The control of phonon propagation in nanoparticle arrays is one of the frontiers of nanotechnology, potentially enabling the discovery of materials with unknown functionalities for potential innovative applications. The exploration of the terahertz window appears quite promising as phonons in this range are the leading carriers of heat transport in insulators and their control is the key to implement devices for heat flow management. Unfortunately, this scientific field is still in its infancy, and even a basic topic such as the influence of floating nanoparticles on the terahertz phonon propagation of a colloidal suspension still eludes a firm answer. Shedding some light on this topic is the main motivation of the present work, which focuses an inelastic X-ray scattering (IXS) measurements on a dilute suspension of Au nanospheres in water. Measured spectra showed a nontrivial shape displaying multiple inelastic features that, based on a Bayesian inference analysis, we assign to phonon modes propagating throughout the nanoparticle interior. Surprisingly, the spectra bear no evidence of propagating modes, which are known to dominate the spectrum of pure water, owing to the scattering that these modes suffer from the sparse nanoparticles in suspension. In perspective, this finding may inspire simple routes to manipulate high-frequency acoustic propagation in hybrid—liquid and solid—materials.

Damping off Terahertz Sound Modes of a Liquid Upon Immersion of Nanoparticles

Scaccia, Luisa;
2018-01-01

Abstract

The control of phonon propagation in nanoparticle arrays is one of the frontiers of nanotechnology, potentially enabling the discovery of materials with unknown functionalities for potential innovative applications. The exploration of the terahertz window appears quite promising as phonons in this range are the leading carriers of heat transport in insulators and their control is the key to implement devices for heat flow management. Unfortunately, this scientific field is still in its infancy, and even a basic topic such as the influence of floating nanoparticles on the terahertz phonon propagation of a colloidal suspension still eludes a firm answer. Shedding some light on this topic is the main motivation of the present work, which focuses an inelastic X-ray scattering (IXS) measurements on a dilute suspension of Au nanospheres in water. Measured spectra showed a nontrivial shape displaying multiple inelastic features that, based on a Bayesian inference analysis, we assign to phonon modes propagating throughout the nanoparticle interior. Surprisingly, the spectra bear no evidence of propagating modes, which are known to dominate the spectrum of pure water, owing to the scattering that these modes suffer from the sparse nanoparticles in suspension. In perspective, this finding may inspire simple routes to manipulate high-frequency acoustic propagation in hybrid—liquid and solid—materials.
2018
American Chemical Society
Internazionale
http://pubs.acs.org/journal/ancac3
File in questo prodotto:
File Dimensione Formato  
DeFrancesco_LiquidSoundModes_2018.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: DRM non definito
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
DeFrancesco_LiquidSoundModes_2018SI.pdf

solo utenti autorizzati

Descrizione: Supporting material
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: DRM non definito
Dimensione 406.72 kB
Formato Adobe PDF
406.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11393/246378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact