𝐹−1
�̂�𝑘

(𝛼) = 𝑥 ∶ |𝐹�̂�𝑘
(𝑥) − 𝛼| = min𝑥

(

|𝐹�̂�𝑘
(𝑥) − 𝛼|

)

, with
𝐹�̂�𝑘

(𝑥) given in (22).

4. Krinsky and Robb method

In this section, we briefly review the KR method. This has long been the only viable option to determine confidence and prediction
intervals, as well as standard errors and prediction standard errors for the WTP in the random parameter framework. We use this
as a benchmark for DSMG. KR consists of the following steps:

1. Write the parameters 𝛽 in their parameter-free distribution form as in (7).
2. Use standard software to get parameter vector estimates (�̂�1,… , �̂�𝐾 , �̂�𝑐 ) and estimated variance–covariance matrix �̂�(�̂�1 ,…,�̂�𝐾 ,�̂�𝑐 )

.
3. Obtain a large number 𝐵 of first stage structural parameter draws from a multivariate normal distribution with mean

(�̂�1,… , �̂�𝐾 , �̂�𝑐 ) and variance–covariance matrix �̂�(�̂�1 ,…,�̂�𝐾 ,�̂�𝑐 )
. Let (�̂�(𝑏)1 ,… , �̂�(𝑏)𝐾 , �̂�(𝑏)𝑐 ), for 𝑏 = 1,… , 𝐵 denote these first stage

draws.
4. Obtain a large number 𝑅 of draws

(

𝑧(1),… , 𝑧(𝑅)
)

from the appropriate standard distributions of 𝑧 and compute the second
stage draws of the random parameters as 𝛽(𝑏,𝑟)𝑘 = 𝛽𝑘(�̂�

(𝑏)
𝑘 , 𝑧(𝑟)𝑘 ) and 𝛽(𝑏,𝑟)𝑐 = 𝛽𝑐 (�̂�

(𝑏)
𝑐 , 𝑧(𝑟)𝑐 ).

5. Compute �̂�(𝑏,𝑟)
𝑘 = −𝛽(𝑏,𝑟)𝑘 ∕𝛽(𝑏,𝑟)𝑐 , ∀𝑏, ∀𝑟 and ∀𝑘.

6. Use the �̂�(𝑏,𝑟)
𝑘 to get different quantities of interest, such as:

- estimated average WTP, �̄�𝑘, obtained as:

�̄�𝑘 = 1 1
𝐵
∑

𝑅
∑

�̂�(𝑏,𝑟)
𝑘 ;
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- estimated standard error for �̄�𝑘, obtained as:

ŝe(�̄�𝑘) =

√

√

√

√
1
𝐵

𝐵
∑

𝑏=1

(

�̄�(𝑏)
𝑘 − �̄�𝑘

)2
,

where �̄�(𝑏)
𝑘 =

∑𝑅
𝑟=1 �̂�

(𝑏,𝑟)
𝑘 ∕𝑅;

- estimated confidence intervals for the average WTP, E(𝑤𝑡), obtained as:
[

�̄�[𝐿]
𝑘 ; �̄�[𝑈 ]

𝑘

]

,

where �̄�[𝐿]
𝑘 and �̄�[𝑈 ]

𝑘 are the 100𝛼∕2th and 100(1−𝛼∕2)th percentiles of the set (�̄�(1)
𝑘 ,… , �̄�(𝐵)

𝑘 ) of replicates for the sample
estimate of E(𝑤𝑡), sorted in ascending order;

- estimated prediction standard error, p̂se(�̄�𝑘), obtained as:

p̂se(�̄�𝑘) =

√

√

√

√
1
𝐵

1
𝑅

𝐵
∑

𝑏=1

𝑅
∑

𝑟=1

(

�̂�(𝑏,𝑟)
𝑘 − �̄�𝑘

)2
;

- estimated prediction intervals for 𝑤𝑘, obtained as:
[

�̂�[𝐿]
𝑘 ; �̂�[𝑈 ]

𝑘

]

,

where �̂�[𝐿]
𝑘 and �̂�[𝑈 ]

𝑘 are the 100𝛼∕2th and 100(1 − 𝛼∕2)th percentiles of the set (�̂�(1,1)
𝑘 ,… , �̂�(𝐵,𝑅)

𝑘 ) sorted in ascending
order.

R requires simulations in a number of dimensions equal to the number of random parameters in the WTP ratio plus the total number
f structural parameters. The steps above still apply when some of the parameters are fixed. Suppose that 𝛽𝑘 is a non-random
arameter. We can always think of it as 𝛽𝑘 ∼ 𝑁(𝜃𝑘, 0), i.e. as distributed according to a degenerate normal distribution, so that
(𝛽𝑘 = 𝜃𝑘) = 1. Therefore, in step 4 we would obtain 𝛽(𝑏,𝑟)𝑘 = �̂�(𝑏)𝑘 , ∀𝑏 and ∀𝑟. A small change in step 4 would also accommodate the
ase of dependently distributed random parameters by drawing the random parameters from their multivariate mixing distribution.

Notice that step 3 provides the simulated sampling distribution of each structural parameter estimator �̂�𝑘 and �̂�𝑐 , accounting
for sampling error, while step 4 provides, for a particular 𝑏, the simulated distribution of each random parameter, accounting for
heterogeneity. As a consequence, the whole set (i.e. for 𝑏 = 1,… , 𝐵 and 𝑟 = 1,… , 𝑅) of second stage draws takes into account both
the heterogeneity of the random parameters and the sampling error of structural parameter estimates. Similarly, the values �̂�(𝑏,𝑟)

𝑘 , for
𝑏 = 1,… , 𝐵 and 𝑟 = 1,… , 𝑅, incorporate the variability due to both heterogeneity and sampling error thus providing the simulated
sampling distribution of the random variable �̂�𝑘. This distribution is asymptotically equivalent to the mixture distribution in (20)
obtained through the DSMG (see Section 6). We remark that the normality of the sampling distribution of the structural parameters
is the only assumption KR requires. Asymptotic normality of simulated maximum likelihood estimates assures that this assumption
is fulfilled for large enough samples.

5. Simulation study

This section compares DSMG, DBR, and KR via a simulation study. We construct a number of data sets mimicking an actual
choice experiment, in line with Gatta et al. (2015) and Hole (2007). A number 𝑁 of hypothetical agents is faced with 𝑇 = 16
different choice tasks, each one presenting 𝐽 = 2 alternatives characterized by three different attributes, denoted 𝑋1, 𝑋2 and 𝑋𝑐 ,
with 𝑋𝑐 being the attribute ‘‘cost’’. As in Gatta et al. (2015), 𝑋1 and 𝑋2 have two levels, coded 1 and 2, while 𝑋𝑐 has four levels,
coded 1, 2, 3 and 4. Dropping all the subscripts for simplicity, the observed difference in utility between the two alternatives is:

𝑉1 − 𝑉2 = 𝛽0 + 𝛽1(𝑋11 −𝑋12) + 𝛽2(𝑋21 −𝑋22) + 𝛽𝑐 (𝑋𝑐1 −𝑋𝑐2). (24)

A single data set can be drawn from a certain MXL model through the following steps: (1) draw values for 𝛽1, 𝛽2 and 𝛽𝑐 ,
independently for each agent, from their mixing distribution and substitute them into (24); (2) draw a value for the error difference
𝜖1−𝜖2, independently for each agent and for each choice task, from a logistic distribution; (3) if this value is less than the difference
𝑉1 − 𝑉2, than the first alternative is chosen and the choice variable 𝑦 takes the value 1 for the first alternative and 0 otherwise. If
not, the opposite is true.

We consider different sample sizes and mixing distributions, and generate 𝑀 = 1000 different data sets for each of them. We fit,
for each data set, a correctly specified MXL model and estimate its parameters via simulated maximum likelihood. We use DSMG,
DBR, and KR to estimate �̄�1 and �̄�2 and get confidence and prediction intervals, along with standard errors and prediction standard
errors. The 𝑀 Monte Carlo replicates allow evaluating the performance of the various estimators.

We illustrate the asymptotic behaviour of the different estimators by progressively increasing the sample size from 𝑁 = 150
o 𝑁 = 300 and finally using 𝑁 = 450. We report simulations for 𝑁 = 300 and 𝑁 = 450 only when those for 𝑁 = 150 are not

satisfactory. The following sections discuss the results.
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Table 1
Normal divided by fixed case: mean and standard deviation (in brackets) over Monte Carlo replicates for the
estimated average WTP, its standard error and prediction standard error. The superscript (MC) denotes Monte
Carlo estimates of benchmark values.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1
�̄�1 1.000 0.998 (0.074) 0.998 (0.074) 0.998 (0.074)
ŝe(�̄�1) 0.074(MC) 0.077 (0.004) – 0.077 (0.004)
p̂se(�̄�1) 0.505(MC) 0.501 (0.082) 0.500 (0.082) 0.501 (0.082)

𝑘 = 2
�̄�2 0.500 0.503 (0.069) 0.503 (0.069) 0.503 (0.069)
ŝe(�̄�2) 0.069(MC) 0.065 (0.004) – 0.065 (0.004)
p̂se(�̄�2) 0.406(MC) 0.401 (0.084) 0.400 (0.086) 0.401 (0.084)

Fig. 1. Estimates of the predictive standard error for 𝑤2. Left panel: estimates obtained through the DBR method vs. those obtained through the KR method.
Right panel: estimates obtained through the DSMG method vs. those obtained through the KR method. Darker points correspond to Monte Carlo replicates with
larger estimated sampling error. Red line represents the bisector of the first quadrant.

5.1. The normal divided by fixed case

When assuming the parameter at the numerator of WTP is distributed normal and the one at the denominator is fixed, the
distribution of the WTP for 𝑋𝑘 is known exactly: 𝑤𝑘 ∼ 𝑁(𝜇𝑤𝑘

, 𝜎2𝑤𝑘
), with 𝜇𝑤𝑘

= −𝜇𝑘∕𝛽𝑐 and 𝜎2𝑤𝑘
= 𝜎2𝑘∕𝛽

2
𝑐 . In particular, setting

𝛽0 = 0.5, 𝛽1 ∼ 𝑁(𝜇1, 𝜎21 ), with 𝜇1 = 1 and 𝜎21 = 0.25, 𝛽2 ∼ 𝑁(𝜇2, 𝜎22 ), with 𝜇2 = 0.5 and 𝜎22 = 0.16, and 𝛽𝑐 = −1, leads to 𝑤1 ∼ 𝑁(1, 0.25)
and 𝑤2 ∼ 𝑁(0.5, 0.16).

Table 1 shows the mean of different estimated quantities over Monte Carlo replicates, separately for the DSMG, DBR and KR,
in the case of 𝑁 = 150. In brackets please find the standard deviation over replicates, providing a measure of the stability of these
estimates. Note that the estimate of the average WTP is simply given by −�̂�𝑘∕𝛽𝑐 in the normal divided by fixed case, thus, all the
three methods provide the same result. However, only DSMG and KR can estimate the standard error, se(�̄�𝑘), while DBR cannot.
Both provide, on average, nearly the same result, which is almost equal to the benchmark value and stable across Monte Carlo
replicates.

The three methods are equivalent and reliable, on average, when estimating the prediction standard error. One might, in
principle, interpret this result as suggesting that the concerns expressed about the estimator of the prediction standard error in
(13) are excessive. The Appendix B shows, for the normal divided by fixed case, that the prediction standard error in (13) correctly
accounts for uncertainty deriving from heterogeneity while this is not true for the one arising from sampling error. However, in this
simulation, both the choice of the parameters and the sample size are such that sampling error is much less important compared
to the variability due to heterogeneity. This is the only reason why the prediction standard error in (13) yields reasonable results,
on average. However, the single estimates in the left panel of Fig. 1 show that the prediction standard errors produced by DBR
are systematically smaller in comparison to those KR produces, whenever heterogeneity is not too large and, thus, sampling error
variability becomes more relevant (darker points in the bottom left corner of left panel). On the other hand, the right panel of Fig. 1
shows the nearly perfect agreement between KR and DSMG.

Table 2 reports and compares the performances of the three methods in computing WTP prediction intervals. For each replicate,
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Table 2
Normal divided by fixed case: length, shape, LRP, RRP, and coverage of 95% level prediction intervals.
Significance codes: *** for 𝑝-value < 0.001; ** for 𝑝-value < 0.01; * for 𝑝-value < 0.05. The benchmark for
the length of the interval is in italic and represents a lower limit for the length, accounting only for variability
due to heterogeneity.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1

Length 1.960 1.985 1.958 1.989
Shape 1.000 1.013 1.000 1.015
LRP 0.025 0.030 0.032 0.030
RRP 0.025 0.030 0.033 0.030
Coverage 0.950 0.940 0.935∗ 0.940

𝑘 = 2

Length 1.568 1.612 1.567 1.613
Shape 1.000 1.007 1.000 1.009
LRP 0.025 0.032 0.037∗ 0.032
RRP 0.025 0.031 0.037∗ 0.031
Coverage 0.950 0.937 0.926∗∗∗ 0.937

𝑁 = 300

Benchmark DSMG DBR KR

𝑘 = 1

Length 1.960 1.983 1.971 1.984
Shape 1.000 1.006 1.000 1.009
LRP 0.025 0.027 0.027 0.027
RRP 0.025 0.027 0.028 0.027
Coverage 0.950 0.946 0.944 0.946

𝑘 = 2

Length 1.568 1.587 1.567 1.588
Shape 1.000 1.002 1.000 1.006
LRP 0.025 0.029 0.031 0.029
RRP 0.025 0.030 0.032 0.030
Coverage 0.950 0.941 0.937 0.941

Table 3
Normal divided by fixed case: length, shape, LRP, RRP and coverage of 95% level confidence intervals for
the average WTP. Significance codes: *** for 𝑝-value < 0.001; ** for 𝑝-value < 0.01; * for 𝑝-value < 0.05. The
superscript (MC) denotes Monte Carlo estimates of benchmark values.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1

Length 0.298(MC) 0.300 – 0.301
Shape 1.173(MC) 1.000 – 1.097
LRP 0.025 0.026 – 0.028
RRP 0.025 0.021 – 0.018
Coverage 0.950 0.953 – 0.954

𝑘 = 2

Length 0.275(MC) 0.254 – 0.256
Shape 1.155(MC) 1.000 – 1.054
LRP 0.025 0.026 – 0.033
RRP 0.025 0.028 – 0.027
Coverage 0.950 0.946 – 0.940

shape is the difference between the upper bound and the point estimate, divided by the difference between the point estimate and
the lower bound. The coverage is the difference between the normal cumulative distribution function, evaluated at the upper bound,
nd that evaluated at the lower bound. The left rejection probability (LRP) is the normal cumulative distribution function evaluated
t the lower bound. The right rejection probability (RRP) is one minus the normal cumulative distribution function evaluated at the
pper bound. All these measures are averaged over the 𝑀 Monte Carlo replicates. The difference between the 100(1 − 𝛼∕2)th and
he 100𝛼∕2th percentiles of the 𝑁(𝜇𝑤𝑘

, 𝜎2𝑤𝑘
), for 𝑘 = 1, 2 is the benchmark for the length, representing a lower limit for the length of

he prediction interval, including variability only due to heterogeneity. The known theoretical values for the shape, LRP, RRP and
overage represent the other benchmarks. Table 2 shows, for 𝑁 = 150, that both DSMG and KR provide prediction intervals with
orrect right/left rejection probabilities and global coverage. Prediction intervals are larger than the benchmark lower limit. DBR,
nstead, produces too short prediction intervals with a coverage significantly smaller compared to the theoretical confidence level.
his indicates that the WTP sampling distribution is characterized by heavier tails compared to the normal distribution DBR uses
o build prediction intervals. In particular, the WTP prediction interval for 𝑘 = 2 performs worse than that for 𝑘 = 1, due to the

smaller heterogeneity of 𝛽2. Thus, the sampling error is comparatively more relevant in determining the prediction standard error,
making DBR estimates questionable (Fig. 1, left panel). When 𝑁 increases to 300, the coverage rate improves since the sampling
error decreases.

DSMG and KR can produce confidence intervals for the average WTP, while this is not possible for DBR (Table 3). We use �̄�𝑘
Monte Carlo replicates to calculate benchmark values for WTP confidence intervals’ length and shape. We compute LRP, RRP and
63



Transportation Research Part B 167 (2023) 54–78L. Scaccia et al.

t
t
u
c
w

t

5

d
a
𝑤

m
s

a
(

Table 4
Fixed divided by log-normal case: mean and standard deviation (in brackets) over Monte Carlo replicates for the
estimated average WTP, its standard error and prediction standard error. The superscript (MC) denotes Monte
Carlo estimates of benchmark values.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1
�̄�1 4.482 4.600 (1.214) 4.600 (1.214) 4.600 (1.214)
ŝe(�̄�1) 1.214(MC) 1.141 (0.571) – 1.240 (0.694)
p̂se(�̄�1) 5.999(MC) 7.120 (3.999) 4.883 (2.014) 8.138 (6.055)

𝑘 = 2
�̄�2 2.241 2.294 (0.655) 2.294 (0.655) 2.294 (0.655)
ŝe(�̄�2) 0.655(MC) 0.606 (0.298) – 0.657 (0.361)
p̂se(�̄�2) 3.009(MC) 3.576 (2.086) 2.447 (1.054) 4.088 (3.109)

𝑁 = 300

Benchmark DSMG DBR KR

𝑘 = 1
�̄�1 4.482 4.627 (0.877) 4.627 (0.877) 4.627 (0.877)
ŝe(�̄�1) 0.877(MC) 0.802 (0.269) – 0.834 (0.287)
̂pse(�̄�1) 5.940(MC) 6.713 (2.432) 4.820 (1.353) 7.050 (2.711)

𝑘 = 2
�̄�2 2.241 2.307 (0.458) 2.307 (0.458) 2.307 (0.458)
ŝe(�̄�2) 0.458(MC) 0.425 (0.137) – 0.441 (0.147)
̂pse(�̄�2) 2.973(MC) 3.355 (1.230) 2.407 (0.692) 3.524 (1.376)

𝑁 = 450

Benchmark DSMG DBR KR

𝑘 = 1
�̄�1 4.482 4.549 (0.669) 4.549 (0.669) 4.549 (0.669)
ŝe(�̄�1) 0.669(MC) 0.634 (0.169) – 0.647 (0.175)
̂pse(�̄�1) 5.913(MC) 6.414 (2.281) 4.683 (1.037) 6.583 (1.961)

𝑘 = 2
�̄�2 2.241 2.279 (0.357) 2.279 (0.357) 2.279 (0.357)
ŝe(�̄�2) 0.357(MC) 0.338 (0.087) – 0.344 (0.090)
̂pse(�̄�2) 2.959(MC) 3.218 (1.131) 2.349 (0.538) 3.304 (1.004)

coverage for the intervals DSMG and KR produce as the relative number of times the known 𝜇𝑤𝑘
falls below the lower bound, above

he upper one, or within the two, respectively. Both methods yield correct coverage and left/right rejection probabilities. Notice
hat KR does not provide necessarily symmetric confidence intervals, while DSMG always does by construction. This, in principle,
ndesirable characteristic only pertains to small samples or to particular choices of the mixing distribution not assuring a quick
onvergence (e.g. in the fixed divided by log-normal case). Symmetric confidence intervals are not a problem for large samples,
here the central limit theorem ensures asymptotic normality.

As a final remark, we underline that the results obtained in this section, for the normal divided by fixed case, are also expected
o hold for models estimated in WTP space, when assuming a normally distributed WTP parameter.

.2. The fixed divided by log-normal case

When assuming the parameter at the numerator to be fixed and that at the denominator to be distributed log-normal, the
istribution of the WTP for 𝑋𝑘 is known exactly, as well as its moments: 𝑤𝑘 ∼ sgn(𝛽𝑘)𝐿𝑁(𝜇𝑤𝑘

, 𝜎2𝑤𝑘
), with 𝜇𝑤𝑘

= −𝜇𝑐 + log(|𝛽𝑘|)
nd 𝜎𝑤𝑘

= 𝜎𝑐 . We set 𝛽0 = 0.5, 𝛽1 = 1, 𝛽2 = 0.5 and −𝛽𝑐 ∼ 𝐿𝑁(𝜇𝑐 , 𝜎2𝑐 ) with 𝜇𝑐 = −1 and 𝜎2𝑐 = 1, so that 𝑤1 ∼ 𝐿𝑁(1, 1) and
2 ∼ 𝐿𝑁(0.307, 1). The expected WTP value is 𝐸(𝑤𝑘) = exp(−𝜇𝑘 + 𝜎2𝑤𝑘

∕2), thus 𝐸(𝑤1) = 4.482 and 𝐸(𝑤2) = 2.241, and the variance
is Var(𝑤𝑘) = (exp(𝜎2𝑐 ) − 1) exp(2(−𝜇𝑐 + log(|𝛽𝑘|)) + 𝜎2𝑐 ), thus Var(𝑤1) = 34.513 and Var(𝑤2) = 8.628.

Table 4, analogously to Table 1, reports the mean of different estimated quantities over Monte Carlo replicates for the three
ethods.10 The estimated WTP average is exp(−�̂�𝑘+�̂�2𝑐 ∕2) for all three methods. Both DSMG and KR provide standard error estimates,

ê(�̄�𝑘), very close to the benchmark value, but show a large variability across Monte Carlo replicates.11

Table 4 shows that DBR systematically underestimates the prediction standard error. For 𝑁 = 150, p̂se(�̂�𝑘) averages are equal
to 4.883 and 2.447, respectively for 𝑘 = 1 and 𝑘 = 2, which are much smaller than the benchmarks. Furthermore, these values
re smaller than the known 𝑤𝑘 standard deviations. These represent the variability component ascribable to heterogeneity alone
i.e.

√

Var(𝑤1) = 5.874 and
√

Var(𝑤2) = 2.937). To clarify, we compute, for each replicate, the estimated value of the standard

10 For the fixed divided by log-normal case, Bliemer and Rose (2013) suggest, as a possible alternative, replacing the mean of both the conditional �̂�𝑘(𝑧)
and the conditional standard errors with the median. They warn that dividing by the log-normal distribution might imply rather large WTPs, producing a large
value for the mean of the conditional standard errors. The median of the conditional standard errors is expected to be less affected by extreme values. However,
following this suggestion would introduce a larger bias in the prediction standard error, deteriorating also the prediction intervals’ coverage. This section only
reports results without the correction. They show a better performance. Complete results are available from the authors upon request.

11 In fact, �̄�𝑘 is affected by large (absolute) WTP values arising from the log-normal distribution that can be more/less extreme depending on the parameter
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Fig. 2. Estimates of the predictive standard error p̂se(�̂�𝑘) at each Monte Carlo replicate plotted against estimates of standard deviation
√

V̂ar(𝑤𝑘) for the same

replicate. The comparison is performed for DBR (black points), DSMG (blue points) and KR (green points). The
√

V̂ar(𝑤𝑘) values are the same for the three
methods. Estimates are computed for 𝑁 = 150. The red line represents the bisector of the first quadrant. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

deviation as
√

V̂ar(𝑤𝑘) =
√

(exp(�̂�2𝑐 ) − 1) exp(2(−�̂�𝑐 + log(|𝛽𝑘|)) + �̂�2𝑐 ) so to compare it with the estimated prediction standard error

p̂se(�̂�𝑘) for the same replicate. One would expect p̂se(�̂�𝑘) >
√

V̂ar(𝑤𝑘), for each replicate, since
√

V̂ar(𝑤𝑘) accounts for variability
due to heterogeneity alone, while p̂se(�̂�𝑘) incorporates the sampling error too. However, when using DBR this is never true12 for
𝑘 = 1, 2. On the contrary, this is true in 99.6% (𝑘 = 1, 2) of times for KR, and in 93.1% (𝑘 = 1) and 93.9% (𝑘 = 2) of times
for DSMG. Fig. 2 depicts this comparison. DSMG assumes �̂�𝑘(𝑧) asymptotic normality. This more stringent assumption explains its
lower performance compared to KR. Table 4 reports a p̂se(�̂�𝑘) mean over replicates sensibly larger than the benchmark for both
DSMG and KR. This is mainly due to some very large p̂se(�̂�𝑘) values. Standard deviation, in brackets, and points on the top right
corner of the scatter plots in Fig. 2 are evidence of this. The average p̂se(�̂�𝑘) values DSMG and KR produce get progressively closer
to the benchmark when the sample size increases. The opposite is true for DBR. In fact, the average shifts further away from the
benchmark, and increasingly below the lower limits (i.e.,

√

Var(𝑤1) = 5.874 and
√

Var(𝑤2) = 2.937).
Table 5 shows prediction intervals for the three methods. We calculate coverage, LRP and RRP using the known log-normal

cumulative distribution function for 𝑤1 and 𝑤2. Analogously to the normal divided by fixed case, we calculate the benchmark for the
interval length as the difference between the 100(1−𝛼∕2)th and the 100𝛼∕2th percentiles of the sgn(𝛽𝑘)𝐿𝑁(�̂�𝑤𝑘

, �̂�𝑤𝑘
) distribution for

𝑘 = 1, 2. This represents a lower limit of the length of the prediction interval, accounting only for the variability due to heterogeneity.
The computation for the interval shape benchmark uses the same percentiles. For 𝑁 = 150, both DSMG and KR produce prediction
intervals with correct LRP, RRP, and global coverage. They are larger than the length lower limit. DBR, instead, has a significantly
smaller than 95% global coverage. While this problem seems to vanish as the sample size increases, LRP and RRP are still significantly
far from 2.5% even when 𝑁 = 450. Larger sample sizes will not improve the situation. In fact, the prediction interval is calculated on
the basis of a normal distribution, while the �̂�𝑘 sampling distribution is a mixture of normals, which tends to the distribution of 𝑤𝑘
(a highly skewed log-normal distribution) as the sample size increases and the sampling error becomes progressively less relevant.
Therefore, even asymptotically, the correct LRP and RRP cannot be achieved by a symmetric prediction interval, as the one DBR
produces. In particular, the lower DBR prediction interval bound always turns out negative in the 𝑀 simulations,13 for any sample
size 𝑁 . DSMG and KR, instead, always correctly produce positive lower prediction intervals for all 𝑀 replicates and sample sizes.

Table 6 summarizes DSMG and KR performances when computing confidence intervals for 𝐸(𝑤𝑘). Both methods show
unsatisfactory LRP and RRP for 𝑁 = 150, with KR performing slightly better and achieving, at least, a reasonable global coverage.
As 𝑁 increases, KR improves faster than DSMG, which still shows LRP and RRP significantly different from 2.5% even for 𝑁 = 450.
The symmetric confidence intervals produced by DSMG are not realistic in the fixed divided by log-normal case, unless using very
large sample sizes. We show in Table 7 the results of the skewness test for the composite hypothesis of normality (Shapiro et al.,
1968), with respect to the estimators of the parameters and �̄�𝑘. When 𝑁 = 150, the sampling distribution of the fixed parameters 𝛽1
and 𝛽2 estimator does not significantly diverge from normality at the 5% level. The estimators of the structural parameters 𝜇𝑐 and
𝜎𝑐 require, instead, a larger sample size to favour convergence. The �̄�𝑘 distribution is even more skewed. Skewness decreases as 𝑁

12 This does not change for 𝑁 = 300, 450.
13 The lower bound of D prediction intervals ranges from −29.332 up to −1.068 for 𝑘 = 1 and from −15.250 up to −0.496 for 𝑘 = 2, when 𝑁 = 150.
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Table 5
Fixed divided by log-normal case: length, shape, LRP, RRP and coverage of 95% level prediction intervals.
Significance codes: *** for 𝑝-value < 0.001; ** for 𝑝-value < 0.01; * for 𝑝-value < 0.05. The benchmark for the
length of the interval is in italic as it represents a lower limit for the length, only accounting for variability due
to heterogeneity.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1

Length 18.914 20.459 19.141 21.440
Shape 3.615 3.720 1.000 3.941
LRP 0.025 0.025 0.000∗∗∗ 0.027
RRP 0.025 0.031 0.064∗∗∗ 0.029
Coverage 0.950 0.944 0.936∗ 0.944

𝑘 = 2

Length 9.457 10.258 9.590 10.740
Shape 3.615 3.736 1.000 3.953
LRP 0.025 0.024 0.000∗∗∗ 0.026
RRP 0.025 0.032 0.066∗∗∗ 0.030
Coverage 0.950 0.944 0.934∗ 0.944

𝑁 = 300

Benchmark DSMG DBR KR

𝑘 = 1

Length 18.914 20.223 18.894 20.786
Shape 3.615 3.695 1.000 3.824
LRP 0.025 0.025 0.000∗∗∗ 0.025
RRP 0.025 0.027 0.058∗∗∗ 0.026
Coverage 0.950 0.948 0.942 0.949

𝑘 = 2

Length 9.457 10.104 9.437 10.382
Shape 3.615 3.703 1.000 3.831
LRP 0.025 0.024 0.000∗∗∗ 0.025
RRP 0.025 0.027 0.059∗∗∗ 0.026
Coverage 0.950 0.949 0.941 0.949

𝑁 = 450

Benchmark DSMG DBR KR

𝑘 = 1

Length 18.914 19.678 18.356 19.995
Shape 3.615 3.676 1.000 3.752
LRP 0.025 0.024 0.000∗∗∗ 0.025
RRP 0.025 0.026 0.058∗∗∗ 0.026
Coverage 0.950 0.950 0.942 0.949

𝑘 = 2

Length 9.457 9.873 9.207 10.027
Shape 3.615 3.681 1.000 3.756
LRP 0.025 0.024 0.000∗∗∗ 0.024
RRP 0.025 0.026 0.058∗∗∗ 0.026
Coverage 0.950 0.950 0.942 0.950

increases, even if 𝑁 = 450 is far too small to achieve symmetry. KR only assumes the normality of the estimators of the structural
parameters, thus it is not surprising it outperforms DSMG in this case.

As for the normal divided by fixed case, we stress that the conclusions reached for the fixed divided by log-normal case should
lso be valid for models estimated in WTP space, when assuming a log-normally distributed WTP parameter. In addition, also the
og-normal divided by log-normal case, which is illustrated in Appendix C, produces results that resemble very closely those of the
ixed divided by log-normal case, as both cases determine a log-normal distribution of the WTP.

.3. The normal divided by normal case

For the normal divided by normal case, we set 𝛽0 = 0.5 and 𝛽𝑘 ∼ 𝑁(𝜇𝑘, 𝜎2𝑘), for 𝑘 = 1, 2, with 𝜇1 = 1, 𝜇2 = 0.5, 𝜎1 = 0.5
nd 𝜎2 = 0.4, and assume 𝛽𝑐 ∼ 𝑁(𝜇𝑐 , 𝜎2𝑐 ), with 𝜇𝑐 = −1 and 𝜎𝑐 = 0.5 for the cost parameter. For simplicity, we also assume 𝛽𝑘

to be independent from 𝛽𝑐 . One can deal with the dependently distributed case by appropriately rewriting random parameters
using standard distributions (see equation (23), p. 206, in Bliemer and Rose, 2013). When assuming both the numerator and
denominator parameters are distributed normal, the WTP distribution is complex. This is also true when 𝛽𝑘 and 𝛽𝑐 are independent.
n particular, Daly et al. (2012b) show that the moments of the WTP distribution do not exist, when assuming the cost parameter
istribution is normal. It is, thus, meaningless to estimate 𝐸(𝑤𝑘) or its confidence interval, while perfectly reasonable to calculate a

prediction interval for 𝑤𝑘. Bliemer and Rose (2013) suggest using the median to replace the mean of the conditional �̂�𝑘(𝑧) in (12),
nd the mean of their conditional standard errors in (13). We denote this adjusted method as DBR⋆ .

DSMG does not require any adjustment to estimate prediction intervals. We also use the median as a measure of central
endency for WTP and estimate it as the median of �̂�𝑘(𝑧). The various conditional �̂�𝑘(𝑧), whose distribution is asymptotically

̂ ̂
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Table 6
Fixed divided by log-normal case: length, shape, LRP, RRP and coverage of 95% level confidence intervals.
Significance codes: *** for 𝑝-value < 0.001; ** for 𝑝-value < 0.01; * for 𝑝-value < 0.05. The superscript (MC)
denotes Monte Carlo estimates of benchmark values.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1

Length 4.278(MC) 4.473 – 4.788
Shape 1.854(MC) 1.000 – 1.769
LRP 0.025 0.000∗∗∗ – 0.007∗∗∗

RRP 0.025 0.087∗∗∗ – 0.051∗∗∗

Coverage 0.950 0.913∗∗∗ – 0.942

𝑘 = 2

Length 2.312(MC) 2.374 – 2.541
Shape 1.851(MC) 1.000 – 1.751
LRP 0.025 0.000∗∗∗ – 0.008∗∗∗

RRP 0.025 0.099∗∗∗ – 0.037∗

Coverage 0.950 0.901∗∗∗ – 0.955

𝑁 = 300

Benchmark DSMG DBR KR

𝑘 = 1

Length 3.271(MC) 3.145 – 3.246
Shape 1.643(MC) 1.000 – 1.497
LRP 0.025 0.000∗∗∗ – 0.019
RRP 0.025 0.074∗∗∗ – 0.045∗∗∗

Coverage 0.950 0.926∗∗∗ – 0.936∗

𝑘 = 2

Length 1.714(MC) 1.667 – 1.718
Shape 1.690(MC) 1.000 – 1.488
LRP 0.025 0.001∗∗∗ – 0.022
RRP 0.025 0.075∗∗∗ – 0.044∗∗∗

Coverage 0.950 0.924∗∗∗ – 0.934∗

𝑁 = 450

Benchmark DSMG DBR KR

𝑘 = 1

Length 2.518(MC) 2.486 – 2.524
Shape 1.768(MC) 1.000 – 1.385
LRP 0.025 0.003∗∗∗ – 0.018
RRP 0.025 0.046∗∗∗ – 0.025
Coverage 0.950 0.951 – 0.957

𝑘 = 2

Length 2.518(MC) 2.486 – 2.524
Shape 1.768(MC) 1.000 – 1.385
LRP 0.025 0.003∗∗∗ – 0.018
RRP 0.025 0.046∗∗∗ – 0.025
Coverage 0.950 0.951 – 0.957

Table 7
Fixed divided by log-normal case: skewness test for the composite hypothesis of normality.
Parameter 𝑁 = 150 𝑁 = 300 𝑁 = 450

estimator Skewness p-value Skewness p-value Skewness p-value

𝛽1 −0.020 0.802 0.034 0.664 −0.001 0.992
𝛽2 0.040 0.611 0.017 0.804 0.088 0.252
�̂�𝑐 −0.287 0.001 −0.364 0.000 −0.083 0.280
�̂�𝑐 0.219 0.006 0.136 0.082 0.116 0.132
�̄�1 1.825 0.000 1.007 0.000 0.814 0.000
�̄�2 1.808 0.000 1.048 0.000 0.929 0.000

Table 8
Normal divided by normal case: mean and standard deviation (in brackets) over Monte Carlo replicates for the
estimated median WTP. The superscript (MC) denotes Monte Carlo estimates of benchmark values.
𝑁 = 150

Benchmark DSMG DBR⋆ KR

𝑘 = 1 �̃�1 0.961(MC) 0.962 (0.092) 0.962 (0.092) 0.961 (0.090)
𝑘 = 2 �̃�2 0.478(MC) 0.476 (0.069) 0.476 (0.069) 0.475 (0.069)

the empirical percentiles of this mixture distribution to produce the prediction interval. We avoid estimating a prediction standard
error that, in fact, does not exist.
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Table 9
Normal divided by normal case: length, shape, LRP, RRP and coverage of 95% level prediction intervals.
Significance codes: *** for 𝑝-value < 0.001; ** for 𝑝-value < 0.01; * for 𝑝-value < 0.05. The superscript (MC)
denotes Monte Carlo estimates of benchmark values. The benchmark for the length of the interval is in italic as
it represents a lower limit for the length, only accounting for variability due to heterogeneity.
𝑁 = 150

Benchmark DSMG DBR⋆ KR

𝑘 = 1

Length 6.910(MC) 7.499 2.789 7.847
Shape 3.813(MC) 2.800 1.000 2.767
LRP 0.025 0.028 0.027 0.028
RRP 0.025 0.030 0.123∗∗∗ 0.029
Coverage 0.950 0.942 0.850∗∗∗ 0.943

𝑘 = 2

Length 4.333(MC) 4.556 1.944 4.681
Shape 2.495(MC) 2.098 1.000 2.067
LRP 0.025 0.027 0.037∗ 0.027
RRP 0.025 0.029 0.110∗∗∗ 0.028
Coverage 0.950 0.944 0.853∗∗∗ 0.945

𝑁 = 300

Benchmark DSMG DBR⋆ KR

𝑘 = 1

Length 6.910(MC) 7.220 2.777 7.731
Shape 3.813(MC) 2.960 1.000 3.030
LRP 0.025 0.027 0.026 0.027
RRP 0.025 0.026 0.119∗∗∗ 0.024
Coverage 0.950 0.947 0.855∗∗∗ 0.949

𝑘 = 2

Length 4.333(MC) 4.345 1.901 4.576
Shape 2.495(MC) 2.239 1.000 2.248
LRP 0.025 0.026 0.034 0.025
RRP 0.025 0.029 0.110∗∗∗ 0.027
Coverage 0.950 0.945 0.856∗∗∗ 0.948

𝑁 = 450

Benchmark DSMG DBR⋆ KR

𝑘 = 1

Length 6.910(MC) 6.983 2.770 7.504
Shape 3.813(MC) 3.067 1.000 3.185
LRP 0.025 0.024 0.025 0.024
RRP 0.025 0.030 0.127∗∗∗ 0.028
Coverage 0.950 0.946 0.848∗∗∗ 0.948

𝑘 = 2

Length 4.333(MC) 4.242 1.887 4.473
Shape 2.495(MC) 2.301 1.000 2.351
LRP 0.025 0.026 0.035∗ 0.025
RRP 0.025 0.029 0.111∗∗∗ 0.027
Coverage 0.950 0.945 0.854∗∗∗ 0.948

Table 8 compares DSMG, DBR⋆ and KR performance in estimating the WTP median. We do not provide estimates of standard
errors and prediction standard errors since they do not exist. We use the estimated median �̃�𝑘 as a point predictor of WTP. All
hree methods produce unbiased estimates. Both DSMG and DBR⋆ calculate �̃�𝑘 in exactly the same way. We draw a very large
umber of values for 𝛽𝑘 from a 𝑁(𝜇𝑘, 𝜎2𝑘) and for 𝛽𝑐 from a 𝑁(𝜇𝑐 , 𝜎2𝑐 ) to obtain the benchmark for �̃�𝑘 since the 𝑤𝑘 distribution is
on conventional. We calculate 𝑤𝑘 for each couple of values and finally take the median of all the simulated 𝑤𝑘.

Table 9 compares the performance of the three methods in estimating prediction intervals. We use the simulated 𝑤𝑘 and compute
he percentage of these values falling within each replicate of the prediction interval, below the lower bound and above its upper
ne, to determine the coverage rate of the prediction intervals. Averaging these percentages over the 𝑀 replicates of the prediction
ntervals allows calculating global coverage, LRP and RRP. Substituting the point estimate of E(𝑤𝑘) with the point estimate of the
edian of 𝑤𝑘 allows calculating the shape of the prediction intervals. The empirical distribution of 𝑤𝑘 permits obtaining the shape

benchmark. A symmetric 𝑤𝑘 distribution would have a shape index close to one. The difference between the 100(1− 𝛼∕2)th and the
100𝛼∕2th percentiles of the empirical distribution of 𝑤𝑘 is the benchmark for the prediction interval length, representing a lower
limit since it accounts only for the variability due to heterogeneity.

Table 9 suggests that the adjustment needed so to apply the DBR method produces too small and left shifted prediction intervals.
One should note that, without this adjustment, the intervals would be unreasonable (median length of 1300.493 and 643.255, and
coverage of 0.998 and 0.998, respectively for 𝑤1 and 𝑤2, for 𝑁 = 150). Increasing sample size does not improve this. Both DSMG
and KR produce prediction intervals with the expected LRP, RRP and global coverage, also for 𝑁 = 150.

6. Real data application

This section investigates the empirical relevance of the adoption of the three different methods when using the real data as in
the example in Bliemer and Rose (2013, sec. 5). We report the results obtained for each method under the three different mixing
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Fig. 3. Left panel: distributions of the conditional �̂�𝑘(𝑧) (blue lines) and the unconditional �̄�𝑘 based on the mean and mean standard error of �̂�𝑘(𝑧) (red line),
according to the Bliemer and Rose (2013) approach to the Delta method. Right panel: distributions of the conditional �̂�𝑘(𝑧) (blue lines) and of the unconditional
�̂�𝑘 (red line) according to our approach to the Delta method, and simulated sampling distribution of �̂�𝑘 according to the KR method (green line). Both panels:
estimated distribution of 𝑤𝑘 (black line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

distributions in Section 5. The data set refers to a route choice experiment, where agents choose between the status quo route, and
two hypothetical ones. The attributes describing routes characteristics are: time spent in free-flow/congested conditions on non-tolled
road, and free-flow/congested conditions on toll road, toll/petrol costs, and number of traffic lights. The data set collected in 2011
includes 148 respondents, answering 12 choice tasks each, and generating 1776 observations.

6.1. The normal divided by fixed case

Recall that here (see Section 5.1) 𝛽𝑘 = 𝜇𝑘 + 𝜎𝑘𝑧𝑘, 𝛽𝑐 is fixed and 𝑤𝑘 ∼ 𝑁(−𝜇𝑘∕𝛽𝑐 , 𝜎2𝑘∕𝛽
2
𝑐 ). Bliemer and Rose (2013) obtain the

following estimates: �̂�𝑘 = −0.047, �̂�𝑘 = 0.066, 𝛽𝑐 = −0.506 and

�̂��̂�𝑘 ,�̂�𝑘 ,𝛽𝑐
=
⎛

⎜

⎜

⎝

0.00010 0.00000 0.00005
0.00000 0.00014 −0.00011
0.00005 −0.00011 0.00043

⎞

⎟

⎟

⎠

.

Thus, the estimated distribution of 𝑤𝑘, without accounting for sampling error, is:

𝑓𝑤𝑘
(𝑥) = 𝜙(𝑥; −0.0929, 0.0170). (25)

The left panel in Fig. 3 reproduces Figure 2 in Bliemer and Rose (2013).14 Blue lines represent the normal distributions of the
conditional �̂�𝑘(𝑧(𝑟)), calculated accordingly to Bliemer and Rose (2013) and given in (10), with means and variances estimated using
�̂�𝑘, �̂�𝑘 and 𝛽𝑐 , and corresponding to the first 50 Halton draws of 𝑧, i.e. for 𝑟 = 1,… , 50. The red line represents the distribution of
the unconditional �̄�𝑘, a normal distribution with mean −0.0929 and standard deviation 0.1338, calculated as in (12) and (13). We
underline that this red line does not provide the sampling distribution of �̂�𝑘, as Section 6.2 will show, but is instrumental to build
a normal theory based prediction interval for 𝑤𝑘, which, in this case, is equal to (−0.3571, 0.1741) (see Bliemer and Rose (2013,
sec. 5.2)). The black line represents the estimated distribution of 𝑤𝑘 given in (25), and accounts only for heterogeneity. The red
distribution is, correctly, more dispersed than the black one and the prediction standard error is reasonably estimated. Section 5.1
discusses and Appendix B demonstrates that if the standard error is negligible compared to the variability due to heterogeneity, as
in this case, DBR provides plausible results.

The blue lines, in the right panel of Fig. 3, represent the normal distributions of the conditional �̂�𝑘(𝑧(𝑟)). These are calculated,
using the first 50 Halton draws of 𝑧, via DSMG as in (14), with means and variances estimated using �̂�𝑘, �̂�𝑘 and 𝛽𝑐 . The variances
of these blue distributions only depend on sampling error since they are conditional on 𝑧. This is why the blue distributions in the
right panel are much less dispersed than those in the left one, which encompass also variability due to heterogeneity (please note
that the 50 distributions have the same mean in the two panels). The red line represents the estimate of the mixture distribution
in (16), approximated as in (20) using 𝑅 = 10,000 Halton draws for 𝑧. The green line represents, instead, the simulated sampling

14 Apart from the fact of being reflected on the 𝑦-axes because of the different definition used for the WTP, and from the addition of the estimated distribution
of 𝑤 (black line).
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Fig. 4. Comparison between the performance of DBR, DSMG and KR in estimating prediction interval, confidence interval, prediction standard error and standard
error on real data from Bliemer and Rose (2013), for the normal divided by fixed case.

distribution of �̂�𝑘 obtained via KR, and based on 𝐵 = 2, 000 first stage draws from the multivariate normal distribution of (�̂�𝑘, �̂�𝑘, �̂�𝑐 ),
and 𝑅 = 10,000 second stage draws for 𝑧. The black distribution is the same in the two panels and its variability is only due to taste
heterogeneity. Note the similarity between red and green distributions as well as their close resemblance to the black one. They, in
fact, are characterized by a slightly larger dispersion (i.e. slightly higher tails) due to sampling error. In practice, the variance of
the black distribution arises from the second integral in (17), while that of the red line is the sum of the two integrals, so that the
difference in the variances of the two distributions is equal to the first integral, i.e. is due to sampling error. The closeness of the
red and green distributions to the black one depends on the occurrence of very precise parameter estimates for the data considered.
Less informative data might well result in a larger difference between the black distribution and the other two. Finally, notice how
the red and green distributions, in the right panel, even if not normal15 are not too different from the normal red distribution in the
left panel, testifying that the three methods perform very similarly for the data at hand and under the current specification of the
mixing distributions.

Fig. 4, top-left panel, shows the similarity between the prediction intervals obtained through the three methods. All include the
value zero, as underlined by the dashed red line, due to the large heterogeneity of 𝛽𝑘. The prediction standard errors estimated by the
three methods (Fig. 4, bottom-left panel) are also very close to each other with DBR providing only slightly smaller values compared
to DSMG and KR. All are correctly larger than the variability due to heterogeneity alone (the dashed red line corresponding to the

value
√

V̂ar(𝑤𝑘) =
√

�̂�2𝑘∕𝛽
2
𝑐 = 0.1304). Finally, DSMG and KR also perform very similarly in estimating confidence intervals (Fig. 4,

top-right panel) and standard errors (Fig. 4, bottom-right panel) for �̂�𝑘.

6.2. The fixed divided by log-normal case

Consider the case of a fixed 𝛽𝑘 and a log-normal distribution for the negative of 𝛽𝑐 (i.e. −𝛽𝑐 = exp(𝜇𝑐 + 𝜎𝑐𝑧𝑐 )). The log-normal
always produces negative values for the cost parameter, as discussed in Section 5.2. Thus, 𝑤𝑘 can only take positive values if 𝛽𝑘 is
positive or negative values if 𝛽𝑘 is negative. In particular,

𝑤𝑘 = sgn(𝛽𝑘) exp(−𝜇𝑐 + log(|𝛽𝑘|) + 𝜎𝑐𝑧𝑐 ), (26)

that is, 𝑤𝑘 has a positive or negative (according to the sign of 𝛽𝑘) log-normal distribution with parameters −𝜇𝑐 + log(|𝛽𝑘|) and 𝜎2𝑐 .
Bliemer and Rose (2013) obtain the estimates 𝛽𝑘 = −0.035, �̂�𝑐 = −0.994 and �̂�𝑐 = 1.223, and the variance–covariance matrix

�̂�𝛽𝑘 ,�̂�𝑐 ,�̂�𝑐
=
⎛

⎜

⎜

⎝

0.00001 −0.00002 0.00001
−0.00002 0.01985 −0.00652
0.00001 −0.00652 0.00215

⎞

⎟

⎟

⎠

.

The left panel in Fig. 5 reproduces Figure 3 in Bliemer and Rose (2013).16 Blue lines represent the normal distributions of the
conditional �̂�𝑘(𝑧(𝑟)), calculated accordingly to Bliemer and Rose (2013) and given in (10), with means and variances estimated
using 𝛽𝑘, �̂�𝑐 and �̂�𝑐 , and corresponding to the first 50 Halton draws of 𝑧, i.e. for 𝑟 = 1,… , 50. Bliemer and Rose (2013) claim that

15 They are leptokurtic with respect to the black normal distribution.
16 See footnote 14.
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Fig. 5. Left panel: distributions of the conditional �̂�𝑘(𝑧) (blue lines), of the unconditional �̄�𝑘 based on the mean and mean standard error of �̂�𝑘(𝑧) (red line),
of the unconditional �̄�𝑘 based on the median and median standard error of �̂�𝑘(𝑧) (green line), according to the Bliemer and Rose (2013) approach to the Delta
method. Right panel: distributions of the conditional �̂�𝑘(𝑧) (blue lines) and of the unconditional �̂�𝑘 (red line) according to our approach to the Delta method,
and simulated sampling distribution of �̂�𝑘 according to the KR method (green line, hardly distinguishable from red line). Both panels: estimated distribution of
𝑤𝑘 (black line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the variance of these distributions encompasses both sampling error and heterogeneity. The red line represents the distribution of
the unconditional �̄�𝑘, a normal distribution with mean −0.1959 and standard deviation 0.2463, calculated as in (12) and (13).
The green line represents an alternative distribution obtained by using the median (equal to −0.0941) instead of the mean and
the median of the conditional standard errors (equal to 0.1158). Bliemer and Rose (2013) suggest using this second distribution to
compute prediction intervals. Since dividing by the log-normal distribution results in some cases in rather large WTP values, the
mean standard error is large. Using the median reduces the impact of these extreme values. We then add the black line, representing
the distribution of 𝑤𝑘 in (26), with estimated parameters in place of real ones, that is the distribution of 𝑤𝑘 assuming parameters
were correctly estimated. As such, the black distribution accounts for variability due to heterogeneity, while the red and green
distributions should, in some way, incorporate the variability also due to sampling error. The black distribution only takes negative
values (𝛽𝑘 being negative), while the red and green also take positive ones due to sampling error in 𝛽𝑘 estimates. However, the
proportion of either red or green distribution taking positive values is definitively too large. We underline that positive �̂�𝑘 values
might only arise due to positive 𝛽𝑘 values (𝛽𝑐 always being negative). In our case, 𝛽𝑘 is negative, with a 𝑡-value of −10.77 and a
𝑝-value substantially equal to 0. Thus, 𝛽𝑘 is significantly different from 0 as well as from any positive value, implying that also 𝑤𝑘
is significantly different from 0 as well as from any positive value, ∀𝑧. As a consequence, the prediction interval for 𝑤𝑘 should not
include 0 nor any positive value. On the contrary, the percentage of positive values included in the prediction intervals based on
both red and green distributions is approximately 30%. Fig. 6, top-right panel, depicts these intervals which are respectively equal
to (−0.6786, 0.2868) and (−0.3210, 0.1328).

The distribution of 𝑤𝑘, estimated on the basis of the sample (i.e. the black line in left panel of Fig. 5), has mean equal to
−exp(−�̂�𝑐 + log(|𝛽𝑘|) + �̂�2𝑐 ∕2) = −0.1998, which is very close to the mean of the unconditional �̄�𝑘, −0.1959, obtained by Bliemer
and Rose (2013), and standard deviation equal to

√

(exp(�̂�2𝑐 ) − 1) exp(2(−�̂�𝑐 + log(|𝛽𝑘|)) + �̂�2𝑐 ) = 0.3717. This value, identified by
the red dashed line in the bottom-left panel of Fig. 6, accounts for the (estimated) variability due to heterogeneity alone. The
estimated prediction standard error of 0.2463, provided in Bliemer and Rose (2013), incorporating variability due to heterogeneity
and sampling error, is, therefore, far too small. In summary, the formula in (13) fails to estimate the prediction standard error. Using
the median of the conditional standard errors produces an even more biased estimate of 0.1158. Both estimates are represented in
the bottom-left panel of Fig. 6 and fall well below the red-dashed line.

The blue lines in the right panel of Fig. 5 represent the normal distributions of the conditional �̂�𝑘(𝑧(𝑟)), calculated according to
DSMG and corresponding to the first 50 Halton draws of 𝑧. The variance of these blue distributions only depends on sampling error,
thus they are much less dispersed in comparison to those in the left panel. Those in the right panel show a negligible probability of
taking positive values. The red distribution is the estimate of the mixture distribution in (16), approximated as in (20). The black
distribution is the same in the two panels. Notice how the red distribution closely resembles the black one, simply showing slightly
higher tails due to the fact that, besides heterogeneity, it also accounts for sampling error. Finally, the right panel of Fig. 5 reports
(green line) the sampling distribution obtained through KR, which is hard to distinguish from that DSMG produces. This similarity
determines nearly identical prediction intervals, equal to (−1.0552,−0.0085) and (−1.0644,−0.0084), respectively for DSMG and KR
(top-left panel of Fig. 6). Unlike those based on DBR or DBR⋆ , they correctly exclude the value 0 and are highly non symmetric.
The prediction standard errors, depicted in the bottom-left panel of Fig. 6, estimated via DSMG and KR are correctly above the
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Fig. 6. Comparison between the performance of the DBR, DBR⋆ , DSMG and KR methods in estimating the prediction interval, confidence interval, prediction
standard error and standard error on real data from Bliemer and Rose (2013), for the fixed divided by log-normal case.

Fig. 7. Left panel: distributions of the conditional �̂�𝑘(𝑧) (blue lines) and the unconditional �̄�𝑘 based on the median and median standard error of �̂�𝑘(𝑧) (red line),
according to the Bliemer and Rose (2013) approach to the Delta method. Right panel: distributions of the conditional �̂�𝑘(𝑧) (blue lines) and of the unconditional
�̂�𝑘 (red line) according to our approach to the Delta method, and simulated sampling distribution of �̂�𝑘 according to the KR method (green line). Both panels:
estimated distribution of 𝑤𝑘 (black line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

confidence intervals (top right panel), with a slight difference between the two due to symmetry of the interval DSMG necessarily
produces.

6.3. The normal divided by normal case

In this case 𝛽𝑘 = 𝜇𝑘 + 𝜎𝑘𝑧𝑘, 𝛽𝑐 = 𝜇𝑐 + 𝜎𝑐𝑧𝑐 and 𝑤𝑘 has an unknown distribution with infinite moments (see Section 5.3). Bliemer
and Rose (2013) obtain the following estimates: �̂�𝑘 = −0.029, �̂�𝑘 = 0.051, �̂�𝑐 = −0.951, �̂�𝑐 = 0.913 and

�̂��̂�𝑘 ,�̂�𝑘 ,𝛽𝑐 ,𝛽𝑘
=

⎛

⎜

⎜

⎜

⎜
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0.00008 −0.00002 0.00007 0.00001
−0.00002 0.00014 0.00001 −0.00007
0.00007 0.00001 0.00999 0.00463
0.00001 −0.00007 0.00463 0.00762

⎞
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Fig. 7 reports in blue the conditional �̂�𝑘(𝑧), as obtained via DBR (left panel) and DSMG (right panel). We use random rather than
Halton draws to avoid perfect collinearity between numerator and denominator of �̂� . The estimated distribution of 𝑤 is, in this
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Fig. 8. Comparison between the performance of DBR⋆ , DSMG and KR in estimating the prediction interval on real data from Bliemer and Rose (2013), for the
normal divided by normal case.

case, unknown. We simulate it by drawing a large number of values from a 𝑁(�̂�𝑘, �̂�2𝑘), and a 𝑁(�̂�𝑐 , �̂�2𝑐 ) so to calculate the negative
of their ratio. In black, we report the resulting distribution in both panels. The red curve, in the left panel, represents the normal
distribution with mean equal to the median of the conditional �̂�𝑘(𝑧) and standard deviation equal to the median of the conditional
standard errors. This is equivalent to calculate moments adopting DBR⋆ . The red distribution has lower tails compared to the black
one, determining a too small prediction interval, as Fig. 8 shows. This outcome is not surprising, given the simulation results in
Section 5.3.

Considering the right panel of Fig. 7 one notices that the sampling distribution of �̂�𝑘, using DSMG (red curve), closely resembles
the one obtained via KR (green curve). Additionally, both are very similar to the black one. This determines larger and more reliable
prediction intervals compared to the one DBR⋆ produces. They are also reasonably close to each other (i.e. (−0.5889, 0.5224) and
(−0.5119, 0.4454), respectively for DSMG and KR).

7. Discussion and conclusion

This paper develops a method (DSMG) to estimate prediction intervals, confidence intervals, standard errors, prediction standard
errors, as well as other quantities of interest for WTP in a MXL framework.

DSMG, similarly to DBR, reformulates WTP as a function of the distributional parameters along with some parameter-free
standard distributions so that one can use the Delta method. The uncertainty in the WTP measure depends on the variance–
covariance matrix of the model parameter estimates. The paper develops a novel strategy to estimate this uncertainty and combine
it with the variability of WTP due to heterogeneity. This strategy is not only theoretically sound but also delivers the whole sampling
distribution of WTP, showing that this is, asymptotically, a mixture of normal distributions. The paper also shows how to exploit
this sampling distribution to obtain many quantities of interest for WTP. This represents an important advantage DSMG has over
DBR, that can only produce prediction standard errors and prediction intervals for the WTP. Additionally, we show that DBR might
yield, for some choices of the mixing distributions for the taste parameters, incongruous prediction standard errors and prediction
intervals.

The paper evaluates DSMG finite sample performances via a Monte Carlo study, under different choices of the mixing
distributions for the MXL model parameters, comparing it with DBR and KR. The latter is far more computationally intensive
compared to DSMG and DBR, which are partly analytical and partly simulation-based. However, KR, as DSMG, can provide the
whole sampling distribution of WTP. Monte Carlo study results suggest that:

• DBR produces reasonable results only when the mixing distribution of the taste parameter is normal with a fixed cost
parameter, and, even in this case, the sample size needs to be sufficiently large and the sampling error of estimates much
smaller compared to the variability due to taste heterogeneity;

• under different choices of the mixing distributions, i.e. different from the normal divided by fixed choice, DBR produces
questionable prediction intervals while the estimates of the prediction standard error can be seriously biased, independently
of the sample size;

• DSMG and KR provide asymptotically equivalent results and outperform DBR;
• DSMG and KR produce valid prediction intervals, even for relatively small sample sizes, while they might require larger samples

to compute confidence intervals for the mean WTP, depending on the choice of the mixing distribution of the parameters;
• for some choices of the mixing distributions (e.g. the fixed divided by log-normal case), DSMG might require larger sample

sizes compared to KR for the asymptotic theory to hold;
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• even when a distribution with a positive probability mass in zero is chosen for the cost parameter, DSMG and KR yield
reasonable prediction intervals, while mean WTP, standard errors, and prediction standard errors do not exist (Daly et al.,
2012b).

e also evaluate, in a comparative fashion, the three methods via the real data (Bliemer and Rose, 2013) use, to demonstrate, from
policy perspective, the relevance of our results. This confirms the risks linked to using DBR when computing prediction standard

errors or prediction intervals given specific choices of the mixing distribution for the taste parameters.
In summary, we recommend always using DSMG to estimate prediction standard error and prediction intervals, since it is less

computationally demanding compared to KR. One could use the latter, instead, for estimating confidence intervals for mean WTP
whenever the sample size is not large enough to use DSMG. To aid in using DSMG, we provide an Excel spreadsheet implementing
the methodology at the following link: http://www.trelab.it/utilities-wtpsmg-xlsx/. Routines used in this paper have been written
in R (R Core Team, 2022) and a dedicated R package will be also shortly available.

To conclude, we underline that DSMG can easily accommodate for the case of dependently distributed random parameters.
This would imply rewriting the parameters as functions of parameter-free independent distributions multiplied by an appropriate
Cholesky factorization matrix of the variance–covariance matrix of the parameters, as Bliemer and Rose (2013) suggest (see, for
example, their equations (23) and (25)). In addition, one could also use DSMG in the case of non linear utility functions, as well as
when estimating the model in WTP space. In this case, not investigated in this paper, we expect the three methods to perform as in
the normal divided by fixed case, when assuming normally distributed WTP parameters, and as in the fixed divided by log-normal
case, when assuming log-normally distributed WTP parameters.
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Appendix A. List of abbreviations

Abbreviation Definition
DBR Delta method computed according to Bliemer and Rose (2013) approach.
DBR⋆ Delta method computed according to Bliemer and Rose (2013) modified approach.
DSMG Delta method computed according to our approach.
KR Krinsky and Robb (1986, 1990) method.
MC Monte Carlo.
MNL Multinomial logit model.
MXL Mixed logit model.
LRP Left rejection probability.
RRP Right rejection probability.
WTP Willingness to pay.

Appendix B. Bliemer and Rose formula for the normal divided by fixed case

Consider the variance of �̂�𝑘(𝑧) as given in Bliemer and Rose (2013) (see Eq. (10)):

Var(�̂�𝑘(𝑧)) =

⎛

⎜

⎜

⎜

⎜

⎝

∇𝜃𝑘𝑤𝑘(𝑧)
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⎟
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.

This can be rewritten as Var(�̂�𝑘(𝑧)) = 𝐴(𝑧) + 𝐵(𝑧) where

𝐴(𝑧) =
(

∇𝜃𝑘𝑤𝑘(𝑧)
∇𝜃𝑐𝑤𝑘(𝑧)

)𝑇

𝛺�̂�𝑘 ,�̂�𝑐

(

∇𝜃𝑘𝑤𝑘(𝑧)
∇𝜃𝑐𝑤𝑘(𝑧)

)

and

𝐵(𝑧) =
(

∇𝑧𝑘𝑤𝑘(𝑧)
∇𝑧𝑐𝑤𝑘(𝑧)

)𝑇

𝟏
(

∇𝑧𝑘𝑤𝑘(𝑧)
∇𝑧𝑐𝑤𝑘(𝑧)

)

.

So, the prediction standard error considered in Bliemer and Rose (2013) and given in (13) can be rewritten as:

pse(�̄�𝑘) ≈
1

𝑅
∑

√

𝐴(𝑧(𝑟)) + 𝐵(𝑧(𝑟)). (B.1)
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Fig. C.9. Estimates of the predictive standard error p̂se(�̂�𝑘) at each Monte Carlo replicate plotted against estimates of standard deviation
√

V̂ar(𝑤𝑘) for the same

replicate. The comparison is performed for DBR (black points), DSMG (blue points) and KR (green points). The
√

V̂ar(𝑤𝑘) values are the same for the three
methods. Estimates are computed for 𝑁 = 150. The red line represents the bisector of the first quadrant. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Consider, now, the normal divided by fixed case, where 𝑤𝑘(𝑧) = −(𝜇𝑘 + 𝜎𝑘𝑧𝑘)∕𝛽𝑐 . Then, ∇𝑧𝑘𝑤𝑘(𝑧) = −𝜎𝑘∕𝛽𝑐 and ∇𝑧𝑐𝑤𝑘(𝑧) = 0
so that 𝐵(𝑧) = 𝜎2𝑘∕𝛽

2
𝑐 , which does not depend on 𝑧 and is equal to the variance of 𝑤𝑘, that is the variance due to heterogeneity.17

Notice, instead, that 𝐴(𝑧), in our approach, represents the variance of the conditional estimates �̂�𝑘(𝑧) (see Eq. (14)), which only
accounts for sampling error.18 Therefore, 𝐴(𝑧) is generally smaller than 𝐵(𝑧) and decreases as sample size increases, so that, for large
samples, the prediction standard error in (B.1) is approximately equal to

1
𝑅

𝑅
∑

𝑟=1

√

𝐵(𝑧(𝑟)) = 1
𝑅

𝑅
∑

𝑟=1

√

𝜎2𝑘∕𝛽
2
𝑐 = 𝜎𝑘∕𝛽𝑐 .

Thus, when the sample size is large enough for the sampling error to be negligible compared to heterogeneity, the formula in Bliemer
and Rose (2013) gives a reasonable approximation of the prediction standard error for the normal divided by fixed case.19

We remark that this approximation is not valid in general. For example, for the fixed divided by the log-normal case, where
𝑤𝑘(𝑧) = 𝛽𝑘∕ exp(𝜇𝑐 + 𝜎𝑐𝑧𝑐 ), we have ∇𝑧𝑘𝑤𝑘(𝑧) = 0 and ∇𝑧𝑐𝑤𝑘(𝑧) = −𝑤𝑘(𝑧)𝜎𝑐 so that 𝐵(𝑧) = 𝑤2

𝑘(𝑧)𝜎
2
𝑐 . Then, the Monte Carlo

average 1
𝑅
∑𝑅

𝑟=1

√

𝐵(𝑧(𝑟)) = 1
𝑅
∑𝑅

𝑟=1

√

𝑤2
𝑘(𝑧

(𝑟))𝜎2𝑐 is clearly different from the variance due to heterogeneity, given by Var(𝑤𝑘) =
(

exp(𝜎2𝑐 ) − 1
)

exp
(

2(−𝜇𝑐 + log |𝛽𝑘|) + 𝜎2𝑐
)

. Therefore, even for large sample sizes, the formula in Bliemer and Rose (2013) does not
provide a reasonable approximation of the prediction standard error for the fixed divided by log-normal case.

Appendix C. The log-normal divided by log-normal case

When assuming both the parameters at the numerator and the denominator to be log-normal, the distribution of the WTP for
𝑋𝑘 is known exactly, as well as its moments: 𝑤𝑘 ∼ sgn(𝛽𝑘)𝐿𝑁(𝜇𝑤𝑘

, 𝜎2𝑤𝑘
), with 𝜇𝑤𝑘

= 𝜇𝑘 − 𝜇𝑐 and 𝜎2𝑤𝑘
= 𝜎2𝑘 + 𝜎2𝑐 . We set 𝛽0 = 0.5,

𝛽𝑘 ∼ 𝐿𝑁(𝜇𝑘, 𝜎2𝑘), with 𝜇1 = 1, 𝜇2 = 0.5, 𝜎1 = 0.5, 𝜎2 = 0.4, and −𝛽𝑐 ∼ 𝐿𝑁(𝜇𝑐 , 𝜎2𝑐 ), with 𝜇𝑐 = −1 and 𝜎2𝑐 = 1, so that 𝑤1 ∼ 𝐿𝑁(2, 1.25)
and 𝑤2 ∼ 𝐿𝑁(1.5, 1.16). The expected WTP value is 𝐸(𝑤𝑘) = exp(−𝜇𝑘 + 𝜎2𝑤𝑘

∕2), thus 𝐸(𝑤1) = 13.805 and 𝐸(𝑤2) = 8.004, and the
variance is Var(𝑤𝑘) = (exp(𝜎2𝑘 + 𝜎2𝑐 ) − 1) exp(2(𝜇𝑘 − 𝜇𝑐 ) + 𝜎2𝑘 + 𝜎2𝑐 ), thus Var(𝑤1) = 474.575 and Var(𝑤2) = 140.312.

The log-normal divided by log-normal case, closely resembles the fixed divided by log-normal case. Thus, we just present
simulation results here and summarize main findings, addressing the reader to the more in-depth discussion provided in Section 5.2.

Table C.10, clearly shows that both DSMG and KR provide standard error estimates, ŝe(�̄�𝑘), very close to the benchmark value
but characterized by a large variability across Monte Carlo replicates. DBR only provides prediction standard error estimates and
these are systematically downward biased. For 𝑁 = 150, the p̂se(�̂�𝑘) averages are equal to 18.154 and 10.148, respectively for 𝑘 = 1
and 𝑘 = 2, which are much smaller than the benchmarks and smaller than the known 𝑤𝑘 standard deviations (equal respectively to

17 We are considering 𝑤𝑘 and not its estimate, so its variance is only due to heterogeneity.
18 More precisely, the expected value of 𝐴(𝑧) with respect to 𝑧 represents the mean of the conditional variances and is the part of variability of �̂�𝑘 due to

sampling error. See Eq. (17).
19 Note that, in the normal divided by fixed case only, (B.1) would correctly account for both sampling error and heterogeneity if it were written as

pse(�̄� ) ≈
√

1 ∑𝑅 𝐴(𝑧(𝑟)) + 𝐵(𝑧(𝑟)).
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Table C.10
Log-normal divided by log-normal case: mean and standard deviation (in brackets) over Monte Carlo replicates
for the estimated average WTP, its standard error and prediction standard error. The superscript (MC) denotes
Monte Carlo estimates of benchmark values.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1
�̄�1 13.805 14.860 (5.542) 14.860 (5.542) 14.860 (5.542)
ŝe(�̄�1) 5.542(MC) 4.712 (3.075) – 5.476 (4.309)
̂pse(�̄�1) 22.479(MC) 30.253 (23.277) 18.154 (9.465) 37.256 (37.179)

𝑘 = 2
�̄�2 8.004 8.591 (3.235) 8.591 (3.235) 8.591 (3.235)
ŝe(�̄�2) 3.235(MC) 2.753 (1.778) – 3.216 (2.528)
̂pse(�̄�2) 12.279(MC) 16.438 (12.034) 10.148 (5.414) 20.652 (22.412)

𝑁 = 300

Benchmark DSMG DBR KR

𝑘 = 1
�̄�1 13.805 14.446 (3.650) 14.446 (3.650) 14.446 (3.650)
ŝe(�̄�1) 3.650(MC) 3.188 (1.432) – 3.392 (1.634)
̂pse(�̄�1) 22.088(MC) 26.416 (13.481) 17.138 (6.073) 28.297 (15.480)

𝑘 = 2
�̄�2 8.004 8.369 (2.132) 8.369 (2.132) 8.369 (2.132)
ŝe(�̄�2) 2.132(MC) 1.869 (0.831) – 1.995 (0.954)
̂pse(�̄�2) 12.036(MC) 14.527 (7.769) 9.592 (3.462) 15.677 (8.519)

𝑁 = 450

Benchmark DSMG DBR KR

𝑘 = 1
�̄�1 13.805 14.289 (2.872) 14.289 (2.872) 14.289 (2.872)
ŝe(�̄�1) 2.872(MC) 2.540 (0.906) – 2.641 (0.994)
̂pse(�̄�1) 21.973(MC) 25.143 (9.558) 16.729 (4.744) 26.430 (10.894)

𝑘 = 2
�̄�2 8.004 8.290 (1.659) 8.290 (1.659) 8.290 (1.659)
ŝe(�̄�2) 1.659(MC) 1.491 (0.523) – 1.554 (0.581)
̂pse(�̄�2) 11.961(MC) 13.630 (5.026) 9.358 (2.678) 14.483 (6.003)

Table C.11
Log-normal divided by log-normal case: length, shape, LRP, RRP and coverage of 95% level prediction intervals.
Significance codes: *** for p-value < 0.001; ** for p-value < 0.01; * for p-value < 0.05. The benchmark for the
length of the interval is in italic as it represents a lower limit for the length, only accounting for variability due
to heterogeneity.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1

Length 65.283 75.642 71.161 81.307
Shape 4.030 4.187 1.000 4.558
LRP 0.025 0.023 0.000∗∗∗ 0.026
RRP 0.025 0.031 0.062∗∗∗ 0.028
Coverage 0.950 0.945 0.938 0.946

𝑘 = 2

Length 36.458 42.411 39.781 45.817
Shape 3.886 4.056 1.000 4.448
LRP 0.025 0.023 0.000∗∗∗ 0.027
RRP 0.025 0.032 0.064∗∗∗ 0.029
Coverage 0.950 0.946 0.936∗ 0.944

𝑁 = 300

Benchmark DSMG DBR KR

𝑘 = 1

Length 65.283 71.764 67.180 74.134
Shape 4.030 4.167 1.000 4.330
LRP 0.025 0.023 0.000∗∗∗ 0.024
RRP 0.025 0.026 0.057∗∗∗ 0.026
Coverage 0.950 0.949 0.943 0.950

𝑘 = 2

Length 36.458 40.205 37.600 41.640
Shape 3.886 4.026 1.000 4.202
LRP 0.025 0.023 0.000∗∗∗ 0.024
RRP 0.025 0.027 0.058∗∗∗ 0.026
Coverage 0.950 0.950 0.942 0.950

(continued on next page)

√

Var(𝑤1) = 21.785 and
√

Var(𝑤2) = 140.312). Fig. C.9 helps in depicting the underestimation problem of DBR. The downward bias
urther increases with sample size. On the other hand, p̂se(�̂�𝑘) mean over replicates is sensibly larger than the benchmark for both

̂ ̂
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SMG and KR. This is mainly due to some very large pse(𝑤𝑘) values and results improve rapidly as the sample size increases.
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Table C.11 (continued).
𝑁 = 150

Benchmark DSMG DBR KR

𝑁 = 450

Benchmark DSMG DBR KR

𝑘 = 1

Length 65.283 70.175 65.578 71.851
Shape 4.030 4.138 1.000 4.257
LRP 0.025 0.023 0.000 0.024
RRP 0.025 0.026 0.056 0.025
Coverage 0.950 0.951 0.944 0.951

𝑘 = 2

Length 36.458 39.277 36.684 40.357
Shape 3.886 3.994 1.000 4.128
LRP 0.025 0.024 0.000∗∗∗ 0.024
RRP 0.025 0.026 0.056∗∗∗ 0.025
Coverage 0.950 0.949 0.944 0.951

Table C.12
Log-normal divided by log-normal case: length, shape, LRP, RRP and coverage of 95% level confidence intervals.
Significance codes: *** for 𝑝-value < 0.001; ** for 𝑝-value < 0.01; * for 𝑝-value < 0.05. The superscript (MC)
denotes Monte Carlo estimates of benchmark values.
𝑁 = 150

Benchmark DSMG DBR KR

𝑘 = 1

Length 22.386(MC) 18.471 – 20.820
Shape 2.860(MC) 1.000 – 2.038
LRP 0.025 0.000∗∗∗ – 0.020
RRP 0.025 0.112∗∗∗ – 0.072∗∗∗

Coverage 0.950 0.888∗∗∗ – 0.908∗∗∗

𝑘 = 2

Length 12.552(MC) 10.793 – 12.227
Shape 2.742(MC) 1.000 – 2.068
LRP 0.025 0.000∗∗∗ – 0.020
RRP 0.025 0.108∗∗∗ – 0.066∗∗∗

Coverage 0.950 0.892∗∗∗ – 0.914∗∗∗

𝑁 = 300

Benchmark DSMG DBR KR

𝑘 = 1

Length 13.625(MC) 12.496 – 13.153
Shape 2.040(MC) 1.000 – 1.662
LRP 0.025 0.000∗∗∗ – 0.024
RRP 0.025 0.086∗∗∗ – 0.060∗∗∗

Coverage 0.950 0.914∗∗∗ – 0.916∗∗∗

𝑘 = 2

Length 8.089(MC) 7.326 – 7.733
Shape 2.072(MC) 1.000 – 1.676
LRP 0.025 0.000∗∗∗ – 0.024
RRP 0.025 0.082∗∗∗ – 0.050∗∗∗

Coverage 0.950 0.918∗∗∗ – 0.926∗∗∗

𝑁 = 450

Benchmark DSMG DBR KR

𝑘 = 1

Length 10.408(MC) 9.956 – 10.283
Shape 1.773(MC) 1.000 – 1.512
LRP 0.025 0.003∗∗∗ – 0.023
RRP 0.025 0.071∗∗∗ – 0.046∗∗∗

Coverage 0.950 0.926∗∗∗ – 0.931∗∗

𝑘 = 2

Length 6.145(MC) 5.846 – 6.047
Shape 1.784(MC) 1.000 – 1.521
LRP 0.025 0.002∗∗∗ – 0.025
RRP 0.025 0.072∗∗∗ – 0.043∗∗∗

Coverage 0.950 0.926∗∗∗ – 0.932∗∗

Table C.11 shows prediction intervals for the three methods. For 𝑁 = 150, both DSMG and KR produce prediction intervals with
correct LRP, RRP, and global coverage. DBR, instead, has a significantly smaller than 95% global coverage for 𝑘 = 2. While this
problem seems to vanish as the sample size increases, LRP and RRP are still significantly far from 2.5% even when 𝑁 = 450. As
the sample size increases, the situation does not improve: the prediction interval is calculated on the basis of a normal distribution,
while the �̂�𝑘 sampling distribution is a mixture of normals, which tends to the distribution of 𝑤𝑘 (a highly skewed log-normal
distribution) when 𝑁 increases and the sampling error becomes progressively less relevant. In particular, the lower D prediction
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Table C.13
Log-normal divided by log-normal case: skewness test for the composite hypothesis of normality.
Parameter 𝑁 = 150 𝑁 = 300 𝑁 = 450

estimator Skewness p-value Skewness p-value Skewness 𝑝-value

�̂�1 0.075 0.350 −0.132 0.089 −0.048 0.532
�̂�2 −0.155 0.043 −0.194 0.010 −0.062 0.420
�̂�𝑐 −0.434 0.000 −0.325 0.000 −0.147 0.053
𝛽1 −0.046 0.535 0.179 0.021 0.072 0.364
𝛽2 −0.224 0.003 −0.008 0.917 −0.068 0.361
𝛽𝑐 0.111 0.155 0.162 0.040 0.132 0.100
�̂�1 1.583 0.000 1.238 0.000 1.149 0.000
�̂�2 1.748 0.000 1.140 0.000 1.043 0.000

interval bound is always negative in the 𝑀 simulations, for any sample size 𝑁 . DSMG and KR, instead, correctly produce positive
lower prediction intervals for all 𝑀 replicates and sample sizes.

Table C.12 summarizes DSMG and KR performances when computing confidence intervals for 𝐸(𝑤𝑘). Both methods show
unsatisfactory results even for 𝑁 = 450, with KR performing slightly better and achieving, at least, a reasonable LRP. As 𝑁 increases,
both methods improve and KR maintains its superiority.

We show in Table C.13 the results of the skewness test for the composite hypothesis of normality (Shapiro et al., 1968), with
respect to the estimators of the parameters and �̄�𝑘. The distribution of �̄�𝑘 is still very skewed and far from normality even for

= 450. KR only assumes the normality of the estimators of the structural parameters, which explains its better performance
ompared to DSMG.
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