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Abstract:  
Modeling financial volatility is an important part of empirical finance. This paper provides a literature review of the most relevant 
volatility models, with a particular focus on forecasting models. We firstly discuss the empirical foundations of different kinds 
of volatility. The paper, then, analyses the non-parametric measure of volatility, named realized variance, and its empirical 
applications. A wide range of realized volatility models, both univariate and multivariate, is presented, such as time series 
models, MIDAS and GARCH-MIDAS models, Realized GARCH, and HEAVY models. We further discuss forecasting 
evaluation methods specifically suited for volatility models. 

Keywords: realized volatility; stochastic volatility; volatility models 

JEL Classification: C22; C53; G10 

Introduction 
Financial econometric literature has been focused, over the last two decades, on modelling and forecasting 
volatility. Since volatility as risk measure is largely used in asset allocation, risk management and option pricing, 
and since it cannot be a priori determined, the definition of a good proxy of volatility has become extremely relevant 
in this context. Hence, a wide range of econometric literature has focused on estimating the latent conditional 
variance. 

In the early steps, the bulk of volatility models has been based on the (Generalized) Autoregressive 
Conditional Heteroskedasticity models, by Engle (1982) and Bollerslev (1986), and stochastic volatility (SV) models. 
Given the growing availability of high-frequency data, researchers have moved their attention to alternative non-
parametric measures of volatility based on such kind of data. The first attempt of using high-frequency data for 
measuring volatility was made by Merton (1980), who noted that the conditional variance can be computed as the 
sum of squared returns sampled at sufficiently high frequency. The recent theoretical findings on the informative 
content of intra-day data have stimulated an important stream of literature on the properties of non-parametric 
measures of volatility. In fact, Andersen, Bollerslev, Diebold, and Labys (2000); Andersen, Bollerslev, Diebold, and 
Ebens (2001) showed that ex-post volatility based on higher frequency data successfully measures underlying 
return variability. Barndorff-Nielsen and Shephard (2002 a,b) provided the theoretical foundation of using realized 
volatility as a proxy of the latent volatility based on the theory of quadratic variation. In this way, volatility becomes 
observable and may be modelled directly through traditional time series model. 

                                                
3 Piazzale R. Martelli 8, Ancona, Italy 
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The aim of this paper is to provide a review of theoretical foundations and empirical applications of realized 
volatility (RV). Contrary to already published reviews on RV, this paper is mainly focused on practical applications 
of realized volatility models, with a particular mention of forecasting performance. In order to provide a 
comprehensive review of RV models, this article also mentions Realized GARCH models, MIDAS model and non-
linear models on volatility, which have never been treated in similar papers. Poon and Granger (2003), Andersen, 
Bollerslev, Christoffersen, and Diebold (2006), McAleer and Medeiros (2008b) and Bandi and Russell (2006) have 
also reviewed the RV literature. However, the first two articles do not consider microstructure noise, while the other 
two works mentioned do focus on theoretical properties and not on empirical applications. We aim at providing a 
totally comprehensive overview of the relevant models for forecasting RV, in order to inspire possible alternative 
models overcoming the still existing pitfalls of this particular econometric literature. 

This article overviews also the developments on volatility forecasts evaluation and comparison. We analyse 
self-standing measures, pairwise comparison tests, like the tests proposed by Diebold and Mariano (1995), West 
(1996) and Giacomini and White (2006), and multiple comparison methods, like the Model Confidence Set 
introduced by Hansen, Lunde, and Nason (2011). In most of these direct methods of forecast accuracy, the 
evaluation of the forecasts relies on the ordering imposed by a statistical loss function. In this article, we discuss 
the properties of a number of admissible loss functions, both in the univariate and multivariate framework. 

The paper is divided as follows: in the first part we provide an overview of the theoretical foundation for the 
definition of volatility; the second part is a comprehensive review of parametric models, based on a functional form 
of the expected and instantaneous volatility. The third part concerns non-parametric approaches to model volatility, 
focusing on realized volatility and its empirical applications, while the last part of the paper discusses forecasting 
evaluation methods. 
1. Theoretical foundation 

It is known that, in the financial market, negotiations take place at extremely short intervals, and that stock prices 
may be modelled as continuous processes. We then assume that 𝑝(𝑡) is the univariate process of the logarithmic 
price, defined in a probability space (Ω, 𝐼, 𝑃), evolving in the continuous time on an interval [0, 𝑇], where 𝑇 is an 
integer, and that the entire available information is given by 𝐼" "∈ K,k ⊆ 𝐼. 
Assuming the absence of arbitrage and a finite first moment, the price process belongs to the class of special 
semimartingale4, as defined in Back (1991) and Shiryaev (1999). The class of semimartingale is particularly relevant 
in econometrics, since it includes processes like martingale and Lévy process (see also Protter (1992)). The log 
price process 𝑝 𝑡 , with finite mean, is a semimartingale if it can be decomposed as the sum of a drift component 
and a local martingale which can be further decomposed in a realization of a continuous process and a jump 
component, such that: 

𝑝 𝑡 = 𝑝 0 + 𝐴 𝑡 + 𝑀 𝑡 = 𝑝 0 + 𝐴n 𝑡 + Δ𝐴 𝑡 + 𝑀n 𝑡 + Δ𝑀 𝑡 , 1.1  

where 𝐴 0 ≡ 𝑀 0 ≡ 0 , 𝐴n 𝑡  and 𝑀n 𝑡  are the realizations of the continuous process, Δ𝐴 𝑡  and  
Δ𝑀 𝑡  are the relative jump components. 

If the compound return in the interval 𝑡 − ℎ, 𝑡 , for 0	 ≤ ℎ	 ≤ 𝑡	 ≤ 𝑇 is defined as: 

𝑟 𝑡, ℎ = 𝑝 𝑡 − 𝑝 𝑡 − ℎ ; 1.2  

and given that in [0, 𝑡] it may also be specified as: 
𝑟 𝑡 ≡ 𝑟 𝑡, 𝑡 = 𝑝 𝑡 − 𝑝 0 , 1.3  

it follows that: 
𝑟(𝑡, ℎ) 		= 	𝑝(𝑡) 	− 	𝑝(0) 	+ 	𝑝(0) 	− 	𝑝(𝑡 − ℎ) 

                                                
4 A process X may be defined as a special semimartingale, if it may be written as X = X0 + A + M, where A0 = M0 = 0, M 

is a local martingale and A is a predictable finite-variation process. 
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= 	𝑟(𝑡)	–	(𝑝(𝑡	– 	ℎ)	– 	𝑝(0))                                                                     
= 𝑟 𝑡 − 𝑟 𝑡 − ℎ . 1.4  

It is further assumed that the asset price follows a finite and almost surely strictly positive process, so that 𝑝(𝑡) 
and 𝑟(𝑡) are well defined over [0, 𝑇], and that 𝑟(𝑡) has only countably jump points over [0, 𝑇]. Let the squares 
of the price and return processes be integrable, the cádlág version of the process is given by 

𝑟(𝑡−) 	≡	 𝑙𝑖𝑚	𝑟(𝜏)	 (1.5)	
	𝜏 → 𝑡, 𝜏 < 𝑡	  

𝑟(𝑡+) 	≡	 𝑙𝑖𝑚	𝑟(𝜏)	 (1.6) 
	𝜏 → 𝑡, 𝜏 > 𝑡	  

𝑟(𝑡) =	 𝑟(𝑡+)					𝑎. 𝑠.	 (1.7)	

The jumps in the cumulative return process are:  
∆𝑟 𝑡 ≡ 𝑟 𝑡 − 𝑟 𝑡 − ,												0 ≤ 𝑡 ≤ 𝑇. 1.8  

At continuity points ∆𝑟(𝑡) 	= 	0, more generally: 
𝑃 ∆𝑟 𝑡 ≠ 0 = 0																		𝑡 ∈ 0, 𝑇 . 1.9  

This does not imply that jumps are necessarily rare. There is the possibility of a (countably) infinite number of jumps 
over any discrete interval - a phenomenon referred to as an explosion. 
As a consequence of the decomposition of a martingale, the return process is equal to: 

𝑟 𝑡 ≡ 𝑝 𝑡 − 𝑝 0 = µ 𝑡 + 𝑀 𝑡 = µ 𝑡 + 𝑀n 𝑡 + 𝑀� 𝑡 . 1.10  

The instantaneous return is decomposed in a predictable and finite variation process, 𝜇 𝑡 , and a local martingale, 
𝑀 𝑡 , which is further decomposed in a continuous sample path, infinite variation local martingale, 𝑀n 𝑡 , and a 
compensated jump martingale, 𝑀� 𝑡 . The instantaneous return is, thus, decomposed into an expected return 
component and a (martingale) innovation. 
2. Volatility. Definition and Theoretical Aspects 

Volatility is an index of unexpected variability of asset returns in a period. In this section we analyse the different 
definitions of volatility and the relations among them. For each semimartingale 𝑋 𝑡  and for a couple of 
semimartingale, 𝑋 𝑡  and 𝑌 𝑡 , the quadratic variation and covariation of the processes, respectively [𝑋, 𝑋]" and 
[𝑋, 𝑌]", for 𝑡	 ∈ 	 [0, 𝑇], can be defined as: 

𝑋, 𝑋 " = 𝑋 𝑡 J − 2 𝑋 𝑠 − 𝑑𝑋 𝑠
"

K
1.11  

𝑋, 𝑌 " = 𝑋 𝑡 𝑌 𝑡 − 𝑋 𝑠 − 𝑑𝑋 𝑠
"

K
− 𝑌 𝑠 − 𝑑𝑌 𝑠

"

K
1.12  

where the integral of the cádlág processes, 𝑋 𝑠 −  e 𝑌 𝑠 − , is well defined. 

It follows that the quadratic variation, [𝑋, 𝑋]", is a growing stochastic process. The quadratic variation 
of a semimartingale has the following properties: 

§ if τm	 is a partition of [0, 𝑇] , for 0 = 	 𝜏?,K ≤ 	 𝜏?,/ ≤ ⋯ 	≤ 	 𝜏?,? = 𝑇 , such that 𝑠𝑢𝑝��K(𝜏?,��/ −
𝜏?,�) → 0 for 𝑚 → ∞, then: 

lim
?→�

(𝑋 𝑡˄𝜏?,� − 𝑋(𝑡˄𝜏?,� − 1
��/

))J → 𝑋, 𝑋 ", 1.13  
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where: 𝑡	˄	𝜏	 ≡ min	(𝑡, 𝜏)  and the convergence is uniform. The quadratic variation process represents the 
(cumulative) realized sample-path variability of 𝑋 𝑡  over the [0, 𝑡] time interval. 

§ if 𝑋 𝑡  and 𝑌 𝑡  are square integrable semimartingale, the covariance between 𝑋 and 𝑌 in [𝑡 − ℎ, 𝑡] is 
given by: 

 𝐶𝑜𝑣 𝑋 𝑡 , 𝑌 𝑡 𝐼".�] = 𝐸 𝑋, 𝑌 "	 𝐼".�) − 	 𝑋, 𝑌 ".�;	               (1.14) 

§  if the finite variation component in (1.1), A, is continuous, it follows that 

𝑋>, 𝑋� "
= 𝑀>,𝑀� = 𝑀>

n,𝑀�n + ∆𝑀> 𝑠 ∆𝑀� 𝑠 .
K�[�"

1.15  

Property (iii) shows that quadratic variation in continuous finite variation processes is zero, so that the mean 
component is irrelevant for the quadratic variation. If it assumed, without loss of generality, that log-price follows 
a diffusion process: 

𝑑𝑝 𝑡 = µ 𝑡 𝑑𝑡 + 𝜎 𝑡 𝑑𝑊 𝑡 ,				 1.16  

where: 𝑊  is a Wiener process, µ(𝑡) is a finite variation predictable process5 and 𝜎(𝑡) is a strictly positive 
and square integrable process, such that: 

𝑃 𝜎J 𝑠 𝑑𝑠 < 	∞
"

".�
= 1, 1.17  

then the compound return over the interval [𝑡 − ℎ, 𝑡]  is given by: 

𝑟 𝑡, ℎ = 𝜇 𝑡, ℎ + 𝑀 𝑡, ℎ = 𝜇 𝑠 𝑑𝑠"
".� + 𝜎 𝑠 𝑑𝑊 𝑠"

".� 																																							 1.18
Accordingly, the quadratic variation can be computed as: 

𝑄𝑉" = 𝑝, 𝑝 " − 𝑝, 𝑝 ".� = 𝜎J 𝑠 𝑑𝑠
"

".�
. 1.19  

This quantity, necessary for the definition of the realized variance, is also known as integrated variance. 
Quadratic variation is crucial to the definition of notional volatility, quantified by the realized variance. Notional 
volatility is a natural ex-post expression of return variability, (Andersen, Bollerslev, Diebold, and Labys (2000)). 
The notional volatility equals the quadratic variation for return series and over the [𝑡 − ℎ, 𝑡] time interval is 
equal to: 

𝜐J 𝑡, ℎ   ≡   𝑟,  𝑟 " − 𝑟, 𝑟 ".� = 𝜎J 𝑠 𝑑𝑠
"

".�
1.20  

Let It denote the available information of 𝑟" until 𝑡, in the above setting, the conditional volatility (or expected 
volatility) over [𝑡 − ℎ, 𝑡] can be defined as: 

ζJ 𝑡, ℎ = 𝑉𝑎𝑟 𝑟" 𝐼" ≡ E 𝑟" − 𝐸 𝑟" 𝐼" J|𝐼" 1.21𝑎  

= E 𝜇 𝑠 𝑑𝑠
"

".�
	− 	E 𝜇(𝑠)𝑑𝑠	|	𝐼"

"

".�
	+ 	 𝜎 𝑠 𝑑𝑊 𝑠

"

".�

J

|	𝐼" 1.21𝑏  

= E {𝜇(𝑠)
"

".�
	− 	E 𝜇(𝑠)|𝐼" 𝑑𝑠}J	|	𝐼" 1.21𝑐  

+E 𝜎 𝑠 𝑑𝑊 𝑠
"

".�
	
J

|	𝐼" 1.21𝑑  

                                                
5 At time t, a process is predictable if the value of the process is known an instant before t. Deterministic trends and cádlág 

processes are examples of predictable processes. 
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+2E {𝜇(𝑠)
"

".�
	− 	E 𝜇(𝑠)|𝐼" }𝑑𝑠	 𝜎 𝑠 𝑑𝑊 𝑠

"

".�
		|	𝐼" 1.21𝑒  

By defining Ah = Oa.s.(Bh) when Ah/Bh converges almost surely to a finite constant, as ℎ	 → 	0. We have that equation 
(1.21c) = Oa.s.( 	ℎJ ), equation (1.21d) = 𝜎2(𝑠)"

".�  ds = Oa.s.( 	ℎ )  and  that (1.21e) = Oa.s.( 	ℎY/J ). Consequently, the 
conditional variance can be written as: 

𝑉𝑎𝑟 𝑟" 𝐼".� ≃ E[𝜐J 𝑡, ℎ 𝐼".� = 𝐸 𝑄𝑉 𝑡, ℎ 𝐼".� . 1.22  

This implies that the conditional variance is equal to the conditional expected value of the quadratic variation, 
when 𝜇(𝑠) = 0  or when 𝜇(𝑠)  is measurable with respect to 𝐼".� . This result guarantees that the realized 
variance is an unbiased estimator of conditional variance.  

Notional volatility and expected volatility are latent but can be estimated. The measurement of volatility 
can pass through parametric models or non-parametric measures. The most diffuse parametric models are 
the Autoregressive Conditional Heteroscedasticity (ARCH) model and the stochastic volatility models. In 
ARCH models, the available information, 𝐼".� , depends on the past values of returns and other directly 
observable variables. In stochastic volatility models the information set, 𝐼".�, incorporates both past values of 
returns and latent status variables. Non-parametric measures of volatility, instead, quantify notional volatility 
𝜐J 𝑡, ℎ  directly. The major advantage of non-parametric measures is that there is no need for a functional 
form for the stochastic process of local martingale, 𝑀 𝑡 , and for the finite variation process, 𝜇 𝑡 . 
2. Conditional Heteroscedasticity Models 
2.1. Univariate GARCH Models 
In this paper, we analyse parametric models in discrete time, as ARCH models and stochastic volatility models. 
The current section introduces ARCH models. 

The success of ARCH models is due to the wide application of this class of models in finance, 
specifically in asset allocation problems and risk management. The ability of this type of models to catch 
stylized facts, as not predictability of returns, presence of heavy tails in asset returns and volatility clustering, 
rerouted the attention of the researchers on conditional moment of second order. In particular, the class of ARCH 
models focuses on the variability of the second conditional moment of returns, equal to expected volatility in 
paragraph 1.2 and defined as: 

ζJ 𝑡, ℎ = 𝐸 𝑟 𝑡, ℎ − 𝐸 𝜇 𝑡, ℎ 𝐼".� J|𝐼".� . 2.1  

In order to explain the variability of the second conditional moment, Engle (1982) introduced the 
Autoregressive Conditional Heteroscedasticity (ARCH) model, which specifies the error in the linear 
regression of asset returns 𝑦" , such that: 𝑦" = 𝑥"ª𝑏 + ε". 

Let the Gauss-Markov assumptions be valid, in particular: 𝐸 𝜀" 𝐼"./ = 	0,then the innovation, 𝜀" , at time 
𝑡 may be defined as follows: 

ε" = 𝑢"ℎ"
//J 2.2  

where:𝑢" ∼ 𝑖. 𝑖. 𝑑. 0,1  is a standard process with zero mean and unitary variance and ℎ" is the conditional 
variance of the innovation.  

It is further assumed that: 𝐶𝑜𝑣 𝜀"𝜀"�¬ = 0. While the non-conditional variance of this process is 
constant, it is possible that the conditional variance, ℎ", varies during time: 

ℎ" = 𝐸 ε"J ∣ 𝐼"./ = 𝑉𝑎𝑟 ε" 𝐼"./ . 2.3  

Consequently, the conditional distribution of the error is: ε" ∣ 𝐼"./ ∼ 𝑁 0, ℎ" . 
Engle (1982) specifies the conditional variance as a linear function of the past squared returns 𝜀", a model 

for ℎ" can be written as: 
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ℎ" = 𝑤 + 𝛼>𝜀".>J

®

>¯/

2.4  

where: 𝑤 is the constant and 𝛼>  is the coefficient related to 𝜀".>J . 
Positiveness of the variance is guaranteed if 𝛼> ≥ 0, for each lag 𝑖	 = 	1, 2, . . . , 𝑞, and if 𝑤	 ≥ 	0. ARCH(q) 
process can be written according to MA(q) representation for the squares of the innovations, such that: 

ℎ" = 𝑤 + 𝐴 𝐿 ε"J 2.5  

Equation (2.5) is weakly stationary if the roots of the polynomial 1 − 	𝐴(𝐿) are external to the unitary circle, 
where:	A(L)	=	α1	L	+	α2	L

2	+	...	+	αq	L
q is the polynomial of the lag operator.  

The necessary and sufficient condition for process stationarity is: 𝛼>
®
>¯/ < 1.  The unconditional 

variance can be expressed as: 
𝑉𝑎𝑟 ε" = 𝐸 ε"J =

𝑤
1 − 𝛼>

®
>¯/

=
𝑤

1 − 𝐴 1
. 2.6  

2.2. GARCH model 
The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model, proposed by Bollerslev (1986), 
generalizes the ARCH model introducing an autoregressive component in the conditional variance regression. The 
specification of the conditional variance, under the same assumptions of the ARCH model and given the information 
set 𝐼"./, can be expressed as: 

ℎ" = 𝑤 + 𝛼>𝜀".>J

®

>¯/

+ 𝛽�

\

�¯/

ℎ".� 2.7  

with 𝑤	 ≥ 	0 , 𝛼> ≥ 0  for 𝑖	 = 	1, 2, . . . . , 𝑞  lags and β� ≥ 0  for 𝑗	 = 	1, 2, . . . . , 𝑝  lags. The conditional 
variance is function of p lags of the conditional variance itself and q lags of 𝜀J, catching the short-term effects 
related to the evolution of the considered variable and the long-term effects related to the persistence of the 
volatility. Using the lag operator, equation (2.7) can be written as ℎ𝑡

	

= 	𝐴(𝐿)𝜀J

	

+ 	𝐵(𝐿)ℎ𝑡

	

 where A(·) and 
B(·) are the polynomials of the lags of 𝜀J and ℎ". GARCH( p, q) process is covariance stationary if the roots of 
the polynomial 1	 − 	𝐴(𝐿) 	− 	𝐵(𝐿) fall outside the unitary circle, 𝛼>

®
> + 𝛽�

\
� < 1. Unconditional variance 

may be specified as: 𝐸 ε"J = »
/. ¼5

½
5 . ¾¿

À
¿

= »
/.Á / .Â /

. Several extensions have been proposed for the 

basic GARCH model, see Bollerslev (2009) for a large literature review. The most relevant are the following: 
• GARCH-M (GARCH in mean) model proposed by Engle, Lilien, and Robins (1987), where a function 

of the conditional variance is introduced in the regression function of the asset return, 𝑦", such that: 
𝑦" = 𝑋"𝑏 + 𝛿𝑔 ℎ" + ε"
𝜀 ∣ 𝐼"./ ∼ 𝑁 0, ℎ"

2.8  

where: 𝑔 ℎ"  is a continuous and differentiable conditional variance function; 

• EGARCH (Exponential GARCH) from Nelson (1990), that aims to catch asymmetric effects of a 
single shock on volatility: 

log ℎ" = 𝑤 + 𝛽�

\

�

log ℎ".� + 𝛼>

®

>

𝑔 𝑢" , 2.9  

where:	𝑔 𝑢" = {ϕ𝑢".> + γ[|𝑢".>	| 	− 𝐸	|	𝑢".>	}	is i.i.d. with zero mean. If 𝜑	 ≠ 	0, the model 
takes into account the asymmetric behaviour of the volatility to the shocks; 
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• NGARCH (Nonlinear GARCH), introduced by Higgins and Bera (1992), also known as Power GARCH. 
The conditional deviation, 𝛿, is modelled as a function of lagged conditional deviations and lagged 
absolute innovations at the power 𝛿, then: 

ℎ"
É
= 𝑤 + α"

®

>¯/

∣ ε".> ∣É+ β> ℎ".>
É

\

>¯/

2.10  

when 𝛿 = 2, the model returns to a classic GARCH. 

• TS-GARCH(Taylor-Schwert GARCH), or Absolute Value GARCH, introduced by Taylor (1986) and 
Schwert (1989), is a particular case of the Power GARCH where the influence of high values in the 
traditional GARCH(p,q) model is limited: 

ℎ" = 𝑤 + α>

®

>¯/

∣ ε".> ∣ + β> ℎ".>

\

>¯/

, 2.11  

• GJR-GARCH from Glosten, Jagannathan, and Runkle (1993), this model allows different responses 
from the conditional variance to past innovations’ sign. The conditional variance is modelled as: 

ℎ" = 𝑤 + {α�

®

�¯/

+ δ�𝐼 ε".� > 0 }ε".�J + β�

\

�¯/

ℎ".� 2.12  

where 𝐼(⋅) is an index function; 
• IGARCH (Integrated GARCH), the model, starting from the equation with the lag operator, ℎ𝑡	 =

	𝐴(𝐿)𝜀J 	+ 	𝐵(𝐿)ℎ𝑡, is obtained when the autoregressive polynomial admits a unitary root; 
• FIGARCH (Fractionally Integrated GARCH) introduced by Baillie, Bollerslev, and Mikkelsen (1996), it 

considers the class of processes between unitary root and stationary processes. The lag operator is 
defined as: 1	 − 	𝐴(𝐿) 	− 	𝐵(𝐿) 	= 	𝑓	(𝐿)(1	 − 	𝐿)𝑑	. FIGARCH is the more general version of an 
IGARCH, obtained when 𝑑 = 1, and a GARCH, obtained with 𝑑 = 0. 

• SWARCH (regime SWitching ARCH), proposed by Cai (1994) and Hamilton and Susmel (1994) in two 
different papers. The conditional variance is modelled as: 

ℎ"
γ[7

= 𝑤 + α>
ε".>
γ[7Í5

®

>¯/

2.13  

where: 𝛾[7  and 𝛾[7Í5  are the scale parameters. 

• Smooth Transition GARCH (STGARCH), proposed by Hagerud (1997) and Gonzalo-Rivera (1998), is a 
nonlinear version of the GJR-GARCH model, where the change of regime is driven by a transition 
function. The Smooth Transition GARCH is defined as: 

ℎ" = 𝑤/ + α>�
®
�¯/ ε".�J + 𝑤J + αJ�

®
�¯/ ε".�J 𝐺 γ, 𝑐; ε".� + β�

\
�¯/ ℎ".� 2.14   

where the transition function is denoted by: 
𝐺 γ, 𝑐; ε".� = 1 + 𝑒Ï Ð7Í¿.ÑÒÓ

Ò;<
./
, γ > 0, where: 𝐾 = 1 the transition function is a logistic 

function. 
• Threshold GARCH (TGARCH), proposed by Zakoian (1994); the conditional standard deviation is 

modelled as: 

ℎ"
//J = 𝑤 + α��ε".�� − α�.ε".�.

®

�¯/

+ β�

®

�¯/

2.15  
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where: ε".�� = max ε".�, 0  and ε".�. = min ε".�, 0 . If 𝑐 = 0, TGARCH model is linear in 
parameters. 

GARCH models estimation 

GARCH models are usually estimated through maximum likelihood, under the following assumptions: 

-	𝑢" θ = ε" θ /ℎ" θ //J;	
-	𝑢" θ ∼ 𝑖. 𝑖. 𝑑. 0,1 ;	
-	𝑢" θ ∼ 𝑓 𝑢" θ ; η ;	

where: 𝜃 is the vector of unknown parameters, 𝜂 is the difference between 𝜀J and its conditional mean ℎ". 
Since the t-th return 𝑦" cannot be considered independent from the other realizations, the likelihood function cannot 
be equal to the product of marginal distribution. Likelihood function is built as the multiplication of the conditional 
distributions. Likelihood function is built as the multiplication of the conditional distributions. Let {𝑦k, 𝑦k./ … 𝑦/} 
be a sample realization of the GARCH model and  𝜓ª = 𝜃ª, 𝜂ª  the 𝑚 + 𝑘 ×1 vector of parameters to be 
estimated, the joint probability distribution can be defined as sequential factorization: 

𝐿k 𝑦, η = 𝑓 𝑦k, 𝑦k./, … 𝑦 = 𝑓 ε" θ , η 𝐼"./

k

"¯/

⋅ 𝑓 ε/ 2.16  

where: 𝑓 𝜀" 𝜃 , 𝜂 𝐼"./  is the conditional distribution of the innovation.  
If it is assumed 𝜀/ as degenerated, 𝑓 𝜀/  does not depend on unknown parameters, in this way the join 

distribution becomes: 
𝐿k 𝑦, η = 𝑓 ε" θ , η 𝐼"./ . 2.17  

From the distribution of the standard innovation, 𝑢", it follows that: 

𝐿k 𝑦, 𝜂 = 𝑓 𝑢" θ , 𝜂 ℎ" θ .//J
k

"¯/

2.18  

where: ℎ" 𝜃 .//J =∣ 𝜕𝑢"/𝜕𝜀"|  is the determinant of the Jacobian obtained with the transformation of the 
innovation 𝜀" to the standard 𝑢".  
Thus, the log-likelihood can be written as: 

𝑙k = log 𝐿k 𝑦k … 𝑦/ = log 𝑓(𝑢"(𝜃), 𝜂 	− 	
1
2
log ℎ" 𝜃

k

"¯/

2.19  

The ML estimator, 𝜓, is the solution of the equation: 

𝑆" 𝑦k … 𝑦/ = 𝑠" 𝑦"

k

"¯/

= 0 2.20  

where:
𝑠" =

àáâ ã7,ä
àå

2.21  
is the score of the t-th observation that can be obtained using a numerical optimisation. 

This estimation method is valid under the assumption of Gaussian distributed innovations, 𝑢" ∼ 𝑁 0,1 , 
such that: 

 𝑙k 𝑦, 𝜃 = − k
J
log 2π − /

J
log ℎ" 𝜃k

"¯/ − /
J

𝑢" θ Jk
"¯/  

where: the score is: 𝑠" =
àç7 è
àè

⋅ é7 è
�7

+ /
J
ℎ" θ

./ à�7 è
àè

é79 è
�7 è

− 1 .  
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Several alternative distributions have been used in order to take into account of the leptokurtosis in the asset 
returns distribution, as the Student’s t-distribution, the non-central t-distribution and the Generalized Error 
Distribution (GED). Since normal distribution of innovations has been empirically denied, in order to avoid the 
specification of their distribution, the quasi-maximum likelihood (QML) estimator can be used. Under few regularity 
conditions, the QML estimator is asymptotically normal with: 𝑇 θê − θK∗

ì
𝑁 0, 𝐴./𝐵𝐴./ ,	where the 

matrices A and B are equal to: 

𝐴 = −
1
𝑇
𝐸K

𝜕J𝑙k θ
∂θ ∂θª

																															𝐵 =
1
2
𝐸K

∂𝑙k θ
∂θ

∂𝑙k θ
∂θª

. 

when 𝑢" ∼ 𝑁 0,1 , the matrices A and B coincide. 
Multivariate GARCH models 

Normally, problems in economics need the specification and the estimation of a volatility measure in the multivariate 
framework. Hence, the GARCH literature has been extended in the multivariate case, as further analysed in this 
section.  

Let 𝑦" be a vector of n components and 𝜀" a vector of n innovations with zero mean, given the information 
set 𝐼"./, it is assumed that: 

𝜀" = 𝐻"
//J𝑢" 2.22  

where: 𝐻"  is the 𝑛×𝑛 conditional covariance matrix and 𝑢" is a vector such that 𝐸 𝑢"𝑢"ª = 𝐼ê. 

2.2.1. VECH 

The VECH model, introduced by Bollerslev, Engle, and Wooldridge (1988), generalises in the multivariate the 
GARCH model: 

𝑣𝑒𝑐ℎ 𝐻" = 𝑐 + 𝐴>𝑣𝑒𝑐ℎ 𝜀".>𝜀".>ª

®

>¯/

+ 𝐵�𝑣𝑒𝑐ℎ 𝐻".�

\

�¯/

2.23  

where: 𝑣𝑒𝑐ℎ ⋅  is the mathematical operator that transforms a symmetric matrix in a vector considering only the 
lower triangular part of the matrix.  

Since c is a  𝑛 𝑛 + 1 /2×1 vector and 𝐴>  and 𝐵�  are 𝑛 𝑛 + 1 /2×𝑛 𝑛 + 1 /2 matrices, the total 
number of parameters to be estimated is 𝑝 + 𝑞 𝑛 𝑛 + 1 /2 J + 𝑛 𝑛 + 1 /2. When the number of the asset 
is particularly high, there can be a numerical problem with the estimation. Moreover, it is not possible to ensure a 
semi-definite positive covariance matrix without restrictions on the parameters. 

Bollerslev, Engle, and Wooldridge (1988) introduced a restricted version of the VECH model, assuming that 
𝐴>  and 𝐵�  are diagonal matrices. As showed in Bollerslev, Engle, and Nelson (1994), 𝐻"	can be ensured positive 
definite for each t. The diagonal GARCH(p,q) model reduces the number of parameters to be estimated to 
𝑝 + 𝑞 + 1 𝑛 𝑛 + 1 /2. The major limitation of this model is that it does not allow interactions between different 

conditional covariances. 
2.2.2. Baba-Engle-Kraft-Kroner 

The Baba-Engle-Kraft-Kroner (BEKK) model, formalised by Engle and Kroner (1995), ensures positive definite 
conditional covariance matrix thanks to the quadratic form of the equation. The model is written as: 

𝐻" = 𝐶𝐶ª + 𝐴¬>ª 𝜀".>𝜀".>ª 𝐴¬>

ð

¬¯/

®

>¯/

+ 𝐵¬�ª 𝐻".�𝐵¬�

ð

¬¯/

\

�¯/

2.24  

where: 𝐴¬> , 𝐵¬�  are n	×n non-negative symmetric matrices and 𝐶  is a 𝑛	×𝑛 low triangular matrix, K are the 
called the degree of generality of the model.  
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BEKK model is covariance stationary if and only if the eigenvalues of the matrix:  𝐴¬>ª ⊗ð
¬¯/

®
>¯/

𝐴¬>ª + 𝐵¬�ª ⊗ 𝐵¬�ªð
¬¯/

\
�¯/  are not greater than 1 in modulus, where ⊗ is the Kronecker product. When 

𝐾 > 1 , there is an identification problem since several parametrizations are possible for the same matrix 
(Silvennoinen and Teräsvirta 2008). 

2.2.3. Factorial and orthogonal GARCH models 

This class of models aims to minimize the number of the parameters to be estimated. Based on Capital Asset 
Pricing Model (CAPM) from Sharpe (1964), these models imply that few common determinants drive asset volatility. 
Engle, Ng, and Rothschild (1990) introduced the first factorial GARCH model, based on the Arbitrage Price Theory 
from Ross (1976), supposing that 𝐻" matrix is generated by a k number of factors, 𝑓", such that: 

𝐻" = Ω + 𝑤¬𝑤¬ª 𝑓¬,",
ð

¬¯/

2.25  

where: Ω is a 𝑛	×𝑛 semi-definite positive matrix, 𝑓¬," are the factors and 𝑤¬ , for 𝑘 = 1, … . . 𝐾, are the linearly 
independent vectors of weighs. The model assumes that the factors are correlated, making hard to 
understand the effects of the single factors and individuate the factors to be used. 
The use of principal component analysis tries to overcome these limitations by introducing the invertible 

decomposition 𝑊: 
𝑦" = 𝑊𝑧". 2.26  

The original observations are a linear combination of the unobservable factors 𝑧". The models from this 
specification are named Orthogonal (O-) GARCH, Alexander and Chibumba (1996), and Generalized Orthogonal 
(GO-) GARCH, Van der Weide (2002) and are based on the hypothesis that the orthogonal matrix 𝑊 is constant 
and invertible, and that the factors are conditionally heteroscedastic and that follow a GARCH process. 

2.2.4. Constant Conditional Correlation (CCC) and Dynamic Conditional Correlation (DCC) 

The last class of multivariate specification of conditional heteroscedasticity models is based on the decomposition 
of the conditional covariance matrices. Bollerslev (1990) proposes a class of constant conditional correlation (CCC) 
models, where the conditional covariance matrix is decomposed as  

𝐻" = 𝐷"
//J𝑅𝐷"

//J 2.27  

where: 𝐷" is a 𝑛	×𝑛 diagonal matrix with the conditional variance, ℎ>>", on the diagonal and R is the conditional 

correlations matrix where the single element is 𝜌>� = ℎ>� ℎ>>ℎ��
.//J.  

When the correlations are constant, the elements of 𝐻", ℎ>�" = 𝜌>� ℎ>>"ℎ��"
//J, are time varying only for 

the effect of the variations of single conditional variances. 𝐻" is positive definite for each t since R is positive definite 
and constant and the variances on the diagonal of 𝐷" are positive for construction. It is further assumed that the 
conditional variances on the diagonal of 𝐷" follow a univariate GARCH process, such that: 

ℎ>>" = 𝑤> + 𝛼>ô𝜀>".ôJ

®

ô¯/

+ 𝛽>ôℎ>>".ô

\

ô¯/

ℎ>�" = 𝜌>� ℎ>>"ℎ��"
//J

2.28  

This approach guarantees a positive definite matrix 𝐻"  and reduces the number of parameters to be 
estimated to 𝑛 1 + 𝑝 + 𝑞 + 𝑛 𝑛 + 1 /2, but is based on the unrealistic restriction of constant conditional 
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correlations. Engle and Sheppard (2001) and Engle (2002) proposed the Dynamic Conditional Correlation (DCC) 
to introduce a dynamic component in the correlations. The model is written as 

𝐻" = 𝐷"
//J𝑅"𝐷"

//J, 2.29  

where: 𝑅"  is time varying for the effects of 𝜌>�" = ℎ>�" ℎ>>"ℎ��"
.//J . In the first step, the estimates of the 

conditional variances follow a GARCH(p,q) process: 

ℎ>>" = αK> + 𝛼[𝑦>".[J

õ5

[¯/

+ 𝛽[ℎ>>".[,

ö5

[¯/

2.30  

where: 𝑄>  and 𝑃>  are the numbers of the GARCH lags. In the second step, dynamics correlations are estimated 
as follows: 

𝑄" = 1 − 𝑎ô

®

ô¯/

− 𝑏ô

\

ô¯/

𝑄 + 𝑎ô𝑢".ô𝑢".ôª

®

ô¯/

+ 𝑏ô𝑄".ô

\

ô¯/

2.31  

𝑅" = 𝑄"./𝑄"𝑄"./ 2.32  

where: 𝑄"  is a matrix with the square roots of the element of 𝑄"  on its diagonal, 𝑄 	= 	𝐸(𝑢"𝑢"ª)  is the 
unconditional correlations matrix of 𝑦" and 𝑢>" = 𝑦>"/ℎ>"

//J are the standardized residuals. 

The major advantage of this model is the reduction of the number of parameters to 𝑝 + 𝑞 + 𝑛 +
𝑃> + 𝑄>ê

>¯/  and the inclusion of a time varying correlation matrix. 

2.2.5. Multivariate GARCH estimation 

The estimation of the conditional covariance matrices is based on the maximum likelihood function. Let 
{𝑦": 𝑡 = 1,2, … }  be a sequence of 𝑛	×1  vectors of random variables 𝑦" , it is supposed that the first two 
conditional moments are: 𝐸 𝑦" 𝐼"./ = µ" θ , 𝑉𝑎𝑟 𝑦" 𝐼"./ = 𝐻" θ , where θ ∈ Θ and Θ are a subset 
of Rù.  

The log-likelihood is given by: 𝑙k = 𝑙" 𝜃k
"¯/ , where T is the number of observations. Thus: 

log 𝑙" θ = − /
J
log det 𝐻" 𝜃 − /

J
𝑦" − µ" θ ª𝐻" θ 𝑦" − µ" θ = − /

J
log det 𝐻" 𝜃 − /

J
ε" θ ª𝐻"./ε" θ .  

First order conditions for maximization are: àáâ ýâ
àè

= à þÿ! á7 ý7
àè

k
"¯/ = 0. If the conditional moments 

𝜇" 𝜃  and 𝐻" 𝜃  are differentiable respect to 𝜃 and if 𝐻" 𝜃  is a non-singular matrix with probability one, for 
each 𝜃 ∈ Θ, then the gradient of the t-th observation is equal t: 

𝑠" θ ª =
∂µ" θ
∂θ

𝐻"./ θ ε" θ +
1
2
∂𝐻" θ ª

∂θ
𝐻"./ θ ⊗ 𝐻"./ θ 𝑣𝑒𝑐 ε" θ ε" θ ª − 𝐻" θ . 

Under few regularity conditions on conditional variance and on the stationarity of the gradient, it can be proved that 
the quasi-maximum likelihood estimator exists asymptotically and it is asymptotically normal (Bollerslev and 
Wooldridge (1992)). 
3. Stochastic volatility models 

Stochastic volatility models represent a parametric alternative to GARCH models for the estimation of 
volatility. For this class of models, the informative set  𝐼".� is not directly observable respect to time. As a result of 
this, the latent volatility is driven by an underlying stochastic process. In this section, a brief review of the principal 
stochastic volatility models is presented, for a more detailed analysis see Taylor (1994), Shephard (1996) and 
Ghysels, Harvey, and Renault (1996). 

It is supposed that volatility follows a stochastic process, 𝑣", and that the asset price follows a process like: 
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𝑑𝑆" = µ𝑆"𝑑𝑡 + 𝑣"𝑆"𝑑𝑊" 3.1  

where: 𝑊" is a Brownian motion with zero mean and unitary variance, 𝜇 is the drift component of price 𝑆". The 
equation underlying the stochastic volatility is defined as 

𝑑𝑣" = 𝛼[,"𝑑𝑡 + 𝛽[,"𝑑𝐵" 3.2 	

where: 𝛼[," and 𝛽[," are functions of 𝑣". The most significant difference with GARCH models is that, conditionally 
to information set 𝐼"./, volatility 𝑣" is unknown and unobservable (Bauwens, Hafner, and Laurent 2012). 

Heston (1993) was the first to propose a model of volatility dependent on the price dynamics, such that  

𝑑𝑣" = 𝑘 𝜃 − 𝑣" 𝑑𝑡 + 𝜎 𝑣"𝑑𝐵" 3.3  

where: 𝜃 is the mean long-term volatility, 𝑘 is the rate at which volatility reverts toward its long-term mean, 𝜎 is the 
volatility of the volatility process and 𝑑𝐵" is a zero mean Gaussian process, 𝑑𝑊" and 𝑑𝐵" are correlated 
with the constant correlation value 𝜌. 

Several extensions of Heston (1993) model have been proposed: 
§ CEV (constant elasticity of variance) model, in this model the relation between volatility and price is given by: 

𝑑𝑆" = 𝜇𝑆"𝑑𝑡 + 𝜎𝑆"
¾/J𝑑𝑊" 3.4  

where: 𝑑𝑊 is a Wiener process, 𝜎 is a positive constant and 𝛽 is known as the CEV parameter. 𝛽 influences the 
direction and the size of the impact of the price on the volatility. Since this model does not present a 
separated process for volatility, it is called local volatility model; 

§ Chen (1996) model, the dynamics that drive the interest rates, v_, are derived from the following system: 

𝑑𝑟" = 𝜃" − 𝛼" 𝑑𝑡 + 𝑟"𝜎"𝑑𝑊" 3.5  

𝑑𝛼" = 𝜁" − 𝛼" 𝑑𝑡 + 𝛼"𝜎"𝑑𝑊" 3.6  

𝑑𝜎" = 𝛽" − 𝜎" 𝑑𝑡 + 𝜎"𝜂"𝑑𝑊"; 3.7  

§ SABR (Stochastic Alpha, Beta, Rho) model, aims to reproduce the dynamics of volatility on the derivatives market. 
The equations that define the model are: 

𝑑𝑆" = 𝜎"𝑆"
¾𝑑𝑊" 3.8  

𝑑𝜎" = 𝛼𝜎"𝑑𝑧", 3.9  

where: 𝑊" and 𝑧" are two correlated Wiener processes. 
3.1. Multivariate Stochastic Volatility Models (MSV) 

Stochastic volatility models are also extended in the multivariate framework. Considering a vector of 
logarithmic prices 𝑆 = 𝑆/, … . 𝑆ê  of n assets with 𝑦 = 𝑦/, … . , 𝑦ê  returns vectors, the model for 𝑆 can be 
defined as: 

𝑑𝑆" = 𝐻"
//J𝑑𝑊" 3.10  

𝑑𝑓 𝑣𝑒𝑐ℎ 𝐻" = 𝑎 𝑣𝑒𝑐ℎ 𝐻" 𝑑𝑡 + 𝑏 𝑣𝑒𝑐ℎ 𝐻" 𝑑𝐵" 3.11  

where: 𝑊" and 𝐵" are two vectors of Brownian motions, 𝐻" is the instantaneous covariance matrix and 𝑓, 𝑎 and 
𝑏 are known functions. 

It follows that the generic MSV model in discrete time is given by: 
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𝑦" = 𝐻"
//Jε" 3.12  

𝜀" ∼ 𝑁 0, 𝐼ê 3.13  

𝑢"./ ∼ 𝑁 0, Σé 3.14  

𝑓 𝑣𝑒𝑐ℎ 𝐻" = 𝑎 𝑣𝑒𝑐ℎ 𝐻"./ + 𝑓 𝑣𝑒𝑐ℎ 𝐻"./ + 𝑏 𝑣𝑒𝑐ℎ 𝐻"./ 𝑢"./, 3.15  

where 𝑦" = 𝑆" − 𝑆"./. 
This model does not guarantee a positive definite 𝐻" ; several works aims to overcome this limitation. 

Harvey, Ruiz, and Shephard (1994) introduces a new model, where 𝐻" is ensured positive definite and is defined 
as: 

ε" = 𝐻"
//J𝑧"																						𝑧" ∼ 𝑁 0, Σ" 3.16  

𝐻" = 𝑑𝑖𝑎𝑔 𝑒𝑥𝑝 ℎ/" , … , 𝑒𝑥𝑝 ℎ=" 3.17  

ℎ"�/ = 𝑤 + β⊙ ℎ" + 𝑢"𝑢" ∼ 𝑁 0, Σé 3.18  

where: ℎ" = ℎ/", … . , ℎ="  is the vector of the volatility at time 𝑡, Σ" is the correlation matrix,	⊙ is the Hadamard 
product operator, 𝑤 and 𝛽 are vectors of parameters.  

The model is too restrictive, because it has constant correlations in a similar way to the CCC model from Bollserlev 
(1990). Harvey’s model has been extended in several ways, to taking into account of time varying correlations, 
leverage effects, heavy tails distribution of innovations, for further details see Asai, McAleer, and Yu (2006) and 
Andersen (2009). 
4. Realized Variance 

Conditional heteroscedasticity and stochastic volatility model represent the most common approaches to 
measure volatility. However, these models heavily depend on the specification of the underlying process of volatility 
and necessitate of strong restrictions on parameters to be estimated. 

Lately, the attention of the research on volatility measure has moved to high frequency data. Firstly, Merton 
(1980) showed that volatility can be defined as the sum of the squared returns at high frequency level. Recently, 
Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2001) pointed out 
that summing up the squared intra-daily returns it is obtained an observable measure of daily volatility named 
realized variance (RV). Ex post volatility, excluding measurement errors and jumps, becomes "observable" and can 
be directly modelled. 
4.1. Realized Variance Construction 

The realized variance theory is based on the idea that the realized measure is the best approximation of the 
unobservable volatility when the returns are sampled at sufficiently high frequencies. Supposing that the log-price 
of an asset, 𝑝 𝑡 , follows a diffusion process such that: 
𝑑𝑝 𝑡 = µ 𝑡 𝑑𝑡 + σ 𝑡 𝑑𝑊 𝑡 	 	 with	t=1,	2,	3	…					 	 	 	 											 															(4.1) 

that describes the trajectories of a semimartingale in continuous time over the interval 0, 𝑇 , with 0 ≤ 𝑠	 ≤ 𝑡	 ≤
𝑇, where 𝜇 𝑡  is the drift component, 𝜎 𝑡  is the instantaneous volatility of the process or standard deviation, 
strictly positive and square integrable (i.e. 𝐸 𝜎[J

"
K 𝑑𝑠 < ∞ ), and 𝑊 𝑡  is a standard Brownian motion. 

Let the continuously compounded return between 𝑡 − ℎ and 𝑡, with 0 < ℎ	 ≤ 𝑡, be: 

𝑟" = 𝑝 𝑡 − 𝑝 𝑡 − ℎ = µ[
"

".�
𝑑𝑠 + 𝜎[

"

".�
𝑑𝑊[. 4.2  
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The quadratic variation of the return, natural measure of the variability of the diffusion path of a martingale 
according to stochastic integration theory, is defined as: 

𝑝 " = 𝑄𝑉" = 𝜎J 𝑠 𝑑𝑠
"

".�
. 4.3  

Equation (4.3) shows that the drift innovations do not affect the variation of the diffusion path of returns. In 
this context, since the quadratic variation is totally induced by the innovations of a local martingale, it coincides with 
the integrated variance6, index of ex-post cumulated variability of returns and given by: 

𝐼𝑉" = σJ 𝑠 𝑑𝑠"
".� = 𝑄𝑉".        (4.4)	

From the property of the quadratic variation (from the equation (1.13 in section 1.2), it follows that, in 
absence of microstructure errors7 and of measurement errors (Andersen, Bollerslev, Diebold, and Labys (2000) 
and Barndorff-Nielsen and Shephard (2002a)), returns quadratic variation can be approximated as: 

𝑝 𝑡 = 𝑝 lim
ê→�

𝑝 𝑠� − 𝑝 𝑠�./
J

ê

�¯/

, 4.5  

for each partition sequence 0 = 𝑠K < 𝑠/ < ⋯ < 𝑠ê = 𝑡  with ∣ 𝑠� − 𝑠�./ ∣→ 0 , when the number of the 
partitions 𝑛 → ∞.Since the intra-daily return is defined as: 𝑟",> = 𝑝",> − 𝑝",>./	 	 ∀𝑖 = 1, … . , 𝑛 and the daily 
return as: 𝑟" = 𝑟",>ê

>¯/ ,	semimartingale theory ensures that the realized variance, defined as the sum of the intra-
daily squared returns, converges in probability to the quadratic variation and, consequently, to the integrated 
variance of the day t, for 𝑛 → ∞. Let the realized variance be: 

𝑅𝑉" = 𝑟",>J
ê

>¯/

, 4.6  

it follows that: 

𝑅𝑉"
\
𝑟, 𝑟 " − 𝑟, 𝑟 ".� ≡ 𝑄𝑉" 4.7  

𝑅𝑉"
\
𝐼𝑉". 4.8  

Realized volatility is a consistent estimator of notional volatility, such that: 

𝑅𝑉"
\
𝜐J 𝑡, ℎ . 4.9  

This implies that the expected realized volatility is a consistent estimator of expected notional volatility: 

𝐸 𝑅𝑉" 𝐼".�
\
𝐸 𝜐J 𝑡, ℎ 𝐼".� . 4.10  

From equation (1.22), it follows that, if the return process is square integrable and if 𝜇(𝑡) ≡ 0, the realized 
volatility is an unbiased estimator of the conditional variance of returns:  

𝐸 𝑅𝑉" 𝐼".� = 𝐸 𝑄𝑉" 𝐼".� = 𝑉𝑎𝑟 𝑟 𝑡, ℎ 𝐼".� 4.11  

This equivalence merges the realized volatility and the conditional variance from ARCH models. In particular, 
it is possible to build a model of the time series for the realized variance which approximates the conditional variance 
of returns. If  𝜇 𝑡 	≠ 0, the convergence of RV to QV does not automatically imply the convergence in mean of 
the same objects. 

                                                
6 Quadratic variation and integrated variance do not coincide in a more general process (e.g. diffusion model with jumps). 
7 A microstructure error emerges for the presence of non-synchronized exchanges, for the absence of trades, for some 

properties of the trading mechanism (Black (1976) and Amihud and Mendelson (1987)) and for the presence of discrete 
prices (Harris (1990) and Harris (1991)). 



 Journal of Advanced Studies in Finance 
 

108 

First examples of realized variance can be found in Merton (1980), Poterba and Summers (1986), Schwert 
(1989), Richardson and Stock (1989), Schwert (1990), Taylor and Xu (1997) e Christensen and Prabhala (1998). 
The use of a realized measure, however, spread only after the formalization of the measure by Andersen and 
Bollerslev (1998) that proved, with Andersen, Bollerslev, Diebold, and Labys (2003), that the realized variance is a 
consistent estimator of the daily volatility only if the distance between intra-daily observations approaches zero or 
if the sampling frequency approaches infinity. 
4.2. Realized variance distribution 

The asymptotic distribution of the realized variance has been analysed in two different papers, Jacod and 
Protter (1998) and Barndorff-Nielsen and Shephard (2002a). From their results, it emerges that the realized 
variance is distributed as: 

𝑛//J ⋅
1
2𝐼𝑄"

𝑅𝑉" − 𝐼𝑉"
ì
𝑁 0,1 4.12  

where 𝑛 is the intra-daily sampling frequency and 𝐼𝑄" is defined as the integrated quarticity: 

𝐼𝑄" = 𝜎Z 𝑠 𝑑𝑠
"

".�
. 

In order to make inference, a consistent estimator of 𝐼𝑄" is necessary. Barndorff-Nielsen and Shephard 
(2002a) showed that a consistent estimator of 𝐼𝑄" is given by the Realized Quarticity, RQ, defined as 

𝑅𝑄" =
1
3

𝑟>Z,
ê

>¯/

4.13  

such that: 
δ.//J 𝑅𝑉" − 𝐼𝑉"

J
Y
𝑅𝑄"

ì
𝑁 0,1 . 4.14  

Barndorff-Nielsen and Shephard (2002a) proved that the best approximation of the realized distribution 
requires a log-linearisation, such that: 

𝛿.//J 𝑙𝑜𝑔𝑅𝑉" − 𝑙𝑜𝑔𝐼𝑉"
J
Y
4õ7
4)7

9

ì
𝑁 0,1 . 4.15  

4.3. Caveats with Realized Variance 
The previous results show that the highest sampling frequency should be usually preferred to measure 

realized variance. However, the logarithm of prices does not spread in continuous time in practice, but it is usually 
observed at discrete and not regular intervals. The sampling methods influence the discretization of the price. We 
analyse different sampling methods:  

§ Calendar time sampling, transactions are selected by regularly spaced calendar time, such as every 5 
minutes or every hour. De Pooter, Martens, and Van Dijk (2008) attempt to find the optimal sampling 
frequency, showing that an optimal sampling frequency for the measurement of the daily realized variance 
is comprised between 30 and 65 minutes.  

§ Transaction time sampling, data are sampled each n transactions.  
§ Business time sampling, the price process is sampled at equidistantly spaced points in business time, 

such that 𝐼𝑉",> =
*)7
ê

. 
§ Tick time sampling, prices are sampled tick-by-tick.  
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Several works dealt with the choice of the best sampling method. Among others, Oomen (2005a, 2005b) 
concluded that the transaction time sampling method is the best choice, despite the large diffusion of the calendar 
time sampling method. In addition to the choice of the sampling methodology, the process for determining the 
realized variance must face the presence of the microstructure error. There exists, in fact, a trade-off between the 
microstructure error and the accuracy of the estimation that might lead the realized variance to be a non-robust 
estimator of the daily integrated variance. 

The effect of the microstructure error is enhanced when calendar time sampling methodology is used. 
Andersen et al. (2000, 2001, 2003) suggested that the issue related to microstructure error could be solved through 
subsampling. A practical solution is to implement sparse sampling, which implies to sample not too frequently, e.g. 
every 5 or 30 minutes. 

Following this procedure, Bandi and Russell (2005), Bandi and Russell (2007) and Zhang, Mykland, and 
Aït−Sahalia (2005) proposed an approach to determine the optimal subsampling frequency that relies on the 
minimization of the mean square error (MSE): 

𝑀𝑆𝐸 𝑛"
[\+ô[, = 2𝑛"

[\+ô[, 𝐸 𝜀",>J + 4𝑛"
[\+ô[, 𝐸 𝜀",>Z + 8𝑅𝑉"

[\+ô[, 𝐸 𝜀",>J − 2𝑉 𝜀",>J

+
2

𝑛"
[\+ô[, 𝐼𝑄"

[\+ô[,  

where: 𝑛"  is the number of subsamples, 𝑅𝑉"  is the realized variance, 𝐼𝑄"  is the integrated quarticity, 𝜀"  is the 
microstructure error with zero mean. 

Thus, the optimal sampling frequency is approximated as: 𝑛"∗ =
*õ7

Z - .7,5
9 9

//Y

,	where 𝐸 𝜀",>J  can be 

consistently estimated by /
Jê7

𝑅𝑉" and the integrated quarticity can be estimated through realized quarticity. 
Nevertheless, Zhang (2006) showed that on one side the use of subsampling reduces the magnitude of the 

microstructure error, specifically by 2𝑛𝐸 𝜀",>J , on the other side it increases the variance for the larger 
subsampling interval. Alternative integrated variance estimators have been proposed in order to address this trade-
off and to consider the microstructure error. Zhang, Mykland, and Aït−Sahalia (2005) proposed the two-time scales 
Estimator (TTSE), given by:  𝑅𝑉"

kk/- = /
ð

𝑅𝑉"
¬ð

¬¯/ − ê7
ê7
𝑅𝑉". Where the set of daily observations is divided 

in K non-overlapping subset, where 𝑘 = 1, . . . , 𝐾, 𝑛"	is the number of observations of the entire grid, 𝑅𝑉"
¬  is 

the realized variance of the subset 𝑘 , 𝑅𝑉"  is the realized variance of the day 𝑡  and 𝑛"  is defined as: 𝑛" =
/
ð

𝑛"
¬ð

¬¯/ = ê7.ð./
ð

. 
Zhang, Mykland, and Aït−Sahalia (2005) re-interprets this estimator according to the following specification: 

𝑅𝑉"
kk/-,+ì� = 1 − ê7

ê7

./
𝑅𝑉"

kk/- . The most common estimator in presence of microstructure error is the 
kernel estimator. Zhou (1996) firstly proposed this estimator for high-frequency data, proving that the microstructure 
error is time-dependent and has time-varying properties. From this proposed estimator, Hansen and Lunde (2004) 
and Hansen and Lunde (2006) developed the following estimator: 

𝑅𝑉" = 𝑅𝑉" + 2
𝑛"

𝑛" − ℎ
γ�

0

�¯/

, 4.16  

with: γ� =
ê7

ê7.�
𝑟",�𝑟",���

ê7.�
�¯/ . 

Nonetheless, the proposed estimators by Zhou (1996), with 𝐻 = 1 for Equation (4.16), and from Hansen 
and Lunde (2004) are not consistent. Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) tried to overcome 
this drawback through the flat-top kernel-based estimator: 
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𝑅𝑉"
Â0C/ = 𝑅𝑉" + 𝑘

0

�¯/

ℎ − 1
𝐻

γ� + γ.� 4.17  

where: 𝑘(𝑥) for 𝑥	 ∈ 	 [0,1] is a non-stochastic weight function such that 𝑘(0) = 1  and 𝑘(1) = 0. 
In the early phases of RV models, an alternative way to mitigate the effects of the microstructure noise was 

to pre-filter the intraday returns. For example, Bollen and Inder (2002) relied on an autoregressive (AR) filter, while 
Ebens (1999), Maheu and McCurdy (2002) and Andersen, Bollerslev, Diebold, and Ebens (2001) used a moving 
average filter. 
4.4. Realized Covariance 
The realized variance approach may be extended in the multivariate framework. Considering n financial activities, 
𝑝(𝑡) is a n	×1 vector, 𝜇 and 𝑊 are vectors of n-dimensional processes, the logarithmic price process may be 
defined as: 

𝑑𝑝(𝑡) = 	µ(𝑡) 	+ Ω(𝑡)𝑑𝑊(𝑡)																				𝑡 = 	1,2, … 

where Ω(𝑡) is a 𝑛	×𝑛 matrix defined as instantaneous co-volatility such that Σ_ = Ω t Ω t ª is the matrix of 
instantaneous covariances, assuming that Ω(𝑡) is orthogonal to	𝑊(𝑡). 

The quadratic variation of 𝑝(𝑡) is equal to: 𝑝, 𝑝 " = Σ[
"
".� 𝑑𝑠 = Ω 𝑠 Ω 𝑠 ª𝑑𝑠"

".� . In this context, 
the quadratic variation coincides with the integrated variance that may be defined as: 

𝐼𝐶𝑜𝑣" = Σ 𝑠 𝑑𝑠
"

".�
. 4.18  

Andersen, Bollerslev, Diebold, and Labys (2003) proved that the realized covariance: 

𝑅𝐶𝑜𝑣" = 𝑟>,"𝑟>,"ª
?

>¯/

4.19  

is a consistent estimator of the integrated covariance, where m is the number of intra-daily partitions. 
In the multivariate framework, since the negotiations are not simultaneous among the assets, it may emerge 

the "Epps effect" (Epps 1979), which shows that the correlation between the assets tends to be under-estimated 
for the effect of non-synchronicity. Several studies have tried to overcome this effect, see Bandi and Russell (2005) 
for further details. 
5. Modelling and Forecasting Realized Covariance 

Since volatility forecasting models are largely employed in empirical application, such as portfolio 
optimisation, option pricing and risk hedging, a large part of the literature has been trying to best approximate 
volatility dynamics. Realized variance has allowed researchers to focus on the specification of the forecasting 
models, giving rise to three strands of literature: time series model of realized variance, Mixed Data Sampling and 
Realized GARCH models. 
5.1. Time series models 

Firstly, Andersen, Bollerslev, Diebold, and Labys (2003), Oomen (2001) aimed at analysing the persistence 
of the logarithm of the variance through a fractionally integrated ARMA model. The model introduced by Andersen, 
Bollerslev, Diebold, and Labys (2003) can be specified as follows:  

Φ 𝐿 1 − 𝐿 ì 𝑦" − µ = Θ 𝐿 ε" 5.1  

where: 𝑦"  is the logarithm of the realized volatility, 𝐿  is the lag operator, Φ 𝐿 	= 	1	 − 	Φ/𝐿 ⋯− Φù𝐿\ ,  
Θ L = 1 + Θ/L + ⋯…+ Θ2L2 and 1 − L 3 is the fractional difference operator defined as: 
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1 − 𝐿 ì =
Γ 𝑘 − 𝑑 𝐿¬

Γ −𝑑 Γ 𝑑 + 1

�

¬¯K

5.2  

where: Γ(∙) is the gamma function. The 𝑑 parameter can assume any values between 0 and 1, when 𝑑 = 0 the 
Equation (5.1) defines a 𝐼(0) model, while with 𝑑 = 1 the Equation (5.1) defines a firstly integrated model.  
The multivariate version of this model is proposed by Halbleib-Chiriac and Voev (2011) and will be analysed 

in this section. As an alternative of ARFIMA models, long-term memory can be captured also through a 
Heterogeneous Autoregressive (HAR) model, proposed by Corsi (2009). In the HAR model, the daily realized 
volatility is function of the lagged daily, weekly and monthly realized volatility: 

𝑅𝑉"�/6
6 = 𝑐 6 + β 6 𝑅𝑉"

6 + β » 𝑅𝑉"
» + β ? 𝑅𝑉"

? + ε"�/,6 5.3  

where: 𝑔, 𝑤 and 𝑚 represent the daily, weekly (5 days) and monthly (20 days) frequencies.  

The regressors 𝑅𝑉"
» , 𝑅𝑉"

?  are the average of the past values of 𝑅𝑉"  scaled for the size of the 
frequency, e.g. 𝑅𝑉"

? = /
JK

𝑅𝑉".>/7
>¯K .The relatively simple structure and the possibility to estimate the model 

through a OLS estimation have spread the use of this specification. Corsi (2009) showed that this model generates 
more accurate out-of-sample forecasts than short-term memory models. 

Due to the non-parametric nature of the realized measure, the implementation of multivariate volatility 
models has become quite simple. A first attempt to model multivariate volatility is provided by Halbleib-Chiriac and 
Voev (2011), which suggested a VARFIMA(p,d,q) of the Cholesky factors of the realized covariance matrix, in order 
to capture the highly persistent behaviour of the volatility and to guarantee a semi-positive definite forecast matrix. 

Let 𝑌"  be a 𝑛	×𝑛  realized covariance matrix at time 𝑡 , where 𝑛  is the number of asset, the Cholesky 
decomposition of 𝑌"  is given by the lower triangular matrix, 𝑃" , such that 𝑃"𝑃"ª = 𝑌" . Since the matrix 𝑌"  is 
symmetric and positive definite, the elements of the matrix 𝑃" are all real if the number of intra-daily observations 
is larger than 𝑛. Assuming that 𝑋" = 𝑣𝑒𝑐ℎ 𝑃"  is the 𝑚	 = 	𝑛(𝑛 + 1)/2 Cholesky factors vector, obtained by 
stacking the components of the matrix 𝑃", the authors proposed the following VARFIMA model 
Φ(𝐿)𝐷(𝐿)[𝑋" − 𝐵𝑍"]& = Θ(𝐿)ε"																					𝜀" ∼ 𝑁(0, Σ_{𝑡})       (5.4) 

where: 𝑍" is the 𝑘	×1 vector of exogenous variables, 𝐵 is the coefficients matrix of dimension 𝑚	×𝑘, Φ 𝐿 =
𝐼ê − Φ/𝐿 − ΦJ𝐿J ……Φ\𝐿\  and Θ 𝐿 = 𝐼ê − Θ/𝐿 − ΘJ𝐿J − ⋯… .−Θ®𝐿®  are matrix lag 
polynomials where Φ> , for 𝑖 = 1, . . . . . , 𝑝  and Θ� , for 𝑗 = 1. . . . . . 𝑞 , are the AR- and MA- coefficient 
matrices and 𝐷 𝐿 = 𝑑𝑖𝑎𝑔{ 1 − 𝐿 ì/, … . . , 1 − 𝐿 ì?} , where 𝑑/ … . . 𝑑?  are the degrees of 
fractional integration of each element of the vector 𝑋", Σ" is the covariance matrix of ε".  

The authors assume that the roots of Φ 𝐿  and Θ 𝐿  lie outside the unit circle and 𝑋" stationary when 
𝑑> < 0.5, as shown in Sowell (1992). In their article, the model is estimated in final equations form8 to limit the 
number of parameters to be estimated and guarantee a unique representation. The final model is estimated via 
quasi-maximum likelihood and its (1,d,1) specification has the following form: 
	(1 − Φ𝐿)𝐷(𝐿)[𝑋" − 𝑐] = (1 − Θ𝐿)𝜀"																									𝜀" ∼ 𝑁(0, Σ)                  (5.5) 

where: 𝑐 is a 𝑚	×1 vector. The number of parameters significantly reduces from		𝑞𝑛J + 𝑘 + 1 𝑛 to 2𝑛 + 2, 
when 𝐷 𝐿 = 𝑑𝑖𝑎𝑔{ 1 − 𝐿 ì/, … . , 1 − 𝐿 ìê}, and to 𝑛 + 3, when 𝐷 𝐿 = 1 − 𝐿 ì𝐼ê. 
A recent study of Baruník and Čech (2016) suggested to model the Cholesky factors through a generalized 

HAR (GHAR). The proposed model is a multivariate extension of the HAR model also analysed in Halbleib-Chiriac 
and Voev (2011). The authors propose a system of unrelated HAR equations for all the elements of the vector of 
                                                
8 See Theil and Boot (1962). The VARFIMA(p,q) is said to be in final equations form, i.e. Φ 𝐿 𝑌" = Θ 𝐿 ε", if ΘK = 𝐼ê and 
Φ 𝐿 = 1 − Φ/𝐿 − ⋯…− Φ\𝐿\ is a scalar operator with Φ\ ≠ 0.  
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Cholesky factors, 𝑋", relying on a system of unrelated regressions (Zellner (1962). Their results highlight the strong 
performance of this model in a portfolio optimisation problem when compared with a VARFIMA model on the 
Cholesky factors, the Riskmetrics model and a DCC-GARCH model. 
An alternative approach to guarantee a semi-positive definite realized covariance matrix, introduced by Bauer and 
Vorkink (2011), implies the logarithmic transformation of the matrix. This parametrization produces the log-
volatilities, defined as: 𝑎" = 𝑣𝑒𝑐ℎ 𝐴" , where 𝐴" is equal to: 

𝐴" = 𝐵" log 𝐺" 𝐵"ª 5.6  

where 𝐵" and 𝐺" are the matrices resulting from the spectral decomposition 𝑌" = 𝐵"𝐺"𝐵"ª (see also Appendix A). 

The dynamics of the log-volatilities, 𝑎" , are modelled through a VAR(1): 
𝑎" = 𝛾K + 𝛾/𝑎"./ + 𝜀" 5.7 	

where 𝛾K is a vector of intercepts of dimension 𝑛	×1, 𝛾/ is a 𝑛	×𝑛 matrix of coefficients and 𝜀" is the vector of 
residuals. 
Once obtained the fitted values of 𝑎" ≡ 𝐸" 𝑎" ≡ γK + γ/𝑎"./, the realized covariance matrix can be 

reconstructed. The inverse of the vech operator allows to define the matrix 𝐴" and, finally the exponential function 
returns the estimated covariance matrix, 𝑉": 

𝑉" = exp 𝐴" . 5.8  

The matrix 𝑉" is positive definite by definition. 
A further innovation of Bauer and Vorkink's paper is the use of exogenous variables as volatility 

determinants. The authors rely on a set of regressors that includes lagged dependent variables and 
macroeconomic/financial variables that have been proven to improve volatility forecasting accuracy. The model 
has the following form: 

𝑎" = γK + γ/𝑎"./ + γJ𝑎".J + ⋯ .+γ¬𝑎".< + γ=𝑋"./ + ε". 5.9  

Since the number of parameters to be estimated is relatively high, the authors suggest three methods to 
reduce it. The first method implies the use of the previously described Heterogeneous Autoregressive model. 
Consider the logarithmic transformation of the bi-power covariance matrix 9  and the vector of the elements, 
𝑎Âö 𝑑 ", a model of the log-volatilities can be expressed as: 

𝑎" = γK + γ/𝑎Âö 1 "./ + γ]𝑎Âö 5 "./ + γJK𝑎Âö 20 "./ + γ=𝑋"./ + ε" 5.10  

where 𝑎Âö 1 ", 𝑎Âö 5 " and 𝑎Âö 20 " are the matrix-logarithms of daily, weekly and monthly multivariate bi-
power covariation, respectively. In this way, the number of parameters is reduced by 𝑀 − 3 𝑝J. 

The previous approach still implies the estimation of a large number of parameters. A second-dimension 
reduction technique supposes that the 𝑎Âö 𝑑 " series are driven by a small number of factors. The authors test 
this hypothesis by estimating the principal components of 𝑎Âö 𝑑 " , where 𝑎Âö 𝑑, 𝑖  is the 𝑖"�  principal 
component of the covariation matrix. 

The third methodology proposed involves the use of a latent factor approach. Assuming that the set of 
explanatory variables: 

𝑍" = 𝑎Âö 1,1 ", … , 𝑎Âö 5,1 ", … . . , 𝑎Âö 20,1 ", … . , 𝑋" 5.11  

is related to the unknown volatility factors, the k-th volatility factor, 𝑣¬,", can be specified as: 

                                                
9 As proposed in Barndorff-Nielsen and Shephard (2004), when a jump component is introduced in the diffusion process of the 

logarithmic price, 𝑝", a robust estimation of the IV can be computed as follows: 𝐵𝑉 = ∣ 𝑟> ∣⋅∣ 𝑟 >�/
ê./
>¯/ |, where n is the 

number of intra-daily partitions. 
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𝑣¬," = θ¬𝑍"./. 5.12  

Thus, the volatility factor is a linear combination of the set of 𝑁 variables 𝑍", θ¬ = {θ¬, / , … . . , θ¬, = } 
are coefficients that combine the explanatory variables. The log-volatilities are function of the volatility factors, such 
that: 

𝑎"> = γK> + β>θ𝑍"./ + ε"> , 5.13  

with 𝑖 = 1, . . . . . , 𝑝, where γK>  is the i-th element of the vector γK, β>  is the 1	×𝐾 vector of loadings of log-space 
volatility and θ is a k	×𝑁	matrix containing the coefficients on the 𝑍"./ variables for the k factors. Aggregating for 
the p log-volatilities, we have: 

𝑎" = γK + βθ𝑍"./ + ε". 5.14  

This approach has the major edge to significantly reduce the number of parameters and to allow to combine 
lagged volatility with exogenous explanatory variables. 

Recently, Gourieroux, Jasiak, and Sufana (2009) proposed a model of multivariate volatility dynamics, called 
Wishart Autoregressive (WAR) model, based on the Wishart distribution of the covariance matrix. Let 𝑋¬,", with 
𝑘 = 1, . . . . , 𝐾, be a vector of n Gaussian independent VAR(1) processes, then: 

𝑋¬," = 𝑀𝑋¬,"./ + ε¬,"																												ε¬,"~𝑁 0, Σ . 5.15  

The process, defined as: 

𝑌" = 𝑋¬,"

ð

¬¯/

𝑋¬,"ª 																								𝑌" ∼ 𝑊ê 𝐾,𝑀, Σ 5.16  

is a Wishart Autoregressive process or order 1, where K denotes the degrees of freedom. Merging the two 
equations, 𝑌" can be written as: 

𝑌" = 𝑀𝑌"./𝑀ª + 𝐾Σ + 𝜂" 5.17  

where 𝜂" is the heteroscedastic error term with zero mean and M is a matrix of dimension 𝑛	×𝑛. In order that 𝑌" 
has a Wishart distribution and that 𝑌" is positive definite, it is necessary that 𝐾 is larger than 𝑛 even if this 
does not usually happen in practice (Halbleib-Chiriac (2007)). Gourieroux, Jasiak, and Sufana (2009) 
suggested to estimate K through a method of moments (MM) estimator: 

𝑘 =
2 𝛼ª𝛴∗ ∞ 𝛼

J

𝑉 𝛼ª𝑌"𝛼
	

where 𝛼 is a 𝑛	×1 vector defined as allocated portfolio and Σ∗ ∞  is given by Σ∗ ∞ = 𝑀Σ ∞ 𝑀ª + Σ∗, 𝑀 
and Σ∗ are the estimates of the MM model, 𝑉 αª𝑌"α  is the sample variance of the portfolio volatility. 
The Wishart model has been further extended by Bonato (2009), Bonato, Caporin, and Ranaldo (2009), Jin 

and Maheu (2012) and Halbleib-Chiriac and Voev (2011). The major pitfall of this model is that the parametric 
assumptions are particularly restrictive and that the only estimation technique available, a Bayesian Markov Chain 
Monte Carlo (MCMC), is highly computational expensive. 

More recently, a part of the literature on volatility models have tried to understand, via time series model, 
the usefulness of exogenous variables in forecasting logarithmic realized volatility, see Paye (2012) and 
Christiansen, Schmeling, and Schrimpf (2012). Relying on a log-volatility model, the authors aim at identifying the 
exogenous determinants of volatility. Both the papers interestingly find that pure macroeconomic variables do not 
drive the dynamics of volatility, while financial variables strongly impact on the process of volatility. 

During the last few years, a growing stream of literature is implementing non-linear models of realized 
volatility. In fact, it is well known that linear models do not consider some stylized facts, as asymmetric responses 
of return volatility. This remains valid also for realized volatility models. Then, Martens, De Pooter, and Van Dijk 
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(2004) propose to use a long memory model with asymmetries and structural breaks for realized volatility. Lately, 
McAleer and Medeiros (2008a) extended their paper with a smooth transition model, introducing tests for the 
presence of structural breaks and non-linearity tests on realized volatility. 
5.2. Mixed Data Sampling (MIDAS) and GARCH-MIDAS models 

Realized measures and high-frequency data are also used in a different framework, called Mixed Data 
Sampling (MIDAS) approach. The seminal papers of the MIDAS approach are Ghysels, Santa-Clara, and Valkanov 
(2004) and Ghysels, Santa-Clara, and Valkanov (2006), which rely on data sampled at different frequencies in 
order to efficiently forecast volatility. 

Let 𝑉"�/ be a volatility measure, as realized volatility, the MIDAS regression at time 𝑡 + ℎ can be written 
as: 

𝑉"�� = µ + 𝜑 𝑏 𝑗, θ 𝑋".�

�?+?

�¯K

+ ε" 5.18  

where: jmax is the maximum lag considered, Xt-j is a set of explanatory variables and b(j, θ) is a weight function of 
lagged regressors.  
The regressors are sampled at higher frequencies than the dependent variable. The parameters of the 

MIDAS model are estimated through maximum likelihood. Several papers have implemented the MIDAS approach 
for an empirical analysis. Becker, Clements, and O’Neill (2010) combined the use of mixed frequencies sampling 
with Cholesky decomposition of the realized covariance matrix. The first two steps of the procedure are the same 
as those showed in Halbleib-Chiriac and Voev (2011), whereas the realized covariance matrix is modelled 
according to the approach presented in Hansen and Lunde (2005). The authors treat the close to open period as a 
separate return period, so that the total 24-hour realized covariance matrix for day 𝑡, 𝑉", is computed as: 

𝑉" = 𝑟Ñ@,"𝑟Ñ@,"ª + 𝑟>,"

ê

>¯/

𝑟>,"ª 5.19  

where:  𝑟Ñ@," is the vector of returns from closure of day 𝑡 − 1 to the opening of day 𝑡. The matrix for 𝑚 days, 
𝑉"

? , is defined as the sum of daily covariance matrices, 𝑉". The Cholesky decomposition is given by 
𝑉"

? = 𝐶"
? 𝐶"

? ª , while the vector of elements of the lower triangular 𝐶"  is defined as 𝑃"
? =

𝑣𝑒𝑐ℎ 𝐶"
? . 

The 𝑛(𝑛 + 1)/2 elements of 𝑃"
?  are modelled through the MIDAS approach, which implies a weighted 

average of their past values: 

𝑃>,"�?
? = β>K + β>/ 𝐵 𝑘, 1, θ> 𝑃>,".¬�/

ð

¬¯/

+ 𝑣" 5.20  

where 𝐵 is a weighting function, in this case a beta function, such that: 

𝐵 𝑘, 𝑖, θ> =
𝑓 ¬

ð
, 1, θ>

𝑓 ¬
ð
, 1, θ>ð

¬¯/

5.21  

𝑓 𝑧, 𝑎, 𝑏 =
𝑧+./ 1 − 𝑧 A./Γ 𝑎 + 𝑏

Γ 𝑎 Γ 𝑏
5.22  

where: K is the maximum number of lags and βi0, βi1 and θi are the parameters to be estimated. Including 
explanatory variables in the model, it becomes: 

𝑃>,"�?
? = β>K + β>/𝐵 𝑘, 1, θ> 𝑃>,".¬�/ + β>?𝐵 𝑘, 1, θ>? 𝑋".¬�/ + 𝑣". 5.23  
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In order to forecast 𝑃>,"�?
? , an estimation of the Cholesky-MIDAS model is necessary through a non-linear 

least squares (NLS) regression. Once obtained the estimation estimated parameters, m step ahead forecasts 
𝑃>,"�?
?  may be produced and, consequently, the forecast covariance matrix. 

An interesting analysis of different specifications of the weighting function, B, is provided by Ghysels, Rubia, 
and Valkanov (2009). The authors compare the forecasts obtained with a MIDAS model with those from a GARCH 
model and an AR model on the realized variance. The out-of-sample forecasts are given by the following equation 

𝑉"�/¬ = µ¬ + φ¬ 𝑏¬ 𝑗, θ 𝑟".�J
�8CD

�¯K

+ ε¬," 5.24  

where: 𝑉"�/¬  is a measure of volatility, like the realized variance, such that 𝑉"�/¬ = 𝑅𝑉"�/¬ = 𝑟"��J¬
�¯/ , 𝑏¬ 𝑗, θ  

is a weight function. 𝜇¬ , 𝜑¬  and 𝜃 must be estimated via quasi-maximum likelihood. The authors show that 
the MIDAS approach provides more accurate forecasts than the competing models, in terms of mean square 
error (MSE) and accordingly to West (1996) and Giacomini and White (2006) tests. 
The MIDAS approach is usually combined with a GARCH model, as proposed in the Spline-GARCH model 

of Engle and Rangel (2008). The short-term component is modelled through a GARCH process moving around a 
long-term trend, the long-term component is modelled with a Spline function10. Recently, Engle, Ghysels, and Sohn 
(2013) introduced the GARCH-MIDAS model, in order to understand the effect of macroeconomic and financial 
variables on return volatility. 

In the Spline-GARCH, proposed by Engle and Rangel (2008), the returns follow a process defined as: 

𝑟>," − 𝐸 𝑟>," 𝐼>./," = 𝑔>,"𝜏"𝑍>," 5.25 	

where: 𝑟>,"  are the daily logarithmic returns, 𝐼>./,"  is the available information at day i, 𝑍>,"~	(0,1)  are the 
innovations, 𝑔>," is a GARCH process and 𝜏" is an exponential spline function. The volatility can be denoted 
by two components, a short-term component for analysing the daily fluctuations, 𝑔>,", and the long-term 
component, 𝜏". In the GARCH-MIDAS approach, the spline function is replaced with a MIDAS equation. 
Engle, Ghysels, and Sohn (2013) combined a GARCH-MIDAS model with the use of exogenous 

macroeconomic variables, focusing on inflation rate and industrial production growth. Starting from Equation (5.25), 
the equation of returns at day i and month11 t has the following form 

𝑟>," = µ + τ"𝑔>,"𝑍>,"								∀𝑖 = 1, … . . , 𝑁" 5.26  

where: 𝑁"  is the number of days included in t and 𝜇  is the conditional average of 𝑟>," . 𝑔>,"  follows a GARCH 
process: 

𝑔>," = 1 − α − β + α
𝑟>./," − µ

J

τ"
+ β𝑔>./,". 5.27  

Following the literature on realized variance determinants (Schwert (1989)), the authors model 𝜏"  as a 
function of monthly realized variance, 𝑅𝑉" . According to the MIDAS scheme, the long-run component can be 
computed as follows: 

τ" = 𝑚 + θ φ¬ 𝑤/, 𝑤J 𝑅𝑉".¬

ð

¬¯/

5.28  

                                                
10 A spline function has the purpose to interpolate a set of points in an interval, through a set of polynomials combined together. 

See also Wold (1976) for further details on spline functions. 
11 Also lower frequencies are allowed, such as quarterly. 
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where: 𝑚  is a constant, 𝜃  measures the impact of the lags of 𝑟"J  and 𝑅𝑉" = 𝑟>,"J
=7
>¯/ . The weight function, 

𝜑¬ 𝑤/, 𝑤J , is specified in a twofold way: 
𝑘/𝐾 »<./ 1 − 𝑘/𝐾 »9./

𝑗/𝐾 »<./ 1 − 𝑗/𝐾 »9./ð
�¯/

𝐵𝑒𝑡𝑎	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑤¬/ 𝑤�
ð

�¯/

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙	𝑊𝑒𝑖𝑔ℎ𝑡𝑠
5.29  

The model can be implemented with lower frequency, such as monthly, quarterly and yearly, and the number 
of lags of the MIDAS component may vary considerably. The estimation is carried out through quasi-maximum 
likelihood. 

Finally, this specification allows to embed macroeconomic variables in the model. Engle, Ghysels, and Sohn 
(2013) analysed a model with one and two filters. The first approach implies the use of lagged macroeconomic 
variables as regressors in the long-term component, such that: 

log τ" = 𝑚á + θá 𝜑¬ 𝑤/,á, 𝑤J,á 𝑋á,".¬?F

ðG

¬¯/

5.30  

where: 𝑋á,".¬?F  represents the level of a macroeconomic variable, such as inflation rate or industrial production 
growth, 𝑚á  is a constant and 𝜃á  measures the impact of the lagged exogenous variable on the logarithm of 
the long-term component. 
The "two-sided filter" model relies on past and future observations of the macroeconomic variable to model 

the long-term component. The univariate specification is equal to: 

log 𝜏" = 𝑚J + 𝜑¬ 𝑤/,á, 𝑤J,á 𝜃á
¬ 𝑋á,"�¬?F

ðH
G

¬¯.ðG
G

5.31  

where the impacts of the macroeconomic variables are free to vary, then: 

θá
¬ 	= 	

θá
I 					𝑘 ≥ 0

θáA							𝑘 < 0.
 

In their framework, the GARCH-MIDAS model provides highly accurate forecasts, in particular in the sub-
sample such as the Great Depression or the period following the Second World War.  

Conrad and Loch (2014) extended the model of Engle, Ghysels, and Sohn (2013), including two exogenous 
variables in the long-term component, the model can be written as: 

log τ" = 𝑚 + θ= φ¬ 𝑤/=, 𝑤J= 𝑋".¬

ð

¬¯/

+ θJ φ¬ 𝑤/J, 𝑤JJ 𝑌".¬

ð

¬¯/

5.32  

where: 𝑌".¬  is a second explanatory macroeconomic variable. Let 𝑌".¬  be the realized monthly variance, the 
annual long-term component is specified as follows: 

log τ" = 𝑚 + θ4) φ¬ 𝑤/4) , 𝑤J4) 𝑅𝑉".¬

ð¯/J

¬¯/

+ θ<) φ¬ 𝑤/<) , 𝑤J<) 𝑋".¬

ð¯/J

¬¯/

. 5.33  

They forecast volatility one step ahead. At the beginning of the period t, the long-term component, τ", is 
pre-determined respect to the informative set 𝐼"./, then the volatility forecast for day i in period t is given by: 
𝐸 𝑔>,"τ"𝑍>,"J 𝐼"./ = τ"𝐸 𝑔>," 𝐼"./ .  Since 𝐸 𝑔>," 𝐼"./ = 1 + α + β + γ/2 >./ 𝑔/," − 1  
converges to the unconditional variance of 𝑔>,", the forecasts tend to the long-term component, for i sufficiently 
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large. The forecast for the period t is given by: 𝐸 𝑔>,"
=7
>¯/ τ"𝑍>,"J 𝐼"./ = τ" 𝑁" + 𝑔/," −

1 /. K�L�Ï/J :7

/.K.L.Ï/J
. When 𝑔/," is equal to its unconditional variance, the forecast for period t is τ"𝑁". The authors 

analyse a large set of macroeconomic variables, like the GDP growth, the industrial production and the 
unemployment rate, the term spread12, the GDP deflator, the CPI and others. The relevance of macroeconomic 
variables to forecast volatility through a GARCH-MIDAS model is further analysed in Asgharian, Hou, and Javed 
(2013). 

The GARCH-MIDAS has been extended in the multivariate framework. Let consider a vector of n assets, in 
the DCC specification of Engle (2002), it follows a 𝑟" ∼ 𝑁 µ, 𝐻"  process, where the conditional covariance 
matrix, 𝐻", can be written as in Equation 2.29. In the bivariate case, the conditional volatilities, for asset i and asset 
j, defined as 𝑞>," and 𝑞�,", follow a univariate GARCH model and are estimated in a separated first stage. The 
estimation of the conditional covariances represents the second step of the procedure. The conditional covariance 
is specified as in Equation 2.32, while 𝑄" is equal to: 

𝑞>�," = ρ>�," 1 − 𝑎 − 𝑏 + 𝑎 𝑢>,"./𝑢�,"./ + 𝑏 𝑞>�,"./ 5.34  

where 𝑢>," and 𝑢�," are the standardized residuals of the univariate model and the conditional correlation is given 
by: 

ρ>�," =
𝑞>�,"
𝑞>>,"𝑞��,"

. 5.35  

where: 𝑞>�," is the short-run covariance. 

Firstly, Colacito, Engle, and Ghysels (2011) proposed a combination of the DCC model with the MIDAS 
approach. In the DCC-MIDAS model, the conditional covariance is defined as in Equation (5.34), the long-run 
correlation is specified according to the MIDAS approach: 

ρ>�," = φ¬ 𝑤¬
>� 𝐶>�,".¬

ðN

¬¯/

5.36  

where: 𝐾Ñ  is the number of the lags of the historical correlations, 𝐶>�,".¬ , specified as: 

𝐶>�," =
𝑢>,¬"

¬¯".= 𝑢�,¬

𝑢>,¬J
"
¬¯".=5¿ 𝑢�,¬J

"
¬¯".=5¿

. 5.37
 

where: 𝜌>�," is the slowly moving long-run correlation and 𝑢" is the standardized innovation. Rewriting the set of 
correlations in matrix form, the model can be computed as: 

𝑅" = 𝑄"∗ .//J𝑄" 𝑄"∗ .//J 5.38  

𝑄"∗ = 𝑑𝑖𝑎𝑔 𝑄" 5.39  

𝑄" = 1 − 𝑎 − 𝑏 𝑅" 𝑤ô + 𝑎𝑢"𝑢"ª + 𝑏𝑄"./ 5.40  

where: 

𝑅" 𝑤ô = ϕ¬ 𝑤ô

ðN

¬¯/

⊙ 𝐶".¬ 5.41  

                                                
12 The term spread represents the difference between the interest rate of a short-term bond and a long-term bond. 
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𝐶" =
𝑣/," 0 0
⋮ ⋱ 0
0 ⋯ 𝑣ê,"

.//J

𝑢¬

"

¬¯"¯=N

𝑢¬ª
𝑣/," 0 0
⋮ ⋱ 0
0 ⋯ 𝑣ê,"

.//J

5.42  

𝑣>," = 𝑢>,¬J
"

¬¯".=N

	 	 ∀𝑖 = 1, … , 𝑛 5.43  

where: ϕ¬ 𝑤ô = φ¬ 𝑤ô ιιª. In this specification, a and b are imposed as common parameters across all asset 
combinations. Without these restrictions, the short-run dynamics can be written as: 

𝑄" = 𝐺⊙ 𝑅" 𝑤ô + 𝐴⊙ 𝑢"./𝑢"./ª + 𝐵⊙ 𝑄"./ 5.44  

where: 𝐺, 𝐴 and 𝐵 are 𝑛	×𝑛 matrices of parameters. 
Assuming a single parameter 𝑤ô , the covariance matrix is positive definite under a small set of assumptions. 

It may be noticed that the matrix 𝑄" is a weighted average of the three matrices. Since 𝑅" is a weighted average 
of correlation matrices, it is also semi-positive definite and 𝑢"./𝑢"./ª  is semi-positive definite by construction. 
When the initial matrix 𝑄K is semi-positive definite, 𝑄" is semi-positive definite in each point. 

When two or more weighting schemes are available, the matrix 𝑅" is not semi-positive definite for each 
MIDAS specification. Further restrictions are necessary to ensure a semi-positive definite sequence of matrices 
{ϕ¬}¬¯/ð . To estimate the parameters of the model, the authors employ the two-step procedure of Engle (2002). 
Asgharian, Christiansen, and Hou (2015) extended the work of Colacito, Engle, and Ghysels (2011) by including 
macroeconomic variables and lagged realized correlations in the long-run component. The DCC-MIDAS-XC model 
is defined as follows: 

𝑞>�," = ρ>�," 1 − 𝑎 − 𝑏 + 𝑎𝑢>,"./𝑢�,"./ + 𝑏𝑞>�,"./ 5.45  

ρ>�," =
exp 2𝑧>�,R − 1
exp 2𝑧>�,R + 1

5.46  

𝑧>�,R = 𝑚>� + θ4n φ¬ 𝑤/, 𝑤J 𝑅𝐶>�,".¬

ð

¬¯/

+ θ= φ¬ 𝑤/, 𝑤J 𝑋".¬
õ

ð

¬¯/

5.47  

𝑅𝐶>�," =
𝑢>,¬

=7
¬¯/ 𝑢�,¬

𝑢>,¬J
=7
¬¯/ 𝑢�,¬J

=7
¬¯/

5.48
 

where: 	𝑅𝐶>�,"  is the realized correlation, measured on a quarterly basis, 	𝑋"
õ  is a macroeconomic variable 

measured at the same frequency, while 𝐾 is the number of the MIDAS component. 
The authors include future macroeconomic variables in the model, which is then a DCC-MIDAS-XCF model. 

If 𝜃4n  is equal to zero, the specification is in the following form: 

𝑧>�," = 𝑚 + θ= φ¬ 𝑤/, 𝑤J 𝑋".¬
õ

ðGCS

¬¯/

+ θ= φ¬ 𝑤/, 𝑤J 𝑋".¬∣"/öT
K

¬¯.ðGUCV

. 5.49  

The future observations, 𝑋/öT , are replaced by the expectation data provided by the Survey of Professional 
Forecasters. Since the combination of historical data and forecast data is quite difficult, the authors suggest treating 
the forecast data as an individual variable, such that: 
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𝑧>�," = 𝑚 + θ= φ¬ 𝑤/, 𝑤J 𝑋".¬
õ

ðGCS

¬¯/

+ θT= φ¬ 𝑤/, 𝑤J 𝑋".¬∣"/öT .
K

¬¯.ðGUCV

5.50  

Following Engle (2002) and Colacito, Engle, and Ghysels (2011), the authors estimate the parameters of 
the model through a two-step quasi-maximum likelihood estimator, by maximizing the following function: 𝐿 =
− 𝑇 log 2ϕ + 2 log |	𝐷" +𝑢"ª𝐷".J𝑢"k

"¯/ − log |	𝑅" +𝑢"ª𝑅"./𝑢" − 𝑢"ª𝑢"k
"¯/ , where 𝐷"  is a 

diagonal matrix with standard deviations of returns on the diagonal and 𝑅" is the conditional correlation matrix of 
standardized return residuals. 
5.3. Realized GARCH and High-Frequency-based Volatility (HEAVY) model 
Recently, an approach that includes a realized measure (like the realized variance, the bi-quadratic variation and 
the realized kernel) in the GARCH equation has been proposed. Some specifications of this method imply the use 
of multiple latent volatility processes, such as the Multiplicative Error Model (MEM) of Engle and Gallo (2006) and 
the HEAVY (High-frEquency-bAsed VolatilitY) model proposed by Shephard and Sheppard (2010). Hansen, 
Huang, and Shek (2011), instead, proposed a single latent volatility process, called Realized GARCH. 

The variable of interest is the conditional variance, ℎ" = 𝑉𝑎𝑟 𝑟"./ 𝐼"./ , where 𝑟"  is the series of 
returns of an asset. In the classical GARCH specification, ℎ" is only function of ℎ"./ and 𝑟"./J , while in Hansen, 
Huang, and Shek (2011), ℎ"  it is also function of some realized measure of volatility, 𝑥"./ . A measurement 
equation completes the model. The Realized GARCH is then specified in the following form: 

𝑟" = ℎ"𝑧" 5.51  

ℎ" = 𝑤 + βℎ"./ + γ𝑥"./ 5.52  

𝑥" = ξ + φℎ" + τ 𝑧" + 𝑢" 5.53  

where: 𝑧" ∼ 𝑖. 𝑖. 𝑑. 0,1 , 𝑢" ∼ 𝑖. 𝑖. 𝑑. 0, σéJ . In this way, ℎ"  is an autoregressive model of order one, ℎ" =
µ + ϕℎ"./ + 𝑤"./, where µ = 	𝑤	 + 	γξ, ϕ = 	β + 	φγ and 𝑤" = γτ 𝑧" + γ𝑢". In order to consider 
an asymmetric response in volatility to return shocks, the authors suggest specifying 𝜏 𝑧"  as follows: 

τ 𝑧 = τ/𝑧 + τJ 𝑧J − 1 . 

Their model can be easily estimated via quasi-maximum likelihood and can be extended to multiple asset, 
as proposed in Hansen, Lunde, and Voev (2014). Instead, the high-frequency-based volatility (HEAVY) of Shephard 
and Sheppard (2010) relies on two latent processes 

𝑣𝑎𝑟 𝑟" 𝐼"./0T = ℎ" = 𝑤 + α𝑅𝑀"./ + βℎ"./, 𝑤, α ≥ 0, β ∈ 0,1 5.54  

𝐸 𝑅𝑀" 𝐼"./0T = µ" = 𝑤4 + α4𝑅𝑀"./ + β4µ"./, 𝑤4, α4, β4 ≥ 0, α4 + β4 ∈ 0,1 5.55  

where: 𝐼"./0T  is the high-frequency information, 𝑅𝑀"./ is the realized measure, 𝑤 and 𝑤4  are the constants and 
𝜇" is the latent conditional mean of the realized measure. This semi-parametric model can be extended to 
a more complex structure of the dynamics of 𝜇"  and to the use of 𝑟"./J , as in the traditional GARCH 
specification of ℎ"./. The parameters are estimated through quasi-maximum likelihood. 
A multivariate extension of the previous model is provided by Noureldin, Shephard, and Sheppard (2011). 

Let 𝑟>," be the vector of intra-daily returns of dimension 𝑛	×1, the realized measure, 𝑉", is a 𝑛	×𝑛 matrix. For 
example, considering the realized covariance 𝑅𝐶" = 𝑟>,"ê

>¯/ 𝑟>,"ª , where n are the intra-daily partitions, the cross 
product of the daily returns is equal to 𝑃" = 𝑟"𝑟"ª, then the HEAVY model can be written as: 

𝐸 𝑃" 𝐼"./0T = 𝐸 𝑟"𝑟"ª 𝐼"./0T = 𝐻"  

𝐸 𝑉" 𝐼"./0T = 𝑀", with 𝐸 𝑟" 𝐼"./0T = 0, such that: 
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𝐻" is the conditional covariance matrix. 
Among the possible parametrizations, the authors choose a BEKK specification, Engle and Kroner (1995)), 

such that: 

𝐻" = 𝐶
0nX

Y + 𝐵0𝐻"./𝐵0
ª
+ 𝐴0𝑉"./𝐴0

ª
  

𝑀" = 𝐶
<nZ

Y + 𝐵<𝑀"./𝐵<
ª
+ 𝐴<𝑉"./𝐴<

ª
  

where: 𝐵0 , 𝐴0 , 𝐵<  and 𝐴<  are 𝑛	×𝑛  matrices with 𝑛J  parameters, while 𝐶0  and 𝐶<  are lower triangular 
matrices with 𝑛∗ = 𝑛 𝑛 + 1 /2 parameters. 𝐻"  and 𝑀"  matrices are positive semi-definite for each t, 
when 𝐻K and 𝑀K are positive semi-definite. The high number of parameters to be estimated may lead to 
convergence problems in the quasi-maximum likelihood estimator. This drawback may be solved by 
imposing 𝐵0 , 𝐴0 , 𝐵< e 𝐴< to be scalars or diagonal matrices. 

6. Forecasting Evaluation Methods 
In this section, we analyse several methods to evaluate volatility forecasts. The evaluation of the forecasts 

accuracy represents a crucial aspect for the selection of the volatility model and is based on direct and indirect 
methods. Direct methods rest on a statistical evaluation of the forecasts to understand the ranking of compared 
models, while indirect methods are based on portfolio allocation or (Conditional) Value-at-Risk forecasting. 

6.1. Direct Methods 
A major pitfall that characterises the forecasts evaluation concerns the latent nature of the variable of 

interest, which implies the use of a proxy (see also Patton 2011). Typically, this issue is solved through an unbiased 
estimator of volatility, like the squared returns. It is known, however, that the squared returns are a noisy proxy of 
the latent volatility. For this reason, the attention moved to the use of an unbiased estimator of volatility like the 
realized variance. The realized variance is a more efficient estimator respect to the squared returns, since: 

𝐸 𝑟"J − σ"J J 𝐼"./ = 2σ"Z , while the expected value of the realized variance is equal to: 
𝐸 𝑅𝑉"? − σ"J J 𝐼"./ = 2σZ/𝑚,  

where σ"J is the true unobservable variance and m is the number of intradaily periods. 
The use of such a proxy allows to implement the classical evaluation methods, like the Mincer and Zarnowitz 

(1969) regression and the test introduced by Diebold and Mariano (1995), but does not lead to the same ranking 
results obtained in presence of the observed volatility. In fact, Andersen and Bollerslev (1998) and Andersen, 
Bollerslev, and Meddahi (2005) showed that the tests are less powerful in presence of a proxy. Moreover, Hansen 
and Lunde (2006) showed the presence of a distortion in the ranking of several models, when a proxy of volatility 
is used. Recently, Patton (2011) contributed to this literature proving that the use of the realized variance as proxy 
of volatility presents less distort tests and ranking respect to other proxies. 

When the forecasts from two or more competing models are available, the evaluation of the volatility 
forecasts is based on the ranking determined by some kind of loss function. Several papers have been focused on 
the definition of the necessary conditions to obtain a consistent ranking. Patton (2011) determined the necessary 
and sufficient conditions on the functional form of the loss function in the univariate framework. Laurent, Rombouts, 
and Violante (2013) extended the analysis of those conditions in the multivariate. 

Let be 𝐸 𝑟" 𝐼"./ = 0  and 𝐸 𝑟"J 𝐼"./ = σ"J  the true unobservable conditional variance of the 
returns 𝑟"  and let be ℎ"  a forecast from a forecasting model, the loss function is given by 𝐿 σ"J, ℎ" . In the 
multivariate framework, the variable of interest is the conditional covariance matrix, Σ" = 𝐸 𝑟"𝑟"ª 𝐼"./ , and the 
loss function is given by 𝐿 Σ", 𝐻" . 

Since the true latent variance is not observable, the loss function should rely on a proxy of volatility, defined 
as σ"J in the univariate and Σ" in the multivariate. Consequently, the loss functions can be defined as 𝐿 σ"J, ℎ"  
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and 𝐿 Σ", 𝐻" . Patton (2011) determined the properties that a loss function should have in presence of a proxy of 
volatility. In particular, the loss function is considered "robust" if the ranking between the competing models is the 
same obtained in presence of the real conditional variance. Thus, the expected loss function, 𝐸 𝐿 σ"J, ℎ" , given 
two competing models k and j should satisfy the following condition: 

𝐸 𝐿 σ"J, ℎ¬," ≤ 𝐸 𝐿 σ"J, ℎ�," ⇔ 𝐸 𝐿 σ"J, ℎ¬," ≤ 𝐸 𝐿 σ"J, ℎ�," . 6.1  

The condition (6.1) is guaranteed if: 
∂J𝐿 σ"J, ℎ"

∂σ"J J 6.2  

exists and does not depend from ℎ" (cfr. Laurent and Violante (2012)). Patton (2011) provided also necessary and 
sufficient conditions to define a class of homogeneous13 loss functions in the univariate dimension, robust to the 
use of a proxy. If the degree of homogeneity is equal to b+2, the class of loss functions is given by: 

𝐿 𝜎"J, ℎ"; 𝑏 =

	
1

𝑏 + 1 𝑏 + 2
σ"JA�Z − ℎ"A�J −

1
𝑏 + 1

ℎ"A�/ σ"J − ℎ" , 𝑏 ≠ −1,−2

ℎ" − 𝜎"J + 𝜎"J log
𝜎"J

ℎ"
𝑏 = −1

σ"J

ℎ"
− log

𝜎"J

ℎ"
− 1. 𝑏 = −2	

6.3  

For 𝑏	 = 	0 ,  the loss function corresponds to the mean squared error loss function (MSE), 𝐿 𝜎"J, ℎ" =
𝜎"J − ℎ" J, while for 𝑏	 = 	2 the loss function is equal to a quasi-likelihood (QLIKE), 𝐿 𝜎"J, ℎ" = log ℎ + \79

�7
. 

Patton and Sheppard (2009) proved that the DM test and the test introduced by West (1996) are more powerful 
when a QLIKE loss function is used respect to a MSE function, in the univariate dimension. 

In the multivariate case, the necessary condition for a robust ranking becomes 

𝐸 𝐿 Σ", 𝐻¬," ≤ 𝐸 𝐿 Σ", 𝐻�," ⇔ 𝐸 𝐿 Σ", 𝐻¬," ≤ 𝐸 𝐿 Σ", 𝐻�," , 6.4  

and the sufficient condition to ensure (6.4) is equal to: 
∂J𝐿 Σ", 𝐻"
∂σ¬," ∂σ�,"

, 	 	 ∀𝑘, 𝑗 = 1, … , 𝑁 𝑁 + 1 /2 6.5  

where: 𝜎¬," is the k-th element of  σ" = 𝑣𝑒𝑐ℎ Σ" . A loss function L is robust if and only if it assumes the following 
form: 

𝐿 Σ", 𝐻" = 𝐶 𝐻" + 𝐶 Σ" + 𝐶ª 𝐻" 𝑣𝑒𝑐ℎ Σ" − 𝐻" , 6.6  

where: 

𝐶 𝐻" 	= 	

à] ^_
à`<,_
⋮

à] ^_
à`a,_

 ,    𝐶ª 𝐻" = 	

à] ^_
à`<,_ à`<,_

⋯ à] ^_
à`<,_ à`a,_

⋮ ⋱ ⋮
à] ^_

à`a,_ à`<,_
⋯ à] ^_

à`a,_ à`a,_

   

and where 𝐶 ⋅  and 𝐶ª ⋅  are the gradient and the Hessian of 𝐶 ⋅  with respect to 𝐻".  
Equation (6.6) is re-defined by Laurent, Rombouts, and Violante (2013) on the basis of the forecast errors, 

such that: 

                                                
13 A loss function, L, is homogeneous of order k if 𝐿 𝑎σ"J, 𝑎ℎ" = 𝑎¬𝐿 σ"J, ℎ" , ∀	𝑎 >0. 
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𝐿 Σ", 𝐻" = 𝐿 Σ" − 𝐻" = 𝑣𝑒𝑐ℎ Σ" − 𝐻"
ª
Λ𝑣𝑒𝑐ℎ Σ" − 𝐻" 6.7  

where: Λ is a positive definite matrix of weights associated to the elements of the forecast error matrix. The loss 
function defined in Equation (6.7) nests several loss functions, both in the vector space, like the Euclidean 
distance and the weighted Euclidean distance, and matrix space, like the Frobenius distance and the Stein 
distance. 
As underlined in Laurent, Rombouts, and Violante (2013), while in the univariate case an analytical 

expression is available for the entire class of consistent loss functions, in the multivariate case this generalization 
is not feasible due to the infinite combinations between forecasts and forecasts errors that satisfy (6.7). Given (6.7), 
Laurent, Rombouts, and Violante (2013) proved that specific loss functions can be easily derived.  

In this section, we further review several tests for forecasting accuracy that strongly rely on a statistical loss 
function. 
Firstly, a simple method to evaluate the accuracy of volatility forecast is the Mincer-Zarnowitz (MZ) regression, 
introduced by Mincer and Zarnowitz (1969). This approach is based on the estimation of the coefficients of a linear 
regression, such that: 

σ"J = α + βℎ" + ε" 6.8  

where: σ"J is the true conditional variance, 𝛼 is a constant and 𝛽 is the coefficient of the forecast at time 𝑡. A 
forecast is optimal when σ"J = ℎ", which is equivalent to the null hypothesis 𝐻K: α = 0 ∪ β = 1.  
Given that volatility is latent, the regression is only feasible when a reliable proxy is used, then the MZ 

regression can be expressed as: 
σ"J = α + βℎ" + ε". 6.9  

The regression (6.9) gives a twofold information on the accuracy of the forecasts by testing the joint 
hypothesis on the coefficients and through the R2 that can be seen as an indicator of how much the prediction is 
correlated with the proxy of volatility.  

The MZ regression strongly depends on the accuracy of the volatility proxy that influences the estimation of 
the coefficients and the accuracy of the R2. Moreover, Hansen and Lunde (2006) showed that, when a volatility 
proxy is used, the R2 cannot always be considered adequate and may lead to a distort ordering. The use of the MZ 
can be extended in the multivariate case. A simple approach is to estimate the regression (6.9) for each element 
of the covariance matrix, such that: 

𝜎>�," = α>� + β>�ℎ>�," + ε>�," 6.10  

where: 𝜎>�  is the element 𝑖𝑗  of the realized covariance matrix Σ , for 𝑖 = 1, … , 𝑁 𝑁 + 1 /2  and 𝑗 =
1, … , 𝑁 𝑁 + 1 /2.  
When the number of series is relatively high, there emerge difficulties with this approach. A feasible 

alternative is to define the MZ regression as follows: 

𝑣𝑒𝑐ℎ Σ" = α + 𝑑𝑖𝑎𝑔 β 𝑣𝑒𝑐ℎ 𝐻" + ε" 6.11  

where: 𝛼 and 𝛽 are 𝑁 𝑁 + 1 /2×1 vectors of parameters, 𝑣𝑒𝑐ℎ ⋅  is the half-vector operator and 𝑑𝑖𝑎𝑔 ⋅  is 
the operator that transforms a 𝑘	×1 vector in a 𝑘	×𝑘 matrix with the elements of the vector along the 
diagonal. The joint test that α = 	0 and β = 	1 can be computed on (6.11). Patton and Sheppard (2009) 
underlined the possibility of adversely affected results in finite sample, proposing to impose a constraint on 
the parameters, such that α = α>  and β = β> , ∀𝑖 = 1, … , 𝑁 𝑁 + 1 /2. 
Some of the most used methods of forecast evaluation can only be applied when different models have 

been implemented on the same dataset and shall be based on the forecast error. These measures, relying on the 
forecast error and the relative transformations, include the Mean Squared Error (MSE), the Root Mean Squared 
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Error (RMSE) and the Mean Absolute Error (MAE). The former measures are the most common in the forecasting 
evaluation literature, although several authors suggest that MAE is a more reliable measure, since it is less sensitive 
to outliers of the forecast error. 

MAE measures the accuracy of the forecasts through the average of the magnitude of the forecast error 
and can be computed as: 𝑀𝐴𝐸 = /

ê
∣ 𝑒>|ê

>¯/ , where 𝑒>  is the forecast error, for 𝑖 ∈ 𝑛 , where 𝑛 =
𝑁 𝑁 + 1 /2. 

MSE and RMSE are robust measures when the competing models are based on the same series. Since 
they strictly depend on the forecast error, it follows that the smaller the measure, the better the accuracy. In the 

univariate case, the measures can be written as: 𝑀𝑆𝐸 = /
ê

𝑒>Jê
>¯/ , 𝑅𝑀𝑆𝐸 = /

ê
𝑒>J

ê
>¯/ , where 𝑛  is the 

number of forecast errors. In the multivariate case, the RMSE can be based on the Frobenius norm14 of the 𝑛×𝑛 
matrix of the forecast error, and it is defined as follows: 𝑅𝑀𝑆𝐸 = , 9

ê⋅ê ./
.	In the multivariate framework, a model 

should also be preferred if it exhibits the lowest RMSE. 
For the pairwise comparison of competing models, two tests are usually implemented, the DM and the GW 

test. The equal predictive ability tests share the null hypothesis of absence of predictive ability. The test introduced 
by Diebold and Mariano (1995) is considered the first attempt to compare two rival models in terms of forecasting 
accuracy, jointly with the test proposed by West (1996). The DM test is based on assumptions made on the 
difference of the forecast error loss functions. 

Assuming a robust loss function, like those defined in this section, the DM test is based on the differential 
of the loss functions for the models k and j, such that  

𝑑" = 𝐿 𝜎"J, ℎ¬," − 𝐿 𝜎"J, ℎ�," , 6.12  
in the univariate case and 

𝑑" = 𝐿 Σ", 𝐻¬," − 𝐿 Σ", 𝐻�," , 6.13  
in the multivariate case, where 𝐿 Σ", 𝐻¬,"  is a loss function as the Euclidean distance between vectors and the 
Frobenius distance between matrices. 

The null hypothesis of equal predictive ability can be expressed as 𝐻K: 𝐸 𝑑" = 0; the test assumes the 
following form: 

𝐷𝑀 = 𝑇
𝑑
𝑤

ì
𝑁 0,1 6.14  

where: 𝑑 = /
k

𝑑"k
"¯/ , and 𝑤	 = 	 lim

"→�
𝑉𝐴𝑅( 𝑇𝑑) is its asymptotic variance, generally estimated through the 

sample variance. 

The bulk of the literature relies on a MSE loss function in the DM test, such that 𝐿 𝜎"J, ℎ" = 𝜎"J − ℎ" J, 
while in the multivariate framework two loss functions are usually implemented, the Frobenius norm between 
matrices defined as 𝐿T Σ", 𝐻" = 𝜎>�," − ℎ>�,"

J
>� , and the Euclidean distance between vectors, that can be 

specified as 𝐿 𝜎", ℎ" = 𝜎¬," − ℎ¬,"
J= =�/ /J

¬¯/ . 
Giacomini and White (2006) extended the DM test to consider the previous information set in the test, 

computing a conditional test of superior predictive ability. More specifically, the authors proved that, given the 
volatility forecasts from two competing models, the null hypothesis may be defined as: 

                                                
14 The Frobenius norm of a matrix is a Euclidean norm, built on matrix A, of dimension 𝑚	×𝑛, equal to the square root of the 

summed squares of the matrix elements, defined as 𝐴 J = ∣ 𝑎>� ∣Jê
�¯/

?
>¯/ . 
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𝐻K: 𝐸 𝑌"�/ − 𝑓" β/"
J
− 𝑌"�/ − 𝑔" βJ"

J
𝐼" = 0 6.15  

where: 𝑓" 𝛽/"  and 𝑔" 𝛽J"  are two forecasting models for the conditional mean of the variable of interest 𝑌"�/, 
given a quadratic loss function. 
The GW test is the best candidate to evaluate forecasts from a rolling window scheme, while it does not 

allow the use of a recursive scheme. When the test is based on a rolling window scheme, it allows to remove some 
of the assumptions made for other pairwise tests like the Diebold and Mariano (1995) and West (1996). In particular, 
the hypothesis of stationary observations is no longer needed, while the test can be applicable to a wider class of 
models, including linear and non-linear models, semi-parametric or non-parametric models, nested or not-nested 
models. 

For nested models, Clark and West (2007) introduced an equal predictive ability test based on the mean 
squared prediction error (MSPE), defined as 𝑀𝑆𝑃𝐸> = 𝜎"J − ℎ>,"

Jk
" , where 𝑖	 = 	1, 2 . Let be 𝑓" 	=

	𝑀𝑆𝑃𝐸/ 	− 	𝑀𝑆𝑃𝐸J 	+ 	𝑇./ (ℎ/," 	− 	ℎJ,")Jk
"  and its average 𝑓 	= 	𝑇./ 𝑓"k

" 	, the adjusted test for the 
squared forecasts difference can be computed as: 

𝐶𝑊 = 𝑇𝑓/ σI7
J 6.16  

where: σI7
J = 𝑇./ 𝑓" − 𝑓

Jk
" . The null hypothesis of the test is given by 𝑀𝑆𝑃𝐸/ = 𝑀𝑆𝑃𝐸J , while the 

alternative hypothesis is given by 𝑀𝑆𝑃𝐸J < 𝑀𝑆𝑃𝐸/, determining the CW test as a unilateral test. 
Alternatively to pairwise tests, forecasts may be compared for more than two models. At this end, Hansen, 

Lunde, and Nason (2011) introduced the model confidence set (MCS) to compare all forecasts against each other. 
For a given confidence level, the MCS defines the set of models containing the best out-of-sample forecasts. The 
MCS approach consists in a sequential procedure that allows to test the equal predictive ability of the compared 
models, discard any inferior model and define the set of superior models (SSM). Given a set of 𝑀K forecasts, the 
MCS procedure tests whether all models in 𝑀K  have equal forecasting ability. The performance is measured 
pairwise by the loss functions difference, 𝑑¬,�," = 𝐿 σ", ℎ¬," − 𝐿 σ", ℎ�," , for all k, 𝑗 ∈ 𝑀K  and 𝑘	 ≠ 𝑗 . 
Assuming that 𝑑¬,�," is stationary, the null hypothesis takes the following form: 

𝐻K: 𝐸 𝑑¬,�," = 0,	 ∀𝑘, 𝑗 ∈ 𝑀K. 6.17  

A model is discarded if the null is rejected at a given confidence level α. The test is sequentially repeated 
until the non-rejection of the null. The remaining models define the set of statistically equivalent models with respect 
to a given loss function. As for pairwise models, also for MCS may be implemented robust loss functions like MSE, 
Frobenius norm between matrices and Euclidean distance among vectors. 
6.2. Indirect Methods 

An alternative to statistical evaluation of the forecasts is evaluating predictive ability through indirect 
methods. Volatility is implemented in many economic decisions, like mean-variance portfolio optimisation, hedging 
risk measurement, option pricing and utility maximisation. In general, economic evaluation of volatility and 
correlation forecasts relies on several assumptions, such as the utility function of the hypothetical investor (in 
portfolio choice or hedging applications), the density of the standardised returns (as in Value-at-Risk and Expected 
Shortfall forecasting, density forecasting portfolio choice applications with non-quadratic utility), the derivative 
pricing model (in option, and other derivative securities, pricing applications). Although "non-robust", these 
approaches can yield valuable information on competing volatility and correlation forecasts. 
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6.2.1. Portfolio Optimisation 

The use of covariance in portfolio optimisation has its roots in the doctoral thesis of Markowitz. Since then, a wide 
stream of literature has been analysing the forecast accuracy in a context of portfolio optimisation. Recently, the 
same literature has been wondering if a realized covariance matrix does provide tangible advantages in the 
definition of the weights of a portfolio. Firstly, Fleming, Kirby, and Ostdiek (2003) analysed the effects of the use of 
the realized covariance matrix, highlighting the increased performance in terms of risk and return for the underlying 
portfolio. A great part of the papers has investigated the realized covariance matrix in a Global Minimum Variance 
approach, Kyj, Ostdiek, and Ensor (2009), Halbleib-Chiriac and Voev (2011) and Hautsch, Kyj, and Malec (2015), 
among the others, confirm the usefulness of the non-parametric measure in the process of investment decision. 
Markowitz (1952) succeeded to synthesize the choices of portfolio allocation in two quantitative variables, the mean 
and the standard deviation of the portfolio. According to Markowitz (1952), an investor takes her decisions based 
on her expected utility function. Following the approach of von Neumann and Morgenstern (1947), the investor 
aims at maximising her expected utility, reducing the portfolio optimisation problem to the following form: 
𝑤max 𝐸[𝑈(𝑊)],	where		𝑤 are the optimal portfolio weights and 𝑈(𝑊) is the utility of the investor function of 
her wealth, 𝑊.  

Assuming returns normally distributed, a convenient choice is to define 𝑈 ⋅  as a constant absolute risk 
aversion15 (CARA), given by: 

𝑈 𝑊 = −exp{𝑐𝑊} , 	 𝑐 > 0 6.18  

where 𝑐 is the Arrow-Pratt measure of risk-aversion.  
The expected utility to be maximized becomes: 

𝐸 𝑈 𝑊 = −exp{−𝑐 𝜇\ −
𝑐
2
𝜎\J }. 6.19  

Maximizing the expected utility when the utility function is exponential implies to find the solution to the following 
problem: 

max
»

𝜇\ −
1
2
𝑐𝜎\J 6.20  

under the constraint: 
𝑤ªι = 1. 6.21  

Equation (6.21) bounds the sum of the weights to one. Equation (6.20) can be computed as a risk minimization 
problem given an objective return. The optimum problem can be written as: 
min
»
	 𝑤ª Σ	𝑤 

𝑠. 𝑡. 	 𝑤ªµ = µ\                     (6.22) 
𝑤ªι = 1 

where: 𝑤 is the weights vector, Σ	is the estimated covariance matrix. The optimum problem is constrained to the 
full investment of the capital, 𝑤ª𝜄 = 1, and to the objective return, 𝑤ª𝜇 = 𝜇\, while the vector 𝜇 is an 
estimation of the expected value of the returns of the assets composing the portfolio.  
The mean-variance remains the most used approach in portfolio optimisation, for its simple implementation 

and for the possible extensions. Although appealing, the approach introduced by Markowitz (1952) has been 
criticized due to the symmetric nature of the risk measure, i.e. the covariance matrix equally responds to positive 
and negative shocks (see also Hanoch and Levy (1969)), and the poorly realistic assumptions of a CARA utility 
function and normal distribution of returns. 

The mean-variance approach has been further criticized for relying on both the first two conditional moments 
of the returns. There are well-known problems, however, concerning the prediction of the first conditional moment. 
                                                
15 In this kind of function the Arrow-Pratt measure of risk-aversion, expressed as 𝐴 𝑊 = .D"(W)

DY g
, is constant. 
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For this reason, the Global Minimum Variance (GMV), which focuses on the prediction of the conditional 
covariances avoiding to define a process for 𝜇\, has been implemented and has been mostly diffused in allocation 
problem involving a specific forecasting model for the covariance matrix (e.g. DCC, BEKK, Realized Covariance). 
Some articles show how portfolios obtained from a mean-variance approach are less stable and perform worse 
than the competing portfolios obtained from a GMV problem, see also Chan, Karceski, and Lakonishok (1999), 
Jagannathan and Ma (2003) and Kyj, Ostdiek, and Ensor (2009). 

The GMV weights can be derived from the following optimum problem: 

 min
»
	 𝑤ª Σ	𝑤 

𝑠. 𝑡.				𝑤ª𝜄 = 1          (6.23)	

where: Σ is the forecast of the conditional covariance matrix of the portfolio.  
The underlying weights are equal to: 

𝑤 =
Σ./ι
ιªΣ./ι

. 6.24  

As seen in this section, classical optimisation problems are usually based on the covariance matrix as risk 
measure. However, the financial operators have been investigating alternative risk measure to account also for 
empirical evidences not included in covariance matrix. This lead the financial institution J.P. Morgan to introduce, 
in 1994, a risk measure called Value-at-Risk (VaR) that would have been the most used in the financial institutions 
in the following two decades, due also to its legal implementation in the European Union (see Basilea II). The Value 
at Risk is defined as the maximum portfolio loss at a given confidence level, 𝛼, in a time interval, formalized as 
follows: 

𝑃 𝑅\ ≤ −𝑉𝑎𝑅K = 𝛼 6.25  

where 𝑅\ is the portfolio return. It follows that the greater the VaR, the larger the risk of the portfolio.  

A risk-averse investor would prefer to minimize the VaR of the portfolio. There exist several methods to 
compute VaR in the financial literature, the most common are the mean-variance approach, the historical simulation 
method, the use of the Monte Carlo simulations, and the Extreme Value Theory, see Kuester, Mittnik, and Paolella 
(2006) for a comprehensive review of these methods. Since in this article we focused on the realized variance, we 
only analyse the method introduced by Giot and Laurent (2004) based on the realized volatility. Let be 𝑟" the returns 
at time 𝑡 of a single asset, it is assumed that: 

𝑟" = ℎ"𝑧", 	 	 𝑧" ∼ 𝐹 6.26  

where ℎ" is the conditional variance, 𝑧" is a i.i.d. variable with unitary variance and 𝐹 is the cumulative function of 
the returns.  

The one-step ahead forecast of the VaR is given by: 𝑉𝑎𝑅"�/|"¼ 	= 	−𝐹./ ℎ", assuming ℎ" as known 
conditionally to time	𝑡. For example, a GARCH model can be implemented to forecast the conditional variance one-
step ahead and, assuming a certain distribution for 𝐹 , the quantile of the distribution can be defined, and, 
consequently the VaR. When the VaR is the object of the minimization problem, it becomes: 

min
»
	 𝑉𝑎𝑅¼ 

𝑠. 𝑡. 	 𝑤ªι = 1. 6.27  

Despite the advantages denoting the Value-at-Risk, it also presents several weaknesses. The most relevant, 
in terms of portfolio optimisation, is the not-additivity property. In fact, among the properties defined by Artzner, 
Delbaen, Eber, and Heath (1999), a risk measure should be sub-additive, meaning that a diversification should 
reduce the overall risk or leave it not alternated. Instead, for two portfolios, 𝑋 and 𝑌, the VaR obtained from a 
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combination of the two may be greater than the sum of the single VaR, i.e. 𝑉𝑎𝑅 𝑋 + 𝑌 > 𝑉𝑎𝑅 𝑋 + 𝑉𝑎𝑅 𝑌 . 
Moreover, the VaR does not dive any information about the losses exceeding the maximum loss at a given 
confidence level. For these reasons, a more coherent risk measure like the Conditional VaR (or Expected Shortfall) 
should be implemented. 

The Conditional Value-at-Risk (CVaR) denotes the maximum loss conditional to the fact that this happens 
in the tail of the distribution at left of the VaR. Let 𝐿 be a continuous variable representing the losses of a portfolio, 
the CVaR may be defined as: 

𝐶𝑉𝑎𝑅K = 𝐸 𝐿 𝐿 ≥ 𝑉𝑎𝑅K . 6.28  

In other terms, the CVaR is equal to the average of the losses exceeding the VaR (see Figure 1). 
Figure 1. Conditional Value at Risk 

 
If the returns are normally distributed, then: 

𝐶𝑉𝑎𝑅K = − µ − σ
Φ 𝑁./ α

α
6.29  

where: Φ 𝑁./ 𝛼  is the cumulative function of the quantile 𝛼. Let be the average of the returns null, the formula 
can be written as: 

𝐶𝑉𝑎𝑅K = σ
Φ 𝑁./ α

α
. 6.30  

when the returns are normally distributed, for α → 0, then 𝑉𝑎𝑅K → 𝐶𝑉𝑎𝑅K (cfr. Barr 2013).  
Contrarily to VaR, the CVaR is a coherent risk measure according to the definition of Artzner, Delbaen, Eber, 

and Heath (1999), since the sub-additivity property allows to optimally capture the effects of a portfolio 
diversification. Using the definition of the CVaR in (6.30), the optimum problem is given by: 

min
»
	 𝐶𝑉𝑎𝑅¼ 

𝑠. 𝑡. 	 𝑤ª𝜄 = 1. 6.31  

6.2.2. Risk Hedging 

A posible criterion to evaluate volatility forecasts implies forecasting Value-at-Risk (VaR). The VaR and the related 
measure, like the Conditional-Value-at-Risk (CVaR), are an operative standard in financial institutions. 

These measures are based on the quantiles of the distribution, specifically on extreme losses. The main 
advantage of this kind of risk measure is that only few bits of information are necessary to define them. Moreover, 
they can be determined through econometric models similar to those presented in the previous chapter. The way 
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VaR and CVaR are computed is described in the previous section, in this section we focus on the evaluation of 
quantiles forecasts. 

Ex-post evaluation methods are necessary in presence of VaR and CVaR forecasts. We introduce two tests 
of VaR/CVaR forecast accuracy: the unconditional test of Kupiec (1995) and the conditional test introduced by 
Christoffersen (1998). In order to determine the tests, it becomes necessary to define the index variable. Let 
consider the returns of a financial asset, the index variable is equal to:  

𝜂" =
1 𝑖𝑓 𝑟" < −𝑉𝑎𝑅
0 𝑖𝑓 𝑟" ≥ −𝑉𝑎𝑅, 6.32  

where 1 denotes an exception and 0 denotes a return lower than the VaR (or CVaR for the conditional measure). 
The exceptions are summed and divided for the total number of the out-of-sample VaR estimates to gather an 
empirical measure. 

The unconditional coverage test, introduced by Kupiec (1995), is based on the assumption that the 
frequency of the exceptions empirically detected, ϕ, is coherent with the theoretical frequency, 𝛼. The statistical 
test can be computed as:  

𝐿𝑅éÑ = −2 ln α? 1 − α=.? − ln ϕ? 1 − ϕ =.? ∼ χJ 1 , 6.33  

where 𝑥 is the number of exceedances, 𝑁 is the sample size.  
Thus, a rejection of the null hypothesis implies that the dimension of the empirical VaR is significantly different from 
the nominal VaR. 

The Kupiec (1995) test can be applied only when the exceptions are independent, when the exceptions are 
not independent and clustered, the analysis should rely on Christoffersen (1998) test. The test introduced by 
Christoffersen (1998) is the most common method to evaluate the performance of VaR models. Let be the 
probability of two consecutive exceptions equal to: 𝑝>� = 𝑃 η" = 1 η"./ = 𝑗 , where 𝜂 is the index function 
as in the Equation (6.32). 
Two exceptions are considered independent if they do not occur in two consecutive days. Christoffersen (1998) 
suggested a likelihood test with time independent observations as null hypothesis and violations following a Markov 
chain as alternative hypothesis. Assuming that the violations follow a Markov chain with the following transition 
function: 

Π =
πK,K π/,K
πK,/ π/,/ , 6.34  

where 1 represents a violation and 0 denotes a non-violation. Let be 𝑛K, 𝑛/, 𝑛KK, 𝑛K/, 𝑛/K, 𝑛// the stages or 
the transitions of the stochastic Markov process, then: 

πKK =
êjj

êjj�êj<
, 	 πK/ =

êj<
êjj�êj<

      (6.35) 

π/K =
ê<j

ê<j�ê<<
, 	 π// =

ê<<
ê<j�ê<<

.      (6.36) 

Let be πK = 𝑛K/𝑁, π/ = 𝑛//𝑁, the LR test can be defined as follows: 

𝐿𝑅>êì = −2 ln 𝜋K
êj𝜋/

ê< − ln 𝜋KK
êjj𝜋K/

êj<𝜋/K
ê<j𝜋//

ê<< ∼ χJ 1 . 6.37  

For a confidence level equal to 95%, if 𝐿𝑅>êì > 𝐿𝑅Ñô>">Ñ+á = 3.841, the null hypothesis is rejected, and 
the violations are not independent. Thus, the model fails the independence test. 

The investors are, however, often not interested in the performance of a self-standing model for the VaR, 
but in a comparison with others VaR models. The investors are, however, often not interested in the performance 
of a self-standing model for the VaR, but in a comparison with others VaR models. The literature provided several 
ways to rank two or more models, like the quadratic probability score function (Lopez 1998) and the quadratic score 
function (Blanco and Ihle 1999). Both the functions allow to measure the performance of a model related to another 
model. 



 Journal of Advanced Studies in Finance 
 

129 

Lopez (1998) introduced the quadratic probability score to measure the pairwise comparison of VaR (CVaR) 
models, specified as follows:  

𝑄𝑃𝑆 =
2
𝑛

𝐶" − 𝑝 J
ê

"./

, 6.38  

where: n is the number of observations, p is the expected probability of a violation (i.e. the actual loss is larger than 
the estimated VaR/CVaR). 𝐶" is a loss function.  
Lopez (1998) relies on a loss function defined as: 

𝐶" =
1 𝑖𝑓 𝐿" > 𝑉𝑎𝑅"
0 𝑖𝑓 𝐿" ≤ 𝑉𝑎𝑅"

6.39  

QPS function assumes a value comprise between 0 and 2. Under general conditions, accurate estimates of 
VaR (CVaR) generate the least possible score, thus a lower QPS indicates a better performance in terms of 
violations. In addition to the QPS function, a common method for the evaluation of VaR forecasts is the already 
mentioned Root mean square error. Let  𝑉𝑎𝑅" be the estimated VaR (CVaR) and 𝐿" the real loss, the RMSE can 
be expressed as: 

𝑅𝑀𝑆𝐸 = 𝐸 𝑉𝑎𝑅" − 𝐿" =
1
𝑛

𝑉𝑎𝑅" − 𝐿" J

ê

"¯/

. 6.40  

A lower RMSE denotes a greater predictive accuracy of the model.  
Conclusion 
In this article, we provided an overview of volatility measures, focusing on volatility forecasting and evaluation 
methods, considering both the univariate and multivariate settings.  

We discussed the different types of volatility and the methods to measure them, which can be divided into 
three specific categories, namely ARCH models, stochastic volatility models and realized volatility models. 

The review has been particularly focused on predictive models for the realized variance, introduced in the 
recent literature of the non-parametric measure of volatility, analysing in detail time series models, MIDAS models 
and a combination of parametric models, like GARCH, and non-parametric models, named Realized GARCH 
models.  

We paid particular attention to forecast accuracy evaluation methods, considering the drawbacks related to 
the latent nature of the conditional variance. In fact, in direct methods, it becomes highly relevant the use of a 
volatility proxy which may lead to distortions in the ordering between forecasts. 

Thus, this article provided the conditions to define a robust loss function. Since the distortions introduced by 
the use of some volatility proxy may be avoided by an appropriate choice of the loss function.  

Finally, since researchers are usually interested in the economic evaluation of the forecasts, indirect 
methods have been analysed to evaluate volatility forecasts, such as portfolio optimisation and risk hedging. 
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APPENDIX 
A. Parametrizations for Variance-Covariance Matrices 

A general variance-covariance matrix, Σ , of dimension 𝑛	×𝑛 ,  defined as: Σ = 	
a// ⋯ a/l
⋮ ⋱ ⋮
al/ ⋯ all

 is 

symmetric and semi-positive definite for each 𝑥, such that: 𝑥kΣ𝑥 ≥ 0. 
 
This appendix relies only on a definite positive matrix, leaving aside the particular cases due to linear 

combinations of the underlying casual variables. Let θ be the set of parameters to determine Σ, the covariance 
matrix can be written as: 

Σ = 𝐿ª𝐿 𝐴. 1  
where 𝐿 = 𝐿 θ  is an 𝑛	×𝑛 matrix of full rank obtained from a vector of unconstrained parameters of dimension 

𝑛 𝑛 + 1 /2. Any Σ defined as in (A.1) is positive definite. 

Different choices of	𝐿 lead to different parametrizations of Σ. We will consider here two classes of 𝐿: one 
based on the Cholesky factorization of Σ and another based on the spectral decomposition of Σ. The following 
variance-covariance will be used throughout this section to illustrate the use of the various parametrizations.  

Σ =
25 15 −5
15 18 0
−5 0 11

𝐴. 2  

A.1. Cholesky Parametrization 

Since Σ is positive definite, it may be factored as Σ = 𝐿ª𝐿, where 𝐿 is an upper triangular matrix. Starting from a 
symmetric and positive definite matrix, 

Σ = 	
a// a/J a/Y
aJ/ aJJ aJY
aY/ aYJ aYY

 its Cholesky factorization is: 

𝑎// 𝑎/J 𝑎/Y
𝑎J/ 𝑎JJ 𝑎JY
𝑎Y/ 𝑎YJ 𝑎YY

	= 	
l// 0 0
l/J lJJ 0
l/Y lJY lYY

		
𝑙// 𝑙/J 𝑙/Y
0 𝑙JJ 𝑙JY
0 0 𝑙YY

	= 	
l//J l//l/J l//l/Y
l/Jl// l/JJ + lJJJ l/Jl/Y + lJJl/Y
l/Yl// l/Yl/J + lJYl/J l/YJ + lJYJ + lYYJ

 

𝐿 is obtained from the following formula:  

𝑙�� = 𝑎�� − 𝑙�¬J
�./

¬¯/

 

𝑙>� =
1
𝑙��

𝑎>� − 𝑙>¬

�./

¬¯/

𝑙�¬ ,	for	𝑖 > 𝑗. 

Knowing that 𝑙// = 𝑎//, 𝐿 can be generated in twofold way: in the first method, the matrix is calculated 
row by row starting from the top-left edge of the matrix, according to the Cholesky-Banachiewicz algorithm; the 
second method foresees to build the lower triangular column by column, according to the Cholesky-Crout algorithm. 
For example, the Cholesky factorization of Σ, defined in (A.2), is: 

25 15 −5
15 18 0
−5 0 11

	= 	
𝑙// 0 0
𝑙/J 𝑙JJ 0
𝑙/Y 𝑙JY 𝑙YY

		
𝑙// 𝑙/J 𝑙/Y
0 𝑙JJ 𝑙JY
0 0 𝑙YY

 

The first row of 𝐿 is given by: 
25 15 −5
15 18 0
−5 0 11

	= 	
5 0 0
3 𝑙JJ 0
−1 𝑙JY 𝑙YY

		
𝑙// 𝑙/J 𝑙/Y
0 𝑙JJ 𝑙JY
0 0 𝑙YY
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The second row of 𝐿 is equal to: 
18 0
0 11 	− 	 3

−1 3 −1 	= 	 𝑙JJ 0
𝑙JY 𝑙YY

𝑙JJ 𝑙JY
0 𝑙YY

9 3
3 10 = 3 0

1 𝑙YY
3 1
0 𝑙YY

 

The third column is given by: 10 − 1 = 𝑙YYJ ,			𝑙YY = 3 
Then, the final decomposition is defined as follows: 

25 15 −5
15 18 0
−5 0 11

	= 	
5 0 0
3 3 0
−1 1 3

		
5 3 −1
0 3 1
0 0 3

 

One problem with the Cholesky parametrization is that the Cholesky factor is not unique. In fact, if 𝐿 is a 
Cholesky factor of Σ, then so is any matrix obtained by multiplying a subset of the rows of by −1. This has 
implications on parameter identification, since up to 2ê different θ may represent the same Σ. Numerical problems 
can arise in the optimisation of an objective function when different optimal solutions are close together in the 
parameter space. 

Another problem with Cholesky parametrization is the lack of a straightforward relationship between 𝜃 and 
the elements of Σ. This makes it hard to interpret the estimates of 𝜃 and to obtain confidence intervals for the 
variances and covariances in Σ based on confidence intervals for the elements of 𝜃. One exception is ∣ 𝐿// ∣=
∣ Σ// ∣, so confidence intervals on ∣ Σ//| can be obtained from confidence intervals on 𝐿// , where 𝐴 >�  

denotes the ij-th element of the matrix Σ. By appropriately permuting the columns and rows of Σ, the confidence 
intervals can be derived for all the variance terms based on confidence intervals for the elements of 𝐿.  

The main advantage of this parametrization, apart from the fact that it ensures positive definiteness of the 
estimate of Σ, is that it is computationally simple and stable. 
A.2. Matrix Logarithm Parametrization 

This parametrization is based on the spectral decomposition of the covariance matrix, Σ. Because Σ is positive 
definite, it has 𝑛 positive eigenvalues λ. Let 𝑈 denote the orthogonal matrix of orthonormal eigenvectors of Σ and 
Λ = 𝑑𝑖𝑎𝑔 λ , it can be written: Σ = 𝑈Λ𝑈ª. By setting: 𝐿 = Λ//J𝑈ª  in Σ = 𝐿ª𝐿 , where Λ//J  represents the 
diagonal matrix with Λ//J >> = Λ >> , a factorization of Σ can be derived from the spectral decomposition. The 
matrix logarithm of Σ  is defined as log Σ = 𝑈 log Λ 𝑈ª , where log Λ = 𝑑𝑖𝑎𝑔 log Λ . Σ  and log Σ  
share the same eigenvectors. The matrix log Σ  can assume any value in the space of 𝑛	×𝑛 symmetric matrices. 

The matrix logarithm parametrization defines a one-to-one mapping of the θ elements of log Σ , therefore 
Σ does not have the identification problem of the Cholesky decomposition. Similarly to the Cholesky decomposition, 
the vector 𝜃 in the matrix logarithm parametrization does not have a straightforward interpretation in terms of the 
original variance and covariances in Σ. In order to define log Σ , the Schur-Fréchet algorithm may be used. Let Σ 
be equal to (A.2). the matrix logarithm parametrization is given by:  

log Σ =
2.8371 0.9245 −0.3995
0.9245 2.4708 0.1956
−0.3995 0.1956 2.3054
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