
UNIVERSITÀ DEGLI STUDI DI MACERATA

Department of Humanities - Languages, Language Liaison, History, Arts, Philosophy

Ph.D. Course in Humanism and Technologies

Cycle XXXVI

Unveiling healthcare data archiving:
Exploring the role of artificial

intelligence in medical image analysis

Advisors

Prof. Stefano Pigliapoco
Prof. Emanuele Frontoni

Co-Advisor

Sara Moccia, PhD

Candidate

Francesca Pia Villani

Year 2024





Abstract

Medical digital archives can be seen as contemporary databases designed to store and manage vast
amounts of medical information, from patient records and clinical studies to medical images and
genomics data. The structured and unstructured data that compose the archives undergo rigorous
curation processes, to ensure their accuracy, reliability, and standardization for clinical and research
purposes.

In the rapidly evolving field of healthcare, artificial intelligence (AI) is emerging as a transforma-
tive force, able to reform medical digital archives improving the management, analysis, and retrieval
of vast clinical datasets, and ultimately leading to more informed decisions, timely interventions,
and improved patient outcomes. Specifically, managing medical images in digital archives poses
numerous challenges such as data heterogeneity, image quality variability and lack of annotations,
that can be addressed with AI solutions.

This thesis aims to exploit AI algorithms for the analysis of medical images stored in digital
archives. This work investigates various medical imaging techniques, each of which is characterized
by a specific application domain and consequently presents a unique set of challenges, requirements,
and potential outcomes. In particular, it delves into AI diagnostic assistance for three critical imag-
ing techniques in specific clinical scenarios:
i) Endoscopic imaging obtained during laryngoscopy examinations; this includes in-depth explo-
ration of techniques such as keypoint detection for vocal fold motility estimation and upper aerodi-
gestive tract cancer segmentation;
ii) Magnetic resonance imaging for intervertebral disc segmentation, for the diagnosis and treatment
of spinal conditions and diseases, as well as image-guided interventions;
iii) Ultrasound imaging in rheumatology, for carpal tunnel syndrome evaluation through median
nerve segmentation.

The methodologies presented in this work demonstrate the feasibility of using AI algorithms
for the analysis of archived medical images, and the achieved methodological advances highlight
the potential of AI-based algorithms in extracting useful information implicitly contained in digital
archives.



Sommario

Gli archivi sanitari digitali possono essere considerati dei moderni database progettati per im-
magazzinare e gestire ingenti quantità di informazioni mediche, dalle cartelle cliniche dei pazienti,
a studi clinici fino alle immagini mediche e a dati genomici. I dati strutturati e non strutturati che
compongono gli archivi sanitari sono oggetto di scrupolose e rigorose procedure di validazione per
garantire accuratezza, affidabilità e standardizzazione a fini clinici e di ricerca.

Nel contesto di un settore sanitario in continua e rapida evoluzione, l’intelligenza artificiale (IA)
si propone come una forza trasformativa, capace di riformare gli archivi sanitari digitali migliorando
la gestione, l’analisi e il recupero di vasti set di dati clinici, al fine di ottenere decisioni cliniche più
informate e ripetibili, interventi tempestivi e risultati migliorati per i pazienti.

Tra i diversi dati archiviati, la gestione e l’analisi delle immagini mediche in archivi digitali
presentano numerose sfide dovute all’eterogeneità dei dati, alla variabilità della qualità delle im-
magini, nonché alla mancanza di annotazioni. L’impiego di soluzioni basate sull’IA può aiutare a
risolvere efficacemente queste problematiche, migliorando l’accuratezza dell’analisi delle immagini,
standardizzando la qualità dei dati e facilitando la generazione di annotazioni dettagliate.

Questa tesi ha lo scopo di utilizzare algoritmi di IA per l’analisi di immagini mediche depositate
in archivi sanitari digitali. Il presente lavoro propone di indagare varie tecniche di imaging medico,
ognuna delle quali è caratterizzata da uno specifico dominio di applicazione e presenta quindi un
insieme unico di sfide, requisiti e potenziali esiti. In particolare, in questo lavoro di tesi sarà oggetto
di approfondimento l’assistenza diagnostica degli algoritmi di IA per tre diverse tecniche di imaging,
in specifici scenari clinici:
i) Immagini endoscopiche ottenute durante esami di laringoscopia; ciò include un’esplorazione ap-
profondita di tecniche come la detection di keypoints per la stima della motilità delle corde vocali
e la segmentazione di tumori del tratto aerodigestivo superiore;
ii) Immagini di risonanza magnetica per la segmentazione dei dischi intervertebrali, per la diagnosi
e il trattamento di malattie spinali, così come per lo svolgimento di interventi chirurgici guidati da
immagini;
iii) Immagini ecografiche in ambito reumatologico, per la valutazione della sindrome del tunnel
carpale attraverso la segmentazione del nervo mediano.

Le metodologie esposte in questo lavoro evidenziano l’efficacia degli algoritmi di IA nell’analizzare
immagini mediche archiviate. I progressi metodologici ottenuti sottolineano il notevole potenziale
dell’IA nel rivelare informazioni implicitamente presenti negli archivi sanitari digitali.
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Chapter 1

Introduction

In the evolving landscape of the information era, digital archives are undergoing a profound trans-
formation. Born out of the technological advances of digital storage in the 20th century, digital
archives have evolved from virtual representations of physical repositories to living and vibrant
information ecosystems. This evolution is not confined to the technological aspect; it involves a
deeper transformation that has profoundly transformed the concept of data, the way users engage
with it, and the paradigms governing its preservation and access. Beyond static documents, digital
archives encompass a wide spectrum of multimedia and diverse digital data, meticulously curated
for preservation and longevity [1]. Digital archives hold a paramount position in preserving a variety
of invaluable assets: from historical and cultural preservation to research and academic preserva-
tion, to regulatory compliance [2]. Several technological milestones have been pivotal in propelling
the capabilities of digital archives, and while the revolutionary impact of the Internet is undeniable,
fostering global material accessibility and collaborative archival efforts [3–5], it is the integration
of Artificial Intelligence (AI) that could truly amplify this impact. AI refers to the development
of smart machines that mimic human cognitive functions and actions. While AI covers a broad
spectrum of methods, the most significant breakthroughs have been made with Machine Learning
(ML) and Deep Learning (DL). This subset of AI focuses on deriving knowledge from data without
explicit programming and has propelled AI into a central technological role with the potential of
revolutionizing many sectors, including healthcare. Thus, in the realm of digital archiving, AI holds
the potential to improve accessibility. For instance, it can identify sensitive data, enabling archiving
institutions to release non-sensitive information, or it can mark documents as pertinent to a specific
search query [6, 7]. Furthermore, AI possesses the remarkable capability to harness existing corpora
and labeled data, thereby automating intricate tasks such as filtering sensitive content and assisting
users in navigating and interpreting vast archives. Notably, recent studies, such as those by Jaillan
et al. [8], indicate an exploding interest in dialogues that explore the synergy between AI and
digital archives.Traversing this dynamic landscape, the archival discourse is expanding, resonating
with debates about information ownership, authenticity, and credibility, and perhaps hinting at the
emergence of a new discipline defined as "Computational Archival Science" [9]. In this ever-evolving
dance of technology and data, driven by the influence of AI, archives are no longer static entities, but
they are unwinding towards innovative horizons of engagement, interpretation, and reimagination.

Nonetheless, despite the pervasive influence of AI across myriad sectors, its integration into
archival science remains nascent. This early stage of adoption is underscored by a conspicuous lack
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Chapter 1. Introduction

of compelling case studies, as highlighted by Rolan [10]. Hereafter, few cases are reported.
Thibodeau [11] contends that incorporating concepts and methods from systemic-functional

linguistics and graph theory can significantly enhance archival studies. In particular, systemic-
functional linguistics provides insights into how language is used in human interactions, while graph
theory enables the formalization and quantification of relationships between records. Notably, Graph
Neural Network (GNN), a particular type of neural network designed to process data represented
as graphs, and able to capture the relationships and interconnections between nodes, have been
employed in clinical settings to suggest drug prescriptions based on data contained in Electronic
Medical Record (EMR) [12], taking into account not only the current hospitalization records, but
the entire health dossier. One of the most promising aspects of AI’s role in the archival science is the
automation of the archival workflow. This includes tasks such as assessment, sensitive information
handling, and metadata extraction. In terms of evaluating archival records, AI can manage vast
amounts of unstructured and unclassified data. Lee [13] suggests that Natural Language Processing
(NLP) and ML techniques can enhance the archiving process. NLP, enabling computers to under-
stand, interpret, and respond to human, proved to be able to identify various entities and selects
the most relevant ones, while ML reduces the time needed to analyze records and automates cer-
tain classification tasks. Nevertheless, a challenge of this method is the production of training data,
which can be resource-intensive, requiring thousands of manually annotated records for a ML model
to properly classify a document. Recent advancements in the field of DL, such as self-supervised
approaches for representation learning applied to document analysis [14, 15], aim to address the
issue of manual annotation.

The handling of sensitive information in archives is one of the most challenging and urgent issues
to be addressed. Often, archives, or part of their contents, are made inaccessible due to their large
volume and the presence of sensitive content in the records, which currently require thorough review
before any release. It is often preferable to renounce archival consultation and the resulting loss
of information, rather than risk the release of sensitive information [16]. Automatic classification
approaches for stored documents can be used to verify their content and estimate whether they can
be released or not. Hutchinson [17, 18] proposes a supervised ML approach based on NLP and data
mining for identifying sensitive content in documents containing personal data that require access
restrictions.

One area where AI can be used extensively concerns archival description and metadata extrac-
tion. Automated methods can identify existing relationships between stored documents and create
additional descriptive metadata to provide more context. Spencer [19] presents several techniques,
including fuzzy matching, to identify different levels of similarity between stored records. Regarding
metadata extraction, several studies [20–23] report the use of NLP techniques.

Another area where AI can play a role is in retrieving information from archived documents. Lee
[24] uses template matching techniques and automatic classification to extract documents with the
same layout from a larger corpus of documents stored in the "International Tracing Service" digital
archive, one of the largest and most diverse Holocaust-related collections. Bell [25], on the other
hand, takes an approach based on archival catalogs to which text mining techniques are applied, in
order to automatically aggregate archival descriptions and facilitate their use.

Lastly, the increasing use of AI techniques can lead to new forms of digital archives. In fact,
in addition to providing new opportunities to automate various parts of the archiving process, AI
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facilitates the collection of new types of data, such as from sensors or embedded systems [26].
Attention to the role of AI in archiving processes is not limited to merely providing support to

the archivist’s work. Recently, particular attention has been paid to the development and imple-
mentation of AI technologies, especially from the standpoint of AI ethics as a social and technical
practice. Jo [27] explores the potential of archival selection and description standards, which have
been developed for record-keeping, as a model for collecting training data for AI algorithms that are
less biased, more transparent, and more inclusive. Finally, Mohamed [28] broadly explores decades
of critical thought in the humanities and argues that this knowledge can provide a conceptual
framework for the development and implementation of culturally more inclusive AI algorithms.

While the transformative potential of AI in digital archiving has been highlighted, its importance
in more specialized domains, such as healthcare, is becoming increasingly evident. One such domain,
healthcare, stands at the crossroads of technological advancement and the imperative to preserve
critical patient data. The nuances of healthcare data archiving highlight not only the technical
challenges, but also the ethical and operational considerations intrinsic to the healthcare sector.
Transitioning to the next section, the intricacies and opportunities presented by AI in healthcare
data archiving will be further explored, where the stakes of data preservation, accessibility, and
security reach paramount importance.

1.1 Healthcare data archiving

The importance of preserving historical medical records for long-term research is not immediately
obvious to everyone involved in the medical and information sectors. This raises questions such
as: i) What is the state of archival practice concerning documentation of hospitals, healthcare
organizations, physicians, nurses, and bio-scientists? ii) Are the problems and issues of medical
archives different from those of other institutional archives, or are they the same but in a different
setting?

One might wonder why it is necessary to preserve medical records that are inaccessible for
decades and expensive to store and manage securely. However, a closer look at various archival
medical record collections reveals their immense potential. These records provide valuable data for
a wide range of medical research, and this potential is even more pronounced when considering the
evolution of digital archives [29].

The advancements in digital archiving technology have had a significant impact on the way
healthcare data is archived, bringing new perspectives to the practice and management of medical
archives, so that all the concepts previously outlined in the context of digital archives can be trans-
lated to healthcare data archiving. Indeed, the evolution of digital archives and the technological
innovations associated with it have had a profound impact on the healthcare sector.

As the medical science advances, the proliferation of EMRs and Electronic Health Record (EHR)
has led to a massive increase in data. As a result, managing and storing patient information has
become a major challenge today. Over the past decade, EHR adoption has grown significantly
worldwide. In the United States, this growth has largely been driven by the Health Information
Technology for Economic and Clinical Health (HITECH) Act, which incentivized the use of EHRs
in healthcare settings. Similarly, Europe has seen progress in EHR adoption through various ini-
tiatives. The European Commission’s recommendation for a European EHR exchange format aims
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to enhance cross-border EHR interoperability. Complementing this, the General Data Protection
Regulation (GDPR) ensures the protection of personal health data. In addition, the e-Health Dig-
ital Service Infrastructure (eHDSI) and projects like the European Patient Smart Open Services
(epSOS 1) and Antilope 2 have been instrumental in developing technical specifications and frame-
works for EHR interoperability and exchange across European countries. These collective efforts
in the United States and Europe underscore a shared commitment to leveraging digital technology
to improve healthcare outcomes, demonstrating a worldwide movement toward integrated and effi-
cient healthcare systems through EHR adoption. EHR systems store data from each patient visit,
including demographics, diagnoses, laboratory tests and outcomes, prescribed medications, medical
images, and clinical observations, among others [30]. Although their primary goal is to enhance
operational efficiency in healthcare, numerous researches indicate their utility in clinical informatics
applications [31, 32]. Specifically, the patient information within EHRs has been leveraged for activ-
ities like extracting medical concepts, charting patient progress, deducing illnesses, and supporting
clinical decision-making systems [33]. This data explosion underscores the importance of efficient
patient information management, and digital archiving plays a key role in improving healthcare
management. In fact, EHRs enable the efficient management of the vast amount of patient data
generated daily in healthcare settings. They facilitate centralized, unified, and easily accessible
storage of patient records from disparate systems, improving the process of retrieving patient infor-
mation when needed. Patient-related information archived consists of 80% images and 20% text or
other data. Therefore, a hybrid architecture for archiving systems is necessary. This system should
use big data technologies and image compression to reduce storage requirements. It should also be
reliable and ensure zero data loss [34].

As we delve deeper into the intricacies of healthcare data archiving, a relevant aspect that
emerges is the management and archiving of medical images. The Picture Archiving and Com-
munication System (PACS) plays a crucial role in modern hospitals, especially in the radiology
information system, allowing for seamless management and access to medical images and patient
data, and serving as a pivotal link between these two domains. Medical imaging, an essential com-
ponent of modern diagnostics and patient care, generates a significant portion of the data stored in
healthcare archives. This includes a variety of imaging modalities, each producing high-resolution
images that require efficient storage and retrieval systems. The evolution of medical imaging tech-
nologies has not only improved diagnostic capabilities, but also increased the volume and complexity
of data that must be managed. Therefore, understanding the advancements and challenges in med-
ical imaging is crucial to understanding the full spectrum of healthcare data archiving. As we
move from the general concepts of digital archiving in healthcare to the specific domain of medical
imaging, we will explore targeted management and archiving techniques specifically applicable to
medical images. In this context, we will also delve into the potential enhancements that AI can
offer to this domain.

1.1.1 Medical imaging

Medical imaging plays an essential role in contemporary healthcare, providing clinicians with critical
insights for the diagnosis, treatment, and monitoring of various diseases [35]. Preserving, protect-

1https://joinup.ec.europa.eu/collection/ehealth/solution/european-patients-smart-open-services
2https://cordis.europa.eu/project/id/325077
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Figure 1.1: The Picture Archiving and Communication System (PACS) workflow includes four stages:
it begins with the packaging of multimodal images to Digital Imaging and Communications in Medicine
(DICOM) format; the quality assurance workstation verifies patient demographics and other metadata; data
is archived in a central storage device; data are retrieved in a reading Workstation, where radiologists can
review the images and formulates their diagnosis.

ing and archiving this data is therefore a challenge. Since the early 2000s, medical images, that
were once printed on film and stored in physical film libraries, have been produced in digital for-
mat [36]. Since then, PACS has been used primarily in radiology departments to capture, store,
access, view, process, and print medical images along with associated data and documents. These
functionalities are typically facilitated through different degrees of local storage and server sys-
tems [36]. Nowadays, PACS can be seen as progressing within the larger framework of enterprise
image management, which includes image data, metadata, medical informatics, and patient history.
These developments are driven by the augmented capabilities of digital data processing, advanced
databases, and fast, high-capacity networks [37]. As a direct result of these advances, image man-
agement is now comprehensive and integrates various types of medical images, including those from
radiology, cardiology, surgery, endoscopy, pathology, and dermatology. This translates into tailored
and optimal patient care, as physicians have access to a wider range of diagnostic tools that facilitate
precise and accurate diagnosis and treatment [37].

The flow and interconnection of medical imaging and related data within a healthcare system
is a complex, but crucial, orchestration that encompasses various steps and technological platforms
to enhance diagnostic accuracy and patient care, thus ensuring seamless communication and man-
agement of medical information. Initially, medical images are acquired through different modalities
such as Ultrasound (US), Magnetic Resonance Imaging (MRI/MR), Computed Tomography (CT),
or X-ray. These images are typically sent to a PACS, which acts as a centralized storage and re-
trieval system. The PACS is interfaced with Radiology Information System (RIS) and Hospital
Information System (HIS) to assist in patient scheduling, reporting, and billing processes. The syn-
ergy between PACS, RIS, and HIS provides a comprehensive view of patient data, enabling more
informed clinical decisions. The PACS workflow (as outlined in Fig. 1.1) manages data in Digital
Imaging and Communications in Medicine (DICOM) format. From a technical level, DICOM is the
standard protocol used for displaying, transmitting and storing medical images. At the same time,
Health Level Seven International (HL7) is a standard that facilitates the exchange, integration,
and sharing of text-based medical data across different systems [38, 39]. Level Seven refers to the
seventh Open Systems Interconnection (OSI) layer protocol for the health environment. Despite
the widely spread of DICOM, alternative formats developed specifically for neuro-imaging are also
available, such as NIfTI, MINC and ANALYZE (first version of NIfTI); more recently, the format
BIDS is rapidly replacing NIfTI [40].

Recently, as we will explore in more detail later, advanced technologies such as AI, and in
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Figure 1.2: Flowchart detailing the medical imaging framework in the healthcare system. At the top layer,
the Electronic Health Record (EHR) system manages images and interfaces with an enterprise viewer for
content viewing. The middle layer emphasizes standardized communication protocols like Digital Imaging
and Communications in Medicine (DICOM) and Health Level Seven International(HL7), centered around an
enterprise image repository for storage and retrieval. The bottom layer showcases diverse image sources, from
native DICOM modalities to modern solutions like mobile photo apps and digital capture systems. Together,
they form a comprehensive network ensuring efficient image capture, storage, and access in patient care.

particular ML and DL, can be integrated into this ecosystem to provide enhanced image analysis,
which can lead to faster and more accurate diagnoses. Health Information Exchanges (HIEs) also
play a critical role in sharing medical imaging and related data among different healthcare providers
and institutions, ensuring continuity of care across different healthcare settings [41]. In addition,
medical imaging data can be used to enable modern healthcare approaches such as precision medicine
and population health. However, due to the large size of medical imaging datasets, healthcare
organizations must store them in a way that allows for efficient access by providers [42].

The workflow of medical imaging and how it interacts with various Information Technology
(IT) systems in a healthcare structure is fundamental to understanding how healthcare providers
manage and utilize medical imaging data to improve patient care and operational efficiency [43–
45]. A schematic representation of the workflow detailing the medical imaging framework in the
healthcare system is shown in Fig. 1.2.

Special mention should be made of the international standard for the exchange of medical images
(i.e. DICOM) and text data (HL7). In fact, PACS and enterprise imaging systems should ensure
compatibility with the currently available DICOM and HL7 standards across all vendor products.
Verifying DICOM conformance involves ensuring that medical imaging or devices properly support
the specific combination of functions and data types defined by the DICOM standards, which incor-
porate web-based services to facilitate querying (DICOM QIDO-RS), retrieving (DICOM WADO-
RS) and storing (DICOM-STOW-RS) of objects such as images and medical imaging reports. This
functionality enables the exchange of studies and reports as DICOM objects directly from HTML
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pages using the http/https protocol. The retrieved data can be either in a presentation-ready for-
mat (i.e. JPEG or GIF) or in the native DICOM format. This integration essentially bridges the
gap between web technologies and medical imaging standards, providing a streamlined process for
accessing and managing medical imaging data within modern web-based applications and platforms.
On the other hand, through the use of HL7 Fast Health Interoperability Resources (FHIR), efforts
have been made to provide patients with broader access to text and data from healthcare providers,
as well as their healthcare information, both within and beyond the institutional healthcare system.

An issue related to medical images is that they are large files that require long-term archiv-
ing. Historical imaging studies must be accessible to guarantee access to the longitudinal history
of patient care. In the context of the European Union, the GDPR emphasizes the protection and
responsible processing of personal data, including medical images. Accordingly, these files must be
stored for the shortest time necessary, determined by the purpose of data processing and legal obli-
gations. The GDPR mandates unambiguous consent for data storage, provides for the right to data
deletion, and requires data to be accurate and up-to-date. Exceptions are made for longer storage
in the public interest or for scientific research, given appropriate safeguards such as anonymiza-
tion. This framework ensures a balance between the confidentiality of personal health data and the
necessity for access for patient care, research, and public health [46].

While the DICOM and HL7 standards provide a very technical and precise definition of the
interfaces, they do not define or explain how the systems and interfaces should be used to create an
interoperable environment [47]. To define how these existing standards should be used to support
the workflow in the hospital, the Integrating the Healthcare Enterprise (IHE) initiative promotes
the coordinated use of established standards such as DICOM and HL7. IHE helps to make clinical
information systems truly interoperable [48, 49]. Therefore, large medical image archives must
comply with the applicable IHE technical frameworks and integration profiles. The functionalities
for managing storage within the image archive and its associated database include the following:

• Ensure that each image and data file is uniquely identified by its facility, location, and date.

• Preserve all pertinent metadata of the image that aligns with the clinical processes of its
specific modality in the relevant department (, MRI in radiology or Visible Light in endoscopy).

• Adhering to relevant guidelines and laws, including those related to Health Insurance and
Portability and Accountability Act (HIPAA) in the United States, and the GDPR in the
European Union. This involves ensuring the security and confidentiality of personal and
health data, compliance with principles such as consent, data portability, and the right to be
forgotten (as stipulated by GDPR), and the secure transfer of data within, into, and out of
the respective regions, as well as the duration of image study storage.

Building on this robust foundation of secure and compliant medical data management, AI in-
tegration in medical imaging stands as a potential paradigm shift in how diagnostics and patient
care are approached. The ability of AI to improve the accuracy and efficiency of image analysis
can enable faster, more accurate diagnoses, and personalized treatment plans. Figure 1.3 depicts
the overall process of integrating AI into medical imaging, from ensuring data compliance to the
development of algorithms.

The use of AI technology is contingent upon adherence to the aforementioned data protection
regulations like HIPAA or GDPR, and data anonymization is central to fulfill these regulations
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Figure 1.3: Simplified pipeline for the creation of an artificial intelligence-based image analysis algorithm.
After downloading data from the hospital’s Radiology Information System (RIS)/Picture Archiving and
Communication System (PACS) archive, images are de-identified and passed to a curated database for data
preparation and AI algorithm development.

and ensure patient privacy. Methods like de-identification, anonymization, and pseudonymization
can ensure the accessibility of data while safeguarding patient confidentiality by eliminating any
personally identifiable details. De-identification involves the removal or alteration of patient-specific
identifiers, such as names, addresses, and hospital ID numbers, from the patient’s records, for
instance, within the metadata of DICOM headers. Anonymization goes a step further by erasing all
patient-related data, including any additional details that could potentially reveal patient identity
when combined with other available information. Pseudonymization encodes personally identifiable
information using a distinct code, or pseudonym, which bears no direct link to the individual.
However, if necessary, this code can be used to re-associate the data with the individual using a
securely managed and isolated re-identification key [50].

Subsequently, meticulous data curation is paramount to validate the integrity of associated
metadata. Data curation encompasses a set of activities post data collection — from management
and standardization to validation and traceability — ensuring data quality and reproducibility.
Common curation tasks involve converting, modifying, and validating DICOM files, as well as
reinforcing fairness through adherence to the Findable, Accessible, Interoperable and Reusable
(FAIR) Guiding Principles [51].

Furthermore, another crucial step is the medical image annotation process, which includes,
among others, anatomical structures delineations and detailed lesion descriptions, playing a pivotal
role not just in training AI algorithms, but also in their subsequent evaluation. Image annotation
refers to the process of labelling the images with essential information (e.g. spatial location, classi-
fication), known as ground truth. This data is often contained inside the same DICOM file or in a
separate text report such as JSON or CSV, which are apt for later processing and AI development.
The specificity of medical image annotations (or labels) depends on the dimensional nature of the
image (2D, 3D, or even 4D) and the particular imaging modality employed (e.g., MRI, US, or CT).
It is important to note that while image annotation is closely related to supervised learning algo-
rithms in AI, where the model learns from labeled data, other types of learning algorithms such
as unsupervised and semi-supervised learning also play a significant role in AI development. In
unsupervised learning, algorithms are trained on data without predefined labels, enabling them to
discover patterns and structures within the data independently. Semi-supervised learning, on the
other hand, involves a mix of labeled and unlabeled data, which can be particularly useful when
there is a limited amount of labeled data available. These varying types of learning algorithms
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require different approaches to the use and interpretation of annotated data, thereby influencing
the strategies for medical image annotation based on the intended AI application, the learning
paradigm being employed, and the clinical intent behind the image acquisition [52].

In fact, medical imaging today serves a plethora of purposes, from diagnosis to treatment and
follow-up, as well as from preoperative planning and intra-operative guidance to minimally invasive
surgery. While AI is having a significant impact across these diverse areas, this thesis will focus
specifically on its role in diagnostics.It will explore how AI is revolutionizing the way we analyze
and interpret medical images for diagnostic purposes, delving into the nuances and potential of AI
in enhancing diagnostic accuracy and efficiency. The broader applications of AI in medical imaging,
while critical, fall outside the scope of this focused investigation.

1.2 The potential of artificial intelligence for the analysis of medical
images

The advent of AI in medicine has marked a turning point in medical image analysis, a crucial aspect
of modern diagnosis and health condition monitoring. DL-based techniques have been extensively
investigated, with first applications appearing at workshops and conferences before being published
in journals, and a noticeable increase in the number of related papers since 2015 [53]. Since then,
DL has shown its great potential in the medical imaging domain, for enhancing the quality of care
and improving patient outcomes. By automating medical image analysis, DL algorithms can aid in
the early detection of diseases, streamline clinical workflows, and reduce the burden on healthcare
professionals [53]. The incorporation of DL in medical imaging can provide specific benefits, such
as a significant reduction in intra- and inter-rater variability, which is key for consistent diagnostic
interpretations [54]. The ability of AI to rapidly and accurately process large image datasets can
also lead to enhanced diagnostic efficiency and faster report turnaround, improving, simplifying
and standardizing image acquisition, processing and reading [55]. Moreover, AI’s predictive analysis
capabilities in identifying risk factors and early signs of disease from medical images can contribute to
proactive healthcare strategies [56]. The cost-effectiveness of AI becomes apparent through reduced
need for repeat scans and optimized use of healthcare resources [57]. Furthermore, AI’s adaptability
allows for customized approaches in different clinical settings, providing more tailored and accurate
diagnostic insights [58]. AI also serves as an invaluable tool for medical education and training,
providing insights into advanced diagnostic techniques and findings [58]. A variety of DL methods
have been used in medical imaging, with Convolutional Neural Network (CNN) emerging as the
most common [59]. The strength of CNNs lies in their ability to autonomously learn hierarchical
structures and detect local spatial features from input images, making them particularly apt for
image analysis tasks [60]. While other DL methods, like Recurrent Neural Network (RNN), which
are well-suited for managing sequential data, and Generative Adversarial Network (GAN), which are
capable of producing new instances based on the distributions of data they have learned, have also
seen applications in medical imaging [61], this work primarily focuses on methodologies based on
CNNs. Therefore, discussion in this Section will center exclusively on CNNs and their applications
in medical imaging.

For a thorough understanding of the role of DL in medical imaging, it is essential to examine
its diverse applications. The following sections will highlight how DL techniques have been used in
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diverse tasks such as image classification and segmentation, as well as detection and registration.

1.2.1 Classification

Image classification was one of the first areas in which DL made a major contribution to medical
image analysis. This task involves assigning a label to an input image, typically indicating the
presence or absence of a particular condition or abnormality [62]. Among DL techniques, CNNs
have demonstrated exceptional performance in image classification tasks [63]. In the context of
medical image classification, dataset sizes are typically small compared to other computer vision
applications, thus transfer learning has become particularly popular for such applications. Transfer
learning refers to the use of pre-trained networks (typically on natural images) to try to solve the
requirement of large datasets for deep neural network training [64]. There are two transfer learning
strategies: (i) using a pre-trained network as a feature extractor, and (ii) fine-tuning a pre-trained
network on medical data. In the former case, there is no need to train a network, as the extracted
features are directly passed to the existing image analysis pipelines.

In the realm of deep network architectures commonly employed for classification tasks, the evo-
lution in the medical imaging field mirrors that of computer vision applications for natural images.
Initially, the focus in medical imaging was on unsupervised pre-training techniques using structures
like stacked autoencoders and restricted Boltzmann machines. Stacked autoencoders are neural
networks composed of multiple layers of autoencoders, where each layer learns increasingly complex
data representations. Restricted Boltzmann Machines, on the other hand, are a type of stochastic
neural network useful for dimensionality reduction and feature learning [65, 66]. However, recently
there has been a clear shift towards the use of CNNs, noted for their wide-ranging applicability in
diverse areas such as brain MRI, retinal imaging, fetal US, and lung CT scans[53, 67].

Image classification still faces significant challenges, including limited access to annotated data,
disparities in class representation, and the need for model interpretability. Recently, the use of
unsupervised or semi-supervised learning methods [68], as well as the improvement of data augmen-
tation techniques [69], and the introduction of sophisticated regularization approaches [70] appear
to help addressing these issues. In addition, creating techniques that offer insightful rationale for
model outcomes and integrating expert domain insights into DL models can potentially boost their
relevance in a clinical setting [71].

1.2.2 Segmentation

Organ and structure segmentation in medical images allows quantitative analysis of clinical param-
eters related to volume and shape. The segmentation task is commonly defined as the identification
of the pixels (or voxels) that constitute either the contour or the interior of the objects of interest.
Being the most common subject of DL application to medical images [53], segmentation had the
greatest variety of methodologies, including CNNs and RNNs. The most well-known CNN architec-
ture for medical image segmentation is U-Net [72], which combines the same number of upsampling
and downsampling layers and connects them with so-called skip connections. This approach merges
features from both the contracting and expanding paths and, in terms of training, it implies that
U-Net can handle entire images or scans in a single forward pass, directly producing a segmentation
map. This capability enables U-net to consider the complete image context, offering a potential
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benefit over patch-based CNNs. A 3D-variant of U-Net architecture also exists and it is known as
V-Net [73], it performs 3D image segmentation using 3D convolutional layers. RNNs have recently
become more popular for segmentation tasks [74], as well as fully CNN (fCNNs) applied both alone
[75] or combined with graphical models to refine segmentation outputs[76].

Despite the success of segmentation models, challenges related to the need for large annotated
datasets, model interpretability, and algorithms’ robustness to variations in image quality, acquisi-
tion protocols, and patient populations still need to be addressed [77].

1.2.3 Detection

The localization of anatomical objects, such as organs or landmarks, results an important pre-
processing step in segmentation tasks or in the clinical workflow for therapy planning and interven-
tion. Localization in medical imaging often requires parsing of 3D volumes, and both pre-trained
CNN architectures and restricted Boltzmann machines, have been used for this purpose [78, 79].
These studies approach the localization task as a classification task, thus generic DL architectures
can be used. Another approach relies on directly regression of landmark locations with CNNs [80].
This method is typically addressed using landmark maps, where each landmark is represented by
a Gaussian heatmap as ground truth input data, and the network is directly trained to predict
this landmark map. CNNs have also been used for the localization of scan planes or key frames
in temporal data [81]. The latter have also been exploited using RNNs to leverage temporal infor-
mation contained in medical videos [82]. For medical images, the prevailing method for identifying
organs, areas, and landmarks has been through 2D image classification using CNNs. Nonetheless,
this concept has recently been expanded by modifying the learning process to directly emphasize
accurate localization, with promising results [53].

On the other hand, the detection of objects of interest or lesions in medical images is one of the
most labor-intensive tasks from the clinician’s point of view. In fact, it consists of localizing and
identifying small lesions in the entire image space. Surprisingly, the first object detection system
using a four-layer CNN was proposed in 1995 to detect nodules in X-ray images [83]. Mostf DL-based
object detection methods still rely on CNNs for pixel (or voxel) classification, typically followed by
a post-processing step to derive potential object candidates. Since the classification task performed
at each pixel is essentially object classification, the structure and techniques of CNNs closely mirror
those used in classification tasks. Also in this case, as the annotation burden to generate training
data is significant, weakly supervised DL approaches have been explored [84].

Class imbalance/hard-negative mining, as well as efficient pixel/voxel-wise processing of images,
are challenges that still need to be addressed.

1.2.4 Registration

Registration (i.e. spatial alignment) of medical images is a common task in which a coordinate
transformation is computed from one image to another. Thus, image registration involves aligning
two or more images, typically acquired from different modalities or at different times, to simplify
comparison and analysis [60]. There is a growing trend to employ DL in image registration, with
architectures like CNNs and spatial transformer networks being predominant. For supervised learn-
ing approaches, deformation fields or similarity metrics have been adopted as labels[85]; however,
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given the difficulties in obtaining labeled data for registration, unsupervised learning methods, that
do not require ground truth correspondences, are often adopted [86].

As for the other tasks, image registration presents challenges related to the need for large, diverse
training datasets, the limited interpretability of the learned transformations, and the potential for
overfitting or generating implausible deformations [60]. A potential benefit can be retrieved from
the incorporation of domain knowledge into the models, or by designing robust evaluation metrics
to highlight the clinical relevance of the registration results [86].

1.3 Motivation and aim of the thesis

Considering the growing importance of medical digital archives as a rich source of patient health
data, and the role of medical images as a crucial component of these archives, this thesis proposes
to harness the power of DL algorithms for medical image analysis. The primary focus is on the
development of AI applications specifically designed to aid in the diagnostic process. By leveraging
advanced DL techniques, the goal is to enhance the precision and efficiency of the diagnosis from
medical images, improving clinical decision-making and patient outcomes. These archives, which
have accumulated vast amounts of patient images over the years, offer a unique opportunity to glean
insights into various health conditions, disease progressions, and treatment outcomes. By analyzing
these images, clinical decision-making can be enhanced, and patterns previously unnoticed by human
experts can be potentially uncovered.

This work explores different DL approaches tailored to improve diagnostic processes across var-
ious medical fields and performing a range of tasks, highlighting the versatility and effectiveness of
DL. In particular, it concentrates on three specific imaging modalities in different clinical scenar-
ios: i) endoscopic imaging, a field in which DL has the potential to enhance diagnostic accuracy
while reducing subjectivity in frame evaluation; ii) MR imaging, in which DL techniques have the
potential to automate complex tasks to analyze human anatomy and pathology; iii) US rheumato-
logical imaging, a relatively nascent area for DL applications, which presents a plethora of untapped
opportunities and challenges concerning DL methodologies.

By analyzing the current technical challenges in these domains and identifying opportunities in
the less explored areas, the guiding research hypotheses for this PhD work can be summarized as:

• The vast amount of historical images available in medical archives can be effectively leveraged
by DL algorithms, which have the potential to significantly enhance the analysis of current
medical imaging.

• DL approaches that venture into unsolved challenges can propel both academic research and
clinical practice forward. By uncovering patterns and insights from medical digital archives,
they can greatly aid in improving patient care and outcomes.

• More consistent and objective diagnoses can be achieved by effectively minimizing inter- and
intra-observer variability, by employing DL algorithms for the automated analysis of archived
images.

The methodology crafted to delve into these hypotheses will be elaborated upon in this PhD
dissertation. Furthermore, sample applications will be showcased, offering a practical lens to exper-
imentally test the hypotheses and underline the significance of DL in making the most of medical
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digital archives. The development of the applications discussed in this dissertation was conducted
without accessing comprehensive medical archives or PACS, primarily owing to privacy and access
restrictions. Consequently, the research concentrated on utilizing datasets that were either publicly
available through the scientific community or supplied by local hospitals over approval from ethical
committees at the clinical sites. Despite the reduced data availability and the privacy constraints, it
was possible to develop and also effectively showcase the capabilities of these algorithms on medical
image domain, illustrating their significant potential in the comprehensive image archive.

1.4 Structure of the thesis

The subsequent parts of the dissertation are organized as follows:

Chapter 2 presents the crucial clinical relevance of making an accurate and quantitative diagnosis
of the upper aerodigestive tract diseases. Within the chapter, the challenges behind the analysis of
endoscopic images will be analyzed and a number of AI methodologies will be proposed to gradu-
ally meet the actual clinical needs. All the presented methods have a common root: supporting the
clinical diagnosis of pathologies related to the larynx. In detail, vocal folds motility assessment and
cancer segmentation will be addressed applying DL and ML approaches.

Chapter 3 delineates a DL-driven application for MRI archives. In particular, a new self-supervised
domain approach for intervertebral disc segmentation is proposed by taking advantage of three pub-
licly available datasets of the field. This approach holds its relevance in various medical applications
associated with the spine, encompassing the diagnosis and treatment of spinal conditions and dis-
eases, as well as image-guided interventions.

Chapter 4 aims to present an innovative quantitative assessment system for carpal tunnel syn-
drome. Indeed, despite its relevance, the diagnosis of this syndrome still relies on clinical history
and physical examination, sometimes integrated with electrodiagnostic tests. To solve the need for
a more quantitative and objective diagnosis, this chapter describes a DL method for the median
nerve evaluation in US rheumatological images, paving the way for future research in the field.

Chapter 5 offers an overview of the conclusions, scientific and clinical implications of this PhD
work are reported and discussed. Then, final considerations, open challenges, and future perspec-
tives of the healthcare ecosystem are discussed.

Chapters 2 ÷ 4, which differ for the clinical need to be solved, i) give the reader an overview of
the state of the art in the field; ii) present the adopted dataset; iii) justify the choice of the proposed
AI pipelines; iv) present the experimental setup and evaluation metrics; v) provide the results for
evaluating the performance of the proposed method; vi) discuss the obtained results highlighting
the limitations, and vii) conclude with the future perspective of the research.
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1.5 Scientific publications

Part of the methodologies presented and tested in this PhD dissertation were presented in the
following peer-reviewed publications.

Journal publications

A. Paderno, F. Gennarini, A. Sordi, C. Montenegro, D. Lancini, F.P. Villani, S. Moccia, C. Piazza.
Artificial intelligence in clinical endoscopy: Insights in the field of videomics. Frontiers in Surgery,
9, 933297, 2022, Frontiers.

A. Paderno, F.P. Villani, M. Fior, G. Berretti, F. Gennarini, G. Zigliani, E. Ulaj, C. Montenegro,
A. Sordi, C. Sampieri. Instance segmentation of upper aerodigestive tract cancer: site-specific out-
comes. Acta Otorhinolaryngologica Italica, 43, 4, 283, 2023, Pacini Editore.

M.C. Fiorentino & F.P. Villani, R. Benito Herce, M.A. Gonzalez Ballester, A. Mancini, K. Lopez-
Linares Roman. Self-supervised Domain Adaptation for Intervertebral Disc Segmentation in Mag-
netic Resonance Imaging. Currently under review at International Journal of Computer Assisted
Radiology and Surgery.

M. Di Cosmo, M.C. Fiorentino; F.P. Villani, E. Frontoni, G. Smerilli, E. Filippucci, S. Moccia.
A deep learning approach to median nerve evaluation in ultrasound images of carpal tunnel inlet.
Medical & Biological Engineering & Computing, 60, 11, 3255-3264, 2022, Springer Berlin Heidelberg

Conference proceedings

F.P. Villani, A. Paderno, M.C. Fiorentino, A. Casella, C. Piazza, S. Moccia. Classifying Vocal
Folds Fixation from Endoscopic Videos with Machine Learning. 2023 45th Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE.

The following publications, which are only partially related to the topic of the doctorate and
will not be discussed in the thesis, result from intra- and inter-research group collaborations:

L. Serrador, F.P. Villani, S. Moccia, C. Santos. Knowledge distillation on individual vertebrae
segmentation exploiting 3D U-Net. Currently under review at Computerized Medical Imaging and
Graphics.

G. Migliorelli, M.C. Fiorentino, M. Di Cosmo, F.P. Villani, A. Mancini, S. Moccia. On the Use
of Contrastive Learning for Standard-Plane Classification in Fetal Ultrasound Imaging. Currently
under review at Computers in Biology and Medicine.

M.C. Fiorentino, F.P. Villani, M. Di Cosmo, E. Frontoni, S. Moccia. A review on deep-learning
algorithms for fetal ultrasound-image analysis. Medical Image Analysis, 83, 102629, 2023, Elsevier.
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A. Paderno, F.P. Villani, A. Sordi, C. Montenegro, S. Moccia. Deep learning in endoscopy: the
importance of standardization. ACTA Otorhinolaryngologica Italica, 1-3, 2023

M. Di Cosmo, M.C. Fiorentino, F.P. Villani, G. Sartini, G. Smerilli, E. Filippucci, E. Frontoni, S.
Moccia. Learning-based median nerve segmentation from ultrasound images for carpal tunnel syn-
drome evaluation. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC), 3025-3028, 2021, IEEE.

F.P. Villani, M. Di Cosmo, A. Bertelsen Simonetti, E. Frontoni, S. Moccia. Development of an
Augmented Reality system based on marker tracking for robotic-assisted minimally invasive spine
surgery. International Conference on Pattern Recognition, 461-475, 2021, Springer International
Publishing Cham.

This thesis had also technology transfer implications. The author had the opportunity to join the
department of Digital Health & Biomedical Technologies at Vicomtech, Spain. Vicomtech3 is a
technological center set up as a private non-profit Foundation. It responds to Applied Research,
Development and Innovation in Information Technology, especially the convergence of Computer
Graphics and Computer Vision (Visual Computing), Data Analytics and Intelligence, Interactive
Digital Media and Language Technologies, in businesses and institutions in the biomedical domain.
During the months spent there, the author had the possibility to focus on implementing and vali-
dating AI-based solutions for MRI.

3https://www.vicomtech.org/
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Chapter 2

Artificial intelligence-driven applications
in endoscopic images archives

Endoscopic imaging is a minimally invasive medical technique that employs specialized instruments
equipped with integrated cameras for the inspection of the inner cavities and organs of the human
body [87]. Endoscopes, which can be either rigid or flexible tubular devices, allow direct visualiza-
tion within the body. These endoscopic systems can be optical, using lenses, transparent rods or
fibers, and can also include integrated or add-on cameras. The endoscope’s tip is inserted through
small incisions or natural body orifices, with illumination provided by a light source. When cameras
are employed, the field of view is displayed on a screen and can be recorded for later diagnosis or
documentation. Different types of endoscopic systems are designed for specific examinations, such
as those of the oral cavity, joints, lungs, abdomen, bladder or colon. In addition to diagnosis, endo-
scopes play an important role in assisting therapeutic procedures, including surgery and minimally
invasive interventions [87].

Endoscopy finds application in a variety of medical contexts, including gastroenterology for
gastrointestinal tract investigation, pulmonology for respiratory system assessment, and otolaryn-
gology for laryngeal and vocal cord examinations. Endoscopy provides real-time, high-resolution
imaging essential for diagnostic, surgical and therapeutic purposes. Nevertheless, the interpretation
of endoscopic images can be challenging and often relies on the clinician’s expertise.

In this field, ML and DL techniques have been developed to recognize disease patterns and
predict specific characteristics that can aid clinicians in diagnosis, treatment planning, and post-
treatment follow-up [88]. The analysis of endoscopic images using computer vision methods, defined
as videomics, has recently focused on five broad tasks of increasing complexity: quality assessment
of endoscopic images, classification of pathological and non-pathological frames, detection of lesions
within frames, segmentation of pathological lesions, and in-depth characterization of neoplastic
lesions [88].

Currently, DL is predominantly utilized in gastrointestinal endoscopy, due to the extensive avail-
ability of gastrointestinal endoscopy image databases. Annotated image repositories [89–91] serve
as the basis for training DL algorithms, preserving the collective knowledge of the medical commu-
nity and enabling improved cancer detection, diagnosis of infections, and identification of bleedings
or polyps [92]. In addition to supporting less-experienced physicians, automating image analysis
and emulating tasks already mastered by physicians [93], DL endeavors to excel in areas where
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medical professionals have had limited success. An active research focuses on surgical procedure
enhancement, aiming at improving the quality and value of interventional healthcare by capturing,
organizing, analyzing, and modeling data [94].

However, in most medical fields, DL for endoscopic images is still at an early stage of develop-
ment, mainly due to the paucity of annotated datasets which hinders the development of robust
and automatic algorithms that can be translated in clinical practice. This is particularly true for
endoscopic applications that examine the oral cavity, nasal passages, oropharynx, and larynx, which
are part of the field of otolaryngology and head and neck surgery.

Given the current gap in research and the limited application of DL for endoscopic procedures
in the Upper Aerodigestive Tract (UADT), as highlighted by the paucity of specialized datasets and
the nascent stage of algorithm development, this Chapter is motivated by the need to address these
deficiencies. It aims to bridge this gap, focusing on the innovative use of DL in enhancing clinical
endoscopy within otolaryngology, particularly in the assessment of Vocal Folds (VF) movement and
the early detection of UADT cancers. Thus, after an in-depth examination of the role of DL in
clinical endoscopy, two specific applications of DL in laryngoscopy are presented: the first explores
an innovative DL approach for VF movement assessment; while the second regards a DL technique
for the early detection of UADT cancer. From a clinical standpoint, the suggested frameworks
demonstrated their efficacy as supportive tools in clinical practice, enhancing the reproducibility of
VF motility estimation and enhancing cancer segmentation.

2.1 Artificial intelligence in clinical endoscopy: insights in the field
of videomics

Diagnostic endoscopy is an essential component in the assessment of the UADT and is a cornerstone
as a first-line diagnostic tool, especially after the introduction of the “bioendoscopy” concept [95].
The introduction of videoendoscopy significantly improved this field by the development of high-
quality video recording, image magnification, high-definition visualization, and advanced optical
filters such as Narrow Band Imaging (NBI), Storz Professional Image Enhancement System (SPIES)
or Image 1S, and I-Scan. These nuances, together with the constant advancement in ML, have
opened new possibilities for image analysis in a computer vision-oriented approach. Here, DL, is
playing a paramount role.

In the field of supervised learning, when provided with both the “problem” (i.e., unlabeled
videoendoscopic frame) and the “solution” (i.e., annotated frame or “ground truth”), DL algorithms
iteratively learn their internal parameters (i.e., weights) to progressively improve diagnostic perfor-
mance and specialize on a given objective. In this field, recent studies have focused on five broad
tasks with increasing complexity and computational load, which can be summarized as follows:

• Quality assessment of endoscopic images;

• Classification of pathologic and non-pathologic frames;

• Detection of lesions inside frames;

• Segmentation of pathologic lesions;
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Figure 2.1: Depiction of the potential input and output of a quality assessment algorithm.

• In-depth characterization of neoplastic lesions.

In this area, a stepwise approach has the potential to make use of incremental refinements of
algorithms and develop functional “minimal viable products” that can be introduced in clinical
practice as early as possible, even without the full suite of the above-mentioned applications. This
is especially true considering that, as mentioned, the main limiting factor in this field is the paucity
of large dedicated datasets that are usable for training. Gómez et al. [96] initially addressed
this issue in the field of high-speed laryngeal videoendoscopy by collecting and publishing the
Benchmark for Automatic Glottis Segmentation (BAGLS), a multihospital glottis segmentation
dataset. However, with the progressive expansion of the available training images, it will be possible
to tackle increasingly complex challenges.

Furthermore, the application of transfer learning techniques may significantly improve algorithm
training and reduce the number of images needed to achieve optimal performance. Pretraining with
endoscopic images from a different anatomic site may provide an adjunctive advantage, especially
in small datasets.

A potential approach to address the low number of manually annotated images is offered by
unsupervised and self-supervised learning. Unlike supervised learning, which is biased toward how
it is being supervised, unsupervised learning derives insights directly from the data itself, groups
the data, and helps make data-driven decisions without external biases [97]. This approach may
be particularly useful to cluster endoscopic frames into different categories (e.g., low visibility vs.
good visibility) to help the clinician’s assessment. On the other hand, self-supervised learning
takes advantage of unlabeled images of the same pathology but captured from different views to
significantly enhance the performance of pretraining. However, these options still need to be fully
explored in the field of UADT endoscopy [98].

Quality assessment The first area in which AI can be effectively applied to diagnostic videoen-
doscopies is their quality control. In fact, in every examination, the majority of videoendoscopic
frames are not diagnostic due to the presence of technical or patient-related factors that limit vi-
sualization. These factors, in the field of UADT evaluation, are mainly represented by repeated
swallowing, gag reflex, secretions, blurring of the camera, specular reflections, and over- and un-
derexposure. Automatic identification and classification of these issues can be of help in real-time
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Figure 2.2: Example of a classification task. The algorithm distinguishes between normal and pathologic
frames without identifying the area involved by the disease.

determination of the quality of an endoscopic examination and as depicted in Fig. 2.1 it may allow
automatic detection of the most significant frames in a given recording.

In this field, Patrini et al. [99] developed a ML-based strategy for automatic selection of infor-
mative videolaryngoscopic frames. This approach resulted in a Recall (Rec) of 0.97 when classifying
informative vs. uninformative frames (i.e., blurred, with saliva or specular reflections, and underex-
posed) with Support Vector Machines (SVM) (i.e., conventional ML algorithms) and of 0.98 with a
CNN-based classification. Furthermore, their work demonstrated the potential of transfer learning
in medical image analysis.

As a proof of concept, recent advances in the field of gastrointestinal endoscopy have led to
the development of a fully automatic framework that can detect and classify different artifacts,
segment artifact instances, provide a quality score for each frame, and restore partially corrupted
frames [100].

Classification Classification is a typical DL task, and in the field of videoendoscopy can be
applied to distinguish between normal and pathological mucosa, as illustrated in Fig. 2.2.

In this field, He et al. [101] applied CNN to interpret images of laryngeal squamous cell carci-
noma using static NBI frames to determine whether a lesion was benign or malignant. The model
reached an Accuracy (Acc) of 90.6%, a Sensitivity (Sen) of 88.8%, and a Specificity (Spec) of
92.2%. Furthermore, the authors demonstrated that the model accuracy in distinguishing malig-
nant lesions was higher than that of human experts. A similar approach was described by Esmaeili
et al. [102], training a CNN for the automatic classification of NBI images into benign and malig-
nant. A pretrained ResNet50 architecture was adopted, and three experiments with several models
were generated and validated. The model showed a striking diagnostic performance and achieved a
testing Acc of 0.83.

Considering multiple classification groups, Zhao et al. [103] proposed a four class-system of
vocal cord targets (i.e., normal mucosa, polyp, keratinization, and carcinoma), and a laryngoscopy
dataset was divided into “urgent” (keratinization, carcinoma) and “nonurgent” (normal mucosa,
polyp) cases. An overall Acc of 80.2%, an F1-score of 0.78, and an Area Under the Precision-Recall
Curve (AUC) of 0.96 were achieved. The proposed method delivered high classification performance
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Figure 2.3: Image showing a bounding box localizing a laryngeal lesion. This is the typical output of
detection algorithms.

of normal mucosa, polyps, and carcinoma in an extremely quick time.
Other studies [104, 105] have employed ML to classify pharyngo-laryngeal benign lesions during

videoendoscopy, demonstrating notable results. A preliminary attempt was described in 2014 by
Huang et al. [104], who proposed an automatic system aimed at recognizing the dynamic image
of the glottis and classifying different VF disorders (“normal VF,” “VF paralysis,” “VF polyp,” and
“VF cyst”). This study used an SVM classifier and reached an Acc of 98.7%. However, the patterns
to be classified did not include dysplasia or malignancy. Following [106], Dunham et al. [105]
proposed the concept of “optical biopsy” using CNNs. The first objective was to classify endoscopic
images into one of five benign classes (normal mucosa, nodules, papilloma, polyps, and webs). The
second was, using a binary classifier, to distinguish malignant/premalignant from benign lesions.
The overall Acc for the multiclass benign VF lesion classifier was 80.8%, while the binary test
achieved an overall Acc of 93%.

Different authors [107, 108] also demonstrated the feasibility of classifying oropharyngeal and
oral cavity lesions using ML technology. For the oropharynx, Mascharak et al. [107] used a naive
Bayesian classifier (color and texture) to demonstrate the value of NBI imaging instead of white
light videoendoscopy, which added more definition to tumor margins and highlighted submucosal
vascularization. Five-fold cross-validation provided an AUC of over 80% for NBI and under 55%
for white light endoscopy models (p < 0.001).

In the oral cavity, in 2018, Song et al. [108], employing CNNs, proposed a low-cost, smartphone-
based, automatic image classification system. The authors collected data from 190 patients across
several centers in India to detect oral dysplasia and malignancy using a dual-mode image analysis
with white light and autofluorescence. The study compared the accuracy of the single- (white light or
autofluorescence) and dual-mode (white light and autofluorescence) image analysis, demonstrating
that the latter had a better diagnostic performance. The final model reached an Acc of 87%, a Sen
of 85%, and a Spec of 89%.

Detection Lesion detection (Fig. 2.3) remains the main objective of DL-based strategies in
contemporary clinical videoendoscopy. Different authors have described the potential of CNN in
the detection of cancer, premalignant lesions, benign lesions, and normal tissue.

Inaba et al. [109] trained a CNN-based algorithm (RetinaNet) to detect superficial laryngo-
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Figure 2.4: Automatic segmentation of a laryngeal lesion provided by a Convolutional Neural Nertwork
(CNN) after adequate training and optimization.

pharyngeal cancer. To evaluate diagnostic accuracy, 400 pathologic images and 800 of normal
mucosa were collected, reaching an Acc, Sen, and Spec of 97%, 95%, and 98%, respectively. The
definition of correct diagnosis was set with an Intersection over Union (IoU) > 0,4. Interestingly,
the authors showed a direct correlation between the algorithm diagnostic performance and the
number of images used for training. This outcome is not surprising, and clearly highlights the
importance of training data, both in quantitative and qualitative terms, during the training phase
of an algorithm. In fact, to date, the low number and small size of the available medically oriented
datasets are the real bottlenecks that limit the development of clinically relevant computer vision
algorithms. A similar approach was described by Xiong et al. [110], who developed a CNN-based
diagnostic system using videoendoscopic images of laryngeal cancer, premalignant lesions, benign
lesions, and normal tissue. The CNN detected lesions with an Acc of 87%, a Sen of 73%, a Spec of
92%, and an AUC of 92%. Moreover, the results were comparable to those obtained by a human
expert with 20 years of experience.

Concerning real-time detection, Matava et al. [111] and Azam et al. [112] developed CNN
algorithms applied in real-time during videoendoscopy and which aimed at identifying, on the one
hand, normal airway anatomy and, on the other hand, UADT lesions. Using this type of approach,
DL may be a useful complementary tool for clinicians in endoscopic examinations, progressively
implementing the concept of human–computer collaboration. In detail, Matava et al. [111] compared
the predictive performance of three models (ResNet, Inception, and MobileNet) in the identification
of normal components of laryngeal and tracheal airway anatomy. ResNet and Inception achieved a
Spec of 0.98 and 0.97 and a Sen of 0.89 and 0.86, respectively. Finally, Azam et al. [112] identified
a CNN model for real-time laryngeal cancer detection in white light and NBI videoendoscopies.
The dataset, consisting of 219 patients, was tested with an algorithm that achieved 0.66 Precision
(Prec), 0.62 Rec, and 0.63 Mean Average Precision (mAP) with an IoU>0.5. In addition, the model
ran with an average computation time per video frame of 0.026 s.

Segmentation Automated segmentation of anatomical structures in medical image analysis is a
prerequisite for autonomous diagnosis and represents one of the most complex tasks in the field
of computer vision. In this case, the algorithm not only needs to detect lesions but also needs to
automatically delineate their margins as in Fig. 2.4. Recent CNN-based methods have demonstrated
remarkable results and are well-suited for such a complex task.

21



2.1. Artificial intelligence in clinical endoscopy: insights in the field of videomics

During transoral laser microsurgery, a seven-class (void, VF, other tissue, glottic space, pathol-
ogy, surgical tools, and tracheal tube) dataset was trained by Laves et al. [113] using a CNN-based
algorithm. Different CNN architectures were investigated, and a weighted average ensemble net-
work of U-Net and ErfNet (two of the most commonly used CNNs) turned out to be the best
suited for laryngeal segmentation, with a mean IoU of 84.7%. Advances in ML and computer
vision have led to the development of methods for accurate and efficient real-time segmentation.
Paderno et al. [114] explored the use of fully CNNs for real-time segmentation of squamous cell
cancer in videoendoscopies of the oral cavity and oropharynx. In this work, the authors compared
different architectures and detailed their diagnostic performance and inference time, demonstrating
their significant potential and the possibility of achieving real-time segmentation. However, for the
first time, they suggested that highly heterogeneous subsites such as those encountered in the oral
cavity may have inferior results when compared with more structurally homogeneous areas such as
the oropharynx. This is in line with what was previously observed when applying bioendoscopic
tools alone in a non-AI environment by Piazza et al. [106] and is possibly related to the larger
epithelial differentiation within the oral cavity vs. the oropharynx and to specific limits related to
oral examination (the presence of light artifacts and confounders such as tongue blade, teeth, or
dentures).

When dealing with laryngeal lesions, Fehling et al. [115] explored the possibility of achieving a
fully automated segmentation of the glottic area and VF tissue using a CNN in high-speed laryngeal
videos. The algorithm obtained a Dice Similarity Coefficient (DSC) of 0.85 for the glottis, 0.91 for
the right, and 0.90 for the left VF. Furthermore, the results revealed that, in both pathologic and
healthy subjects, the automatic segmentation accuracy obtained was comparable or even superior
to manual segmentation.

Generally, laryngo-pharyngeal lesions are those more frequently examined when measuring the
role of automatic analysis by ML. In fact, only limited studies on nasopharyngeal disease differenti-
ation have been performed on the basis of endoscopic images. For example, Li et al. [116] proposed
a method to segment nasopharyngeal malignancies in endoscopic images based on DL. The final
model reached an accuracy of 88.0%.

Finally, DL proved to be a promising addition to the field of endoscopic laryngeal high-speed
videos. In clinical practice, the previous lack of dedicated software to analyze the data obtained
resulted in a purely subjective assessment of the symmetry of VF movement and oscillation. The
development of easy-to-use DL-based systems that are capable of automatic glottal detection and
midline segmentation allowed obtaining objective functional data without the need for manual or
semiautomatic annotation as previously described, among others, by Piazza et al. [117], thus sig-
nificantly simplifying the process. These results were obtained through an organized and stepwise
approach headed by the Erlangen research group that achieved high-fidelity automatic segmentation
of the glottis [115] and glottal midline [118] as well as extraction of relevant functional parame-
ters [119]. Thanks to these preliminary data, a DL-enhanced software tool for laryngeal dynamics
analysis was developed [120]. This software provides 79 unique quantitative analysis parameters for
video- and audio-based signals, and most of these have already been shown to reflect voice disorders,
highlighting its clinical importance.
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Figure 2.5: Endoscopic Narrow Band Imaging (NBI) frame showing an example of adjunctive data drawn
from in-depth characterization by hypothetical machine learning algorithms.

In-depth characterization All the previously described tasks aim to provide an accurate defi-
nition of a given lesion, classifying it according to its nature, defining its location in the frame, and
delineating its margins (with possible future roles in real-time definition of resection margins during
a surgical procedure). However, all these objectives reproduce only what is generally achieved by
an expert clinician and do not try to overcome the limits of human perception, even though their
future implementation within a telemedicine environment would represent a large step toward more
homogeneous diagnostic opportunities.

However, there is already indirect evidence that pattern recognition capabilities of novel AI
systems may allow finding a correlation between the endoscopic appearance of a given lesion and
its finer characteristics as represented in Fig. 2.5. Among these, depth of infiltration, so far
investigable only by radiologic imaging or histopathologic evaluation [121], plays a remarkable role
in the prognostication of oral cavity cancer and has fueled great interest in the possibility of speeding
up its definition by AI tools applied to videomics. Identification through videomics of other tumor
characteristics, such as histopathological risk factors (e.g., perineural and lymphovascular invasion),
viral status (human papilloma and Epstein–Barr viruses), and genomic markers, is definitively more
ambitious but already within the reach of similar approaches like radiomics and pathomics. Bridges
connecting all these sources of information would be of great help in the near future to build up
sharable profiling of tumors and their microenvironment.

Recent studies in the gastrointestinal tract, for example, have provided the proof of concept of
this hypothesis and demonstrated that CNNs can differentiate between early and deeply infiltrating
gastric cancer [122]. Nakahira et al. [123] further confirmed the potential of this approach by
showing that CNN was able to correctly stratify the risk of gastric tumor development by analyzing
the non-neoplastic mucosa at videoendoscopy.

Future Persectives The introduction of computer vision in UADT endoscopy is still in its in-
fancy and further steps will need to be taken before reaching widespread application. In this view,
the first step outside of purely research-driven applications will be the use of ML algorithms for
human–computer collaboration. Dedicated algorithms can assist in every step of the endoscopic
diagnostic approach, from quality assurance, effective storage and video classification, to risk de-
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termination, histologic definition, margins evaluation, and in-depth lesion profiling. As previously
stated, this will be a stepwise approach that will start from easier tasks (i.e., quality assurance) and
will progress toward more complex and more clinically relevant objectives. The ideal outcome will
be to achieve accurate lesion characterization in terms of histologic nature, margins, and biologic
characteristics and to be able to fully and objectively integrate these insights with data from other
types of examinations (e.g., radiology, molecular biology, and histopathology).

Morphologic image analysis is the main field in which videomics is evolving in the context of
clinical endoscopy. However, other more innovative aspects can be assessed by taking advantage
of current computer vision technologies. A particularly interesting feature in otolaryngology is VF
motility; in fact, an objective evaluation of this variable can be extremely helpful in both the as-
sessment of functional deficits and in the precise staging of neoplastic disease of the glottis. This
is especially true when considering that the international standard classification [124] of laryngeal
cancer relies on purely subjective definitions of “normal vocal cord mobility”, “impaired vocal cord
mobility”, and “vocal cord fixation” for the categorization of T1, T2, and T3 glottic tumors, respec-
tively.

In this field, Adamian et al. [125] recently developed an open-source computer vision tool
for automated VF tracking from videoendoscopies that is capable of estimating the anterior angle
between VF of subjects with normal mobility and those with unilateral VF paralysis. The authors
demonstrated the possibility of identifying patients with VF palsy by assessing the angle of maximal
glottic opening (49° vs. 69°; p < 0.001). In particular, an angle of maximum opening <58.6°
was predictive of paralysis with a Sen and Spec of 0.85. Notwithstanding, this approach places
significant limits on the evaluation of reduced mobility due to neoplastic involvement since it relies
on the identification of the free margin of VF, which is often altered by glottic tumors. However,
the development of alternative strategies is providing valuable outcomes in such a task.

Finally, novel surgical technologies such as transoral robotic [126] and exoscopic surgery [127]
rely on digital video acquisition of a large amount of data and will potentially extend the appli-
cations of videomics to the intraoperative setting of quality and safety control as well as didactic
proficiency. This is especially interesting considering the urgent need for more extensive training
and collaborative datasets that will enable better refinement of ML algorithms, coming not only
from diagnostic instrumentation but also from surgical robots and exoscopic tools.

2.2 A deep learning approach for keypoints localization for vocal
folds movement assessment in endoscopic images

This section describes an innovative method for the automatic assessment of VF motility, based
on the detection of five keypoints located at specific sites of the larynx in endoscopic images. VF
motility assessment is not trivial, and while endoscopic imaging represents the gold standard for
VF movement assessment, relying on visual examination of videoendoscopy is subjected to intrinsic
challenges inherent to this imaging technique including the subjectivity of observers and the absence
of standardized protocols, other than a range of technical and practical issues such as anatomical
and image quality variations, motion artifacts and limited field of view.

Thus, using archived laryngoscopic images obtained from 124 patients, this section tackles the
challenge of automatically detecting five keypoints and estimating VF motility through the devel-
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opment of a fully automated DL method. The architecture is designed as a heatmap regression
network to enable precise estimation of the landmarks, thus facilitating the motility estimation.
This study showcases the capability of tackling the challenge of keypoints detection in endoscopic
images using DL, setting a foundation for subsequent exploration in this field. A further step for the
estimation of VF motility will be delineated in Section 2.3. In terms of clinical utility, the proposed
framework emerged as a valuable addition, improving the uniformity of VF motility estimation,
increasing reproducibility, and reducing subjectivity and time needed for the assessment.

2.2.1 Introduction

With the advent of AI, the last decade has seen a revolution in the field of medical image analysis,
with applications ranging from diagnosis to treatment, guidance, and follow up [53]. While promising
results were obtained for processing anatomical images, such as CT [128], US [67], and MRI [129],
as evidenced in Sec. 2.1, the analysis of endoscopic videos still represents a challenge [94] and only
few commercially-available solutions exist [130]. This may be explained considering the peculiar
challenges of endoscopic videos, including poor contrast, low signal-to-noise ratio, presence of motion
blurring, and tissue motion. The field of otolaryngology and head and neck surgery makes not an
exception [131]. Videoendoscopy is largely used in clinical practice for a number of applications,
among which the assessment of VF motility.

VF are muscular structures located in the larynx, which are responsible for vocalization, breath-
ing, and airway protection. Neurological and inflammatory diseases can lead to impaired VF move-
ments [132], and the consequent paralysis of one or both VF may jeopardize key physiological
functions of the larynx [133].

Diagnostic and therapeutic assessment of VF paralysis and paresis, glottic stenosis, and other
neurologic disorders of the larynx are guided by videoendoscopic imaging [134].

Reliably monitoring therapeutic outcomes is crucial for maintaining high standards in clinical
practice. VF movement disorders are identified by irregularities in the adduction and abduction
of the folds. However, the prevalent outcomes in this area are often based on indirect measures of
VF movements, using tools that evaluate voice quality and swallowing capabilities [135]. Currently,
clinicians ascertain VF paralysis through folds position, using basic ordinal scales (like median,
paramedian, or lateralized) in a static manner during vocalization. The clinical diagnosis of VF
motility deterioration relies on the subjective examination and interpretation of VF motion during
real-time viewing or playback of videoendoscopies. This evaluation is time-consuming and requires
a skilled professional to be performed, and it is characterized by high inter- and intra-rater variabil-
ity [136]. In this context, DL has the potential to tackle the variability of videoendoscopic frames
and to provide clinicians with a quantitative assessment of VF motility.

Several studies measure the Anterior Glottic Angle (AGA) as a metric for understanding VF
movements during VF abduction and adduction via laryngoscopy video. Traditionally, the AGA
has been assessed by manually marking the laryngoscopy videoframes during standard inhalation
and vocalization [137], during cough [138], and during specific lung function tests [139]; or using
classic image processing approaches [140, 141]. While these traditional methods of image processing
have been the standard for assessing the AGA, recent advancements in DL are paving the way for
more sophisticated and automated approaches. Thus, VF motility has been assessed in terms of
glottal segmentation, gauging motility through fold movement relative to the midline [142, 143]; or
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Figure 2.6: Representation of the proposed keypoints heatmap regression network.

through region of interest detection and glottal gap delimitation [144]. Glottal area segmentation
for frame-wise estimation of the AGA was also used in [145], for VF tracking from laryngoscopy
video.

More recently, VF motility has been assessed in terms of anatomical keypoints (or landmarks)
tracking. Keypoints estimation from endoscopic laryngeal images may be crucial to provide quanti-
tative measurements to ensure objective analysis of VF motility, supporting diagnosis and treatment
planning. The use of keypoints was first explored in [146, 147] to estimate the AGA. In [146] an
open-source DL toolbox (DeepLabCut) was employed to train a computer vision model for offline
localization of the free edges of VF from laryngoscopy video examinations.

To estimate VF keypoints, two common approaches can be the direct coordinates regression
and the heatmaps regression: while direct coordinate regression aims to predict the exact (x, y)
coordinates of the keypoints, heatmaps regression offers a different perspective, allowing for the
detection of keypoints presence and their general location. Considering that heatmaps may provide
better robustness to partial occlusion, a valuable feature in videoendoscopy where VF and other
anatomical landmarks may be partially obscured, this work proposes the first DL algorithm for VF
motility assessment through keypoints detection based on heatmap regression.

2.2.2 Materials and methods

This section introduces the proposed framework, the datasets used, and the training settings.
Fig. 2.6 shows an overview of the proposed keypoint detection network for VF motility estima-
tion.

Dataset description

The dataset used in this study is made of videoendoscopic frames of patients treated at the Unit
of Otorhinolaryngology-Head and Neck Surgery, University of Brescia, Italy. Data were acquired
following the principles of the Helsinki Declaration, and approval was obtained by the local ethical
committee. A total of 471 endoscopic images from 124 patients (28 of which oncologic) were collected
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from a dedicated archive and anonymized. For each video, a variable number of representative frames
were selected and annotated using Label-studio by an expert laryngologist with more than ten years
of experience. Annotation consists of 5 keypoints located at specific sites of the larynx, fundamental
for VF motility estimation: the epiglottic insertion point of the left and right aryepiglottic folds
(Left Epiglottic (LE), Right Epiglottic (RE)), the posterior angle of the left and right vocal folds
(Left vocal fold (LV), Right vocal fold (RV)), and the Anterior commisure (A), as shown in Fig. 2.7.
The choice of these keypoints is driven by clinical considerations: RE and LE mark the aryepiglottic
fold’s insertion into the epiglottis, serving as pivotal points fixed during arytenoid movement, making
them apt references for appraising supraglottic larynx motion; LV and RV can help assessing the
degree of VF closure during phonation; A is a pivotal point for understanding VF dynamics, as
changes in its position and movement can reveal information about VF tension and adjustments
made during voice production.

To cope with the small amount of data, and to effectively use all the data available, a five-fold
cross-validation was performed. The dataset was split into five balanced subsets, in each fold four
subsets were used for training and validation, while the remaining for testing. For each fold, images
were selected to ensure no patient overlap between the train and test sets.

Proposed method

The proposed model is inspired by the classical encoder-decoder architecture of U-Net [72]. The
MobileNetV2 architecture pre-trained on ImageNet was employed as the encoder e(·), which serves
as a feature extractor. Additionally, a decoder network d(·) was used to recover spatial information
and generate the heatmaps. The e(·) is composed of an initial convolutional layer with 32 filters,
which reduces the image size by half, followed by batch normalization and a Rectified Linear Unit
(ReLU) activation function. This initial layer is followed by a series of inverted residual blocks
consisting of an initial 1x1 convolution followed by a 3x3 depthwise convolution and ending with
another 1x1 convolution. At each block, the number of channels increases enabling the incremen-
tal learning of more complex features. The number of channels starts from 32 and progressively
increases to 576. Similarly, the d(·) is composed of four blocks, each comprising two 2D conv lay-
ers followed by a ReLU activation function and batch normalization. To recover the lost features
resulting from downsampling in the e(·) path, the input of each block is concatenated with the
corresponding feature maps from e(·). The last block consists of three 2D conv layers, with the first
two being followed by a ReLU activation function, and the last one activated by Softmax.

The proposed CNN is fed by stacking the endoscopic frames and the five corresponding heatmaps
of dimension W x H, where W and H represent the width and height, of the endoscopic images,

Figure 2.7: Visual sample of a labeled image. The colored points in the leftmost image represent the
keypoints: left epiglottic (LE) in red, left vocal fold (LV) in yellow, anterior commissure (A) in green, right
vocal fold (RV) in magenta, right epiglottic (RE) in cyan. The generated heatmaps for each keypoint are
also reported separately.
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respectively. Each heatmap is represented by a Gaussian distribution with a standard deviation (σ)
equal to 20 and centered at the keypoints center.

Training settings

All frames were resized to 224x224 pixels, and mean intensity was removed from each frame. The
model was trained for 200 epochs, optimized using the Adam optimizer with an initial learning rate
of 0.001, with a batch size of 8. In the proposed approach, a Channel-weighted Mean Square Error
(CW-MSE) loss function was introduced to give differential importance to individual channels of
the target tensor. The CW-MSE loss function, L, is formulated as follows:

L =

N∑
i=1

(
mean

(
w[i]× (ypred[..., i]− ytrue[..., i])

2
))

Where:

• N is the number of channels.

• ypred[..., i] and ytrue[..., i] denote the ith channel of the predicted and true tensors, respectively.

• w is a list of scalar values, where each value corresponds to the weight of a specific channel.

• The mean operation computes the average of the squared weighted differences for each channel.

The intuition behind the CW-MSE loss is to allow the model to focus more on channels that
are deemed more critical for the task at hand. By assigning higher weights to these channels, the
model can be guided to produce more accurate heatmaps for them.

During the training, on-the-fly data augmentation was performed to enhance generalization
performance. The augmentation techniques included geometrical transformations such as horizontal
and vertical flipping, and random rotation in the range of ± 30 degrees, and intensity transformations
such as random brightness correction, random hue adjustment, and random saturation. These
augmentations were randomly applied at each training iteration. The best model among epochs is
selected based on the lowest loss value obtained on the validation set.

All the analysis were performed using Tensorflow 2.x on an NVIDIA RTX 2080 TI, with a Xeon
e5 CPU and 128 GB RAM.

Comparison with literature

Approaching keypoints estimation through a heatmap regression network, instead of a direct coordi-
nates regression network, was driven by previous work from different fields [148, 149], which showed
that deducing joint positions from an input frame (and thus from direct coordinates regression) is
notably non-linear. The proposed regression system, instead, generates stacked confidence maps
each having the same size of the input frames (i.e. W x H).

Nevertheless, a comparative analysis of the proposed model with a direct regression model was
conducted to prove the effectiveness of the development of a heatmap regression network rather
than a direct keypoint coordinates regression approach.

The model used for direct coordinates regression is a fully CNN, made of a MobileNetV2 pre-
trained on ImageNet as backbone to extract meaningful features from the images which are later
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Figure 2.8: Boxplots of the Root Mean Square Error (RMSE) for each of the five keypoints: left epiglottic
(LE), left vocal fold (LV), anterior commissure (A), right vocal fold (RV), right epiglottic (RE). The proposed
heatmap regression model (HR), is compared with the direct coordinate regression model (CR). Each boxplot
represents the distribution of the RMSE values across all the folds.

passed to a custom regression head made of two separable convolutions for predicting the keypoints
coordinates. The backbone used in this model is the same architecture used in the encoder path of
the proposed heatmap regression method.

For a fair comparison, the two models are trained under the same settings in five-fold cross
validation and with the same computational resources.

The keypoints detection performance of the two models was evaluated based on the Root Mean
Square Error (RMSE) defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(Pi −Gi)2 (2.1)

where N is the number of keypoints, Pi represents the coordinates of the predicted location of the
i − th keypoint, Gi represents the coordinates of the ground truth location of the i − th keypoint.
The difference (Pi - Gi) is computed as the Euclidean distance between the predicted and ground
truth positions for each keypoint. RMSE values are expressed in pixels.

For the heatmap regression model, the RMSE was evaluated considering the maximum value of
the predicted and ground truth heatmaps.

2.2.3 Results

The proposed method obtained mean RMSE values over the 5 folds equal to 16.44, 4.93, 20.12, 5.70,
21.93 pixels for LE, LV, A, RV, and RE respectively. The direct coordinate regression method, in-
stead, achieved mean RMSE values over the 5 folds of 22.70, 8.50, 9.39, 9.35, 22.91 pixels for LE,
LV, A, RV, and RE respectively. Average results for each fold of the proposed keypoint detec-
tion methods are reported in Table 2.1, in comparison with the outcomes of the direct coordinate
regression method.

In Fig. 2.8 the boxplots relative to the RMSE for each keypoints are reported for the two
models, while visual samples of the qualitative results can be seen in Fig. 2.9, where it is possible
to appreciate the improvements brought by the proposed heatmap regression model, which are
particularly evident in the accurate positioning of keypoints with respect to the other model.
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Figure 2.9: Qualitative results from the comparison of the two models on sample test images. From left
to right: original image, ground truth coordinate annotation, prediction of the direct coordinate regression
model (CR), ground truth heatmap, predicted heatmap, prediction of the heatmap regression model (HR).
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Table 2.1: Results of the root mean squared error (RMSE) computed on the test sets of the five-folds.
Values are expressed in pixels.

Fold Model LE LV A RV RE

F 1 Coordinates regression model 20.79 8.40 8.85 8.07 20.60
Heatmap regression model 13.71 4.39 63.67 4.13 14.93

F 2 Coordinates regression model 26.05 9.04 8.84 10.10 25.15
Heatmap regression model 25.27 5.73 7.90 7.08 23.04

F 3 Coordinates regression model 21.66 8.99 9.06 9.06 20.92
Heatmap regression model 7.72 5.47 7.38 5.42 38.23

F 4 Coordinates regression model 25.26 8.15 9.71 9.18 25.90
Heatmap regression model 14.25 4.48 13.36 5.17 21.24

F 5 Coordinates regression model 19.74 7.91 10.50 10.35 21.99
Heatmap regression model 20.98 4.59 8.30 6.70 12.25

Average Coordinates regression model 22.70 8.50 9.39 9.35 22.91
Heatmap regression model 16.44 4.93 20.12 5.70 21.93

2.2.4 Discussion

Despite the growing interest in assessing VF motility and the established value of endoscopic anal-
ysis, there are still issues to be faced. These challenges stem from the high expertise required to
perform and interpret the procedure, the lack of standardization, and the high variability among en-
doscopists’ evaluations. To address these issues, a DL approach is proposed to detect five keypoints
located at specific locations of the VF, which is a preliminary but fundamental task to estimate VF
motility.

From Fig. 2.8 a certain difference can be noticed among the five keypoints. Particularly,
when compared to the others, the two external keypoints (LE and RE) exhibit the highest error
on average for the direct coordinate regression approach. This behaviour is possibly related to the
higher variability in the position of the external-most keypoints, and to the occlusion caused by other
anatomical structures. The prediction of these two keypoints is highly improved using the heatmap
regression approach, thanks also to the use of the CW-MSE loss which improves the prediction of
these two external-most keypoints. Only for the regression of the keypoint A, the proposed model
achieves lower performance with respect to the direct coordinate regression model. Results obtained
from the comparison of the two models show that direct coordinates regression results in a higher
median RMSE for all the keypoints, confirming the advantage of regressing heatmaps for capturing
nuanced spatial relationships and potentially yielding more robust predictions.

Even if the achieved results are promising, a limitation of this work can be seen in the fact that
the analysis only included a limited number of videondoscopies of patients for whom the VF motility
was preserved. Nevertheless, the study can be extended also to patients that are in conditions of
reduced motility.

2.2.5 Conclusion

This section outlined a keypoints detection model for VF motility estimation in videoendoscopic
images based on heatmap regression. The results achieved on a newly collected dataset suggest
that keypoints detection based on heatmap can be successfully exploited to estimate VF motility,
obtaining better performance with respect to direct coordinate regression. Thus, the proposed
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solution moves the state of the art towards a better framework for VF motility assessment and can
lead to applications in computer-aided diagnosis.

2.3 Classifying vocal folds fixation from endoscopic videos with ma-
chine learning

The method reported in this section is a natural progression from the work described in the previous
Sec. 2.2; indeed, it demonstrates that VF motility estimation can be derived from the keypoints
coordinate predictions obtained with the previous method. Here, however, the estimation is con-
ceptualized based on the ground truth coordinates.

A conference paper on this work has been presented at EMBC 2023 and published as [150]:
Villani, F.P., Paderno, A., Fiorentino, M.C., Casella, A., Piazza, C., Moccia, S. (2023). Classifying
Vocal Folds Fixation from Endoscopic Videos with Machine Learning. Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine
and Biology Society. Annual International Conference, 2023:1–4.

2.3.1 Introduction

As stated before, the clinical diagnosis of VF motility relies on the subjective examination and in-
terpretation of VF motion during real-time viewing or playback of videos captured through videoen-
doscopy. This evaluation is time-consuming and requires a skilled professional to be performed, and
is characterized by high inter- and intra-rater variability [136]. In this context, ML has the potential
to tackle the variability of videoendoscopic frames and to provide a quantitative perspective to the
analysis of VF motility. Thus, this section focuses on the analysis of endoscopic frames extracted
from endoscopic videos, proposing a ML algorithm for the assessment of VF motility.
The literature on ML algorithms for laryngeal videoendoscopic image analysis has been growing

since 2017. The work in [151] is among the first to investigate the use of ML algorithms for early
stage cancerous laryngeal tissue classification. Since then, several studies have been published,
including a recent review [131]. Motility assessment, instead, is mostly addressed with DL meth-
ods based on glottal segmentation, from which the motility is evaluated based on the movement
of each fold with respect to the midline; or through region of interest detection, and glottal gap
delimitation [144]. Hamad et al. [142] developed a DL system for automatic segmentation of the
glottal region in laryngoscopy videos using a fully convolutional regression network. More recently,
Yousef et al [152] studied VF kinematics during the running speech, analyzing VF vibrations in
adductor spasmodic dysphonia. A U-Net was deployed for glottal area segmentation in high-speed
videoendoscopy to quantitatively analyze vibrations in both healthy and unhealthy patients. Sim-
ilarly, in [143] VF dynamics is evaluated in association with voice disorders. They trained a deep
neural network with data from laryngeal high-speed videoendoscopy with the aim of segmenting
the glottal area, from which the glottal edges are derived during connected speech. Other studies
make use of phasegram [153] (a visualization method of system dynamics that can be interpreted as
a bifurcation diagram in time) or phonovibrogram [136, 154] (a graphical representation of the VF
deflections, automatically extracted from laryngeal high speed recordings) to evaluate VF motility
related with voice disorders. However, unlike videoendoscopy, these kinds of tests are not usually
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Figure 2.10: Representation of three consecutive frames (from left: abducted, normal, and adducted vocal
cords, respectively) with ground truth keypoints annotation. The images in the first row refer to a subject
with preserved motility, while the ones in the second row to a subject with fixation. The colored points
represent the keypoints: left epiglottic in red, left vocal fold in yellow, anterior commissure in green, right
vocal fold in magenta, right epiglottic in cyan.

performed in clinical practice.
Differently from the work in the literature, this work relies on ML for VF motility estimation,

proposing a method to classify motility into two classes (namely: preserved motility and fixation)
based on keypoints. This method is advantageous as it allows to directly obtain a classification,
without the need of post-processing, as in the case of glottal segmentation. Each of the selected
keypoints represents an important clinical landmark for the analysis, providing a close approxima-
tion of both glottic and arytenoid movements. Starting from the coordinates of the five keypoints,
clinically relevant features were handcrafted to train the classification models.

2.3.2 Materials and methods

Vocal Folds Model and Keypoints Annotation

The dataset used for this analysis is made of videoendoscopic frames of patients treated at the Unit
of Otorhinolaryngology - Head and Neck Surgery, University of Brescia, Italy. Data were acquired
following the principles of the Helsinki Declaration, and approval was obtained by the local ethical
committee of Spedali Civili of Brescia. A total of 558 endoscopic images from 186 patients were
collected from a dedicated archive and anonymized, and for each video three representative frames
were selected. The motility was estimated among these three endoscopic frames from five keypoints
chosen according to the clinical experience of the clinicians, and located at specific sites of the
larynx, as previously detailed: LE, RE, A, LV, and RV, as shown in Fig. 2.10.

Frames annotation was performed by an expert (more than 10 years of experience) laryngologist
using LabelMe1. Only subjects for which three frames representing a specific VF position (abducted,
neutral, adducted) were available, were included in the study. After this process of data selection,

1https://github.com/wkentaro/labelme
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(a) (b)

Figure 2.11: Precision-Recall curves calculated on the test set, for all the classifiers. The best-performing
classifier resulted to be XGBoost, showing the highest average precision and area under the precision-recall
curve for both classes.

the collected dataset counted 101 subjects with preserved motility and 51 subjects with fixation.
The dataset includes both oncologic and non-oncologic patients.

Features Extraction and Classification

To assess VF motility, the following features were extracted from the labeled frames:

• The central and the two external angles for each frame (as shown in Fig. 2.10).

• The static index: the difference between the two external angles for each of the three frames.

• The dynamic index: the ratio between the difference of the right angle in the first and third
frames and the difference of the left angle in the first and third frames.

Common ML classification algorithms were investigated and compared, including SVM with
linear (SVC) and non-linear kernels, XGBoost (XGB), and Random Forest (RF). The optimal
hyperparameters for each classifier were retrieved via grid-search and cross validation on the training
set, using stratified three-fold cross validation. This ensures that every patient in the dataset appears
at least once in the testing set. In particular, the three-fold cross validation cyclically splits the
dataset into three equally sized folds, of which two are used to train and one to validate and tune
the parameters. Before classification, features were normalized by removing the mean (centering)
and scaling to unit variance. Given the unbalance between the two classes, the minority class was
over-sampled using the synthetic minority oversampling technique (SMOTE). Also class weights
were balanced according to the number of samples of each class.

Experimental Analysis

The performance of the classifiers was evaluated using classification Prec, Rec, and F1-score on the
test set. Considering the unbalance of the dataset, the AUC and the Average Precision (AP) were
also computed.
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Figure 2.12: Features importance of the XGBoost classifier. Features from 0 to 8 refer to the three angles
(central and externals) of the three successive frames, features from 9 to 11 refer to the static indexes of the
three frames, and feature 12 refers to the dynamic index.

2.3.3 Results

The performance of all the classifiers is shown in Table 2.2, results are reported in terms of the
metrics computed on the test set. Fig. 2.11 shows the Prec-Rec curves of all the classifiers. All
the tested models showed comparable results, however, the best-performing classification algorithm
resulted to be the XGB, with an AP of 0.76 and 0.94, and an AUC of 0.76 and 0.93 for the fixation
and preserved motility class, respectively. Features importance of the XGB classifier is reported in
Fig. 2.12. Specifically, on 152 test subjects (among the three cross validation folds), XGB achieved
the lowest number of incorrect predictions (27 subjects). Samples of misclassified frames are shown
in Fig. 2.13.

2.3.4 Discussion

The main objective of this study was to evaluate the ability of ML algorithms to discriminate
between vocal cords preserved motility and fixation. To do so, a number of relevant features was
extracted from triplets of videoendoscopic frames, representing specific VF positions. The extracted
features were used to train and test four different classifiers, which showed good results, and the
best-performing one resulted to be the XGB. Even though the results of this model do not depart
from the others, the use of this specific ML classifier could be useful in the case of some not labeled
keypoints, as it is able to handle missing values [155]. From the results, it is also possible to
appreciate the ability of all the tested models to assess VF motility. This is an expected behavior
[156, 157] and confirms that the application of ML may have a positive impact on assisting clinicians
in their practice.

To the best of our knowledge, this is the first study to rely on keypoints to evaluate vocal cords
motility. Previous work in literature, in fact, focused on the segmentation of the glottis to evaluate
the motility. The advantage of relying on keypoints, as already demonstrated in precedent work
from other fields [158, 159], is the possibility to obtain a direct classification. Methods relying on
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Figure 2.13: Visual samples of misclassified frames. The images in the first row were erroneously predicted
as belonging to the fixation class, while the images in the second row were erroneously predicted as belonging
to the preserved motility class. In the latter case, the vocal folds area occupies a small portion of the frame,
which makes the prediction more challenging.

Table 2.2: Performance evaluation metrics. Precision (Prec), recall (Rec), F1-score (F1), accuracy (Acc),
Average Precision (AP), and Area Under the Curve (AUC) are reported. For each classifier, the first row
refers to the class fixation, while the second to the class preserved motility.

Classifier Prec Rec F1 Acc AP AUC
0.73 0.73 0.73 0.75 0.73

SVC 0.86 0.86 0.86 0.82 0.90 0.90
0.71 0.76 0.74 0.72 0.71

SVM 0.88 0.84 0.86 0.82 0.93 0.92
0.67 0.59 0.62 0.64 0.63

RF 0.80 0.85 0.83 0.76 0.89 0.89
0.76 0.69 0.72 0.76 0.76

XGB 0.85 0.89 0.87 0.82 0.94 0.93
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Figure 2.14: Visual samples of frames from the used dataset. It is characterized by high variability among
the frames, which reflects also on the variability of the features used to train the models.

segmentation, in fact, need a post-processing step to obtain a diagnosis.
A limitation of the proposed work could be seen in the relatively limited size of the dataset,

which is due to the time needed to label each frame, and to the lack of available annotated dataset
online. The time consuming annotation procedure also makes it difficult, at the moment, to evaluate
intra-observer variability. Moreover, the dataset used in this work includes frames with very high
variability among each other, as shown in Fig. 2.14, which is typical of videoendoscopic frames.
This characteristic of the dataset reflects also on the extracted features and on the achieved results.
For this reason, adding the classification algorithm downstream of a frame selection process might
improve the results.

As future work, to support clinicians in the actual clinical practice, the classification model could
be included within other computer-assisted algorithms for diagnostic support, e.g., frames selection
and automatic keypoints regression.

2.3.5 Conclusion

VF fixation is typically assessed by visually evaluating videoendoscopic frames. This process is
time-consuming and requires an expert eye. To make the evaluation more objective, in this paper
four ML models were compared to classify vocal cords motility into two classes: preserved motility
and fixation. The best-performing model, XGB, proved to be a useful tool to investigate vocal cords
motility in a more objective and reliable way. It is, in fact, able to distinguish between the two
classes, which makes it a potential tool to support clinicians in their clinical practice.

2.4 Instance segmentation of upper aerodigestive tract cancer: site-
specific outcomes

In this last section, a different application within the realm of video endoscopy will be outlined. It
pertains to the automatic cancer segmentation in the UADT from endoscopic images. As outlined

37



2.4. Instance segmentation of upper aerodigestive tract cancer: site-specific outcomes

in the previous sections, laryngoscopy represents a gold standard screening diagnostic tool for the
diagnosis of precancerous lesions and early cancer of the larynx.

A journal paper on this work has been published as [160]: Paderno A., Villani F.P., Fior M.,
Berretti G., Gennarini F., Zigliani G., Ulaj E., Montenegro C., Sordi A., Sampieri C., Peretti G.,
Moccia S., Piazza C. (2023). Instance segmentation of upper aerodigestive tract cancer: site-specific
outcomes. Acta Otorhinolaryngol Ital, 43(4), 283-290.

2.4.1 Introduction

The application of computer vision techniques in diagnostic videoendoscopies (i.e. videomics) [88,
161] is a promising research field that is currently showing a fast rate of growth in many medical
specialties. The recent refinement of DL algorithms for image processing and their application
in the medical field opened novel possibilities in the management of endoscopic exams that, in
the past, had only subjective value. In particular, videoendoscopy is a key component in the
management of UADT tumors, influencing their entire diagnostic process, treatment, and follow-
up [131]. Notwithstanding, it remains an operator-dependent and time-consuming procedure, which
is substantially limited by the variables of human experience and perception. This is especially true
when endoscopy is applied in conjunction with optical biopsy techniques such as NBI [106], requiring
even more specialized training and adding a further layer of complexity and subjectivity. Finally, no
easily classifiable and structured data can be drawn from these examinations, significantly limiting
their integration with other technologies (e.g., cross-sectional imaging, US, genomic markers, and so
on). This is also highlighted by initial attempts to standardize endoscopic evaluation and improve
the implementation of new analytic techniques [162]. This study aimed to explore the potential of a
DL algorithm, Mask R-CNN [163], in the diagnostic approach to UADT Squamous Cell Carcinoma
(SCC). The primary goal was to detect and classify neoplastic lesions and, at the same time,
precisely define their margins, a task overall defined as instance segmentation. In fact, Mask R-
CNN provides a flexible and general framework that can also be potentially applied to medical
images. This approach combines elements from the tasks of object detection (where the goal is to
localize the lesion using a bounding box), object classification [164] (where the purpose is to classify
each pixel into a set of categories – e.g., tumor vs. normal mucosa), and semantic segmentation
(where the aim is to automatically delineate the lesion’s margins). Finally, three different areas of
the UADT (oral cavity, oropharynx, larynx/hypopharynx) were included in the analysis in order to
identify potential site-related differences in the diagnostic capability of the proposed DL algorithm,
a piece of information that is still lacking in the current literature. In fact, studies assessing the
value of AI in endoscopy are generally focused on a single site and are difficult to generalize in the
context of UADT SCC, which can arise from a wide variety of anatomical structures, as well as
epithelial and mucosal types.

2.4.2 Materials and methods

A retrospective study was performed including videoendoscopies performed between September 2009
and January 2021 in patients treated at the Unit of Otorhinolaryngology–Head and Neck Surgery,
University of Brescia, Italy for SCC of the UADT. A total of 7567 videoendoscopies were collected
from a dedicated archive. All recordings were anonymized and associated with the corresponding
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histopathology report.
The primary endpoint of this study was the definition of the diagnostic accuracy (in terms

of DSC) of the Mask R-CNN model when applied to NBI UADT videoendoscopic frames. The
secondary endpoint was the comparison of the algorithm’s DSC in the three different anatomical
areas herein considered. The inclusion criteria were as follows:

• Primary or recurrent SCC of the UADT (differentiated according to the anatomical site,
namely: the oral cavity, oropharynx, and larynx/hypopharynx);

• NBI evaluation with adequate quality (without pooling of saliva, blood spots, swallowing
reflex, coughing, or other technical issues);

• Available histological examination obtained at the time of videoendoscopy or subsequent
surgery.

All patients were examined both under white light and NBI through transnasal videolaryngoscopy
(HD Video Rhino-laryngoscope Olympus ENF-VH, ENF-VQ, or ENF-V2, Olympus Medical Sys-
tem Corporation, Tokyo, Japan) or through transoral endoscopy by a zero-degree rigid telescope
coupled to an Evis Exera II HD camera connected to an Evis Exera II CLV-180B/III CV-190 light
source (Olympus Medical Systems Corporation, Tokyo, Japan). Endoscopic videos were selected
independently by two otolaryngologists with extensive experience (at least 4 years) in endoscopic
assessment of UADT lesions by NBI and independently reviewed by an adjunctive expert. Images
were then manually quality-controlled, with the exclusion of those that were blurred, obscured by
blood or secretions, or without adequate NBI evaluation.

Image processing

Three representative frames per video were selected for every lesion: the most representative NBI
videoframe was chosen and subsequent frames at 0.3 second time intervals were then automatically
selected. Frame annotation was performed manually using LabelMe [165]. Annotation consists of a
variable number of keypoints marking the lesion margins in the videoendoscopic frame taking into
account positive NBI patterns. The resulting masks were then saved in JSON format and stored in a
dedicated folder. Two clinical experts concomitantly annotated the images and a further review was
performed by a senior staff member. When an agreement regarding lesion margins was not reached,
the frame was excluded from the analysis. After this selection process, a total of 1034 endoscopic
images were obtained. Three different sub-datasets were generated according to the lesion’s primary
site: oral cavity, oropharynx, and larynx/hypopharynx. In this way, the total frames analyzed were
653 for the larynx/hypopharynx, 246 for the oral cavity, and 135 for the oropharynx.

Dataset description

The dataset included 1034 images from 323 patients. For algorithm training and testing the dataset
was split over patients and balancing the three classes into three sets: 935 images from 290 subjects
for training, 48 images from 16 subjects for validation, and 51 images from 17 subjects for testing.
All images were resized to the same dimension of 480 x 640 pixels.
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Figure 2.15: Schematic representation of the proposed architecture. The Mask R-CNN is made of a
backbone (composed of a ResNet50 and a feature pyramid network), a Region Proposal Network (RPN),
ROIAlign, and three heads, for classification, bounding-box regression, and segmentation.

Deep learning analysis

In this work, Mask R-CNN [166] was used to segment the tumor in endoscopic frames. This
CNN consists of a backbone, Region Proposal Network (RPN), and three heads for classification,
bounding-box regression, and segmentation (Fig. 2.15). As backbone, the ResNet50 [59] was used
combined with a Feature Pyramid Network (FPN) [167] to extract features from the input frame
at multiple scales. Starting from the features computed with the backbone, the RPN identifies
candidate regions containing the tumor. For each of the proposed regions, the final bounding box
containing the tumor and the tumor segmentation are obtained from the three heads. To cope with
the relatively limited size of the dataset, the weights computed on the COCO dataset [168] were
used to initialize the layers of the Mask R-CNN; and to reduce the risk of overfitting, on-the-fly
data augmentation was performed during training by applying: random brightness changes in the
range (0.5, 1.1), random contrast changes in the range (0.8, 3), and random rotation in the range
(-20, 20 degree). The model was trained for 100 epochs, using the Stochastic Gradient Descent
(SGD) as optimizer with an initial learning rate of 0.001 and momentum of 0.9. The loss function
used to train the model is the combination of different contributions:

L = Lcls + Lbox_reg + Lrpn_cls + Lrpn_loc + Lmask (2.2)

where Lcls is the loss in the classification head, Lbox_reg is the loss in bounding-box regression head,
Lrpn_cls is the classification loss in the RPN, Lrpn_loc is the localization loss in the RPN, and Lmask

is the loss in segmentation head. Furher details regarding the loss equations can be found in the
original Mask R-CNN paper [166].

Performance metrics and statistical analysis

As a primary endpoint, the segmentation performance was evaluated using the DSC, a statistical
validation metric based on the spatial overlap between the predicted Amask and the ground-truth
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Agt segmentation:

DSC =
2× |Agt ∩Amask|
|Agt|+ |Amask|

(2.3)

DSC can assume values in a range from 0, indicating no overlap, to 1, indicating complete
overlap.

Furthermore, outcomes were also evaluated using the following spatial overlap-based metrics:
Acc, represents the percent of pixels in the image that are correctly classified.

Acc =
TP + TN

TP + TN + FP + FN
(2.4)

where TP , TN , FP , FN denote the true positives, true negatives, false positives and false nega-
tives, respectively.

Rec, also known as Sen or True Positive Rate, defines the portion of positive pixels in the ground
truth which are also identified as positive in the predicted segmentation.

Rec =
TP

TP + FN
(2.5)

Spec, or True Negative Rate, measures the portion of negative pixels (background) in the ground
truth, that are also identified as negative in the predicted segmentation.

Spec =
TN

TN + FP
(2.6)

Prec, or Positive Predictive Value, measures how accurate the predictions are, i.e. the percentage
of correct predictions.

Prec =
TP

TP + FP
(2.7)

F1-score is a balance between Prec and Rec, also known as harmonic mean.

F1-score =
2× Prec× Rec

Prec + Rec
(2.8)

IoU, also referred to as Jaccard index, represents the area of overlap between the predicted segmen-
tation and the ground truth divided by the area of union between the predicted segmentation and
the ground truth.

IoU =
TP

TP + FP + FN
(2.9)

Mean Average Precision (mAP), which represents the average of the area under the Prec-Rec curve,
was also computed.

Outcomes were compared between the different subsites analyzed using non-parametric statis-
tics. The Kruskal-Wallis H-test was used for the overall comparison, and the Mann-Whitney U rank
test for pair comparisons.

2.4.3 Results

Overall performance
The proposed model demonstrated the ability to correctly predict 39 out of 51 test images (76.5%).
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Table 2.3: Summary of the diagnostic performance according to the different metrics evaluated: Dice
Similarity Coefficient (DSC), Accuracy (Acc), Specificity (Spec), Precision (Prec), Recall (Rec), Intersection
over Union (IoU), F1-score. Values are reported as mean ± standard deviation.

Metric Overall Larynx/hypopharynx Oral cavity Oropharynx

DSC 0.79± 0.23 0.90± 0.05 0.60± 0.26 0.80± 0.30

Acc 0.91± 0.12 0.98± 0.01 0.79± 0.13 0.92± 0.14

Spec 0.93± 0.12 0.98± 0.01 0.86± 0.16 0.92± 0.15

Prec 0.85± 0.24 0.94± 0.06 0.73± 0.32 0.79± 0.36

Rec 0.86± 0.22 0.91± 0.08 0.73± 0.33 0.95± 0.04

IoU 0.73± 0.27 0.87± 0.09 0.49± 0.30 0.76± 0.14

F1-score 0.80± 0.23 0.92± 0.05 0.61± 0.27 0.81± 0.31

The average DSC score was 0.79 ± 0.22 (range 0.26-0.97). Overall and site-specific performance
metrics are summarized in Table 2.3 and Fig. 2.16, while samples of the segmentation results are
presented in Fig. 2.17.

Laryngeal/hypopharyngeal lesions
The total number of laryngeal and hypopharyngeal lesions in the test set were 27 (52.9% of the
test dataset). Out of that number, our algorithm correctly predicted 21 lesions (77.8%). The mean
DSC score was 0.90 ± 0.05, the first quartile was 0.90 and the third quartile 0.94 (Table 2.3).

Oral lesions
The oral lesion frames comprised in the test set were 15 (29.4% of the total). The algorithm per-
formed a correct prediction in 13 cases (86.7%). The mean DSC score was 0.60 ± 0.26, the first
quartile was 0.34 and the third quartile 0.84 (Table 2.3).

Oropharyngeal lesions
In the test set, the oropharyngeal lesions were 9 of 51 images (17.6%). The algorithm correctly
predicted 5 images (55.5%). The mean value of DSC score was 0.81 ± 0.30, the first quartile was
0.92 and the third quartile 0.95 (Table 2.3).

Comparison between three different UADT sites
Results for each site are summarised in Table 2.3. The overall diagnostic performance, defined
by the DSC score, was significantly different between the different sites (p = 0.002). Pairwise
analysis showed that the difference was related to significantly inferior results in the oral cavity
when compared with larynx/hypopharynx (p < 0.001). Diagnostic results proved to be significantly
correlated with the site analyzed also considering other performance metrics: Acc (p < 0.001), Spec
(p = 0.02), IoU (p = 0.002), and F1-score (p = 0.002). As above, this difference is related to inferior
results in the oral cavity vs larynx/hypopharynx. However, when considering Acc, it is also possible
to evidence a significant difference between the oral cavity and oropharynx (p = 0.03).
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Figure 2.16: Box plots detailing the diagnostic accuracy of the algorithm in different sites according to
various metrics. (A) Dice Similarity Coefficient (DSC); (B) Accuracy (Acc); (C) Specificity (Spec); (D)
Precision (Prec); (E) Recall (Rec); (F) Intersection over Union (IoU); (G) F1-score.

2.4.4 Discussion

This study, for the first time in literature, evaluated the specific task of instance segmentation in
clinical endoscopy for head and neck SCC. The analysis included three sites of the UADT to allow
comparison of the algorithm’s diagnostic performance in different anatomical areas. The algorithm
was able to identify and segment the lesion in 76.5% of cases, and showed remarkable diagnostic
accuracy, especially in consideration of the complex task to be performed. Interestingly, results were
significantly inferior in the oral cavity, where all outcome measures underperformed when compared
with the larynx/hypopharynx and, in some cases (i.e., Acc), oropharynx. This is in line with what
was previously observed by Piazza et al. [95] when applying bioendoscopic tools such as NBI.
This result is possibly related to the wide array of epithelial subtypes observed in the oral cavity,
adjunctive limits specifically correlated with oral examination (e.g., presence of light artifacts), and
confounding factors (e.g., tongue blade, teeth, or dentures) that the DL algorithm must learn to take
into account. Instance segmentation represents the ultimate step in video analysis since it allows at
the same time detection, classification, and segmentation of multiple elements in each single frame,
which is possible thanks to the integration of different analytic components in the same general
algorithm. This approach is particularly suited to the context of UADT endoscopy since different
alterations (e.g., concomitant inflammatory or benign lesions) can be frequently encountered in the
field of view together with the target lesion, and due to the fact that patients with head and neck
SCC can develop distinct islands of neoplastic or dysplastic mucosa (i.e., field of cancerization) that
might involve various portions of the videoframe, even without continuity.

Recent CNN-based methods have demonstrated remarkable results in the segmentation of the
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Figure 2.17: Visual samples of the segmentation results. From left to right: raw endoscopic frames, ground
truth annotation, and predictions obtained with the proposed method.
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UADT and proved to be well-suited for such a complex task. Laves et al. [113] first demonstrated
that a weighted average ensemble network of U-Net and ErfNet were the best suited for laryngeal
segmentation of intra-operative images under direct laryngoscopy, with a mean IoU of 84.7%. How-
ever, different authors subsequently strived toward the development of diagnostic algorithms that
could be applied in real-time in office-based and intra-operative endoscopy. Paderno et al. [114]
explored the use of fully CNNs for real-time segmentation of SCC in the oral cavity and orophar-
ynx. In this work, different architectures were compared detailing their diagnostic performance and
inference time, demonstrating the possibility of achieving real-time segmentation. In accordance
with previous findings in the literature, the present study confirms that the oral cavity may have
inferior diagnostic results due to the high variability of subsites when compared with other areas
of the UADT (i.e., oropharynx, larynx, and hypopharynx). When dealing with normal laryngeal
anatomy, Fehling et al. [115] explored the possibility of achieving a fully automated segmentation
of the glottic area using a CNN in high-speed laryngeal videos. The algorithm obtained a DSC over
0.85 for all subsites analyzed. Finally, Li et al. [116] proposed a method to segment nasopharyngeal
malignancies in endoscopic images based on DL, reaching an Acc of 88.0%. However, progressive
advances in automatic segmentation of the UADT can be observed thanks to a recent article by
Azam et al.[161], in which Seg-MENT, a novel CNN-based segmentation model, outperformed pre-
viously published results on the external validation cohorts. The model was initially trained on
white light and NBI endoscopic frames of laryngeal SCC, but also showed to be effective in the
segmentation of independent frames of oral and oropharyngeal cancer. The authors stated that the
model demonstrated potential for improved detection of early tumors, more precise biopsies, and
better selection of resection margins.

In general, results of automatic segmentation are inferior to those obtained in more straightfor-
ward tasks such as frame classification [102, 105, 108] or lesion detection [109, 112] since a more
in-depth conceptual model of UADT lesions is required to allow accurate definition of margins. How-
ever, semantic segmentation is a key objective when striving towards more complex tasks involving
computer vision and human-machine interaction. In fact, other than providing a purely diagnos-
tic tool, a comprehensive understanding of all UADT alterations and suspicious lesions may grant
significant aid in intra-operative management. This is even more true when considering instance
segmentation, which epitomizes in itself all the needs and requirements of the visual examination of
endoscopic images, allowing a full automatic understanding of complex endoscopic scenarios, even
those involving more than one lesion and/or more than one pathology.

Potential issues have been addressed to limit biases related to the analysis technique:

• Patients (and their related frames) in the training, validation, and test sets have been distin-
guished into separated groups to avoid overfitting;

• Frames were annotated and reviewed by 3 experts to limit subjective errors;

• Frame selection and data augmentation were performed to reduce the impact of artifacts or
technical biases.

However, intrinsic limits should be acknowledged. In particular, the gold standard over which the
algorithm has been trained (i.e., the “ground truth”) is represented by an expert opinion of the
tumor margins and not by the histo-pathological definition per se. In fact, as of today, it is not
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technically possible to provide a direct in situ, in vivo morphologic correlation between endoscopic
images and their histopathological specimen.
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Chapter 3

Artificial intelligence-driven applications
in magnetic resonance imaging archives

MRI is a non-invasive medical imaging technique that uses non-ionizing and harmless radiation
to offer a detailed 3D visualization of internal anatomical structures [169]. It operates on the
principle of utilizing strong magnetic fields and radiofrequency waves to generate images of soft
tissues composing the body. The procedure begins with the placement of the body within a powerful
magnetic field, initially with the magnets switched off, causing the water molecules in the body to
reach their equilibrium position; subsequently, the magnetic field is activated, prompting the water
molecules to align with the magnetic field’s direction [170]. To stimulate the protons within the
body, a powerful radiofrequency energy pulse is applied in alignment with the magnetic field, causing
them to spin against the magnetic force; then, upon deactivation of the radiofrequency energy pulse,
the water molecules return to their equilibrium position and realign with the magnetic field. During
this realignment, the water molecules emit radiofrequency energy, detectable by the scanner, and
converted into visible images [171]. The quantity of radiofrequency energy emitted depends on
tissue structure and its intensity can be adjusted through scanner parameter variation, enabling the
production of multiple modality images. Critical factors that determine MRI images are:

• TE time (time to echo): the time between the delivery of the radiofrequency pulse and the
receipt of the echo signal [170];

• TR time (repetition time): the amount of time between successive pulse sequences applied to
the same slice [170].

The MRI machine’s ability to capture multiple images from various angles with different con-
trasts and physical properties classifies it as a versatile multiple modality imaging tool, widely
applied in various medical contexts, including neurological examinations, musculoskeletal studies,
and cardiac imaging [169].

DL techniques have the potential to significantly improve MRI analysis by automating complex
tasks such as anatomy segmentation, pathology detection, and disease classification. The high-
dimensional and multichannel nature of MRI data, along with potential variations introduced by
hardware, artifacts, and patient anatomies [169], make DL a promising tool for interpreting hetero-
geneous MRI images. Some DL-based MRI solutions have gained Food and Drug Administration
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(FDA) approval for tasks like image reconstruction, enhancement, segmentation, and classifica-
tion [172]. Nevertheless, research on the advancement of this technology is ongoing, and a notable
gap remains in its implementation in standard care. Overall, the different application areas of DL
in MRI can be broadly categorized into model-free image synthesis, model-based reconstructions,
and either pixel- or image-level classification task [173].

The first category revolves around model-free image synthesis, a transformative approach that
enables the synthesis of one MR image contrast or artifact status into another. For instance, many
common image synthesis tasks include MR image super-resolution [174], image denoising [175],
artifact reduction [176], and contrast synthesis [177].

The second category, model-based reconstructions, leverages DL in combination with k-space
data. These models embed the fundamental principles of Fourier encoding and data consistency into
iterative DL algorithms. This integration enhances the reconstruction of MRI images from raw data,
leading to significant improvements in image quality and reducing acquisition time [178, 179]. By
incorporating physics-based constraints, DL-assisted model-based reconstructions offer remarkable
potential for faster and more precise MRI scans across various clinical applications.

Lastly, DL in MRI finds application in pixel- or image-level classification tasks. This cate-
gory involves the development of DL methods to determine variables pertinent to the diagnostic
status of the subject from either 2D MRI slices, 3D volumes, or multiple 3D sequences. For ex-
ample, DL models can be trained to identify and classify lesions, tumors, or anatomical structures
within MRI scans [169]. Additionally, DL-based segmentation techniques can be employed to de-
lineate specific tissues or regions of interest, streamlining image analysis and enabling quantitative
measurements. These advancements in classification and segmentation tasks enhance diagnostic
accuracy and streamline the interpretation of MRI data, ultimately benefiting patient care and
clinical decision-making [173].

It is within this last application area that the method described in this Chapter is situated.
A DL method specific for orthopedics and spinal care is presented: a new self-supervised Domain
Adaptation (DA) approach for the automated segmentation of Intervertebral Disks (IVDs) from
MRI images to facilitate treatment planning.

Among the various imaging techniques that can be used to visualize and study IVDs, MRI
stands out as the preferred choice due to its ability to generate high-quality images with a high
level of detail, and without ionizing radiation. IVD segmentation from these imaging studies holds
significant importance in various medical applications associated with the spine, from diagnosis to
treatment, as well as image-guided interventions. However, MRI still presents intrinsic challenges,
such as the variability in imaging techniques across different machines and the lack of standard
protocols for disk segmentation. This work demonstrated its ability to address the problem of IVD
segmentation in MRI enhanced by DA, paving the way for future research in the field. From a clinical
perspective, the proposed framework proved to be a valuable tool to support the clinical routine,
increasing the diagnosis accuracy. Furthermore, the integration of DA introduces a multicentric
aspect facilitating cooperation and ensuring consistent and accurate segmentation across different
MRI scanners and settings.

A journal paper on this work is currently under review at the International Journal for Com-
puter Assisted Radiology and Surgery as: Fiorentino, M.C. & Villani F.P., Benito Herce, R.,
González Ballester, M.A., Mancini, A., and López-Linares Román, K. (2023), "An Intensity-based
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Self-supervised Domain Adaptation Method for Intervertebral Disc Segmentation in Magnetic Res-
onance Imaging".

3.1 Introduction to a self-supervised domain adaptation approach
for intervertebral disc segmentation

IVDs are intricate structures composed of fibrocartilage, located between the vertebrae of the spine.
They play a crucial role in enabling the spine to flex, twist, and distribute compressive forces
evenly across the adjacent vertebral bodies [180]. Multiple medical imaging techniques are used
for the visualization of IVD, including CT, X-ray, thermal imaging, and MRI [181]. Among these
techniques, MRI is the preferred choice due to its ability to generate high-quality images with a
high level of detail, all without the need for ionizing radiation, which can be detrimental to one’s
health [182].

The segmentation of IVD from these imaging studies holds significant importance in various
medical applications associated with the spine, encompassing the diagnosis and treatment of spinal
conditions and diseases, as well as image-guided interventions [183]. An example of this segmenta-
tion is shown in Fig. 3.1. For IVD segmentation tasks, DL methods, particularly CNNs, are com-
monly used and have demonstrated reliable results [184]. Most research on IVD segmentation relies
on supervised DL approaches, mainly based on encoder-decoder architectures [185–189], fully con-
volutional models [190], mixed supervised methods [191–193], or more recently, on semi-supervised
models for simultaneous segmentation of vertebral bodies and IVD [194]. These researches often ex-
hibit performance limitations when applied to data from different acquisition devices and protocols.
This is because these methods are typically trained on a specific dataset of images from a specific de-
vice or patient population. As a result, they present difficulties when applied to images from sources
different from the training data [195]. This aspect, known as domain shift, becomes especially evi-
dent in the case of MRI, where different scanners and acquisition modalities produce very different
images in terms of intensity distribution. Intensity variations might arise when using different scan-
ners due to factors like drift in scanner signal-to-noise ratio over time, gradient non-linearity, or due
to changes in scanning protocol parameters (flip angle, echo, or repetition time) [196]. Furthermore,
images acquired with different MR modalities, such as T1 and T2-weighted, result in very different
contrast and brightness characteristics.

In different fields of medical image analysis, various DA techniques have been used to address
the challenges associated with transferring knowledge from a source domain to an unlabelled target
domain. These techniques include adversarial learning, which aligns feature distributions [197, 198],
self-ensembling methods that generate pseudo-labels for unlabeled target domain samples using
trained model predictions [199–203], cycle consistency models that synthesize target images from
source images [204–206], and DA methods based on variational autoencoders [207].

To enhance the transferability of models to target domains, the inclusion of auxiliary tasks has
recently become a prominent strategy, in the field of computer vision, to develop domain-invariant
representations [208]. By integrating these auxiliary tasks, models have the capability to acquire
extra valuable features, leading to enhanced performance during DA. This approach offers the
advantage of being easy to train, making the overall process more manageable and efficient. This
integration opens up new avenues for effectively addressing DA challenges in medical image analysis,
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Figure 3.1: The 3D intravertebral disc segmentation enables precise quantification and analysis, facilitating
the evaluation of various spine-related disorders (e.g. herniated discs, degenerative disc disease, and spinal
stenosis etc).

in which traditionally data challenges limited model generalization across different institutions and
patient populations. Currently, in the medical field, only few studies have investigated the use of
auxiliary tasks for segmentation. A structure-driven DA approach for unsupervised cross-modality
cardiac segmentation is proposed in [209]. A set of 3D landmarks serves as representative points that
embody the common anatomical structure of the heart across various imaging modalities (CT and
MRI). The model learns to predict the positions of these landmarks, facilitating the identification
and use of shared structural information. Cardiac structures segmentation from CT and MR volumes
is also explored in [210], which makes use of an edge generation auxiliary task to support the primary
segmentation task in the target domain. To cope with domain shift, they employ hierarchical low-
level adversarial learning to encourage the suppression of informative features in a hierarchical
manner. [211] focus on unsupervised DA for abdominal multi-organ segmentation on CT scans,
leveraging the organ location information. A jigsaw puzzle auxiliary task is devised, where a CT
scan is reconstructed from shuffled patches. Additionally, a super-resolution network is used to
standardize images from multiple domains. The auxiliary and super-resolution tasks are trained
alongside the organ segmentation task to enhance overall performance.

However, to the best of our knowledge, this approach has not yet been investigated in the context
of IVD segmentation.

The effectiveness of the DA based on the inclusion of auxiliary tasks strongly depends on the
optimal design of the pretext task, which can present challenges, such as the domain shift between
the pretext task and the final segmentation domains [212]. The characteristics and variations present
in the initial unlabeled dataset used for the pretext task must, in fact, closely align with those of
the final segmentation task domain. This facilitates effective knowledge transfer from the pretext
task to enhance the accuracy and robustness of the final segmentation.

Inspiration is drawn from recent research in the field of fashion compatibility [213, 214], rec-
ognizing the significance of leveraging color and texture as valuable factors for understanding and
categorizing visual data. This research, in fact, has introduced the application of color and texture
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pretext tasks as a strategy to acquire discriminative features of the data, while disregarding shape
information. Color features in natural images translate into intensity features in medical imaging,
as shown by Galdran et al. [215] which recently reported a similar approach for classification of
histopathological images and out-of-distribution detection. This aspect is of particular interest for
MR images, for which variations in hardware and software create non-standard tissue intensities.
Nevertheless, it is worth noting that this specific type of pretext task has yet to be explored in the
field of medical image segmentation, particularly in the context of self-supervised DA.

Thus, guided by these considerations, the contributions of this work can be summarized as
follows:

1. First attempt at exploring self-supervised DA for the segmentation of IVD in MRI.

2. First-ever work that leverages self-supervised learning specifically introducing intensity-pretexts,
for DA in the domain of medical image segmentation.

All the experiments are performed using publicly available datasets to promote comparisons with
the presented methods.

3.2 Materials and methods

This section introduces the proposed framework along with the datasets used, and the training
settings.

3.2.1 Dataset description

Three datasets were used to leverage DA for IVD segmentation: one as the source domain (S),
while the other two smaller datasets were designated as the target domains (T1 and T2). The three
datasets are publicly available and were chosen based on their diverse characteristics, which provide
a broader overview of the anatomical region under consideration. These datasets were collected at
different medical centers and using different MRI scanners, thus they differ in terms of the patient
population and MRI parameters used, further increasing the heterogeneity of the data.

S: The dataset S was publicly released by [216], it was obtained from a single hospital in China
and includes T2-weighted MR volumetric images of 215 subjects, acquired with a 3.0 Tesla MRI
scanner (Ingenia, Philips, Amsterdam, Nederlands). Among these subjects, there are 6 individuals
without any spinal abnormalities, serving as the control group. The remaining subjects have various
spinal conditions, with 177 patients diagnosed with vertebrae degeneration, 204 patients with IVD
degeneration, 21 patients with lumbar spondylolisthesis, 91 patients with spinal canal stenosis, 22
patients with schmorl’s nodes, and 53 patients with vertebral endplate osteochondritis. Patients
in the dataset may be simultaneously affected by multiple spinal diseases or disorders. For further
details refer to [216]. This dataset has manual delineation of the vertebrae and IVD performed by a
junior expert, and subsequently reviewed and corrected by a senior expert. The in-plane resolutions
range from 512 × 512 to 1024 × 1024 pixels, with a pixel spacing ranging from 0.30mm to 0.59mm
(average of 0.35mm), slice thicknesses ranging from 4.40mm to 5.50mm (average of 4.42mm), and
number of slices ranging from 12 to 18. For training, validating and testing the model, the dataset
was split into three sets including 172, 19, and 19 volumes, respectively.
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Figure 3.2: Intervertebral discs in magnetic resonance imaging show a wide range of variations in their
appearance, including signal intensity, shape, and texture. Additionally, factors like aging, degeneration, and
pathology contribute to the diverse appearances of the discs. The image showcases the distinct characteristics
found within datasets, emphasizing the impact of spinal pathology on the integrity of the spine with diverse
contrast levels and illuminations. Target 2, which includes images acquired with various scanners and
pathological patients, exhibits additional complexity compared to the other two datasets.

Figure 3.3: Intensity histograms of the three datasets. The Source dataset exhibits a pronounced peak near
zero, indicating a predominant concentration of low-intensity values; Target 1 presents a flatter distribution,
indicating well-contrasted images; Target 2 displays a bell-shaped distribution centered around pixel intensity
of 5. For visualization purposes, the plot is truncated at an intensity value of 50 and a pixel count of 250000.
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Figure 3.4: The proposed framework for self-supervised domain adaptation which focuses on learning
domain-invariant feature intensity representation. This is achieved by incorporating a pretext learning task
that automatically generates labels from images of both the source and the two target domains. The pretext
task and the main task, which is intervertebral disc segmentation, are simultaneously trained using multi-
task learning.

T1: The dataset T1 was released by [217], it consists of T2-weighted MR images from 23 patients,
acquired with a 1.5 Tesla MRI scanner of Siemens (Siemens Healthcare, Erlangen, Germany). All
the images are sampled to the same sizes of 39 × 305 × 305 voxels. The pixel spacing of all the
images is 2 × 1.25 × 1.25 mm3. The authors do not provide further information about the medical
condition of the patients. No IVD labels are available for these data. The dataset was split into
three sets for training, validation, and testing, each set including 14, 4, and 5 volumes respectively.
The testing set was meticulously labeled by three experienced operators.

T2: The dataset T2 was publicly released by [218], it consists of 30 MR volumes from 29 patients
with different medical conditions including chronic low back pain, known malignancy with spinal
metastases, spondylodiscitis or other spinal inflammatory or infectious diseases, and spinal fracture.
Various scanner models from different vendors were used to collect the dataset, which is composed
of 70.9% of images derived from Philips scanners (Achieva, Ingenia, and Elition), 27.3% derived
from Siemens scanners (Avanto, Verio, Espree, Symphony, Amira, Aera, and Magnetom), and 1.8%
(a single MR volume) taken from a GE scanner (Signa). The in-plane resolutions range from 384 ×
336 to 1200 × 1200 pixels, with a pixel spacing ranging from 0.24 × 0.24 × 3.00 mm to 0.91 × 0.91
× 4.80 mm (average of 0.47 × 0.47 × 3.46mm), slice thicknesses ranging from 3.00mm to 4.80mm
(average of 3.46mm), and number of slices ranging from 12 to 27. MR scans from 19 patients were
used to train the model, 5 to validate it, and 6 for testing. Also in this case, three operators with
significant experience carefully assigned labels to the testing set.

All voxels belonging to IVD were labeled as 1 in all three datasets while all the other voxels were
set to 0. To ensure reproducibility and facilitate comparisons, Table 3.1 presents the subsets used
for model testing in each of the three datasets, along with the corresponding scanners involved. For
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Table 3.1: Test sets from the three datasets. The magnetic resonance scanners used to collect the images
are reported, together with the identification number (ID) of the images. S refers to the source dataset, T1
to the target 1 dataset, and T2 to the target 2 dataset.

Dataset Scanner ID
S Philips Ingenia 3, 11, 15, 21, 49,

51, 60, 63, 74, 86,
114, 117, 119, 125,

131, 135, 151, 183, 192
T1 Siemens 1, 9, 10, 16, 18
T2 Philips Achieva 23

Philips Elition 24, 32
Siemens 33, 36

GE Signa 38

Algorithm 1: Domain adaptation method pseudo-code.
Input : labeled source domain images (Xs, Ys) and unlabeled target domains images (Xt)
Output: trained (e(·)), trained (d(·))

1 Sampling for pretext task: (Xs, Y
′
s ) and (Xt, Yt)

2 Generation of 4 different samples from Xs and Xt, labeled as Yt,Y ′
s , according to 3 different

intensity transformations + no transformation applied
3 while epoch← 0 to epochs do
4 load target + source mini-batch (xti, y′ti), (xsi, y′si);
5 forward pass and compute Lp;
6 back-propagate Lp gradients by (e(·))
7 update weights of (e(·))
8 load source mini-batch (xsi, ysi)
9 forward pass and compute Lseg

10 back-propagate Lseg gradients by (e(·)) and (d(·))
11 update weights of (e(·)) and (d(·))
12 end
13 return e(·), d(·)

each dataset, the images included in the test sets were selected to ensure no patient overlap between
the train and test sets. Moreover, to guarantee a robust evaluation of the model’s adaptability to
a wide range of acquisition contexts, for dataset T2, which includes images acquired with various
scanner models, the test set was selected to contain images acquired with scanner models not present
in the dataset S. Samples of the testing set images are shown in Fig. 3.2.

A visual perspective of the intensity distribution for the MR images across the datasets is
provided in Fig. 3.3. By juxtaposing the histograms, it is possible to discern the variations and
similarities in intensity profiles, a crucial facet for DA strategies.

3.2.2 Proposed method

Here, is presented the proposed approach consisting of a dual-task model based on a CNN archi-
tecture. The model primarily focuses on IVD segmentation as its main task, while simultaneously
incorporating a contrastive pretext learning task. The pretext task automatically generates labels
from images gathered from both the primary domain and two additional target domains, classifying
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Figure 3.5: Proposed pretext task that automatically generates labels from images of both source and
target domain.

them based on the transformations applied. The inclusion of the pretext task is key to deriving
features that are invariant across different domains.

When analyzing datasets obtained from different MR devices, it is crucial to take into account
scanner-dependent variation in image signal intensity. Thus, the main objective within the frame-
work of self-supervised learning is to obtain intensity representations within the embedding space.
This effort is aimed at improving the model’s ability to generalize and handle intensity variations
more effectively.

Fig. 3.4 shows the proposed method focused on IVD semantic segmentation as the main task.
To accomplish this, an encoder network e(·) is employed, which serves as a feature extractor.
Additionally, a decoder network d(·) is used to recover spatial information and generate accurate IVD
segmentations. The e(·) is composed of four blocks, each consisting of two 3D convolutional (conv)
layers with a kernel size of 3x3x3 and same-padding. Following the conv layers, a ReLU activation
function and a batch normalization layer are applied. A max pooling operation with a stride of 2x2x1
is performed. At each block, the number of channels doubles, enabling the incremental learning
of more complex features. The number of channels starts from 32 and progressively increases to
512. The e(·) also incorporates a bottleneck section which facilitates the connection to the d(·),
as suggested in [219]. This bottleneck section consists of two additional 3D conv layers with a
kernel size of 3x3x3 and same-padding. Subsequently, a ReLU activation function and a batch
normalization layer are applied to further enhance the learned representations. Similarly to e(·),
the d(·) function is composed of four blocks. Each block comprises two 3D conv layers with a kernel
size of 3x3x3. These layers are followed by a ReLU activation function and an upsampling layer
with a kernel size of 2x2x1, which reduces the number of feature channels by half. To recover the
lost features resulting from downsampling in the e(·) path, the input of each block is concatenated
with the corresponding feature maps from e(·). The last block consists of three 3D conv layers, with
the first two being followed by a ReLU activation function, and the last one activated by softmax.
The number of filters used in the conv layers starts at 256 and is halved in each subsequent block
until reaching 32 filters. This CNN is trained end-to-end using labeled samples from the source
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domain (S = {Xs, Ys}).
In order to learn intensity invariant features, e(·) is also trained to recognize intensity distortions

from both target domains (T = {Xt, Yt}) and source domain (Xs, Y
′
s ). Yt and Y ′

s are derived
automatically by applying image intensity transformations to their respective images and labeling
them based on the specific transformation applied. This is further detailed in Section 3.2.3.

The entire DA method is outlined in Algorithm 1. This illustrates that self-supervised DA
encompasses the simultaneous training of models for both the pretext and the main task. During
forward propagation, samples from both the source and target domains are processed by the shared
encoder. Subsequently, the losses for the main task (Lseg) and the pretext task (Lp) are calculated,
and these losses are then back-propagated and accumulated at e(·). By training e(·) with samples
from all three domains, the model learns feature representations that are invariant to domain dif-
ferences. In the testing phase, target domain images are inputted to e(·), and the resulting features
are transmitted to d(·) of the main task, which enables to obtain predictions.

3.2.3 Pretext tasks

The intensity prediction pretext task proposed in this work is inspired by prior works from different
fields [214], [213], [208]. An overview of the pretext task model is provided in Fig. 3.5. Given a set
of Nt and Ns training images from T = {xti}

Nt
i=0 and S = {xsi}

Ns
i=0, respectively, three different sets

of intensity transformations, namely Gaussian noise, Gaussian blur, and contrast enhancement are
applied. The intensity transformation prediction model i(·), takes the feature maps generated by
the function e(·) as input and produces a probability distribution representing different intensity
transformations, including the option of no intensity transformation. The i(·) model is composed
of three blocks, each containing two 3D conv layers. These conv layers have a kernel size of 3x3x3
and use same-padding. The ReLU activation function is applied after each of them, and batch
normalization is performed subsequently. The number of filters used in the conv layers starts at 256
and is halved in each subsequent block until reaching 64 filters. Furthermore, an additional 3D conv
layer with a kernel size of 3x3x3, same-padding, and a number of filters denoted as C is employed
to reduce the number of filters to match the number of classes in the problem. This additional layer
is activated by the softmax function.

The Lp loss is defined as:

Lp = −
1

C ∗Nt

Nt∑
i=1

C∑
j=1

yijlog(c(e(x
t
i; θe); θc)ij)+

− 1

C ∗Ns

Ns∑
i=1

C∑
j=1

yijlog(c(e(x
s
i ; θe); θc)ij)

(3.1)

where C=4.

3.2.4 Parameter setting

The training process involved resizing all images from datasets S, T1, and T2 to 256 × 256 × 18
pixels. Both the primary task (IVD segmentation) and the pretext task were optimized using the
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Adam optimizer for 100 epochs. A fixed initial learning rate of 0.001 was used, with a batch size of
1 for the main task and a batch size of 4 for the pretext task. The Dice loss was employed as Lseg,
which is known for its sensitivity to class imbalance. This property makes it well-suited for tasks
where certain classes are scarce, such as in this context where IVD are considerably smaller than
the background class.

During the IVD segmentation training, on-the-fly data augmentation was performed to enhance
generalization performance. The augmentation techniques included geometrical transformations
(such as horizontal flipping, and random rotation in the range of ±30 degrees) and intensity trans-
formations (such as random brightness correction). These augmentations were randomly applied at
each training iteration. For the pretext task, only geometrical transformations were used, specifically
random vertical flipping and random rotation in the range of ±30 degrees. These transformations
aimed to improve generalization to different perspectives without affecting the task of identifying
intensity transformations in the images. The best model among epochs is selected based on the
lowest Ltotal = Lseg + Lp obtained in the validation set of S.

All the analyses were performed using Tensorflow 2.x on an NVIDIA RTX 2080 TI, with a Xeon
e5 CPU and 128 GB RAM.

3.2.5 Performance metrics

The performance of this end-to-end model was evaluated by calculating metrics for 3D segmentation,
as outlined in [220]. Hence, overlap-based metrics were computed on the testing datasets of S, T1,
and T2 such as the DSC, Sen, and Spec (or Rec) as defined in Sec. 2.4.2, and in particular in Eq.
2.3, Eq. 2.5, and Eq. 2.6, respectively.

Furthermore, the Hausdorff Distance (HD), a distance-based metric, is employed as an additional
measure for assessing boundary delineation. The HD is defined as follows:

HD(X,Z) = max(h(X,Z), h(X,Z)) (3.2)

where
h(X,Z) = max

x∈X
max
z∈Z
||x− z|| (3.3)

3.2.6 Baseline and domain adaptation comparison

First, the stage is set by evaluating the proposed strategy against the baseline model, namely the
U-Net model trained only on the S dataset. For this comparison, a further experiment is conducted
to investigate the feasibility of segmenting individual IVD within the spine, in order to capture the
differences in the spatial configuration and morphology of each IVD. To achieve this, a Principal
Component Analysis (PCA) approach is employed to divide the overall IVD segmentation into
separate individual discs segmentation.

Next, a comprehensive analysis comparing different training data configurations is conducted to
investigate the impact of introducing different domains into the pretext task:

1. Dual-task model, trained by applying the pretext task exclusively on T1 (t1-int).

2. Dual-task model, trained by applying the pretext task exclusively on T2 (t2-int).

57



3.3. Results

Figure 3.6: The qualitative results of U-Net and t1t2s-int training strategies on two random test images
from target 1 and target 2 reveal notable differences. Upon examining the images, it becomes apparent that
the U-Net approach yields sub-optimal disc segmentation, particularly for the discs located in the outermost
regions of the image.

3. Dual-task model, trained by applying the pretext task on T1 and T2 datasets (t1t2-int).

4. Dual-task model, trained by applying the pretext task on both T1 and T2 and on S datasets
(t1t2s-int).

By evaluating these configurations, the aim was to assess the contributions and relative importance
of individual datasets within the dual-task framework. This set of analyses enabled the understand-
ing of the effectiveness of incorporating the pretext task across different datasets, thereby shedding
light on the benefits of using dual-task learning in the proposed approach.

3.2.7 Pretext task adequacy analysis

A further experiment was conducted to examine the influence of different pretext tasks on the dual-
task approach. Here, the proposed pretext task of intensity prediction (t1t2s-int) was compared
with a more traditional pretext task, which involved predicting the rotation angle of the images.
For the rotation pretext task (t1t2s-rot), the images were randomly rotated by 0, 90, 180, or 270
degrees, and the model was trained to classify the amount of rotation. The same model used in
Sec. 3.2.3 was employed for this experiment. Similar to the previous configuration, the rotation
pretext was applied to T1, T2, and S datasets. Comparing the performance of these two pre-
text tasks aimed to evaluate their impact on the overall dual-task framework and gain insights into
the effectiveness of the proposed intensity prediction task in contrast to the traditional rotation task.

3.3 Results

Results of the performance metrics calculated on the baseline model (i.e. U-Net trained without
pretext task), and on the dual task model obtained using different training data and pretext tasks
(t1-int, t2-int, t1t2-int, t1t2s-rot, and t1t2s-int), are presented in Table 3.2.
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(a) (b)

(c) (d)

Figure 3.7: Boxplots of Dice Similarity Coefficient (DSC) (%) (a), Hausdorff distance (HD) (pixels) (b),
Sensitivity (Sen) (%) (c), and Specificity (Spec) (%) (d) are presented for both U-Net (plum) and t1t2s-int
(cyan) models, specifically for each intervertebral disc in T1. Intervertebral discs are named according to
their anatomical position between vertebrae, where T, L, and S denote thoracic, lumbar, and sacral vertebrae
respectively.
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(a) (b)

(c) (d)

Figure 3.8: Boxplots of Dice Similarity Coefficient (DSC) (%) (a), Hausdorff distance (HD) (pixels) (b),
Sensitivity (Sen) (%) (c), and Specificity (Spec) (%) (d) are presented for both U-Net (plum) and t1t2s-int
(cyan) models, specifically for each intervertebral disc in T2. Intervertebral discs are named according to
their anatomical position between vertebrae, where T, L, and S denote thoracic, lumbar, and sacral vertebrae
respectively.
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Figure 3.9: Qualitative results from the comparison of all the tested configurations on three random test
images from each of the three datasets (source, target 1, and target 2 from top to bottom). In the source
domain, the improvements brought by the proposed model (t1t2s-int) are particularly evident in the accurate
segmentation of the contour of the discs. In target 1 and target 2, the proposed model demonstrates fewer
false negatives, successfully segmenting all the discs present in the images. Yellow arrows in the image point
to false positive predictions, while orange arrows to false negatives.
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Table 3.2: Results of the performance metrics computed on the test sets of the three datasets, obtained
from the baseline model (i.e. U-Net trained only on the Source dataset), the proposed model (t1t2s-int) and
all the other dual-task models trained with various pretext task configurations. Values are reported as mean
± standard deviation.

Test dataset Model DSC (%) HD (pixels) Sen (%) Spec (%)

S

U-Net 0.86±0.02 28.16±27.69 0.90±0.04 0.99±0.00
t1-int 0.86±0.02 22.32±18.36 0.90±0.04 0.99±0.00
t2-int 0.86±0.02 46.58±84.15 0.90±0.04 0.99±0.00

t1t2-int 0.86±0.02 21.26±18.36 0.90±0.04 0.99±0.00
t1t2s-rot 0.86±0.02 21.25±18.36 0.90±0.04 0.99±0.00
t1t2s-int 0.86±0.02 21.69±23.68 0.90±0.05 0.99±0.00

T1

U-Net 0.89±0.03 33.47±37.15 0.88±0.08 0.99±0.00
t1-int 0.91±0.03 24.74±40.92 0.92±0.07 0.99±0.00
t2-int 0.91±0.04 32.82±40.23 0.90±0.07 0.99±0.00

t1t2-int 0.90±0.05 33.20±39.20 0.90±0.08 0.99±0.00
t1t2s-rot 0.88±0.06 27.33±41.72 0.83±0.10 0.99±0.00
t1t2s-int 0.92±0.04 13.59±17.70 0.90±0.07 0.99±0.00

T2

U-Net 0.74±0.18 93.59±91.62 0.66±0.22 0.99±0.00
t1-int 0.75±0.18 65.69±70.11 0.67±0.22 0.99±0.00
t2-int 0.76±0.12 85.78±61.42 0.66±0.17 0.99±0.00

t1t2-int 0.73±0.18 56.58±32.11 0.64±0.21 0.99±0.00
t1t2s-rot 0.71±0.10 74.35±57.84 0.58±0.13 0.99±0.00
t1t2s-int 0.77±0.18 42.83±28.11 0.67±0.22 0.99±0.00

Comparing the proposed DA model (t1t2s-int) with the baseline (U-Net), it becomes evident
that the former consistently outperforms the latter on all the datasets and across each metric. For
the source dataset S, the only one on which U-Net was trained, the performance in terms of DSC,
Sen, and Spec are comparable for the two models. However, t1t2s-int achieves better results when
considering the HD with an average value of 21.69 ± 23.68 pixels, outperforming U-Net in which
HD has a mean value of 28.16 ± 27.69 pixels. For T1, the proposed DA model achieves a DSC of
0.92 ± 0.04 and an HD of 13.59 ± 17.70 pixels, outperforming the U-Net model, which achieves a
DSC of 0.89 ± 0.03 and an HD of 33.47 ± 37.15 pixels. On the other hand, the proposed model
shows comparable performance in terms of Sen and Spec, with values of 0.90 ± 0.07 and 0.99 ±
0.00, respectively, which are similar to those of U-Net. In the case of T2, the proposed DA model
achieves a higher DSC of 0.77 ± 0.18 and a lower HD of 42.83 ± 28.11 pixels compared to the
U-Net model, which has a DSC of 0.74 ± 0.18 and an HD of 93.59 ± 91.62 pixels. Similarly, the
proposed model demonstrates a slightly higher Sens (0.67 ± 0.22) and Spec (0.99 ± 0.00) compared
to U-Net. Fig. 3.6 vividly illustrates the qualitative results of this experiment, showing that the
U-Net approach tends to produce sub-optimal disc segmentation, especially for discs situated in
the outermost regions of the image, highlighting the superiority of the proposed DA model in these
challenging regions. The comparison between U-Net and the proposed t1t2s-int is further explored
in Fig. 3.7 and Fig. 3.8, which illustrate the results obtained by both models considering individual
IVD segmentation. In Fig. 3.7 results for dataset T1 are reported, in which t1t2s-int shows overall
better performances with higher median values and lower interquartile ranges (IQRs) for DSC, Spec
and Sen. As regards HD, U-Net shows higher median values for the discs T10/T11, T12/L1, and
L2/L3, with a wider IQR with respect to t1t2s-int. Fig. 3.8 displays the results for dataset T2. The
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performances are particularly lower with respect to T1, but with similar trends: t1t2s-int shows
better performances than U-Net in terms of median values and IQRs for DSC, HD, and Sen. Spec,
on the other hand, shows comparable median values for the two models for all discs, except for
L2/L3, L3/L4, and L5/S.

To obtain the best setup of the pretext task, different training data configurations were evaluated.
Results of the performance metrics, obtained using the different pretext tasks show that for the S

dataset, all the tested models exhibited comparable performances. The t1-int, t2-int, and t1t2-int
models achieved mean DSC values of 0.86 ± 0.02. The proposed model demonstrated consistency
in performance across the different pretext tasks. All training strategies performed quite well on
T1, achieving notable peaks of 0.92 ± 0.04, 13.59 ± 17.70, 0.90 ± 0.07, and 0.99 ± 0.00 for DSC,
HD, Sen, and Spec, respectively, when using the t1t2s-int configuration. The t1-int model achieved
a mean DSC of 0.91 ± 0.03, a mean HD of 24.74 ± 40.92 pixels, a mean Sen of 0.92 ± 0.07, and a
mean Spec of 0.99 ± 0.00. The t2-int and t1t2-int models demonstrated slightly improved results
in terms of DSC, with values of 0.91 ± 0.04 and 0.92 ± 0.04, respectively, however the HD results
were higher for both these models if compared with t1-int. Similar trends are observed for T2,
even though with lower mean values of the metrics compared to T1. Also in this case the t1t2s-int
model achieves the highest DSC (0.77 ± 0.18) and the lowest HD (42.83 ± 28.11 mm) compared to
the other tested models. The t1-int model achieved a mean DSC of 0.74 ± 0.20, while the t2-int
and t1t2-int models obtained slightly higher mean DSC values of 0.76 ± 0.12 and 0.73 ± 0.18,
respectively.

In the experiment comparing the performance of the intensity prediction pretext task (t1t2s-int)
and the rotation angle prediction pretext task (t1t2s-rot), slight differences were observed among
the three datasets regarding its effectiveness within the dual-task approach. For the S dataset,
the t1t2s-rot configuration showed a similar mean DSC of 0.86 ± 0.02 and HD of 21.25 ± 18.36
with respect to t1t2s-int. For T1 the t1t2s-rot configuration obtained the lowest performances in
terms of DSC and Sen, with mean values of 0.88 ± 0.06 and 0.83 ± 0.10, respectively. In the
dataset T2, introducing the rotation as pretext task results in a deterioration of performance if
compared to the baseline (U-Net), with DSC = 0.71 ± 0.10, HD = 74.35 ± 57.84, and Sen = 0.58 ±
0.13. Qualitative results shown in Fig. 3.9 further support the effectiveness of the proposed model
in accurately segmenting the IVD while minimizing the presence of segmented spots outside the
designated region.

3.4 Discussion

IVD localization and segmentation have become the focus of extensive research in the medical image
analysis community due to their significance in identifying various spine-related pathologies [221].
While DL algorithms have been employed to address IVD segmentation, these models frequently en-
counter performance constraints when confronted with data from diverse domains, including specific
acquisition devices and protocols or patients with varying medical conditions [222]. The difficulties
in segmenting IVD in MRI stem from the wide range of variations in their appearance, including
signal intensity, shape, and texture. Furthermore, the challenge of accurately segmenting the discs is
exacerbated by two factors: the limited number of voxels allocated for their representation reduces
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the discriminative information available, while the partial volume effect further complicates this task
by causing the disc boundaries to blend with neighboring tissues. The main aim of this research
is to examine the possibility of using self-supervised learning to perform unsupervised DA for IVD
segmentation. Specifically, the aim is to investigate whether the use of pretext tasks can assist in
this process. The reason behind this approach is the belief that the model will learn representations
during pretext task training that are not domain-specific and can be applied to the target domain.
Specifically, a novel approach was adopted by designing a pretext task focused on predicting specific
intensity variations, such as Gaussian noise, Gaussian blur, and contrast enhancement. This choice
was made instead of more traditional methods like rotation degree prediction, primarily because of
its relevance to the unique challenges of IVD segmentation. Intensity variations commonly occur
in medical images acquired from different sources and can significantly hamper the performance of
segmentation models by introducing variations in contrast and brightness. In light of the challenges
posed by intensity variations, the analysis of intensity histograms across the three datasets serves as
a pivotal insight. As observed in the intensity histograms reported in Fig. 3.3, the distribution of
intensities in the S dataset differs markedly from that of the target datasets T1 and T2. This pro-
nounced peak in the lower intensity range of the S dataset could be indicative of unique acquisition
conditions, peculiarities of the MR scanner, or particular patient populations. On the other hand,
the more nuanced and diverse intensity profiles of the target datasets highlight that aligning the
domains is not a straightforward task. This analysis, grounded in the intensity histograms, under-
scores the importance of developing DA methods that address not just the structural differences, but
also the nuanced variations in intensity characteristics inherent to MR datasets. The proposed pre-
text task, tailored to address these issues, enables the model to effectively learn intensity-invariant
features. As a result, the model achieves robust segmentation performance across a source and two
target datasets containing patients with different pathological conditions and acquired with various
scanning devices (namely Philips Ingenia, Siemens, Philips Achiva, Philips Elition GE Sigma).

Evaluating the proposed strategy against the baseline model (U-Net), t1t2s-int reached the best
performance metrics in both T1 and T2 while maintaining the same performances with respect
to U-Net in S, as shown in Table 3.2. This indicates that the strategy not only excelled in the
intended domains but also managed to preserve the effectiveness it had demonstrated in the source
domain. This aspect is crucial as it ensures that implementing the strategy does not result in
any detrimental effects or a decrease in performance in the original domain. By examining the
performance across individual discs, Fig. 3.7 clearly demonstrates how the proposed methodology
outperforms the others in terms of stability. Specifically, it exhibits consistently favorable results in
median and IQR across different IVD on T1. Notably, even for the segmentation of challenging IVD
such as T10/T11 and L5/S, which are typically more difficult due to their position in the image, the
proposed methodology maintains its superior performance. This highlights the robustness of the
proposed approach, making it particularly well-suited for accurate and reliable IVD segmentation
across different locations within the image. In the case of T2 the scenario is slightly different, as
the complexity that characterizes this dataset is reflected in the variability of the results between
one disc and another. In particular, the discs T10/T11, T12/L1, and L5/S resulted in the lowest
DSC for both U-Net and t1t2s-int, even though this latter outperforms the other in all cases. A
similar trend can be observed for HD and Sen.

The best training strategy is achieved when incorporating intensity pretext tasks across multiple
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datasets, including the two target domains and the source domain. This is confirmed by comparing
the proposed model with other pretext configurations. In fact, it reached DSC = 0.92 ± 0.04, HD
= 13.59 ± 17.70, Sen = 0.90 ± 0.07 for T1 and a DSC = 0.77 ± 0.18, HD = 37.63 ± 25.40, Sen
= 0.90 ± 0.07 for T2. When dealing with pretext applied on only a specific target dataset (t1-int
and t2-int), the performances are better for the dataset on which the pretext was carried out with
respect to the other datasets on which the pretext task is not applied, as can be seen in Table
3.2. Furthermore, it is important to note that Spec achieved consistently high values of 0.99 in
all experiments, underscoring the model’s ability to correctly identify negatives across all cases. A
similar trend is observed when applying the pretext task to the two target datasets and not to the
source dataset (t1t2-int). This behavior is expected as the model has learned features from just
one specific dataset while t1t2s-int improves the generalization performance and adaptability across
diverse data distributions. This is also evident when qualitatively evaluating the results, as can
be observed from Fig. 3.9. The reduced presence of segmented spots outside the true label region
is a critical advancement in IVD segmentation, as it improves the reliability of the segmentation
results. This outcome is particularly important in medical applications where precise delineation of
the anatomical region of interest (IVD in this case) is crucial for accurate diagnosis and treatment
planning.

Comparing the proposed intensity pretext task (t1t2s-int) with a more traditional one (t1t2s-
rot), which involves the prediction of fixed rotation angles, the superiority of the former was demon-
strated in the context of self-supervised DA for medical image analysis. The problem under inves-
tigation, in fact, may have inherent characteristics that make intensity information more important
for the target task. In fact, intensities can play a crucial role in distinguishing between IVD and
vertebral bodies in images acquired from different devices. Moreover, it is worth highlighting that
different MRI scanner manufacturers often have proprietary calibration methods, sequences, and
post-processing software. These variations can introduce differences in intensity distribution profiles
and contrast settings across devices. This variability across manufacturers further emphasizes the
importance of accounting for these differences when analyzing images from multiple sources.

While the proposed model exhibited promising results, it is important to recognize certain limi-
tations. Firstly, the evaluation was conducted on a testing dataset with a limited number of samples.
Employing larger datasets could enhance the evaluation of statistical significance and enhance the
model’s ability to generalize to diverse populations and imaging protocols. Additionally, the pri-
mary objective was to examine the feasibility of the approach; therefore, only a standard U-Net
was employed for evaluation. Further advancements could be made in this regard, such as utiliz-
ing pyramid structures to construct multi-scale representations and address multi-scale variations
or leveraging self-attention modules [223] to improve performance. Future developments include
firstly the use of a wider variety of transformations in the pretext task, which could be investigated
to enable the model to learn more comprehensive and adaptable features, improving its ability to
handle different types of image data and enhancing segmentation performance. In fact, it has been
demonstrated [213] that pretext tasks such as predicting intensity histograms, shapeless local patch
discrimination and texture discrimination can enable the model to learn intensity and texture-aware
features. Further advancement can be obtained through the introduction of an additional adver-
sarial loss [224]. Adversarial training has proven, in fact, to be effective in reducing domain shift
and improving model generalization. By incorporating an adversarial loss into the training pro-
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cess, the model could potentially become more robust to domain differences, leading to enhanced
segmentation performance across various datasets.

3.5 Conclusion

This study proposed the first multi-target unsupervised DA approach for IVD segmentation, con-
sisting of a dual-task segmentation model based on intensity distortion pretext tasks. The proposed
model, which simultaneously segments the IVD region and predicts intensity transformations, was
trained on unlabeled data from multiple domains, acquiring domain-invariant features and demon-
strating robust performance across diverse datasets, thus overcoming challenges associated with
intensity variations arising from different acquisition devices and medical conditions. By leveraging
available unlabeled data, the model achieves superior segmentation performance with respect to
supervised segmentation models (U-Net) which often rely on large annotated datasets. The suc-
cessful application of unsupervised DA in the context of medical image analysis is a significant
contribution of this study, and the proposed approach holds the potential to be adapted to address
other segmentation challenges, particularly those instances where DL models falter due to domain
discrepancies among images acquired from different devices.
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Chapter 4

Artificial intelligence-driven applications
in ultrasound images archives

US imaging, also known as sonography, is a non-invasive medical imaging technique that employs
high-frequency sound waves to create real-time images of the internal structures of the human
body [225]. US image acquisition involves the transmission of sound waves into the body using a
transducer. The waves, upon encountering different tissues and structures, are reflected back to the
transducer at varying frequencies and intensities. These echoes are then converted into electrical
signals, which are processed to form the images visualized on the US device [226]. US imaging is
valued for its safety, absence of ionizing radiation, cost-effectiveness, and real-time imaging capa-
bilities [225]. It is commonly used in various medical domains, including obstetrics and gynecology,
cardiology, and diagnostics of abdominal and musculoskeletal conditions.

However, despite the well-recognized clinical utility, US imaging presents unique challenges such
as the high dependence on the sonographer’s diagnostic experience, and high inter- and intra-
observer variability across different institutes and US systems manufacturers. Moreover, US images
can be subjected to low imaging quality, intensity inhomogeneities, presence of shadows, and high
noise levels which hinder image interpretation.

To overcome these challenges, different automated image analysis methods have been proposed
over the years with the aim of making US diagnosis and assessment more objective and accurate.
In this landscape, DL has found applications in automating the analysis of US images, as a support
in the diagnosis, solving a variety of tasks like biometric measurements, image segmentation, tissue
characterization, and disease detection.

Among the aforementioned tasks, this Chapter will outline a segmentation approach. US image
segmentation is often used to quantitatively analyze clinical parameters such as the volume and
shape of organs, detect and classify lesions (e.g., breast, prostate, thyroid nodules), and extrapolate
biometric measurements (ranging from infant to elderly).

Recently, US saw a rise in usage for musculoskeletal assessments after undergoing considerable
technological enhancements, as AI-based computer-aided detection and computer-aided diagnosis
are fundamental to ensure less costly, more effective and improved US imaging [227]. In this field,
the most investigated DL tasks are nerve identification and segmentation [228, 229], myositis classi-
fication [230] and synovitis classification [231], nevertheless, the field of musculoskeletal applications
still represents a largely unexplored domain in numerous aspects.
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4.1. Introduction to a deep learning approach for median nerve evaluation in ultrasound images of
carpal tunnel inlet

Within this scenario, this Chapter describes a new method to automatically localize and segment
the median nerve at the inlet of the proximal carpal tunnel, to measure the nerve Cross-sectional
Area (CSA) in US images.

US imaging is recognized as a useful support for Carpal Tunnel Syndrome (CTS) assessment
through the evaluation of median nerve morphology. However, US is still far to be systematically
adopted to evaluate this common entrapment neuropathy due to US intrinsic challenges, such as
its operator dependency and the lack of standard protocols. Relying on archived US images ac-
quired from 103 rheumatic patients, this Chapter addresses the problem of automatic median nerve
segmentation and CSA measurement by designing a fully-automatic DL approach. The framework
consists of a Mask R-CNN with two additional transposed layers at the segmentation head to ac-
curately segment the median nerve directly on transverse US images, and calculate the CSA of the
predicted median nerve.

This work demonstrated its ability to address the problem of median nerve segmentation in US
rheumatological images with DL, paving the way for future research in the field. From a clinical
perspective, the proposed framework proved to be a valuable tool to support the clinical routine
increasing the reproducibility of CSA measurements.

A journal paper on this work has been published as [232]: Di Cosmo, M., Fiorentino, M. C.,
Villani, F. P., Frontoni, E., Smerilli, G., Filippucci, E., and Moccia, S. (2022). A deep learning ap-
proach to median nerve evaluation in ultrasound images of carpal tunnel inlet. Medical & Biological
Engineering & Computing, 60(11), 3255-3264.

4.1 Introduction to a deep learning approach for median nerve eval-
uation in ultrasound images of carpal tunnel inlet

CTS accounts for 90% of peripheral entrapment neuropathies, affecting up to 5% of the general
population [233]. This condition occurs when the median nerve is compressed at the wrist as it
passes through a narrow osteofibrous canal along with the nine finger flexor tendons [234]. The
median nerve stretches, compresses and translates in response to upper extremity motion, but in
patients with CTS its mobility is restricted, which indicates nerve dysfunction [234].

Traditionally, the diagnosis of CTS relies on clinical history and physical examination [235],
sometimes investigated further with electrodiagnostic tests, sensitive in examining nerve conduction
and eventual damages [234]. Aside from electrodiagnosis, which is expensive, time-consuming and
presents limited ability to predict CTS severity or intervention outcome [236], US imaging can also
be used. In assessing CTS, US allows to detect structural anomalies through the direct visualization
of the nerve, its position and morphology: in fact, altered shape of the median nerve due to the
compression of the surrounding nonrigid structures is expected in CTS patients [233].

Among the US parameters which can be evaluated from the carpal tunnel, the most common
and reliable is the CSA of the median nerve measured at the proximal carpal tunnel. However, the
CSA measurements are currently performed on US relying on a hand tracing method, and their
cut-off values for CTS diagnosis vary widely, ranging from 9 to 14 mm2 [233].

US imaging presents unique challenges to be faced: it is highly dependent on sonographer’s expe-
rience, and subjected to high inter- and intra-observer variability across different manufacturers’ US
systems. Moreover, US images can be subjected to low imaging quality, intensity inhomogeneities,
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carpal tunnel inlet

Figure 4.1: Ultrasound transverse scan sample acquired at the proximal carpal tunnel inlet. A red box
includes the median nerve section; asterisks of different colors mark other relevant structures: pisiform bone
profile in blue, semilunar bone profile in purple, ulnar artery in green, digital flexor tendons in yellow.

presence of shadows and high noise level. In addition, in carpal tunnel imaging the median nerve
identification is made harder by the presence of many rounded structures, such as the wrist bones,
transverse carpal ligament and digital flexor tendons, and by nerve morphological variations in re-
lation with disease severity, with other concomitant pathologies and also with height, sex, weight
and age of the subjects [233]. A sample of carpal tunnel US image is shown in Fig. 4.1.

To address these challenges, the development of advanced automatic US image analysis methods
is essential to make US a more objective and accurate support tool for CTS assessment. In this
respect, DL has already shown its huge potential for medical US analysis [237]. At present, multiple
types of deep networks, especially CNN, have been successfully involved in various US images tasks,
such as lesion and nodule classification, object detection and anatomical structure segmentation
[237], thus implying DL potentiality to improve and standardize even CTS diagnosis through an
automatic median nerve section identification.

Embracing this idea that DL may provide reliable support to sonographers, this study extends
a previous preliminary work in [229] proposing the following contributions:

1. Development of an end-to-end CNN, i.e. a Mask R-CNN [166], for localization and segmen-
tation of the median nerve at the inlet of the proximal carpal tunnel, further improved by the
insertion of two additional transposed layers at segmentation head.

2. A comprehensive study conducted on transverse US images acquired in daily clinical practice.

3. Evaluation of CSA measurement based on the median nerve section segmented by the algo-
rithm in comparison with manual tracing of nerve boundary performed by expert sonogra-
phers.

4.1.1 Related work

Several studies faced the median nerve segmentation problem from US imaging involving model-
based approaches. In [238], the phase-based probabilistic gradient vector flow algorithm was used to
track sciatic nerve region, obtaining an average DSC of 0.90. The work in [239], instead, proposed the
adaptive median binary pattern as the texture feature of a tracking algorithm with an Acc of 95%. A
segmentation pipeline including a pre-processing stage (filtering, de-noising, contrast enhancement),
features extraction in a Region of Interest (ROI) and a SVM classifier was proposed in [240]. This
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method generated an average DSC of 0.81. However, even with good results, these approaches are
parameter sensitive and require a certain degree of time-consuming manual intervention, especially
for selecting the initial contour, thus possibly leading to segmentation errors.

After DL has emerged as leading ML tool in various research fields, including medical US anal-
ysis, recently some researches approached the median nerve segmentation involving CNNs imple-
mentation. [241] combined a CNN, which detects the ROI around the nerve, with the probabilistic
gradient vector flow method to delineate the median nerve contour on a dataset composed of US
images extracted from 10 videos, each with 500 frames, from 10 patients. The results revealed an
average DSC of 0.85. In [242] the U-Net architecture [72] was used to identify the median nerve in
the brachial plexus in US images, which were all pre-processed using linear Gabor binary patterns
before being supplied to the U-Net for segmentation. They obtained an average DSC of 0.67, thus
considering that the use of U-Net to directly segment the median nerve is not effective. In [236], a
multi-input similarity CNN was proposed to track the median nerve in US videos from 50 patients,
who where asked to perform specific wrist motions. 100 US videos of 6 seconds, each with 180
frames, were involved in this study, in which one target ROI containing the median nerve, manually
defined in the first frame, is compared with candidate search images to find the more similar on the
next frame of image stack. It is worth noticing that this method relies on the manual identification
of ROIs from expert clinicians as input to the model, which is a relevant limitation. [243] proposed
a fully DL framework based on U-Net for the localization and segmentation of the median nerve
in US image sequences. The model, called DeepNerve, integrates also a MaskTrack [244], a video
object segmentation technique, and a convolutional long short-term memory [245], to process tem-
poral information. Six patients were involved and a total of 24 videos, each with 420 frames and
lasting 17.5 seconds. The images of the US sequences were cropped around the median nerve before
being used to train and test the model. DeepNerve overcame the segmentation performances of the
conventional active contour model, generating an average DSC value of 0.89. However, this method
used images cropped around the median nerve as input, and the small number of patients involved
limited the anatomical variability considered in the study. Even in a recent work by [246], two im-
plementations of the U-Net model were considered on a dataset of 505 videos with 5560 annotated
frames acquired involving 99 patients (with an average of 5,1 videos): one model was based on
single-frame segmentation, the other was made using focus windows and spatial information from
the previous segmented frame to redirect the focus of the search area for the next frame. The best
results were achieved by the latter model with an average DSC of 0.88, but requiring the first frame
manual definition by a user and ROIs as input to the model. Despite the promising results, the
main limitation of these DL methods is that they require the manual identification of a ROI around
the median nerve, and this poses issues relevant to time consumption and inter-clinician variability.
The work conducted by [247] evaluated the performance in median nerve segmentation of different
DL models, including DeepLabV3+, U-Net, Feature Pyramid Network (FPN) and Mask R-CNN
[166], on US image sequences acquired from 36 subjects. The best performances were achieved by
the Mask R-CNN with an IoU score close to 0.83. This work, however, focused on a small variety
of anatomy and excludes unusual morphologies.

In accordance with results achieved by [247], and in contrast with the other DL approaches
found in the literature on this field, in which U-Net-based models were chosen to face this task,
in this work the median nerve segmentation was approached by implementing a Mask R-CNN,
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Acquisition site Frame sequences N. of US images N. of patients

[242] Brachial plexus forearm No 11508
[236] Carpal tunnel Yes (100) 18000 50
[243] Carpal tunnel Yes (24) 10080 6
[246] Proximal carpal tunnel inlet Yes (505) 5560 99
[247] Proximal carpal tunnel inlet Yes (36) 18625 36
Proposed Model Proximal carpal tunnel inlet No 246 103

Table 4.1: Overview of the Ultrasound (US) dataset characteristics in Deep Learning (DL) literature for
median nerve segmentation, in terms of US acquisition site, dataset size (frames selection or frame sequences,
total number of images) and patients involved in the study.

Figure 4.2: Schematic representation of model architecture, composed by a backbone, Region Proposal
Network (RPN), and the three heads for classification, bounding-box regression and segmentation, all fed
from the ROIAlign with 100 ROI candidates. The segmentation head is represented more in details as it
was provided with two additional transposed layers compared with original Mask-RCNN.

which simultaneously detects target objects in the image and from that generates a high-quality
segmentation mask for each instance. The aim is to provide a unified framework, which does not
involve preliminary ROI identification or parameter-sensitive procedures.

In addition, the dataset used for the present study is significantly different from the ones de-
scribed in the state-of-art [236, 242, 243, 246, 247]: the focus here is on the morphology rather than
the motion of the median nerve, thus considering US single frames instead of full-frame sequences
and involving in the study a greater number of patients, covering a higher anatomical variability.
Table 4.1 summarizes the characteristics of these data sets and highlights the differences with the
dataset used for this analysis.

The following subsections present and discuss the proposed approach in detail.

4.2 Materials and methods

In this study, the median nerve segmentation from transverse US images acquired at the proximal
carpal tunnel inlet is approached by deploying an end-to-end DL algorithm based on a Mask R-
CNN implementation [166]. A schematic representation of the model proposed is shown in Fig. 4.2.
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ResNet-101 [59] was used as backbone in combination with the FPN [167], allowing median nerve
detection at multiple scales, which improves the performance of semantic segmentation over relying
on a single scale analysis. As in the original implementation by [166], the RPN is used to generate
proposals, i.e. rectangular regions in the US image with a high probability of containing the median
nerve, which are predicted starting from anchors, which are here built with 5 different sizes and
3 different scales. The selected proposals are processed by the ROIAlign layer, which resizes the
proposals to a constant d× d output matrix before feeding them to the heads.

The classification and regression heads are both made of two fully-connected layers with 1024
neurons and an additional third fully-connected layer, which has 2 neurons followed by a softmax
function to predict the proposal class (i.e., median nerve or background) for the classification head
and 4 neurons, linearly activated, to predicted the anchor box correction factors in the regression
head. The segmentation head, instead, consists of four 3x3 convolutional layers with 256 filters, each
activated with the ReLU, and three transposed convolutions with 256 2x2 filters, ReLU activated,
which allow to recover spatial resolution up to 112x112. In this work, architectural changes from the
original Mask R-CNN are introduced at the segmentation head to improve output mask resolution.
In fact, the use of three transposed convolution layers instead of only one, as in the original Mask
R-CNN, allows to increase the output resolution and to deal with the fragmented and low-contrasted
edges of the median nerve. To obtain stable convergence, the last layer performs a 1x1 convolution
and it is activated by a Sigmoid function.

The proposed method was trained and tested using TensorFlow on a GPU GeForce RTX 2080.

4.2.1 Dataset

For this study, 103 patients with rheumatic and musculoskeletal disorders were recruited at the
Rheumatology Unit of “Carlo Urbani” Hospital in Jesi (Ancona, Italy). All patients signed informed
consent and the data acquisition was conducted in compliance with the Helsinki Declaration and
with the approval of the local ethics committee (Comitato Etico Regione Marche, number 262).
The US assessment was carried out using a MyLab Class C (Esaote SpA, Genoa, Italy) US system
equipped with a 6–18 MHz linear probe taking transverse scans in accordance with the 2017 EULAR
standardized procedures for US imaging in rheumatology [248]. US images at the proximal carpal
tunnel inlet were acquired bilaterally from the patient wrists with the forearm resting supine on the
examination bed and fingers in a neutral position. The number of images per patient is variable, but
of the same order of magnitude, and the few cases in which more than one image is acquired from
the same patient were carefully considered as part of the same set (either training or testing). 22 out
of 103 patients (21%) had a clinical diagnosis of CTS and some anatomical variants were observed
and included in the study. The presence of the following anatomical variants was registered: bifid
median nerve, persistent median artery, and accessory muscles within the carpal tunnel. The images
composing the dataset were acquired by three sonographers with different degrees of experience in
the musculoskeletal US (G.Sa.: 1 month with dedicated intensive training; G.Sm.: 4 years; E.Fi.:
more than 20 years of experience). Images considered of insufficient quality were excluded from the
dataset after a revision made by the expert sonographers. Manual annotation was performed by
one sonographer (G.Sa.) under the supervision of the other two.

The annotations were used as ground truth for the training of the CNN proposed for the segmen-
tation task. The dataset included a total of 246 US images with size equal to 606x468 pixels. The
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images with the corresponding masks were resized to 512x512 pixels using bilinear interpolation.
In addition, the images were zero-padded at the right-most and bottom-most edges to get squared
images with a size multiple of 32, as required by the FPN, while keeping the aspect ratio unchanged.

4.2.2 Experimental setup

The dataset was randomly split by patients, whose demographic and clinical characteristics matched
inclusion criteria designed by rheumatologists before performing the acquisition. To cope with the
small amount of data available, 5-fold cross-validation was performed. All the ablation studies and
the comparison with the state-of-the-art models were conducted training in 5-fold cross-validation
and testing on the model with the best validation loss.

Considering the relatively small size of the dataset and to reduce the chances of overfitting,
during training data augmentation was performed on the fly by randomly scaling 80% to 120% of
the original size, and translating −20% to 20% on both x- and y-axis independently, and performing
random rotation between (-10◦, 10◦) and shearing between (-2◦, 2◦). The ranges for the affine
transformations were chosen to ensure that the nerve remains always visible in the images.

To improve training speed and accuracy, transfer learning was performed initializing all the
layers of the model except for the input layers of the network heads with weights computed on
the COCO dataset [168]. Freezing the backbone while focusing on the training of the network
heads aimed to increase the feature extraction process through the support of a large natural image
dataset.

The training was performed following guidelines for training CNNs, including dropout and weight
decay as regularizers. Stochastic Gradient Descent was deployed as optimizer for 150 epochs with
a learning rate of 0.001 and momentum of 0.9. A total of 256 anchors per image were used, with
varying sizes (32, 64, 128, 256, and 512) and aspect ratios (1:1, 2:1, 1:2). These values were chosen
considering the median nerve section dimension. The ROIAlign resized proposals to a fixed output
size of 14x14 considering a total of 100 training ROIs per image, as a trade-off between accuracy
and memory consumption.

The network was trained defining a multi-task cross-entropy loss on each ROI combining the loss
of classification, localization, and segmentation mask equally weighted: L = αLcls+βLbbox+γLmask,
where Lcls and Lbbox are class and bounding box losses of Faster R-CNN, respectively, and Lmask is
the mask loss defined in [249], and α, β and γ are constants, which we set to 1 after experimental
investigations.

In addition, from the obtained median nerve segmentation, the CSA was calculated knowing
that a single pixel in the US images of the dataset has a dimension equal to 0.062mm× 0.062mm.
The CSA was calculated only on TP predictions.

4.2.3 Comparison with literature and ablation studies

As mentioned in Subsection 4.1.1, a relatively small number of studies is focused on DL application
on US for CTS assessment and in most of these contributes, as in [242], [243] and [246], U-Net
models were chosen to get the median nerve segmentation. Hence, even though the dataset used
for this study is composed of still US images instead of US videos as in current literature, and thus
these works are not directly superimposable, a performance comparison was performed among the
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proposed model and some U-Net based approaches.
This comparison aims to prove the effectiveness of the deployment of a Mask R-CNN architecture

rather than U-Net models to obtain an end-to-end framework, which accurately segments the median
nerve without the requirement of any a priori localization or parameter-sensitive post-processing.

The architectures chosen for the comparison were the one deployed in [243] of the U-Net, which
kept the original implementation on this state-of-art network from [72], and a Lightweight U-Net,
in which the network’s depth was reduced from 5 to 4 layers and batch normalization was used as a
follow-up step to the first convolution in each layer to avoid premature convergence. To evaluate the
best performances of these models in comparison with the proposed one, the train was performed
using the Binary Cross-Entropy (BCE) loss, which is the default loss for segmentation models, and
also combining the BCE loss with the DSC loss (BCE-DSC loss), expected to provide more stability
to the models [250]. The DSC is also the metric mainly used to evaluate the model performance in
terms of segmentation, which was calculated in this work as previously defined in Eq. 2.3.

In the ablation study, it was investigated whether a larger backbone network results in increased
accuracy: thus, the Resnet-101 combined with FPN (ResNet-101-FPN) was compared with the
ResNet-50 FPN. To evaluate if the augmentations applied lead to a greater generalization of the
model, the ablation studies also included an experiment training the model without any type of
augmentation. In addition, it was evaluated the effect of having a different number of transposed
convolutions in the segmentation head. This was done to assess the effects of an increased resolution
of the output of the segmentation head on the overall segmentation performance. The segmentation
head was tested with one (Mask28) and two (Mask56) transposed convolutional layers, leading to
the output size of the head of 28x28 and 56x56, respectively. For a fair comparison, the ablation
studies were performed using 5-fold cross-validation, the same training settings, and computational
hardware.

4.2.4 Performance metrics

Prec, Rec, and mAP are used to evaluate the performance in median nerve localization. Prec and
Rec were computed as indicated by Eq. 2.7 and Eq. 2.5, respectively. A prediction was considered
as a True Positive (TP) if the detected bounding box overlapped the bounding box surrounding
the ground truth segmentation for at least 70% and had confidence higher than 0.98. A wrong
positive detection was considered as a False Positive (FP), in which the predicted bounding box
did not reach 70% of the overlapping threshold with the ground truth bounding box. A False
Negative (FN) was considered when the actual instance was not detected, thus no bounding box
was predicted at all. The value of 70% as the threshold for defining TP, FP, and FN was chosen to
provide more strict and reliable segmentation from the nerve detection: the standard Pascal VOC
evaluation practice [251] with minimum overlapping at 50% between predicted and ground truth
bounding boxes was considered as not accurate enough for properly measuring CSA, a fundamental
parameter for CTS diagnosis. mAP, which represents the average of the area under the Prec-Rec
curve, was also computed. The median nerve segmentation performance was measured using the
DSC, as defined in Eq. 2.3.

In addition, the CSA was automatically calculated from the median nerve section predicted by
the algorithm, knowing the dimensions of a single pixel (0.062mm×0.062mm) in the US images. The
CSA was calculated only on TP predictions and compared with manual measurements performed
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Table 4.2: Performance evaluation metrics in terms of mean value and standard deviation. Mean Average
Precision (mAP), Recall (Rec), Precision (Prec), and Dice Similarity Coefficient (DSC) are reported for
the proposed model and the ablation studies conducted over it: Mask-R50 is the model trained using as
backbone Resnet50 combined with FPN; NoAug is the model trained using no augmentations on the training
data; Mask28 and Mask56 are variants of the model with a different output resolution from the segmentation
head, including one and two transposed convolutional layers, respectively.

mAP Rec Prec DSC

Mask-R50 0.89± 0.27 0.88± 0.27 0.86± 0.26 0.84± 0.21
NoAug 0.89± 0.24 0.90± 0.29 0.87± 0.31 0.84± 0.25
Mask28 0.91± 0.36 0.92± 0.25 0.87± 0.28 0.82± 0.26
Mask56 0.93± 0.23 0.89± 0.28 0.89± 0.27 0.84± 0.22
Proposed Model 0.94± 0.23 0.94± 0.23 0.92± 0.24 0.87± 0.20

by the sonographers measuring the Mean Absolute Error (MAE).

4.2.5 Statistical analysis

The Kolmogorov-Smirnov test was performed to assess if the data were normally distributed, using
an α value of 0.05. As the data are non-normally distributed (the p-value of Kolmogorov-Smirnov
test is equal to 0.48 × e−143), a Mann-Whitney test with α = 0.05 was performed to compare the
CSA measurements.

The agreement in the CSA measurements between the sonographer annotation (i.e., the gold
standard) and the algorithm was calculated using a two-way mixed-effects Intra-class Correlation
Coefficient (ICC) with 95% Confidence Interval (CI). The ICC is regarded as excellent if above 0.9,
as good if between 0.75 and 0.9.

4.3 Results

The proposed model demonstrated effective performance in both detection and segmentation of the
median nerve section, with average metrics results of mAP, Rec, Prec, and DSC equal to 0.94 ±
0.23, 0.94 ± 0.23, 0.92 ± 0.24 and 0.87 ± 0.20, respectively. The average inference time for each
image on a GPU GeForce RTX 2080 was 1.7 s, which could be further improved with more powerful
computational resources.

Table 4.2 summarizes the results obtained by modifying the model architecture using a different
backbone (Mask-R50) and considering two different output resolutions of the segmentation head,
leading to masks with sizes 28x28 (Mask28) and 56x56 (Mask56).

To evaluate the segmentation capability, the proposed model was compared with the U-Net and
Lightweight U-Net models deployed in literature, referring in particular to [243]. Table 4.3 outlines
the segmentation performances of these models in terms of DSC, expressed as mean ± standard
deviation value. Visual samples are shown in Fig. 4.3: a sample of a healthy median nerve section
(Fig. 4.3a), a sample acquired from a patient with CTS (Fig. 4.3b), a sample containing a prominent
persistent median artery (Fig. 4.3c) and a sample of a bifid median nerve (Fig. 4.3d). Moreover,
the CSA was measured on the predicted median nerve sections. Without considering FP and FN
predictions, the values were comparable with the ones manually measured by the sonographer with
a MAE of 0.92 mm2. On average, CSA measured by the sonographer was 10.36 ± 4.52 mm2, while
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Table 4.3: Comparison of segmentation performance in terms of Dice Similarity Coefficient (DSC) of the
proposed model and of the U-Net and Lightweight U-Net trained using two different losses, i.e. the Binary
Cross Entropy (BCE) loss and the BCE-DSC loss.

DSC

U-NET (BCE loss) 0.78± 0.23
U-NET (BCE-DSC loss) 0.82± 0.20
Lightweight U-NET (BCE loss) 0.78± 0.19
Lightweight U-NET (BCE-DSC loss) 0.76± 0.22
Proposed Model 0.87± 0.20

Figure 4.3: Four visual samples of the median nerve section. From top to bottom row: original Ultrasound
(US) image, ground truth mask, U-Net trained with Binary Cross Entropy (BCE) loss prediction, U-Net
trained with Binary Cross Entropy-Dice Similarity Coefficient (BCE-DSC) loss prediction, Lightweight U-
Net trained with BCE loss prediction, Lightweight U-Net trained with BCE-DSC loss prediction, proposed
model prediction. For displaying purposes, only the upper part of the US image, which contains the median
nerve section, is shown.
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CSA automatically calculated from the predicted segmentation masks was 10.38 ± 4.24 mm2, with
no significant difference (p=0.88). The agreement between the automatic algorithm measurement
and the sonographer manual measurement of the CSA is remarkable [ICC 0.97 (95% CI 0.94–0.98)].

4.4 Discussion

Despite the increasing interest in US support for CTS assessment and the well-established usefulness
as a confirmatory diagnostic test of the median nerve size measurement, US imaging is still struggling
to be regularly employed in diagnostic work-up. This is partially due to the high competence
required to perform and interpret US at the carpal tunnel level, the lack of protocol standardization,
and the high variability among sonographers’ evaluations. Therefore, this work proposes an end-to-
end DL approach to support sonographers for median nerve compression evaluation. Specifically,
the median nerve segmentation was approached by developing a Mask R-CNN model, obtaining
remarkable results for both localization (mAP=0.94 ± 0.23, Rec=0.94 ± 0.23, Prec=0.92 ± 0.24)
and segmentation (DSC=0.87 ± 0.20). Moreover, the automatic measurement of the CSA from
the predicted median nerve section resulted to be in agreement with the manual measurement of
the CSA (with an average MAE of 0.92 mm2), implying the possibility of reducing reliance on the
sonographer’s expertise in carpal tunnel US evaluation while increasing intra- and inter-observer
reliability.

Differently from other semantic segmentation models, Mask R-CNN solves the segmentation
problem on top of localization, producing a mask for each recognized object, instead of just one
final mask, thus leading to more accurate results. Previous works, in fact, approached the problem
deploying U-Net based models [242, 243, 246], but they all involved some manual intervention in
ROI identification or nerve contour definition to obtain good median nerve segmentation. The most
similar work from a methodological point of view is the one from [247], in which the best results are
achieved implementing a Mask R-CNN model; however, even with less data, the proposed model
achieved higher performance on the collected dataset, which includes a greater number of patients
and thus a higher variability, confirming the instance segmentation as more suitable and better
performing than semantic segmentation approaches.

Therefore, the proposed model was compared with different implementations of U-Net models
proving the better outcomes reached, as evidenced by the DSC values reported in Table 4.3. In
addition, Figure 4.3 shows some representative samples of the region of the median nerve from pre-
dictions of the proposed model and of the U-Net based models. The U-net models often confounded
the median nerve section with other rounded structures regardless of their shape or characteristic
pattern. The Lightweight U-Net models, in particular, obtained the worst performances generating
a lot of FP predictions, thus resulting not being very effective in median nerve localization. The
proposed model, instead, incorrectly identifies only the infrequent morphologies, thus all images
belonging to the same patients which present rare anatomical variants at the carpal tunnel level.

In a few cases, though, the developed Mask R-CNN didn’t lead to a perfect segmentation, but
even in such cases, it achieved better performances than the other models. As displayed in Fig. 4.3,
the model struggles to interpret US images with relatively infrequent anatomical variants, like in
contiguity with vessels as in Fig. 4.3c, and in the presence of bifid median nerve as in Fig. 4.3d.

In addition, poor definition of nerve borders, presence of multiple rounded hypoechoic areas,
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complex fascicular pattern typical of peripheral nerves, and inhomogeneities of the nerve section
could contribute to making the detection harder. Results of the ablation studies reported in Ta-
ble 4.2 highlighted how a deeper backbone granted good outcomes, and it could be appreciated
that concatenation of several augmentations provides better results and more generalization than
considering no augmentations on training data. In the future, it can be considered to introduce
color augmentations, like brightness variation. As in Table 4.2, the increase in the output mask
resolution from the segmentation head provided generally more accurate results. In fact, there are
considerable improvements passing from 28x28 to 112x112 pixels output mask resolution, and lower
performances are also visible in Mask56 compared to the proposed model. In addition, in Table
4.2 it is possible to appreciate that the concatenation of several augmentation generalized results
better than considering single operations, like only rotation and only translation, on training data.

To increase the algorithm generalization, indeed, it is fundamental to expand the dataset with
US images encompassing a wider spectrum of normal anatomy at the carpal tunnel level.

In future work, it could be interesting to consider pretraining on larger US existing datasets to
improve model accuracy and reliability. The dataset should also be enlarged considering different
US image acquisition equipment, lower-frequency probes and maybe involving more research centers
in the study to strengthen generalizability further. It could be interesting even to approach the
problem including different diagnostic tests and imaging the median nerve at the carpal tunnel
from a different perspective and considering different wrist motion.

4.5 Conclusion

In this work, a DL approach was developed to provide a reliable tool for the automatic segmentation
of the median nerve in US images, and from which directly measure the CSA of the median nerve.
Even though improvements are needed to deploy the model in the clinical practice, the promising
results obtained have shown the potentiality of such DL approach, which could allow to support
beginner sonographers, to introduce standardized protocols, and thus to possibly support CTS
diagnosis through US inspection.

In future, spatio-temporal information [252] could be included: other than improving median
nerve segmentation, US videos also allow to evaluate an additional relevant parameter for CTS, the
median nerve mobility. Distance-field regression for accurate nerve delineation could be investigated
too, considering the promising results achieved in close fields [253]; alternatively, improving the
detector of a Cascade Mask R-CNN as in [254] could be explored to minimize inaccurate localization
and low recognition accuracy.
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Chapter 5

Conclusion

Throughout these three years of doctoral research, a driving force and an enduring curiosity have
steered every stage of my work: delving deeply into the benefits of employing AI within the realm
of healthcare data archiving, with a particular focus on medical image analysis.

The main motivation for this thesis stems from the belief that integrating AI with digital medical
archive systems can pave new pathways for early diagnosis and personalized care, in addition to
improving the efficiency and accuracy of daily operations and resource management.

Digital medical archives, a vast repository of patient data, offer an unparalleled opportunity for
DL-enhanced analysis of medical data, including unstructured data like medical images. However,
the transition from theoretical or experimental DL models to practical, clinically impactful appli-
cations is still an open challenge. The main critical aspects of this transition are: i) the access to
structured and secure medical archives; and ii) the robust validation of DL algorithms in diverse,
real-world clinical settings. Having accessibility to medical digital archives and leveraging of the
vast repository of diverse data and historical clinical scenarios, would be pivotal to produce accurate
and generalizable DL algorithms. However, even considering a limited amount of medical images
(either gathered for the research community or from a specific hospital), the potential of DL can
still be recognized as a valuable and effective tool to support clinicians’ decision-making process.
Therefore, this thesis focused on the development of innovative DL methodologies specific for differ-
ent tasks and different diagnostic purposes, based on different images acquired from various sources
in the clinical practice and stored in dedicated digital archives.

With the goal of advancing the field, Chapter 2 presents an in-depth exploration of AI appli-
cations within laryngoscopy. The chapter aims to provide a dual-faceted contribution: firstly, by
offering an automated, reliable, and objective assessment of VF motility, and secondly, by introduc-
ing an automated technique for segmenting tumors in the UADT. This dual approach underlines
the utility of AI in minimizing diagnostic subjectivity and enhancing diagnostic accuracy.

Chapter 3 addresses the well-known problem of data scarcity and lack of annotated data by
proposing a novel self-supervised DA approach for IVD segmentation in MRI images. The efficacy
of this method is validated through extensive testing on three diverse and publicly accessible datasets
within the field, showcasing the capability of the proposed technique to improve performance across
varying image domains and acquisition protocols. This advancement permits the utilization of
unlabeled data, potentially revolutionizing the approach to medical image segmentation.

In Chapter 4, the focus shifts to the estimation of the median nerve’s CSA as a means to assess
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the progression of CTS in US images. The findings affirm the potential of DL algorithms to not
only enhance the speed of diagnoses and alleviate the clinicians’ workload, but also to facilitate the
standardization of diagnostic practice, thereby enhancing the overall quality of patient care.

Overall, the described methodologies are designed to address the challenges associated with qual-
itative evaluations, high intra- and inter-observer variability, and the scarcity of extensive datasets.
The ultimate goal is to aid medical professionals in clinical practice by leveraging the wealth of
information contained in digital medical archives.

5.1 Thesis Contributions

The contribution of this PhD research can be summarized as follows:

• Developing innovative and effective AI methods for analyzing endoscopic images of the larynx,
with a particular focus on vocal cords.

Endoscopy is widely used as a diagnostic tool in a variety of medical contexts, providing real-
time, high-resolution imaging. In clinical practice, endoscopic images are visually examined
by medical personnel, which is time-consuming and characterized by high inter- and intra-
rater variability [136]. Furthermore, endoscopic images show peculiar challenges including
poor contrast, low signal-to-noise ratio, presence of motion blurring, and tissue motion. Thus,
automatic and reliable endoscopic frame examination would improve diagnosis precision and
reliability. In this context, DL has the potential to tackle the variability of endoscopic frames
providing a more rigorous, objective, reliable, and repeatable perspective to the analysis.
Chapter 2 introduces and discusses the most innovative and effective DL methods for the
analysis of endoscopic images of the UADT, providing a concise yet comprehensive resource for
emerging researchers, as well as a reference material for experienced professionals in the field.
Delving deeper into the field of laryngoscopy, the Chapter provides two specific DL applications
for the analysis of endoscopic images of the UADT. In Section 2.2, a novel heatmaps regression
network is proposed to estimate VF motility, instead of using a direct regression approach. The
method proposed is trained and evaluated using endoscopic frames from a dedicated archive.
Experimental results showcase that heatmap regression yields highly accurate estimations of
keypoint locations. The proposed end-to-end approach has moreover the potential for seamless
integration into the device and practical adoption in the actual clinical practice. VF motility
estimation is further investigated in Section 2.3, where starting from the coordinates of the
five keypoints, clinically relevant features are handcrafted to train classification models and
discriminate between VF preserved motility and fixation. Finally, being laryngoscopy the gold
standard screening diagnostic tool for the diagnosis of precancerous lesions and early cancer of
the larynx, in Sec. 2.4 a method for the automatic segmentation of UADT cancer is outlined.
Utilizing a Mask R-CNN trained and evaluated on a dataset of endoscopic frames from a
dedicated medical archive, the proposed method demonstrated effectiveness in 76.5% of images
across three different anatomical sites: larynx/hypopharynx, oral cavity, and oropharynx. The
promising results underscore the potential of DL algorithms for accurate instance segmentation
in UADT diagnostics.

• Evaluating the feasibility of contrastive learning to train a self-supervised DA model for IVD

80



5.1. Thesis Contributions

segmentation.

For an extended period, the effectiveness of DL algorithms has heavily relied on the avail-
ability of high-quality, labeled data. This requirement poses a significant challenge in the
training process, particularly in the field of medical imaging, where data labeling requires the
expertise of trained professionals. Thus, a primary focus within the research community has
been the development of self-learning mechanisms that may use unstructured data effectively.
In addressing the aforementioned issue of labeling data, extensive research has been directed
toward self-supervised learning techniques able to capture subtle nuances in data. Nonethe-
less, the direct application of these methods in the medical image domain, particularly for
DA, represents a non-trivial challenge. Firstly, when considering data from different sources
DL models exhibit performance limitations. This aspect, known as domain shift, becomes
especially evident in the case of MRI, where different scanners and acquisition modalities
produce very different images in terms of intensity distribution. In different fields of medical
image analysis, various DA techniques have been used to address the challenges associated
with transferring knowledge from a source domain to unlabelled target domains. Guided by
these research needs, Chapter 3 investigates the use of contrastive learning, specifically per-
forming pretext tasks on intensity features for self-supervised DA applied to a well-known
problem like IVD segmentation in MRI, taking advantage of publicly available datasets of the
field. The proposed approach involves the application of intensity pretext tasks to extract dis-
criminative features. This aspect is of particular interest for MR images, for which variations
in hardware and software create non-standard tissue intensities. This dual-task segmentation
model based on intensity distortion pretext tasks, demonstrated robust performance across
diverse datasets, thus overcoming challenges associated with intensity variations arising from
different acquisition devices and medical conditions. By leveraging unlabeled data, the model
achieves superior segmentation performance compared to a supervised segmentation model.
The successful application of unsupervised DA in the context of medical image analysis is a
significant contribution of this study, and the proposed approach holds the potential to be
adapted to address other segmentation challenges.

• Developing a new framework for median nerve segmentation for CTS estimation in US rheuma-
tological images.

CTS is one of the most common rheumatic diseases, accounting for 90% of peripheral entrap-
ment neuropathies, and affecting up to 5% of the general population [233]. In clinical practice,
its diagnosis mainly relies on the clinical patient history and physical examination [235]. To
introduce reliable measurements and make CTA assessment more standardized, US imaging
can be used as it allows accurate identification of the median nerve structural morphology
and anomalies [233]. Despite the growing interest in the potential of US for CTS assessment,
its routine utilization faces several notable challenges, primarily related to the reliance on
sonographer evaluation and the need for specialized expertise. Therefore, in Chapter 4 to
reduce intra- and inter-clinician variability and to provide objective support for CTS evalu-
ation, a DL framework is developed that demonstrates promise in its ability to localize and
segment the median nerve effectively and facilitate automatic measurements of CSA, which
can be invaluable in assessing CTS progression. By automating these tasks, the framework
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reduces the dependence on specialized sonographer skills, enhancing the consistency of carpal
tunnel US evaluations across different practitioners. The significance of this work lies in its
contribution to addressing the challenges associated with CTS assessment using US images.
It presents a potential solution for the automatic localization and segmentation of the me-
dian nerve, ultimately improving the quality and standardization of diagnostic practices in
CTS evaluation. This advancement opens up opportunities for further research in the field to
streamline diagnostic processes.

5.2 Impact

DL technologies have the potential to outperform humans in some visual and auditory perception
tasks. This superior performance indicates their significant potential for application in the field of
medicine and healthcare. Particularly noteworthy is their use in the analysis of medical imaging,
where DL can offer enhanced accuracy and efficiency. Each medical image domain is characterized
by its unique challenges, including operator dependence, noise, artifacts, limited field of view, and
variability across different acquisition devices. The outcomes of this PhD research have the potential
to positively impact the way medical images stored in digital health archives are used to support the
diagnostic process. The research conducted in these three years centers on the development of DL-
based algorithms tailored to enhance diagnostic processes in specific medical contexts where clinical
routines often lack standardized and uniform measurements. These innovative algorithms not only
strengthen the reliability of diagnostic evaluations, effectively reducing variability and uncertainty
but also facilitate the standardization of procedures and measurements within the medical field. By
introducing these AI-driven tools into the diagnostic landscape, my research paves the way for more
consistent, efficient, and accurate medical assessments, transforming clinical practices and elevating
patient care standards. The implementation of these DL algorithms represents a major advancement
in medical diagnostics, offering a novel paradigm where precision, reliability, and standardization
constitute the base of patient evaluation and treatment planning.

5.3 Future perspectives

From the dissertation of this thesis, it is evident that DL has entered various application areas
of medical image analysis. However, although DL techniques continuously update state-of-the-art
performance results for various application domains, much remains to be done. It is known that
the higher the data variability of the acquired dataset, the higher the performance improvement
that can be achieved with DL. However, differently from other research areas in which datasets are
large and publicly available (e.g., more than 1 million annotated multi-label natural images in Im-
ageNet [63]), in the field of medical imaging there is an objective difficulty in retrieving structured
data from medical archives along with clinicians annotations. Limited training data is a bottleneck
for i) developing further clinical DL applications ii) integrating DL algorithms in clinical practice.
Regardless, it is hard to expect that medical imaging datasets will reach the appropriate size in the
short-term future, pointing out the need to find different DL training strategies, that can be suited
for smaller databases [255]. Transfer learning has been widely exploited and its effectiveness is also
clearly shown in Chapter 2 and Chapter 4 and several other works [256]. Semi- and weakly super-
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vised learning have been successfully used [257], but their application is more suitable when larger
sets of unlabeled data are available. In addition to the aforementioned techniques, other approaches
that address small annotated databases are the unsupervised learning ones, which exploit data re-
construction while learning a good representation, or learning similarities among data employing
contrastive learning loss functions. Recent progress on self-supervised visual representations has
paved the way for applying these methodologies in DA applications [208, 258, 259], as also demon-
strated in Chapter 3. These techniques may be exploited to integrate different datasets of the field,
increasing the patient population representation, as well as acquisition modalities, thus reducing
the possibility of generating biased results. Federated learning is a novel paradigm for data-private
multi-institutional collaborations that could also be exploited to incentivize collaboration among
clinical centers. It consists of the training of algorithms across multiple decentralized edge devices
without exchanging private data.

When considering the prospects of AI in healthcare, the development of more accurate and gen-
eralizable algorithms that can truly support diagnosis hinges upon a critical factor: accessibility to
the vast reservoir of historical data stored within medical digital archives. However, this aspiration
comes bundled with a complex web of privacy and ethical concerns that require meticulous con-
sideration and proactive solutions. The sensitive nature of patient information requires stringent
safeguards against unauthorized access and thus, data accessibility strictly requires privacy protec-
tion strategies, such as robust data de-identification and anonymization techniques. Moreover, AI
systems must face ethical dilemmas that may arise and grapple with the challenge of mitigating
biases: for instance, ensuring equitable representation of all demographic groups to prevent dis-
parities in diagnosis; or recognizing and accounting for prevalent medical conditions to address the
possibility of inadvertent misrepresentation of a minority group, resulting in under- or misdiagnosis
of certain medical conditions, potentially perpetuating health disparities.

To navigate this intricate landscape, it is essential to establish a comprehensive framework for
AI governance within medical digital archives. The core principles of this AI governance should be
inclusivity, transparency, ethics, and privacy, inspired by consolidated practices among archivists
as well as in social scientists, historians, and anthropologists. Thus, unlocking the potential of
digital medical image archives requires not only interdisciplinary collaboration between clinicians,
technologists, and IT professionals but also rigorous adherence to ethical principles.
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