UNRAVELING THE "SUBURBAN FERTILITY HYPOTHESIS": DEMOGRAPHIC IMPLICATIONS AND TERRITORIAL CONSEQUENCES

Luca SALVATI
Council for Agricultural Research and Economics, Arezzo, e-mail: luca.salvati@crea.gov.it
Ilaria ZAMBON
Department of Agricultural and Forestry Sciences, Tuscia University, Viterbo, e-mail: ilaria.zambon@unitus.it

Abstract: A complex interplay among socioeconomic transformations and the underlying demographic trends has occurred along the long-term development of European countries. For instance, fertility plays a key role along the urban-rural gradient contributing to understand population patterns and processes and allowing identification of factors, drivers and consequences of demographic transitions. This contribution focuses on the relationship between urban growth and demographic transition, discussing whether discontinuous and dispersed urban expansion can be associated with a specific phase of demographic transition, especially a higher suburban fertility compared with urban and rural areas. A review of the 'suburban fertility hypothesis' based on earlier studies carried out in advanced economies, with a specific focus on Europe, indicates that urban sprawl is associated to younger and larger families whose childbearing behaviors determine positive feedbacks in terms of local fertility and demographic dynamics at large, with spatial heterogeneity across European regions and countries.

Keywords: fertility; demographic transition; suburban fertility; Europe.

Sažetak: Tokom dugoročnog razvoja evropskih zemalja došlo je do složene međuzavisnosti između socio-ekonomskih promena i osnovnih demografskih trendova. Na primer, plodnost ima ključnu ulogu u urbano-ruralnom gradijentu, doprinoseći razumevanju populacionih obrazaca i procesa tako što omogućava identifikaciju faktora, pokretača i posledica demografskih tranzicija. Ovaj rad se fokusira na odnos između urbanog rasta i demografske tranzicije, raspravljajući o tome može li se diskontinuirana i raspršena urbana ekspanzija povezati sa specifičnom fazom demografske tranzicije, naročito sa visokim vrednostima suburbanog fertiliteta u poredenu sa urbanim i ruralnim oblastima. Pripitivanje „hipoteze o suburbanoj (prigradskoj) plodnosti“ zasnovane na ranijim studijama koje su sprovedene u naprednim ekonomijama, sa posebnim fokusom na Evropu, ukazuje da je urbano širenje povezano sa mladim i većim porodicama čija dečja reproduktivna ponašanja determinišu pozitivne efekte lokalnog fertiliteta i demografske dinamike uopšte, s prostornom heterogenošću širom evropskih regiona i zemalja.

Ključne reči: plodnost, demografska tranzicija, prigradska plodnost, Evropa.
INTRODUCTION

A complex interchange among socioeconomic change and the underlying demographic trends has occurred along the long-term development of European countries, especially in recent decades (Kulu & Boyle, 2009; Kulu et al., 2009; Van Criekingen, 2010; Lesthaeghe, 2010; Haase et al., 2010; Van Nimwegen, 2013; Salvati, 2018). Demographic transitions have occurred since the 18th century, transforming high fertility and mortality rates characterized by young population toward decreasing demographic rates and ageing (Lee, 2003; Coleman, 2004; Harbison & Robinson, 2002; Lee, 2003; Lee & Reher, 2011; Lesthaeghe & Neidert, 2006; Lesthaeghe, 2010; Blue & Espenshade, 2011; Lesthaeghe & Surkyn, 2004; Reher 2011; Sharlin, 1986; Surkyn & Lesthaeghe, 2004). Decreasing birth and death rates from traditionally high levels characterized the so called ‘first demographic transition’ (Coleman, 2006). This transition was observed over a sufficiently long time interval ending with the highest urban concentration ever observed in advanced countries (Salvati, 2018). The ‘second demographic transition’ has happened together with social transformations and population redistribution at regional scale (Alperovich, 1983; van de Kaa, 2001), enlightening changes in individual and household characteristics, fertility, sexual and childbearing behaviors (Lesthaeghe & Surkyn, 2004; Coleman, 2004, 2006; Harbison & Robinson, 2002), triggering widespread aging and greater heterogeneity in population dynamics, time of childbearing, household’s size, individual choices concerning marriage or cohabiting at the same time (Billari & Kohler, 2004; Coleman, 2006; Haase et al., 2010; Kreienfeld et al., 2012). Moreover, original territorial structures, more oriented toward polycentric development and spatially balanced settlements, have been progressively established in advanced economies, and more specifically in Europe, defining a new spatial configuration and relationships among cities and suburbs (Liu, 2005; Kulu et al., 2009; Lesthaeghe & Neidert 2006; Caldwell & Schindlmayr 2003; Coleman, 2006; 2008; Kalmijn & van Tubergen, 2006; Sobotka & Toulemon, 2008; Goldstein et al., 2009; Rontos 2007, 2010; Salvati, 2018).

Demographic dynamics result to be sensitive to economic cycles (Kertzer et al., 2009; Kreienfeld et al., 2012; Lee, 2003; Reher, 2011; Rontos, 2010; Salvati, 2018; Goldstein et al., 2013), evidencing apparent (and more latent) relationships among socio-demographic factors and variability in economic performances (Reher, 2011). Demographic factors, e.g. the changing rates of marriage, cohabitation and separation (Kohler et al., 2002), have studied extensively during the second demographic transition (Kulu & Boyle, 2009). For instance, changing gender roles emerged as women’s socioeconomic characteristics (Surkyn & Lesthaeghe, 2004; van de Kaa, 2001; Kulu &
Boyle, 2009; Vikat, 2004), including job market engagement (Andersson 2000; Engelhardt et al., 2004) and educational achievement (Hoem et al., 2006a, 2006b), defining new fertility purposes and behaviors (Kulu & Boyle, 2009). With demographic transitions, life expectancy turned out to be longer with joint reductions in mortality and fertility, which can be detected following the spatial variation of population growth rates (Lee, 2003; Blue & Espenshade, 2011; Howell et al., 2016; Salvati, 2018). Demographic transitions reflect socioeconomic change along urban-rural gradients (Walford & Kurek, 2016; Boyle, 2003; Chorianopoulos et al., 2010; 2014; Salvati & Sabbi 2014; Salvati, 2018). Based on these premises, the present paper focuses on the relationship between urban sprawl and demographic transitions, in order to investigate if different types of urban growth can be associated with specific demographic trends, especially fertility. Based on a literature review, our contribution specifically refers to the assumption that suburban fertility rose over time in comparison with both urban and rural fertility (the so called ‘suburban fertility hypothesis’).

THE SPATIAL DIMENSION OF FERTILITY

Assuming that fertility patterns and processes are linked with factors, drivers and consequences intimately associated with demographic transitions (Kulu & Washbrook, 2014; Kurek et al., 2015; Kabisch et al., 2012; Boyle, 2003), fertility plays a pivotal role along urban-rural gradients. Sharlin (1986) summarized general trends of fertility in Europe along urban-rural gradients: (I) low urban marital fertility in rural contexts before the overall decline in fertility; (II) a declining marital fertility mainly in urban areas; (III) a fast decline in urban fertility followed by increasing rural-urban gap, and (IV) marital fertility in rural areas only slightly higher than in urban regions in the post-transition period (Kulu et al., 2007). Fertility differences across regions are intimately connected with the local context (Hank 2001, 2002; Caltabiano, 2008; Kertzer et al., 2009). Different desirable family sizes elucidate fertility differences among rural centers and urban areas (Kulu et al., 2011). Within urban areas, suburbs were found to record higher fertility (Kulu et al., 2009), with single-family households related with higher fertility (Kulu & Vikat 2007). These differences were particularly intense when controlling for the socioeconomic configuration of each study area (Kulu & Boyle, 2009), suggesting that contextual effects outline fertility choices. Spatial differences in urban and rural fertility rose over time (Sobotka, 2003; Sobotka et al., 2005; Kulu et al., 2009), whereas temporal differences in fertility was evident only recently. As an outcome, postponement has been more marked in larger regions rather than in smaller contexts (Kulu et al., 2007; Balbo et al., 2013).
In addition to differences among urban and rural fertility during the demographic transition (Kulu et al., 2007), the reasons of fertility difference across the settlements reveal constraints on family size and work-related configurations (Sharlin, 1986). Besides, the costs of children fluctuated among urban and rural locations, as well as the impact of religious and social standards on individual behavior mixed with settlement size (Kulu & Steele, 2013; Quillan, 2004). Another factor shaping urban-rural fertility variations is the educational composition, revealing spatial differences in childlessness (Hoem, 2005; Andersson et al., 2009; Kulu, 2011). Fertility variation by residence may also derive from the larger portion of students in urban areas than in small and rural contexts (Hank 2001; Kulu et al., 2007; Kulu, 2011). Population growth in suburban areas can be the consequence of increased in-migration (Kurek et al., 2015; van de Kaa, 2001; Sobotka, 2008; Lesthaeghe, 2010). Residential mobility may inspire couples to have more children (Vobecka & Piguet, 2012). In this regard, suburban areas recorded higher fertility rates than urban centers and differences in fertility within different residential contexts consolidated when controlling for population composition and specific migration patterns (Kulu & Washbrook, 2014; Kurek et al., 2015).

SUBURBAN FERTILITY IN EUROPE

Urban fertility, including both marital and overall, was lower than rural fertility during the last part of the first demographic transition, decreasing more rapidly with the second transition (Sharlin, 1986; Kulu & Boyle, 2009). An increasing attention to spatial features of fertility levels emerged in recent literature (Hank 2001; Thygesen et al., 2005; De Beer & Deerenberg, 2007; Kulu et al., 2007; 2009), since urban-rural fertility variations may have decreased over time, but significant differences among various types of settlement still persist nowadays (Kulu, Vikat, & Andersson, 2007; Kulu, 2011). Fertility levels were higher in rural areas or small towns and lower in large cities, e.g. in the United States (Glusker et al., 2000), Eastern Europe (Burcin & Kučera, 2000; Vobecká & Piguet, 2012; Vojtěchovská, 2000; Kulu, 2005; 2006; Philipov & Kohler, 2001), Northern Europe (Kulu et al., 2007; Thygesen, Knudsen & Keiding, 2005), England and Wales (Boyle et al., 2007; Tromans, Natamba & Jefferies, 2009), the Netherlands (De Beer & Deerenberg, 2007; Mulder & Wagner, 2001), Italy (Michielin, 2004; Vitali & Billari, 2011), as well as, in Germany and Austria (Hank, 2001; Kulu, 2006). Suburban fertility in contemporary Europe has started to increase since the 1950s-1960s, following the post-war baby boom and growing suburbanization (Kulu et al., 2009). During the 1970s, a number of people in Europe moved to suburbs living in large apartments or semi-detached
houses, thanks to the appropriateness of these areas for larger families with children (Kulu & Vikat, 2007). Fertility rates became to be higher in such suburbs than in central cities (Kulu et al., 2007; 2009).

The residential background had an independent impact over fertility decision-making, where internal migration towards suburban areas in Europe revealed a higher fertility rate (Kulu, 2005; Andersson, 2004; Milewski, 2007; Kulu & Boyle, 2009). Significant urban-rural differences in fertility behavior were influenced by individual socioeconomic characteristics (Kulu, 2011; Sharlin, 1986). Although studies on urban-rural fertility variation provided similar outlines - the larger the settlement, the lower the fertility levels - fertility rates are higher in smaller areas and lower in larger settlements (Kulu & Washbrook, 2014). In these regards, compositional effects indicate that fertility rates differ among places since different people live in different settlements, while the contextual hypothesis assumes that factors connected to immediate living areas are of critical importance (Kulu & Washbrook, 2014). For instance, couples with childbearing purposes may choose suburbs as more suitable residential contexts for families, while those with no childbirth plans may prefer larger settlements (Boyle et al., 2007; Kulu & Washbrook, 2014). Both housing conditions and the larger suburban setting may concurrently account for high levels of suburban fertility (Kulu et al., 2009). Housing is a proxy for household-specific features affecting childbearing behavior, e.g. household economic resources or financial support from parents, while assuming also the role of a background variable reflecting the living situations and direct setting of a family, in some specific contexts (Kulu et al., 2009).

Several factors may contribute to higher suburban fertility (Kohler, 2000; Lutz & Qiang, 2002; Kulu & Vikat, 2007). Since demographic transitions have been accompanied by a long phase of urbanization, including both compact and dispersed expansion, young population living in low-density contexts in larger houses have a high expectation of having children (Zeitler & Buys, 2015). This outcome emerged as a typical style of United States suburbs: suburban life has been considered as a part of the ‘American dream’, picturing younger and larger families. Nevertheless, today suburbs are aging (Lee et al., 2017). The most recent phase of urban growth would not be explicated by demographic variations typical of the second transition in some European countries, but the arrival of labor-related foreign immigrants has been of great importance. For instance, these international flows, mostly from central and eastern Europe and non-European developing countries, had been particularly strong in highly segregated labor markets e.g. in France, Spain and Italy (Domingo & Gil-Alonso, 2007; Kohler & Ortega, 2002). They were inclined to settle in core cities, predominantly in low-quality neighborhoods (Bayona et al., 2011; Bayona & López-Gay, 2011),
since central areas offer more work opportunities, better public transport, cheaper housing and easier networking among different immigrants (Champion, 2001; Buzar et al.; 2007; Bayona & Gil-Alonso, 2012; Gil-Alonso et al., 2016).

AN EMPIRICAL EXERCISE

In the present study, a specific analysis was carried out at the urban and metropolitan level in Europe by exploiting official Eurostat statistics, with special regard with the demographic data disseminated by the Urban Audit program. This program developed by Eurostat aims at producing a socioeconomic profile of the main cities and metropolitan areas in Europe through the collection and dissemination of social, demographic and economic indicators on a more detailed geographical scale than the statistics usually disseminated by Eurostat. In particular, our study made use of demographic statistics for the last year available, building a demographic indicator - the crude birth rate, namely births per 1000 resident inhabitants - at local and regional scale in 671 urban agglomerations of 30 European countries. The urban scale has been identified through the spatial analysis’ unit called ‘inner city’ in the Urban Audit program, encompassing the central municipality of the respective metropolitan area. The regional scale has been investigated considering ‘Large Urban Zones’ (LUZs), the spatial analysis’ unit corresponding with the entire metropolitan area. To verify the suburban fertility hypothesis in European cities, an indicator was calculated by dividing the crude birth rate in suburban areas (LUZ) by the observed rate in strictly urban areas (inner cities). This indicator, calculated for each urban area, assumed a positive value when the birth rate was higher in suburban areas; a negative value indicated a higher birth rate in central cities compared with suburbs. Based on the available data published by Eurostat, the indicator refers to the last year available in each city of the sample, being representative of a time interval between 2015 and 2018. The indicator was subsequently analyzed by grouping cities by country and European region (Western, Northern, Central, Eastern and Southern). The percentage of cities showing a higher birth rate in the suburbs than in the central areas was calculated for each European country. Furthermore, classifying the cities studied in two groups (with higher fertility in the suburbs and with higher fertility in central areas), the average value of the indicator described above was calculated for each European country.

A significant spatial heterogeneity has been detected in the different European countries as regards the crude birth rate at urban and suburban scale (Table 1). In general, the percentage of cities where a higher birth rate was observed in suburbs than in central areas was relatively low in Western,
Northern and Central Europe. In these contexts, which correspond to the most advanced economies in Europe, the highest birth rate was observed in central cities and the differences with suburbs were rather high (on average, about 10% more in Germany, France, the United Kingdom, and more than 10% in Belgium and Denmark). The largest cities in these regions (Berlin, Paris, London) were in line with the overall trend. The percentage of cities where a higher birth rate was observed in the suburbs than in central areas increased in Eastern Europe, reaching the maximum values in Estonia and Slovenia and remaining particularly high also in Hungary, Poland and Romania. The difference in the birth rate between the suburbs and the central city was positive and ranged between 9% in the Slovak Republic and 3% in Bulgaria and Czech Republic. Results for the main cities of this region were in line with the general trend. Finally, a particularly heterogeneous situation was observed in Southern Europe, where many cities had significantly higher values of suburban fertility than those observed in urban areas, and the main cities (e.g. Madrid and Barcelona in Spain, Rome and Naples in Italy, Athens in Greece) fully reflect this trend. Southern Europe is, in some way, a region that has recently experienced prolonged suburbanization, in transition towards urban models more similar with those observed in the most advanced European economies, with a slow recovery of fertility in central areas and a moderate decline in peripheral areas. At the same time, many cities in Southern Europe are still in a suburbanization phase characteristic of urban cycles typical of the most marginal areas, such as some Western and Northern European countries (Ireland and Norway) and most of the countries of Eastern Europe. The proposed approach can be considered a preliminary step of a more comprehensive analysis of urban and suburban fertility trends in the European continent using macro-scale demographic data at an appropriate spatio-temporal scale. Despite considered a gross indicator of fertility, urban and metropolitan (crude) birth rates may inform more refined demographic analysis considering specific indicators (e.g. total fertility rate) and providing an enriched analysis of local contexts, possibly influencing demographic gaps along urban-rural gradients.

THE SPECIFICITY OF THE MEDITERRANEAN REGION

The Second Demographic Transition has interested Southern Europe later than the others European countries with high rates of population loss, reaching the minimum values e.g. in Greece during the 1990s (Van Nimwegen, 2013). Effects of this transition on urban population gave rise to a slow shift from compact cities to more polycentric and spatially balanced areas (Rontos, 2010; Kabisch & Haase, 2011; Salvati et al., 2015). Both internal and foreign migration influenced demographic changes
Table 1. Spatial distribution of a demographic indicator assessing the regional gap in birth rates between suburban and urban areas in a sample of European cities, according to Eurostat Urban Audit statistics, 2015-2018.

<table>
<thead>
<tr>
<th>Country</th>
<th>Total number of cities</th>
<th>Higher fertility in suburbs (%)</th>
<th>Higher fertility in central cities</th>
<th>Higher fertility in Large Urban Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total number of cities</td>
<td>Higher fertility in suburbs (%)</td>
<td>Number of cities</td>
<td>Average indicator</td>
</tr>
<tr>
<td>Western Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>11</td>
<td>18.2</td>
<td>9</td>
<td>-11.5</td>
</tr>
<tr>
<td>France</td>
<td>82</td>
<td>9.8</td>
<td>74</td>
<td>-8.7</td>
</tr>
<tr>
<td>Ireland</td>
<td>5</td>
<td>80.0</td>
<td>1</td>
<td>-10.8</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>-10.5</td>
</tr>
<tr>
<td>Netherlands</td>
<td>36</td>
<td>19.4</td>
<td>29</td>
<td>-5.3</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>47</td>
<td>23.4</td>
<td>36</td>
<td>-10.6</td>
</tr>
<tr>
<td>Northern Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>4</td>
<td>0.0</td>
<td>4</td>
<td>-14.4</td>
</tr>
<tr>
<td>Finland</td>
<td>7</td>
<td>28.6</td>
<td>5</td>
<td>-3.7</td>
</tr>
<tr>
<td>Norway</td>
<td>6</td>
<td>50.0</td>
<td>3</td>
<td>-7.3</td>
</tr>
<tr>
<td>Sweden</td>
<td>12</td>
<td>8.3</td>
<td>11</td>
<td>-5.7</td>
</tr>
<tr>
<td>Central Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>6</td>
<td>33.3</td>
<td>4</td>
<td>-6.7</td>
</tr>
<tr>
<td>Germany</td>
<td>93</td>
<td>17.2</td>
<td>77</td>
<td>-9.6</td>
</tr>
<tr>
<td>Switzerland</td>
<td>10</td>
<td>10.0</td>
<td>9</td>
<td>-9.6</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>17</td>
<td>35.3</td>
<td>11</td>
<td>-4.4</td>
</tr>
<tr>
<td>Croatia</td>
<td>7</td>
<td>57.1</td>
<td>3</td>
<td>-3.6</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>15</td>
<td>33.3</td>
<td>10</td>
<td>-2.2</td>
</tr>
<tr>
<td>Estonia</td>
<td>2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>19</td>
<td>84.2</td>
<td>3</td>
<td>-3.8</td>
</tr>
<tr>
<td>Lithuania</td>
<td>3</td>
<td>66.7</td>
<td>1</td>
<td>-4.2</td>
</tr>
<tr>
<td>Latvia</td>
<td>4</td>
<td>25.0</td>
<td>3</td>
<td>-3.2</td>
</tr>
<tr>
<td>Poland</td>
<td>58</td>
<td>87.9</td>
<td>7</td>
<td>-1.5</td>
</tr>
<tr>
<td>Romania</td>
<td>35</td>
<td>77.1</td>
<td>8</td>
<td>-1.5</td>
</tr>
<tr>
<td>Slovenia</td>
<td>2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>8</td>
<td>62.5</td>
<td>3</td>
<td>-1.7</td>
</tr>
<tr>
<td>Southern Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>9</td>
<td>22.2</td>
<td>7</td>
<td>-10.1</td>
</tr>
<tr>
<td>Italy</td>
<td>84</td>
<td>56.0</td>
<td>37</td>
<td>-2.8</td>
</tr>
<tr>
<td>Malta</td>
<td>1</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>12</td>
<td>41.7</td>
<td>7</td>
<td>-7.7</td>
</tr>
<tr>
<td>Spain</td>
<td>73</td>
<td>57.5</td>
<td>31</td>
<td>-2.9</td>
</tr>
<tr>
<td>Total</td>
<td>671</td>
<td>41.3</td>
<td>394</td>
<td>-7.0</td>
</tr>
</tbody>
</table>

Source: Own elaboration on Eurostat Urban Audit data (Inner Cities and Large Urban Zones).
Johnson et al., 2005; Van Criekingen, 2010; Blangiardo & Rimoldi, 2013; van Bavel & Reher, 2013; Taulbut & Robinson, 2015). For instance, internal migration flows were focused on the main urban areas in Greece since the 1950s; contrarywise, a strong internal migration happened toward suburbs and rural contexts in the last decades, in corresponding with a stationary population growth in main cities, underlining new settlement models (Sayas, 2006; Kasimis, 2008; Morelli et al., 2014; Rontos et al., 2016; Salvati, 2018). Also in Spain many young families decided to move in suburbs. For instance, highly suburbanized areas e.g. in Madrid and Barcelona, recorded moderately high fertility; conversely smaller urban centres had lower fertility rates (Gil-Alonso et al., 2016; 2017; Pujadas et al., 2012; Pozo & Rodríguez-Moya, 2003; Kohler & Ortega, 2002). A marked fertility gap has been also detected in Northern Europe (Kulu & Boyle, 2009; Kulu et al., 2007 & 2009; Gil-Alonso et al., 2016; Kohler & Ortega, 2002).

Sprawl has been extensively studied in Mediterranean metropolitan areas. For instance, urban expansion in Barcelona represented a sort of ‘lock living’ mode reflecting, in part, the characteristics of the United States suburban landscapes (Muñoz, 2003; Serra et al., 2014; Cuadrado-Ciuraneta et al., 2017). Peri-urban landscapes were therefore populated by single houses with private gardens and swimming pools (Garcia-López & Muñiz, 2010; Saurí 2003), revealing the intrinsic relationship between luxury goods, income, socio-demographic characteristics and land resources (Vidal et al., 2011; Serra et al., 2014). However, the typical population segment fueling sprawl processes consists of large families, typically composed by a young couple with children, while one-component households (e.g. older people or adults who live alone) prefer to live in urban areas, because of increased accessibility to services (López-i-Villanueva et al., 2013). Following Tombolini et al. (2015), the spatial distribution of the elderly index reproduces the main demographic pattern at the base of urban sprawl. The elderly index was higher in central cities, as observed e.g. in Barcelona. In Rome, higher values of the elderly index were observed in rural municipalities and in some urban districts. In Athens, population preferred to live in certain areas depending on the age group (Zitti et al., 2017). Younger people (age class 18-44 years) were mainly concentrated in the areas that have undergone urban dispersion in recent times (Economidou, 1993; Zitti et al., 2017), resulting in a spatially heterogeneous population structure (Chorianopoulos et al., 2010). The oldest age class (> 64 years) was essentially located in the urban core of Greater Athens and in some coastal and inland peri-urban municipalities (Rontos & Salvati, 2014; Zitti et al., 2017).
FUTURE CHALLENGES IN SPRAWLED AREAS

As a result of economic and social changes, regional demographic regimes had changed in Europe (Hionidou, 1995; Leontidou, 1996; Salvati & Carlucci, 2017). Heterogeneous demographic dynamics related with the second demographic transition have involved new family relationships, resulting in a declining fertility (Billari & Kohler, 2004; Pinnelli & Di Cesare, 2005; Haase et al., 2010; Kreyenfeld et al., 2012). These dynamics are having an influential effect both in urban centers and suburbs, re-densifying but also diversifying these areas (Ogden & Hall, 2000; Liu, 2005; Lee & Painter, 2013; Salvati & Carlucci, 2017). Recent recession shocks often lead to greater spatial complexity within the structural variations of urban and rural populations, reflecting the local scale consequences of the second demographic transition (Valkonen et al., 2000; Sobotka, Skirbekk, & Philipov, 2011; Goldstein et al., 2013; Simou & Koutsogeorgou, 2014). In fact, the recent recession has affected urban population dynamics, e.g. the metropolitan population (Dijkstra et al., 2015; Carbonaro et al., 2016; Salvati & Carlucci, 2017). Recession-induced demographic decline and population ageing have enlarged urban vulnerability, affecting building cycles and shaping the housing and labor market as an outcome of improved class segregation and diverged distribution of economic activities (Pérez, 2010; Goldstein et al., 2013; Simou & Koutsogeorgou, 2014; Ren, 2015; Salvati & Carlucci, 2017).

The present contribution delineates the intimate relationship between urban sprawl and demographic transition (Carlucci et al., 2017; Kroll & Kabisch, 2012). Recent literature indicated that mainly young population segments - with a greater propensity to childbearing - are involved in urban dispersion (Economidou, 1993; Zitti et al., 2017; Gil-Alonso et al., 2016, 2017; Pujadas et al., 2012; Pozo & Rodríguez-Moya, 2003; Kohler & Ortega, 2002; Salvati, 2018; Zeitler & Buys, 2015) while elder people tend to live in major urban centers (Zeitler & Buys, 2015; López-i-Villanueva et al., 2013; Rontos & Salvati, 2014; Zitti et al., 2017). Literature also clarified connections between population structure and issues such as residential migration, social vulnerability, and demographic changes in urban and suburban areas (Marek & Rantz, 2000; Andrew et al., 2008, 2012; Lucy & Phillips, 2000; Lee et al., 2017). Local contexts with highly populated suburbs increasingly require strategies that indorse car-independent transport to (and from) all areas of the city, and to offer access to services and facilities that are reachable for nondrivers (Charlton et al., 2006; Lord et al., 2009; 2011; Zeitler et al., 2012).
Economic changes have led to a change in housing preferences, especially in North America (Moos, 2016). In some Northern American metropolitan, young people are mostly concentrated in central areas or in high-density areas near public transportation connections expanding into the suburbs (Moos & Mendez, 2015; Moos, 2014, 2016). These patterns reveal (I) preferences for an urban lifestyle, (II) changing demography and household composition, (III) increasing housing costs and (IV) changing economic prospects (Moore & Skaburskis, 2004). Important spatial variability in European data supporting the suburban fertility hypothesis goes in the same direction, evidencing that suburban fertility in recent times was higher than urban fertility especially in Eastern and Southern Europe, as well as in more marginal contexts in other European regions. Such changes may be linked to lifestyles’ evolution, since today many younger people prefer to live in smaller households than in the past. This choice changed also their fertility rate, e.g. having children later (Beaupré et al., 2006; Moos, 2014, 2016). Furthermore, young adults prefer to live nearer to transit and urban amenities and to walk or cycle than to drive, demonstrating a growing urban lifestyle predilection (Moos, 2014). Focusing on the current labor market, young people experience higher ‘risks’ due to a growth of ‘flexible work arrangements’ (Beer et al., 2011; Furlong & Cartmel, 2007), with lower income than in the past (Moos & Mendez, 2015; Boudarbat et al., 2010; Moos, 2016). In contrast, baby boom generations and the current seniors are gradually found in suburban areas, growing in concentration in suburban neighborhoods in recent years (Patterson et al., 2014; Moos, 2016).

CONCLUSIONS

Literature review and the empirical evidence from statistical data suggest that, in recent years, the suburban fertility hypothesis has still valid in some urban contexts especially in marginal European regions. In contrast, in more advanced economies, this assumption seems to be less adequate in describing the more recent fertility trends on a local scale. A more accurate study adopting refined demographic indicators appears indispensable to provide a theoretical framework and a reliable empirical analysis on recent and future fertility trends along the urban-rural gradient in Europe. Implications of these transitions in the different European regions are particularly relevant for integrated management of urban areas. For instance, population structures increasingly dominated by older population segments in suburban districts may represent a problematic issue for urban planning in the coming decades.
REFERENCES

Vikat, A. (2004). Women’s labor force attachment and childbearing in Finland. *Demographic Research*, Special Collection, S3(8), 177-212.

PREISPITIVANJE "HIPOTEZE SUBURBANOG FERTILITETA": DEMOGRAFSKE IMPLIKACIJE I TERITORIJALNE POSLEDICE

Luca SALVATI, Ilaria ZAMBON

REZIME

Regionalne rezlike u fertilitetu su usko povezane sa lokalnim kontekstom. Razlike u željenoj veličini porodice objašnjavaju razlike u fertilitetu između ruralnih i urbanih područja. U okviru urbanih celina, primetili smo da je u suburbanim (prigradskim) područjima viši nivo fertiliteta zabeležen u jednoporodičnim domaćinstvima. Ove razlike su posebno izražene u odnosu na socio-ekonomske pokazatelje posmatranih područja, uz primedbu da lokalni konteksti često determinišu nivo fertiliteta. Na osnovu uvida u brojna istraživanja koja su predstavljena u naučnoj literaturi pretpostavljamo da je u Europi s vremenom doшло do porasta suburbanog fertiliteta u odnosu urbana i ruralna područja (tzv. 'hipoteza o prigradskoj plodnosti').

Za analizu prigradskog fertiliteta korišćeni su zvanični podaci Eurostata za evropske gradove i metropole, na osnovu kojih su izvedene opšte stope nataliteta na lokalnom i regionalnom nivou u 671 urbanoj aglomeraciji iz 30 evropskih zemalja. Skaliranje urbanih područja je izvedeno pomoću jedinice za prostornu analizu koja se u Urban Audit programu naziva "unutrašnji grad", a koji obuhvata centralnu opštinu odgovarajućeg područja metropole. Regionalna skala je analizirana prema "velikim gradskim zonama" (Large Urban Zones-LUZ). Indikator je izračunat deljenjem opšte stope nataliteta u suburbanim područjima sa odgovarajućim stopama u strogo urbanim područjima (unutrašnjim-centralnim gradovima). Ovaj indikator ima pozitivnu vrednost kada je opšta stopa nataliteta viša u prigradskim, odnosno negativna kada je stopa viša u urbanim područjima.

Udeo gradova u kojima su opšte stope nataliteta više u suburbanim područjima nego u "unutrašnjim gradovima" je relativno nizak u Zapadnoj, Severnoj i Centralnoj Evropi. U tom smislu, najviše opšte stipe nataliteta su zabeležene u unutrašnjim gradovima, a razlike u odnosu na predgrađa su prilično velike (u proseku oko 10% u Nemačkoj, Francuskoj i Velikoj Britaniji, a više od 10% u Belgiji i Danskoj). Udeo gradova u kojima je viši natalitet primećen u predgradima nego u centralnim oblastima povećan je u Istočnoj Evropi, dostižući maksimalne vrednosti u Estoniji i Sloveniji, a na posebno visokom nivou je u Madarskoj, Poljskoj i Rumuniji. Razlika u natalitetu između predgrađa i centralnih građa bila je pozitivna i kretala se između 9% u Slovačkoj, i 3% u Bugarskoj i Češkoj. Posebna heterogenost primećena je u Južnoj Evropi, gde su mnogi gradovi imali značajno više vrednosti nataliteta u prigradskim područjima.

Južna Evropa je, na neki način, region sa recentnom produženom suburbanizacijom, tranziciji k urbanim modelima sličnim onima u najnaprednijim evropskim ekonomijama, sa sporim oporavkom plodnosti u centralnim gradovima i umerenim padom u suburbanim područjima. Istovremeno, mnogi gradovi u Južnoj Evropi još uvek su u fazi suburbanizacije koja je karakteristična za urbane cikluse u najmarginalnijim područja, poput nekih u zemaljama Zapadne i Severne Evrope (Irsko i Norveška), i većine zemalja Istočne Evrope. Ključne reči: plodnost, demografska tranzicija, prigradska plodnost, Evropa.